xref: /dflybsd-src/sys/dev/disk/nata/ata-raid.c (revision 978400d3b04daf8f91ba8bb2dcc382a37ef632f4)
1 /*-
2  * Copyright (c) 2000 - 2006 S�ren Schmidt <sos@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification, immediately at the beginning of the file.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  * $FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.120 2006/04/15 10:27:41 maxim Exp $
27  * $DragonFly: src/sys/dev/disk/nata/ata-raid.c,v 1.8 2008/01/06 16:55:49 swildner Exp $
28  */
29 
30 #include "opt_ata.h"
31 
32 #include <sys/param.h>
33 #include <sys/bio.h>
34 #include <sys/buf.h>
35 #include <sys/buf2.h>
36 #include <sys/bus.h>
37 #include <sys/conf.h>
38 #include <sys/device.h>
39 #include <sys/disk.h>
40 #include <sys/endian.h>
41 #include <sys/libkern.h>
42 #include <sys/malloc.h>
43 #include <sys/module.h>
44 #include <sys/nata.h>
45 #include <sys/spinlock2.h>
46 #include <sys/systm.h>
47 
48 #include <vm/pmap.h>
49 
50 #include <machine/md_var.h>
51 
52 #include <bus/pci/pcivar.h>
53 
54 #include "ata-all.h"
55 #include "ata-disk.h"
56 #include "ata-raid.h"
57 #include "ata-pci.h"
58 #include "ata_if.h"
59 
60 
61 /* device structure */
62 static	d_strategy_t	ata_raid_strategy;
63 static	d_dump_t	ata_raid_dump;
64 static struct dev_ops ar_ops = {
65 	{ "ar", 157, D_DISK },
66 	.d_open =	nullopen,
67 	.d_close =	nullclose,
68 	.d_read =	physread,
69 	.d_write =	physwrite,
70 	.d_strategy =	ata_raid_strategy,
71 	.d_dump =	ata_raid_dump,
72 };
73 
74 /* prototypes */
75 static void ata_raid_done(struct ata_request *request);
76 static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
77 static int ata_raid_status(struct ata_ioc_raid_config *config);
78 static int ata_raid_create(struct ata_ioc_raid_config *config);
79 static int ata_raid_delete(int array);
80 static int ata_raid_addspare(struct ata_ioc_raid_config *config);
81 static int ata_raid_rebuild(int array);
82 static int ata_raid_read_metadata(device_t subdisk);
83 static int ata_raid_write_metadata(struct ar_softc *rdp);
84 static int ata_raid_wipe_metadata(struct ar_softc *rdp);
85 static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
86 static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
87 static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
88 static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
89 static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
90 static int ata_raid_intel_write_meta(struct ar_softc *rdp);
91 static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
92 static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
93 static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
94 static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
95 static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
96 static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
97 static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
98 static int ata_raid_promise_write_meta(struct ar_softc *rdp);
99 static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
100 static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
101 static int ata_raid_sis_write_meta(struct ar_softc *rdp);
102 static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
103 static int ata_raid_via_write_meta(struct ar_softc *rdp);
104 static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
105 static int ata_raid_send_request(struct ata_request *request);
106 static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
107 static char * ata_raid_format(struct ar_softc *rdp);
108 static char * ata_raid_type(struct ar_softc *rdp);
109 static char * ata_raid_flags(struct ar_softc *rdp);
110 
111 /* debugging only */
112 static void ata_raid_print_meta(struct ar_softc *meta);
113 static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
114 static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
115 static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
116 static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
117 static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
118 static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
119 static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
120 static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
121 static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
122 static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
123 static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
124 static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
125 static void ata_raid_via_print_meta(struct via_raid_conf *meta);
126 
127 /* internal vars */
128 static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
129 static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
130 static devclass_t ata_raid_sub_devclass;
131 static int testing = 0;
132 
133 static void
134 ata_raid_attach(struct ar_softc *rdp, int writeback)
135 {
136     struct disk_info info;
137     cdev_t cdev;
138     char buffer[32];
139     int disk;
140 
141     spin_init(&rdp->lock);
142     ata_raid_config_changed(rdp, writeback);
143 
144     /* sanitize arrays total_size % (width * interleave) == 0 */
145     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
146 	rdp->type == AR_T_RAID5) {
147 	rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
148 			     (rdp->interleave * rdp->width);
149 	ksprintf(buffer, " (stripe %d KB)",
150 		(rdp->interleave * DEV_BSIZE) / 1024);
151     }
152     else
153 	buffer[0] = '\0';
154     /* XXX TGEN add devstats? */
155     cdev = disk_create(rdp->lun, &rdp->disk, &ar_ops);
156     cdev->si_drv1 = rdp;
157     cdev->si_iosize_max = 128 * DEV_BSIZE;
158     rdp->cdev = cdev;
159 
160     bzero(&info, sizeof(info));
161     info.d_media_blksize = DEV_BSIZE;		/* mandatory */
162     info.d_media_blocks = rdp->total_sectors;
163 
164     info.d_secpertrack = rdp->sectors;		/* optional */
165     info.d_nheads = rdp->heads;
166     info.d_ncylinders = rdp->total_sectors/(rdp->heads*rdp->sectors);
167     info.d_secpercyl = rdp->sectors * rdp->heads;
168 
169     kprintf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
170 	   rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
171 	   ata_raid_format(rdp), ata_raid_type(rdp),
172 	   buffer, ata_raid_flags(rdp));
173 
174     if (testing || bootverbose)
175 	kprintf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
176 	       rdp->lun, rdp->total_sectors,
177 	       rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);
178 
179     for (disk = 0; disk < rdp->total_disks; disk++) {
180 	kprintf("ar%d: disk%d ", rdp->lun, disk);
181 	if (rdp->disks[disk].dev) {
182 	    if (rdp->disks[disk].flags & AR_DF_PRESENT) {
183 		/* status of this disk in the array */
184 		if (rdp->disks[disk].flags & AR_DF_ONLINE)
185 		    kprintf("READY ");
186 		else if (rdp->disks[disk].flags & AR_DF_SPARE)
187 		    kprintf("SPARE ");
188 		else
189 		    kprintf("FREE  ");
190 
191 		/* what type of disk is this in the array */
192 		switch (rdp->type) {
193 		case AR_T_RAID1:
194 		case AR_T_RAID01:
195 		    if (disk < rdp->width)
196 			kprintf("(master) ");
197 		    else
198 			kprintf("(mirror) ");
199 		}
200 
201 		/* which physical disk is used */
202 		kprintf("using %s at ata%d-%s\n",
203 		       device_get_nameunit(rdp->disks[disk].dev),
204 		       device_get_unit(device_get_parent(rdp->disks[disk].dev)),
205 		       (((struct ata_device *)
206 			 device_get_softc(rdp->disks[disk].dev))->unit ==
207 			 ATA_MASTER) ? "master" : "slave");
208 	    }
209 	    else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
210 		kprintf("DOWN\n");
211 	    else
212 		kprintf("INVALID no RAID config on this subdisk\n");
213 	}
214 	else
215 	    kprintf("DOWN no device found for this subdisk\n");
216     }
217 
218     disk_setdiskinfo(&rdp->disk, &info);
219 }
220 
221 /*
222  * ATA PseudoRAID ioctl function. Note that this does not need to be adjusted
223  * to the dev_ops way, because it's just chained from the generic ata ioctl.
224  */
225 static int
226 ata_raid_ioctl(u_long cmd, caddr_t data)
227 {
228     struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
229     int *lun = (int *)data;
230     int error = EOPNOTSUPP;
231 
232     switch (cmd) {
233     case IOCATARAIDSTATUS:
234 	error = ata_raid_status(config);
235 	break;
236 
237     case IOCATARAIDCREATE:
238 	error = ata_raid_create(config);
239 	break;
240 
241     case IOCATARAIDDELETE:
242 	error = ata_raid_delete(*lun);
243 	break;
244 
245     case IOCATARAIDADDSPARE:
246 	error = ata_raid_addspare(config);
247 	break;
248 
249     case IOCATARAIDREBUILD:
250 	error = ata_raid_rebuild(*lun);
251 	break;
252     }
253     return error;
254 }
255 
256 /*
257  * XXX TGEN there are a lot of offset -> block number conversions going on
258  * here, which is suboptimal.
259  */
260 static int
261 ata_raid_strategy(struct dev_strategy_args *ap)
262 {
263     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
264     struct bio *bp = ap->a_bio;
265     struct buf *bbp = bp->bio_buf;
266     struct ata_request *request;
267     caddr_t data;
268     u_int64_t blkno, lba, blk = 0;
269     int count, chunk, drv, par = 0, change = 0;
270 
271     if (!(rdp->status & AR_S_READY) ||
272 	(bbp->b_cmd != BUF_CMD_READ && bbp->b_cmd != BUF_CMD_WRITE)) {
273 	bbp->b_flags |= B_ERROR;
274 	bbp->b_error = EIO;
275 	biodone(bp);
276 	return(0);
277     }
278 
279     bbp->b_resid = bbp->b_bcount;
280     for (count = howmany(bbp->b_bcount, DEV_BSIZE),
281 	 /* bio_offset is byte granularity, convert */
282 	 blkno = (u_int64_t)(bp->bio_offset >> DEV_BSHIFT),
283 	 data = bbp->b_data;
284 	 count > 0;
285 	 count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {
286 
287 	switch (rdp->type) {
288 	case AR_T_RAID1:
289 	    drv = 0;
290 	    lba = blkno;
291 	    chunk = count;
292 	    break;
293 
294 	case AR_T_JBOD:
295 	case AR_T_SPAN:
296 	    drv = 0;
297 	    lba = blkno;
298 	    while (lba >= rdp->disks[drv].sectors)
299 		lba -= rdp->disks[drv++].sectors;
300 	    chunk = min(rdp->disks[drv].sectors - lba, count);
301 	    break;
302 
303 	case AR_T_RAID0:
304 	case AR_T_RAID01:
305 	    chunk = blkno % rdp->interleave;
306 	    drv = (blkno / rdp->interleave) % rdp->width;
307 	    lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
308 	    chunk = min(count, rdp->interleave - chunk);
309 	    break;
310 
311 	case AR_T_RAID5:
312 	    drv = (blkno / rdp->interleave) % (rdp->width - 1);
313 	    par = rdp->width - 1 -
314 		  (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
315 	    if (drv >= par)
316 		drv++;
317 	    lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
318 		  ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
319 	    chunk = min(count, rdp->interleave - (lba % rdp->interleave));
320 	    break;
321 
322 	default:
323 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
324 	    bbp->b_flags |= B_ERROR;
325 	    bbp->b_error = EIO;
326 	    biodone(bp);
327 	    return(0);
328 	}
329 
330 	/* offset on all but "first on HPTv2" */
331 	if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
332 	    lba += rdp->offset_sectors;
333 
334 	if (!(request = ata_raid_init_request(rdp, bp))) {
335 	    bbp->b_flags |= B_ERROR;
336 	    bbp->b_error = EIO;
337 	    biodone(bp);
338 	    return(0);
339 	}
340 	request->data = data;
341 	request->bytecount = chunk * DEV_BSIZE;
342 	request->u.ata.lba = lba;
343 	request->u.ata.count = request->bytecount / DEV_BSIZE;
344 
345 	switch (rdp->type) {
346 	case AR_T_JBOD:
347 	case AR_T_SPAN:
348 	case AR_T_RAID0:
349 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
350 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
351 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
352 		ata_raid_config_changed(rdp, 1);
353 		ata_free_request(request);
354 		bbp->b_flags |= B_ERROR;
355 		bbp->b_error = EIO;
356 		biodone(bp);
357 		return(0);
358 	    }
359 	    request->this = drv;
360 	    request->dev = rdp->disks[request->this].dev;
361 	    ata_raid_send_request(request);
362 	    break;
363 
364 	case AR_T_RAID1:
365 	case AR_T_RAID01:
366 	    if ((rdp->disks[drv].flags &
367 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
368 		!rdp->disks[drv].dev) {
369 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
370 		change = 1;
371 	    }
372 	    if ((rdp->disks[drv + rdp->width].flags &
373 		 (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
374 		!rdp->disks[drv + rdp->width].dev) {
375 		rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
376 		change = 1;
377 	    }
378 	    if (change)
379 		ata_raid_config_changed(rdp, 1);
380 	    if (!(rdp->status & AR_S_READY)) {
381 		ata_free_request(request);
382 		bbp->b_flags |= B_ERROR;
383 		bbp->b_error = EIO;
384 		biodone(bp);
385 		return(0);
386 	    }
387 
388 	    if (rdp->status & AR_S_REBUILDING)
389 		blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
390 		      (rdp->interleave * (drv % rdp->width)) +
391 		      lba % rdp->interleave;;
392 
393 	    if (bbp->b_cmd == BUF_CMD_READ) {
394 		int src_online =
395 		    (rdp->disks[drv].flags & AR_DF_ONLINE);
396 		int mir_online =
397 		    (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);
398 
399 		/* if mirror gone or close to last access on source */
400 		if (!mir_online ||
401 		    ((src_online) &&
402 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
403 			(rdp->disks[drv].last_lba - AR_PROXIMITY) &&
404 		     ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
405 			(rdp->disks[drv].last_lba + AR_PROXIMITY))) {
406 		    rdp->toggle = 0;
407 		}
408 		/* if source gone or close to last access on mirror */
409 		else if (!src_online ||
410 			 ((mir_online) &&
411 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) >=
412 			  (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
413 			  ((u_int64_t)(bp->bio_offset >> DEV_BSHIFT)) <=
414 			  (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
415 		    drv += rdp->width;
416 		    rdp->toggle = 1;
417 		}
418 		/* not close to any previous access, toggle */
419 		else {
420 		    if (rdp->toggle)
421 			rdp->toggle = 0;
422 		    else {
423 			drv += rdp->width;
424 			rdp->toggle = 1;
425 		    }
426 		}
427 
428 		if ((rdp->status & AR_S_REBUILDING) &&
429 		    (blk <= rdp->rebuild_lba) &&
430 		    ((blk + chunk) > rdp->rebuild_lba)) {
431 		    struct ata_composite *composite;
432 		    struct ata_request *rebuild;
433 		    int this;
434 
435 		    /* figure out what part to rebuild */
436 		    if (drv < rdp->width)
437 			this = drv + rdp->width;
438 		    else
439 			this = drv - rdp->width;
440 
441 		    /* do we have a spare to rebuild on ? */
442 		    if (rdp->disks[this].flags & AR_DF_SPARE) {
443 			if ((composite = ata_alloc_composite())) {
444 			    if ((rebuild = ata_alloc_request())) {
445 				rdp->rebuild_lba = blk + chunk;
446 				bcopy(request, rebuild,
447 				      sizeof(struct ata_request));
448 				rebuild->this = this;
449 				rebuild->dev = rdp->disks[this].dev;
450 				rebuild->flags &= ~ATA_R_READ;
451 				rebuild->flags |= ATA_R_WRITE;
452 				spin_init(&composite->lock);
453 				composite->residual = request->bytecount;
454 				composite->rd_needed |= (1 << drv);
455 				composite->wr_depend |= (1 << drv);
456 				composite->wr_needed |= (1 << this);
457 				composite->request[drv] = request;
458 				composite->request[this] = rebuild;
459 				request->composite = composite;
460 				rebuild->composite = composite;
461 				ata_raid_send_request(rebuild);
462 			    }
463 			    else {
464 				ata_free_composite(composite);
465 				kprintf("DOH! ata_alloc_request failed!\n");
466 			    }
467 			}
468 			else {
469 			    kprintf("DOH! ata_alloc_composite failed!\n");
470 			}
471 		    }
472 		    else if (rdp->disks[this].flags & AR_DF_ONLINE) {
473 			/*
474 			 * if we got here we are a chunk of a RAID01 that
475 			 * does not need a rebuild, but we need to increment
476 			 * the rebuild_lba address to get the rebuild to
477 			 * move to the next chunk correctly
478 			 */
479 			rdp->rebuild_lba = blk + chunk;
480 		    }
481 		    else
482 			kprintf("DOH! we didn't find the rebuild part\n");
483 		}
484 	    }
485 	    if (bbp->b_cmd == BUF_CMD_WRITE) {
486 		if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
487 		    ((rdp->status & AR_S_REBUILDING) &&
488 		     (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
489 		     ((blk < rdp->rebuild_lba) ||
490 		      ((blk <= rdp->rebuild_lba) &&
491 		       ((blk + chunk) > rdp->rebuild_lba))))) {
492 		    if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
493 			((rdp->status & AR_S_REBUILDING) &&
494 			 (rdp->disks[drv].flags & AR_DF_SPARE) &&
495 			 ((blk < rdp->rebuild_lba) ||
496 			  ((blk <= rdp->rebuild_lba) &&
497 			   ((blk + chunk) > rdp->rebuild_lba))))) {
498 			struct ata_request *mirror;
499 			struct ata_composite *composite;
500 			int this = drv + rdp->width;
501 
502 			if ((composite = ata_alloc_composite())) {
503 			    if ((mirror = ata_alloc_request())) {
504 				if ((blk <= rdp->rebuild_lba) &&
505 				    ((blk + chunk) > rdp->rebuild_lba))
506 				    rdp->rebuild_lba = blk + chunk;
507 				bcopy(request, mirror,
508 				      sizeof(struct ata_request));
509 				mirror->this = this;
510 				mirror->dev = rdp->disks[this].dev;
511 				spin_init(&composite->lock);
512 				composite->residual = request->bytecount;
513 				composite->wr_needed |= (1 << drv);
514 				composite->wr_needed |= (1 << this);
515 				composite->request[drv] = request;
516 				composite->request[this] = mirror;
517 				request->composite = composite;
518 				mirror->composite = composite;
519 				ata_raid_send_request(mirror);
520 				rdp->disks[this].last_lba =
521 				    (u_int64_t)(bp->bio_offset >> DEV_BSHIFT) +
522 				    chunk;
523 			    }
524 			    else {
525 				ata_free_composite(composite);
526 				kprintf("DOH! ata_alloc_request failed!\n");
527 			    }
528 			}
529 			else {
530 			    kprintf("DOH! ata_alloc_composite failed!\n");
531 			}
532 		    }
533 		    else
534 			drv += rdp->width;
535 		}
536 	    }
537 	    request->this = drv;
538 	    request->dev = rdp->disks[request->this].dev;
539 	    ata_raid_send_request(request);
540 	    rdp->disks[request->this].last_lba =
541 	       ((u_int64_t)(bp->bio_offset) >> DEV_BSHIFT) + chunk;
542 	    break;
543 
544 	case AR_T_RAID5:
545 	    if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
546 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
547 		rdp->disks[drv].flags &= ~AR_DF_ONLINE;
548 		change = 1;
549 	    }
550 	    if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
551 		 (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
552 		rdp->disks[par].flags &= ~AR_DF_ONLINE;
553 		change = 1;
554 	    }
555 	    if (change)
556 		ata_raid_config_changed(rdp, 1);
557 	    if (!(rdp->status & AR_S_READY)) {
558 		ata_free_request(request);
559 		bbp->b_flags |= B_ERROR;
560 		bbp->b_error = EIO;
561 		biodone(bp);
562 		return(0);
563 	    }
564 	    if (rdp->status & AR_S_DEGRADED) {
565 		/* do the XOR game if possible */
566 	    }
567 	    else {
568 		request->this = drv;
569 		request->dev = rdp->disks[request->this].dev;
570 		if (bbp->b_cmd == BUF_CMD_READ) {
571 		    ata_raid_send_request(request);
572 		}
573 		if (bbp->b_cmd == BUF_CMD_WRITE) {
574 		    ata_raid_send_request(request);
575 		    /* XXX TGEN no, I don't speak Danish either */
576 		    /*
577 		     * sikre at l�s-modify-skriv til hver disk er atomarisk.
578 		     * par kopi af request
579 		     * l�se orgdata fra drv
580 		     * skriv nydata til drv
581 		     * l�se parorgdata fra par
582 		     * skriv orgdata xor parorgdata xor nydata til par
583 		     */
584 		}
585 	    }
586 	    break;
587 
588 	default:
589 	    kprintf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
590 	}
591     }
592 
593     return(0);
594 }
595 
596 static void
597 ata_raid_done(struct ata_request *request)
598 {
599     struct ar_softc *rdp = request->driver;
600     struct ata_composite *composite = NULL;
601     struct bio *bp = request->bio;
602     struct buf *bbp = bp->bio_buf;
603     int i, mirror, finished = 0;
604 
605     switch (rdp->type) {
606     case AR_T_JBOD:
607     case AR_T_SPAN:
608     case AR_T_RAID0:
609 	if (request->result) {
610 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
611 	    ata_raid_config_changed(rdp, 1);
612 	    bbp->b_error = request->result;
613 	    finished = 1;
614 	}
615 	else {
616 	    bbp->b_resid -= request->donecount;
617 	    if (!bbp->b_resid)
618 		finished = 1;
619 	}
620 	break;
621 
622     case AR_T_RAID1:
623     case AR_T_RAID01:
624 	if (request->this < rdp->width)
625 	    mirror = request->this + rdp->width;
626 	else
627 	    mirror = request->this - rdp->width;
628 	if (request->result) {
629 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
630 	    ata_raid_config_changed(rdp, 1);
631 	}
632 	if (rdp->status & AR_S_READY) {
633 	    u_int64_t blk = 0;
634 
635 	    if (rdp->status & AR_S_REBUILDING)
636 		blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
637 		      rdp->interleave + (rdp->interleave *
638 		      (request->this % rdp->width)) +
639 		      request->u.ata.lba % rdp->interleave;
640 
641 	    if (bbp->b_cmd == BUF_CMD_READ) {
642 
643 		/* is this a rebuild composite */
644 		if ((composite = request->composite)) {
645 		    spin_lock_wr(&composite->lock);
646 
647 		    /* handle the read part of a rebuild composite */
648 		    if (request->flags & ATA_R_READ) {
649 
650 			/* if read failed array is now broken */
651 			if (request->result) {
652 			    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
653 			    ata_raid_config_changed(rdp, 1);
654 			    bbp->b_error = request->result;
655 			    rdp->rebuild_lba = blk;
656 			    finished = 1;
657 			}
658 
659 			/* good data, update how far we've gotten */
660 			else {
661 			    bbp->b_resid -= request->donecount;
662 			    composite->residual -= request->donecount;
663 			    if (!composite->residual) {
664 				if (composite->wr_done & (1 << mirror))
665 				    finished = 1;
666 			    }
667 			}
668 		    }
669 
670 		    /* handle the write part of a rebuild composite */
671 		    else if (request->flags & ATA_R_WRITE) {
672 			if (composite->rd_done & (1 << mirror)) {
673 			    if (request->result) {
674 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
675 				rdp->rebuild_lba = blk;
676 			    }
677 			    if (!composite->residual)
678 				finished = 1;
679 			}
680 		    }
681 		    spin_unlock_wr(&composite->lock);
682 		}
683 
684 		/* if read failed retry on the mirror */
685 		else if (request->result) {
686 		    request->dev = rdp->disks[mirror].dev;
687 		    request->flags &= ~ATA_R_TIMEOUT;
688 		    ata_raid_send_request(request);
689 		    return;
690 		}
691 
692 		/* we have good data */
693 		else {
694 		    bbp->b_resid -= request->donecount;
695 		    if (!bbp->b_resid)
696 			finished = 1;
697 		}
698 	    }
699 	    else if (bbp->b_cmd == BUF_CMD_WRITE) {
700 		/* do we have a mirror or rebuild to deal with ? */
701 		if ((composite = request->composite)) {
702 		    spin_lock_wr(&composite->lock);
703 		    if (composite->wr_done & (1 << mirror)) {
704 			if (request->result) {
705 			    if (composite->request[mirror]->result) {
706 				kprintf("DOH! all disks failed and got here\n");
707 				bbp->b_error = EIO;
708 			    }
709 			    if (rdp->status & AR_S_REBUILDING) {
710 				rdp->rebuild_lba = blk;
711 				kprintf("DOH! rebuild failed\n"); /* XXX SOS */
712 			    }
713 			    bbp->b_resid -=
714 				composite->request[mirror]->donecount;
715 			    composite->residual -=
716 				composite->request[mirror]->donecount;
717 			}
718 			else {
719 			    bbp->b_resid -= request->donecount;
720 			    composite->residual -= request->donecount;
721 			}
722 			if (!composite->residual)
723 			    finished = 1;
724 		    }
725 		    spin_unlock_wr(&composite->lock);
726 		}
727 		/* no mirror we are done */
728 		else {
729 		    bbp->b_resid -= request->donecount;
730 		    if (!bbp->b_resid)
731 			finished = 1;
732 		}
733 	    }
734 	}
735 	else {
736 	    /* XXX TGEN bbp->b_flags |= B_ERROR; */
737 	    bbp->b_error = request->result;
738 	    biodone(bp);
739 	}
740 	break;
741 
742     case AR_T_RAID5:
743 	if (request->result) {
744 	    rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
745 	    ata_raid_config_changed(rdp, 1);
746 	    if (rdp->status & AR_S_READY) {
747 		if (bbp->b_cmd == BUF_CMD_READ) {
748 		    /* do the XOR game to recover data */
749 		}
750 		if (bbp->b_cmd == BUF_CMD_WRITE) {
751 		    /* if the parity failed we're OK sortof */
752 		    /* otherwise wee need to do the XOR long dance */
753 		}
754 		finished = 1;
755 	    }
756 	    else {
757 		/* XXX TGEN bbp->b_flags |= B_ERROR; */
758 		bbp->b_error = request->result;
759 		biodone(bp);
760 	    }
761 	}
762 	else {
763 	    /* did we have an XOR game going ?? */
764 	    bbp->b_resid -= request->donecount;
765 	    if (!bbp->b_resid)
766 		finished = 1;
767 	}
768 	break;
769 
770     default:
771 	kprintf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
772     }
773 
774     if (finished) {
775 	if ((rdp->status & AR_S_REBUILDING) &&
776 	    rdp->rebuild_lba >= rdp->total_sectors) {
777 	    int disk;
778 
779 	    for (disk = 0; disk < rdp->total_disks; disk++) {
780 		if ((rdp->disks[disk].flags &
781 		     (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
782 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
783 		    rdp->disks[disk].flags &= ~AR_DF_SPARE;
784 		    rdp->disks[disk].flags |= AR_DF_ONLINE;
785 		}
786 	    }
787 	    rdp->status &= ~AR_S_REBUILDING;
788 	    ata_raid_config_changed(rdp, 1);
789 	}
790 	if (!bbp->b_resid)
791 	    biodone(bp);
792     }
793 
794     if (composite) {
795 	if (finished) {
796 	    /* we are done with this composite, free all resources */
797 	    for (i = 0; i < 32; i++) {
798 		if (composite->rd_needed & (1 << i) ||
799 		    composite->wr_needed & (1 << i)) {
800 		    ata_free_request(composite->request[i]);
801 		}
802 	    }
803 	    spin_uninit(&composite->lock);
804 	    ata_free_composite(composite);
805 	}
806     }
807     else
808 	ata_free_request(request);
809 }
810 
811 static int
812 ata_raid_dump(struct dev_dump_args *ap)
813 {
814     struct ar_softc *rdp = ap->a_head.a_dev->si_drv1;
815     struct buf dbuf;
816     vm_paddr_t addr = 0;
817     long blkcnt;
818     int dumppages = MAXDUMPPGS;
819     int error = 0;
820     int i, disk;
821 
822     blkcnt = howmany(PAGE_SIZE, ap->a_secsize);
823 
824     while (ap->a_count > 0) {
825 	caddr_t va = NULL;
826 
827 	if ((ap->a_count / blkcnt) < dumppages)
828 	    dumppages = ap->a_count / blkcnt;
829 
830 	for (i = 0; i < dumppages; ++i) {
831 	    vm_paddr_t a = addr + (i * PAGE_SIZE);
832 	    if (is_physical_memory(a))
833 		va = pmap_kenter_temporary(trunc_page(a), i);
834 	    else
835 		va = pmap_kenter_temporary(trunc_page(0), i);
836 	}
837 
838 	bzero(&dbuf, sizeof(struct buf));
839 	BUF_LOCKINIT(&dbuf);
840 	BUF_LOCK(&dbuf, LK_EXCLUSIVE);
841 	initbufbio(&dbuf);
842 	/* bio_offset is byte granularity, convert block granularity a_blkno */
843 	dbuf.b_bio1.bio_offset = (off_t)(ap->a_blkno << DEV_BSHIFT);
844 	dbuf.b_bio1.bio_caller_info1.ptr = (void *)rdp;
845 	dbuf.b_bcount = dumppages * PAGE_SIZE;
846 	dbuf.b_data = va;
847 	dbuf.b_cmd = BUF_CMD_WRITE;
848 	dev_dstrategy(rdp->cdev, &dbuf.b_bio1);
849 	/* wait for completion, unlock the buffer, check status */
850 	if (biowait(&dbuf)) {
851 	    BUF_UNLOCK(&dbuf);
852 	    return(dbuf.b_error ? dbuf.b_error : EIO);
853 	}
854 	BUF_UNLOCK(&dbuf);
855 
856 	if (dumpstatus(addr, (off_t)ap->a_count * DEV_BSIZE) < 0)
857 	    return(EINTR);
858 
859 	ap->a_blkno += blkcnt * dumppages;
860 	ap->a_count -= blkcnt * dumppages;
861 	addr += PAGE_SIZE * dumppages;
862     }
863 
864     /* flush subdisk buffers to media */
865     for (disk = 0; disk < rdp->total_disks; disk++)
866 	if (rdp->disks[disk].dev)
867 	    error |= ata_controlcmd(rdp->disks[disk].dev, ATA_FLUSHCACHE, 0, 0,
868 				    0);
869     return (error ? EIO : 0);
870 }
871 
872 static void
873 ata_raid_config_changed(struct ar_softc *rdp, int writeback)
874 {
875     int disk, count, status;
876 
877     spin_lock_wr(&rdp->lock);
878     /* set default all working mode */
879     status = rdp->status;
880     rdp->status &= ~AR_S_DEGRADED;
881     rdp->status |= AR_S_READY;
882 
883     /* make sure all lost drives are accounted for */
884     for (disk = 0; disk < rdp->total_disks; disk++) {
885 	if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
886 	    rdp->disks[disk].flags &= ~AR_DF_ONLINE;
887     }
888 
889     /* depending on RAID type figure out our health status */
890     switch (rdp->type) {
891     case AR_T_JBOD:
892     case AR_T_SPAN:
893     case AR_T_RAID0:
894 	for (disk = 0; disk < rdp->total_disks; disk++)
895 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
896 		rdp->status &= ~AR_S_READY;
897 	break;
898 
899     case AR_T_RAID1:
900     case AR_T_RAID01:
901 	for (disk = 0; disk < rdp->width; disk++) {
902 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
903 		!(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
904 		rdp->status &= ~AR_S_READY;
905 	    }
906 	    else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
907 		      !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
908 		     (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
909 		      (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
910 		rdp->status |= AR_S_DEGRADED;
911 	    }
912 	}
913 	break;
914 
915     case AR_T_RAID5:
916 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
917 	    if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
918 		count++;
919 	}
920 	if (count) {
921 	    if (count > 1)
922 		rdp->status &= ~AR_S_READY;
923 	    else
924 		rdp->status |= AR_S_DEGRADED;
925 	}
926 	break;
927     default:
928 	rdp->status &= ~AR_S_READY;
929     }
930 
931     if (rdp->status != status) {
932 	if (!(rdp->status & AR_S_READY)) {
933 	    kprintf("ar%d: FAILURE - %s array broken\n",
934 		   rdp->lun, ata_raid_type(rdp));
935 	}
936 	else if (rdp->status & AR_S_DEGRADED) {
937 	    if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
938 		kprintf("ar%d: WARNING - mirror", rdp->lun);
939 	    else
940 		kprintf("ar%d: WARNING - parity", rdp->lun);
941 	    kprintf(" protection lost. %s array in DEGRADED mode\n",
942 		   ata_raid_type(rdp));
943 	}
944     }
945     spin_unlock_wr(&rdp->lock);
946     if (writeback)
947 	ata_raid_write_metadata(rdp);
948 
949 }
950 
951 static int
952 ata_raid_status(struct ata_ioc_raid_config *config)
953 {
954     struct ar_softc *rdp;
955     int i;
956 
957     if (!(rdp = ata_raid_arrays[config->lun]))
958 	return ENXIO;
959 
960     config->type = rdp->type;
961     config->total_disks = rdp->total_disks;
962     for (i = 0; i < rdp->total_disks; i++ ) {
963 	if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev)
964 	    config->disks[i] = device_get_unit(rdp->disks[i].dev);
965 	else
966 	    config->disks[i] = -1;
967     }
968     config->interleave = rdp->interleave;
969     config->status = rdp->status;
970     config->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
971     return 0;
972 }
973 
974 static int
975 ata_raid_create(struct ata_ioc_raid_config *config)
976 {
977     struct ar_softc *rdp;
978     device_t subdisk;
979     int array, disk;
980     int ctlr = 0, disk_size = 0, total_disks = 0;
981 
982     for (array = 0; array < MAX_ARRAYS; array++) {
983 	if (!ata_raid_arrays[array])
984 	    break;
985     }
986     if (array >= MAX_ARRAYS)
987 	return ENOSPC;
988 
989     rdp = (struct ar_softc*)kmalloc(sizeof(struct ar_softc), M_AR,
990 	M_WAITOK | M_ZERO);
991 
992     for (disk = 0; disk < config->total_disks; disk++) {
993 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
994 					   config->disks[disk]))) {
995 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
996 
997 	    /* is device already assigned to another array ? */
998 	    if (ars->raid[rdp->volume]) {
999 		config->disks[disk] = -1;
1000 		kfree(rdp, M_AR);
1001 		return EBUSY;
1002 	    }
1003 	    rdp->disks[disk].dev = device_get_parent(subdisk);
1004 
1005 	    switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
1006 	    case ATA_HIGHPOINT_ID:
1007 		/*
1008 		 * we need some way to decide if it should be v2 or v3
1009 		 * for now just use v2 since the v3 BIOS knows how to
1010 		 * handle that as well.
1011 		 */
1012 		ctlr = AR_F_HPTV2_RAID;
1013 		rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
1014 		break;
1015 
1016 	    case ATA_INTEL_ID:
1017 		ctlr = AR_F_INTEL_RAID;
1018 		rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
1019 		break;
1020 
1021 	    case ATA_ITE_ID:
1022 		ctlr = AR_F_ITE_RAID;
1023 		rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
1024 		break;
1025 
1026 	    case ATA_JMICRON_ID:
1027 		ctlr = AR_F_JMICRON_RAID;
1028 		rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
1029 		break;
1030 
1031 	    case 0:     /* XXX SOS cover up for bug in our PCI code */
1032 	    case ATA_PROMISE_ID:
1033 		ctlr = AR_F_PROMISE_RAID;
1034 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1035 		break;
1036 
1037 	    case ATA_SIS_ID:
1038 		ctlr = AR_F_SIS_RAID;
1039 		rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
1040 		break;
1041 
1042 	    case ATA_ATI_ID:
1043 	    case ATA_VIA_ID:
1044 		ctlr = AR_F_VIA_RAID;
1045 		rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
1046 		break;
1047 
1048 	    default:
1049 		/* XXX SOS
1050 		 * right, so here we are, we have an ATA chip and we want
1051 		 * to create a RAID and store the metadata.
1052 		 * we need to find a way to tell what kind of metadata this
1053 		 * hardware's BIOS might be using (good ideas are welcomed)
1054 		 * for now we just use our own native FreeBSD format.
1055 		 * the only way to get support for the BIOS format is to
1056 		 * setup the RAID from there, in that case we pickup the
1057 		 * metadata format from the disks (if we support it).
1058 		 */
1059 		kprintf("WARNING!! - not able to determine metadata format\n"
1060 		       "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
1061 		       "If that is not what you want, use the BIOS to "
1062 		       "create the array\n");
1063 		ctlr = AR_F_FREEBSD_RAID;
1064 		rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
1065 		break;
1066 	    }
1067 
1068 	    /* we need all disks to be of the same format */
1069 	    if ((rdp->format & AR_F_FORMAT_MASK) &&
1070 		(rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
1071 		kfree(rdp, M_AR);
1072 		return EXDEV;
1073 	    }
1074 	    else
1075 		rdp->format = ctlr;
1076 
1077 	    /* use the smallest disk of the lots size */
1078 	    /* gigabyte boundry ??? XXX SOS */
1079 	    if (disk_size)
1080 		disk_size = min(rdp->disks[disk].sectors, disk_size);
1081 	    else
1082 		disk_size = rdp->disks[disk].sectors;
1083 	    rdp->disks[disk].flags =
1084 		(AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
1085 
1086 	    total_disks++;
1087 	}
1088 	else {
1089 	    config->disks[disk] = -1;
1090 	    kfree(rdp, M_AR);
1091 	    return ENXIO;
1092 	}
1093     }
1094 
1095     if (total_disks != config->total_disks) {
1096 	kfree(rdp, M_AR);
1097 	return ENODEV;
1098     }
1099 
1100     switch (config->type) {
1101     case AR_T_JBOD:
1102     case AR_T_SPAN:
1103     case AR_T_RAID0:
1104 	break;
1105 
1106     case AR_T_RAID1:
1107 	if (total_disks != 2) {
1108 	    kfree(rdp, M_AR);
1109 	    return EPERM;
1110 	}
1111 	break;
1112 
1113     case AR_T_RAID01:
1114 	if (total_disks % 2 != 0) {
1115 	    kfree(rdp, M_AR);
1116 	    return EPERM;
1117 	}
1118 	break;
1119 
1120     case AR_T_RAID5:
1121 	if (total_disks < 3) {
1122 	    kfree(rdp, M_AR);
1123 	    return EPERM;
1124 	}
1125 	break;
1126 
1127     default:
1128 	kfree(rdp, M_AR);
1129 	return EOPNOTSUPP;
1130     }
1131     rdp->type = config->type;
1132     rdp->lun = array;
1133     if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
1134 	rdp->type == AR_T_RAID5) {
1135 	int bit = 0;
1136 
1137 	while (config->interleave >>= 1)
1138 	    bit++;
1139 	rdp->interleave = 1 << bit;
1140     }
1141     rdp->offset_sectors = 0;
1142 
1143     /* values that depend on metadata format */
1144     switch (rdp->format) {
1145     case AR_F_ADAPTEC_RAID:
1146 	rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
1147 	break;
1148 
1149     case AR_F_HPTV2_RAID:
1150 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1151 	rdp->offset_sectors = HPTV2_LBA(x) + 1;
1152 	break;
1153 
1154     case AR_F_HPTV3_RAID:
1155 	rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
1156 	break;
1157 
1158     case AR_F_INTEL_RAID:
1159 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1160 	break;
1161 
1162     case AR_F_ITE_RAID:
1163 	rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
1164 	break;
1165 
1166     case AR_F_JMICRON_RAID:
1167 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1168 	break;
1169 
1170     case AR_F_LSIV2_RAID:
1171 	rdp->interleave = min(max(2, rdp->interleave), 4096);
1172 	break;
1173 
1174     case AR_F_LSIV3_RAID:
1175 	rdp->interleave = min(max(2, rdp->interleave), 256);
1176 	break;
1177 
1178     case AR_F_PROMISE_RAID:
1179 	rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
1180 	break;
1181 
1182     case AR_F_SII_RAID:
1183 	rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
1184 	break;
1185 
1186     case AR_F_SIS_RAID:
1187 	rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
1188 	break;
1189 
1190     case AR_F_VIA_RAID:
1191 	rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
1192 	break;
1193     }
1194 
1195     rdp->total_disks = total_disks;
1196     rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
1197     rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
1198     rdp->heads = 255;
1199     rdp->sectors = 63;
1200     rdp->cylinders = rdp->total_sectors / (255 * 63);
1201     rdp->rebuild_lba = 0;
1202     rdp->status |= AR_S_READY;
1203 
1204     /* we are committed to this array, grap the subdisks */
1205     for (disk = 0; disk < config->total_disks; disk++) {
1206 	if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1207 					   config->disks[disk]))) {
1208 	    struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1209 
1210 	    ars->raid[rdp->volume] = rdp;
1211 	    ars->disk_number[rdp->volume] = disk;
1212 	}
1213     }
1214     ata_raid_attach(rdp, 1);
1215     ata_raid_arrays[array] = rdp;
1216     config->lun = array;
1217     return 0;
1218 }
1219 
1220 static int
1221 ata_raid_delete(int array)
1222 {
1223     struct ar_softc *rdp;
1224     device_t subdisk;
1225     int disk;
1226 
1227     if (!(rdp = ata_raid_arrays[array]))
1228 	return ENXIO;
1229 
1230     rdp->status &= ~AR_S_READY;
1231     disk_destroy(&rdp->disk);
1232 
1233     for (disk = 0; disk < rdp->total_disks; disk++) {
1234 	if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
1235 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1236 		     device_get_unit(rdp->disks[disk].dev)))) {
1237 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1238 
1239 		if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
1240 		    device_printf(subdisk, "DOH! this disk doesn't belong\n");
1241 		if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
1242 		    device_printf(subdisk, "DOH! this disk number is wrong\n");
1243 		ars->raid[rdp->volume] = NULL;
1244 		ars->disk_number[rdp->volume] = -1;
1245 	    }
1246 	    rdp->disks[disk].flags = 0;
1247 	}
1248     }
1249     ata_raid_wipe_metadata(rdp);
1250     ata_raid_arrays[array] = NULL;
1251     kfree(rdp, M_AR);
1252     return 0;
1253 }
1254 
1255 static int
1256 ata_raid_addspare(struct ata_ioc_raid_config *config)
1257 {
1258     struct ar_softc *rdp;
1259     device_t subdisk;
1260     int disk;
1261 
1262     if (!(rdp = ata_raid_arrays[config->lun]))
1263 	return ENXIO;
1264     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1265 	return ENXIO;
1266     if (rdp->status & AR_S_REBUILDING)
1267 	return EBUSY;
1268     switch (rdp->type) {
1269     case AR_T_RAID1:
1270     case AR_T_RAID01:
1271     case AR_T_RAID5:
1272 	for (disk = 0; disk < rdp->total_disks; disk++ ) {
1273 
1274 	    if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1275 		 (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
1276 		continue;
1277 
1278 	    if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
1279 					       config->disks[0] ))) {
1280 		struct ata_raid_subdisk *ars = device_get_softc(subdisk);
1281 
1282 		if (ars->raid[rdp->volume])
1283 		    return EBUSY;
1284 
1285 		/* XXX SOS validate size etc etc */
1286 		ars->raid[rdp->volume] = rdp;
1287 		ars->disk_number[rdp->volume] = disk;
1288 		rdp->disks[disk].dev = device_get_parent(subdisk);
1289 		rdp->disks[disk].flags =
1290 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);
1291 
1292 		device_printf(rdp->disks[disk].dev,
1293 			      "inserted into ar%d disk%d as spare\n",
1294 			      rdp->lun, disk);
1295 		ata_raid_config_changed(rdp, 1);
1296 		return 0;
1297 	    }
1298 	}
1299 	return ENXIO;
1300 
1301     default:
1302 	return EPERM;
1303     }
1304 }
1305 
1306 static int
1307 ata_raid_rebuild(int array)
1308 {
1309     struct ar_softc *rdp;
1310     int disk, count;
1311 
1312     if (!(rdp = ata_raid_arrays[array]))
1313 	return ENXIO;
1314     /* XXX SOS we should lock the rdp softc here */
1315     if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
1316 	return ENXIO;
1317     if (rdp->status & AR_S_REBUILDING)
1318 	return EBUSY;
1319 
1320     switch (rdp->type) {
1321     case AR_T_RAID1:
1322     case AR_T_RAID01:
1323     case AR_T_RAID5:
1324 	for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
1325 	    if (((rdp->disks[disk].flags &
1326 		  (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
1327 		 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
1328 		rdp->disks[disk].dev) {
1329 		count++;
1330 	    }
1331 	}
1332 
1333 	if (count) {
1334 	    rdp->rebuild_lba = 0;
1335 	    rdp->status |= AR_S_REBUILDING;
1336 	    return 0;
1337 	}
1338 	return EIO;
1339 
1340     default:
1341 	return EPERM;
1342     }
1343 }
1344 
1345 static int
1346 ata_raid_read_metadata(device_t subdisk)
1347 {
1348     devclass_t pci_devclass = devclass_find("pci");
1349     devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));
1350 
1351     /* prioritize vendor native metadata layout if possible */
1352     if (devclass == pci_devclass) {
1353 	switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
1354 	case ATA_HIGHPOINT_ID:
1355 	    if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
1356 		return 0;
1357 	    if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
1358 		return 0;
1359 	    break;
1360 
1361 	case ATA_INTEL_ID:
1362 	    if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
1363 		return 0;
1364 	    break;
1365 
1366 	case ATA_ITE_ID:
1367 	    if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
1368 		return 0;
1369 	    break;
1370 
1371 	case ATA_JMICRON_ID:
1372 	    if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
1373 		return 0;
1374 	    break;
1375 
1376 	case ATA_NVIDIA_ID:
1377 	    if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
1378 		return 0;
1379 	    break;
1380 
1381 	case 0:         /* XXX SOS cover up for bug in our PCI code */
1382 	case ATA_PROMISE_ID:
1383 	    if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
1384 		return 0;
1385 	    break;
1386 
1387 	case ATA_ATI_ID:
1388 	case ATA_SILICON_IMAGE_ID:
1389 	    if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
1390 		return 0;
1391 	    break;
1392 
1393 	case ATA_SIS_ID:
1394 	    if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
1395 		return 0;
1396 	    break;
1397 
1398 	case ATA_VIA_ID:
1399 	    if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
1400 		return 0;
1401 	    break;
1402 	}
1403     }
1404 
1405     /* handle controllers that have multiple layout possibilities */
1406     /* NOTE: the order of these are not insignificant */
1407 
1408     /* Adaptec HostRAID */
1409     if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
1410 	return 0;
1411 
1412     /* LSILogic v3 and v2 */
1413     if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
1414 	return 0;
1415     if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
1416 	return 0;
1417 
1418     /* if none of the above matched, try FreeBSD native format */
1419     return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
1420 }
1421 
1422 static int
1423 ata_raid_write_metadata(struct ar_softc *rdp)
1424 {
1425     switch (rdp->format) {
1426     case AR_F_FREEBSD_RAID:
1427     case AR_F_PROMISE_RAID:
1428 	return ata_raid_promise_write_meta(rdp);
1429 
1430     case AR_F_HPTV3_RAID:
1431     case AR_F_HPTV2_RAID:
1432 	/*
1433 	 * always write HPT v2 metadata, the v3 BIOS knows it as well.
1434 	 * this is handy since we cannot know what version BIOS is on there
1435 	 */
1436 	return ata_raid_hptv2_write_meta(rdp);
1437 
1438     case AR_F_INTEL_RAID:
1439 	return ata_raid_intel_write_meta(rdp);
1440 
1441     case AR_F_JMICRON_RAID:
1442 	return ata_raid_jmicron_write_meta(rdp);
1443 
1444     case AR_F_SIS_RAID:
1445 	return ata_raid_sis_write_meta(rdp);
1446 
1447     case AR_F_VIA_RAID:
1448 	return ata_raid_via_write_meta(rdp);
1449 #if 0
1450     case AR_F_HPTV3_RAID:
1451 	return ata_raid_hptv3_write_meta(rdp);
1452 
1453     case AR_F_ADAPTEC_RAID:
1454 	return ata_raid_adaptec_write_meta(rdp);
1455 
1456     case AR_F_ITE_RAID:
1457 	return ata_raid_ite_write_meta(rdp);
1458 
1459     case AR_F_LSIV2_RAID:
1460 	return ata_raid_lsiv2_write_meta(rdp);
1461 
1462     case AR_F_LSIV3_RAID:
1463 	return ata_raid_lsiv3_write_meta(rdp);
1464 
1465     case AR_F_NVIDIA_RAID:
1466 	return ata_raid_nvidia_write_meta(rdp);
1467 
1468     case AR_F_SII_RAID:
1469 	return ata_raid_sii_write_meta(rdp);
1470 
1471 #endif
1472     default:
1473 	kprintf("ar%d: writing of %s metadata is NOT supported yet\n",
1474 	       rdp->lun, ata_raid_format(rdp));
1475     }
1476     return -1;
1477 }
1478 
1479 static int
1480 ata_raid_wipe_metadata(struct ar_softc *rdp)
1481 {
1482     int disk, error = 0;
1483     u_int64_t lba;
1484     u_int32_t size;
1485     u_int8_t *meta;
1486 
1487     for (disk = 0; disk < rdp->total_disks; disk++) {
1488 	if (rdp->disks[disk].dev) {
1489 	    switch (rdp->format) {
1490 	    case AR_F_ADAPTEC_RAID:
1491 		lba = ADP_LBA(rdp->disks[disk].dev);
1492 		size = sizeof(struct adaptec_raid_conf);
1493 		break;
1494 
1495 	    case AR_F_HPTV2_RAID:
1496 		lba = HPTV2_LBA(rdp->disks[disk].dev);
1497 		size = sizeof(struct hptv2_raid_conf);
1498 		break;
1499 
1500 	    case AR_F_HPTV3_RAID:
1501 		lba = HPTV3_LBA(rdp->disks[disk].dev);
1502 		size = sizeof(struct hptv3_raid_conf);
1503 		break;
1504 
1505 	    case AR_F_INTEL_RAID:
1506 		lba = INTEL_LBA(rdp->disks[disk].dev);
1507 		size = 3 * 512;         /* XXX SOS */
1508 		break;
1509 
1510 	    case AR_F_ITE_RAID:
1511 		lba = ITE_LBA(rdp->disks[disk].dev);
1512 		size = sizeof(struct ite_raid_conf);
1513 		break;
1514 
1515 	    case AR_F_JMICRON_RAID:
1516 		lba = JMICRON_LBA(rdp->disks[disk].dev);
1517 		size = sizeof(struct jmicron_raid_conf);
1518 		break;
1519 
1520 	    case AR_F_LSIV2_RAID:
1521 		lba = LSIV2_LBA(rdp->disks[disk].dev);
1522 		size = sizeof(struct lsiv2_raid_conf);
1523 		break;
1524 
1525 	    case AR_F_LSIV3_RAID:
1526 		lba = LSIV3_LBA(rdp->disks[disk].dev);
1527 		size = sizeof(struct lsiv3_raid_conf);
1528 		break;
1529 
1530 	    case AR_F_NVIDIA_RAID:
1531 		lba = NVIDIA_LBA(rdp->disks[disk].dev);
1532 		size = sizeof(struct nvidia_raid_conf);
1533 		break;
1534 
1535 	    case AR_F_FREEBSD_RAID:
1536 	    case AR_F_PROMISE_RAID:
1537 		lba = PROMISE_LBA(rdp->disks[disk].dev);
1538 		size = sizeof(struct promise_raid_conf);
1539 		break;
1540 
1541 	    case AR_F_SII_RAID:
1542 		lba = SII_LBA(rdp->disks[disk].dev);
1543 		size = sizeof(struct sii_raid_conf);
1544 		break;
1545 
1546 	    case AR_F_SIS_RAID:
1547 		lba = SIS_LBA(rdp->disks[disk].dev);
1548 		size = sizeof(struct sis_raid_conf);
1549 		break;
1550 
1551 	    case AR_F_VIA_RAID:
1552 		lba = VIA_LBA(rdp->disks[disk].dev);
1553 		size = sizeof(struct via_raid_conf);
1554 		break;
1555 
1556 	    default:
1557 		kprintf("ar%d: wiping of %s metadata is NOT supported yet\n",
1558 		       rdp->lun, ata_raid_format(rdp));
1559 		return ENXIO;
1560 	    }
1561 	    meta = kmalloc(size, M_AR, M_WAITOK | M_ZERO);
1562 	    if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
1563 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1564 		device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
1565 		error = EIO;
1566 	    }
1567 	    kfree(meta, M_AR);
1568 	}
1569     }
1570     return error;
1571 }
1572 
1573 /* Adaptec HostRAID Metadata */
1574 static int
1575 ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
1576 {
1577     struct ata_raid_subdisk *ars = device_get_softc(dev);
1578     device_t parent = device_get_parent(dev);
1579     struct adaptec_raid_conf *meta;
1580     struct ar_softc *raid;
1581     int array, disk, retval = 0;
1582 
1583     meta = (struct adaptec_raid_conf *)
1584 	    kmalloc(sizeof(struct adaptec_raid_conf), M_AR, M_WAITOK | M_ZERO);
1585 
1586     if (ata_raid_rw(parent, ADP_LBA(parent),
1587 		    meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
1588 	if (testing || bootverbose)
1589 	    device_printf(parent, "Adaptec read metadata failed\n");
1590 	goto adaptec_out;
1591     }
1592 
1593     /* check if this is a Adaptec RAID struct */
1594     if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
1595 	if (testing || bootverbose)
1596 	    device_printf(parent, "Adaptec check1 failed\n");
1597 	goto adaptec_out;
1598     }
1599 
1600     if (testing || bootverbose)
1601 	ata_raid_adaptec_print_meta(meta);
1602 
1603     /* now convert Adaptec metadata into our generic form */
1604     for (array = 0; array < MAX_ARRAYS; array++) {
1605 	if (!raidp[array]) {
1606 	    raidp[array] =
1607 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1608 					  M_WAITOK | M_ZERO);
1609 	}
1610 	raid = raidp[array];
1611 	if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
1612 	    continue;
1613 
1614 	if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
1615 	    continue;
1616 
1617 	if (!meta->generation || be32toh(meta->generation) > raid->generation) {
1618 	    switch (meta->configs[0].type) {
1619 	    case ADP_T_RAID0:
1620 		raid->magic_0 = meta->configs[0].magic_0;
1621 		raid->type = AR_T_RAID0;
1622 		raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
1623 		raid->width = be16toh(meta->configs[0].total_disks);
1624 		break;
1625 
1626 	    case ADP_T_RAID1:
1627 		raid->magic_0 = meta->configs[0].magic_0;
1628 		raid->type = AR_T_RAID1;
1629 		raid->width = be16toh(meta->configs[0].total_disks) / 2;
1630 		break;
1631 
1632 	    default:
1633 		device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
1634 			      meta->configs[0].type);
1635 		kfree(raidp[array], M_AR);
1636 		raidp[array] = NULL;
1637 		goto adaptec_out;
1638 	    }
1639 
1640 	    raid->format = AR_F_ADAPTEC_RAID;
1641 	    raid->generation = be32toh(meta->generation);
1642 	    raid->total_disks = be16toh(meta->configs[0].total_disks);
1643 	    raid->total_sectors = be32toh(meta->configs[0].sectors);
1644 	    raid->heads = 255;
1645 	    raid->sectors = 63;
1646 	    raid->cylinders = raid->total_sectors / (63 * 255);
1647 	    raid->offset_sectors = 0;
1648 	    raid->rebuild_lba = 0;
1649 	    raid->lun = array;
1650 	    strncpy(raid->name, meta->configs[0].name,
1651 		    min(sizeof(raid->name), sizeof(meta->configs[0].name)));
1652 
1653 	    /* clear out any old info */
1654 	    if (raid->generation) {
1655 		for (disk = 0; disk < raid->total_disks; disk++) {
1656 		    raid->disks[disk].dev = NULL;
1657 		    raid->disks[disk].flags = 0;
1658 		}
1659 	    }
1660 	}
1661 	if (be32toh(meta->generation) >= raid->generation) {
1662 	    struct ata_device *atadev = device_get_softc(parent);
1663 	    struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
1664 	    int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
1665 			      ATA_DEV(atadev->unit);
1666 
1667 	    raid->disks[disk_number].dev = parent;
1668 	    raid->disks[disk_number].sectors =
1669 		be32toh(meta->configs[disk_number + 1].sectors);
1670 	    raid->disks[disk_number].flags =
1671 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
1672 	    ars->raid[raid->volume] = raid;
1673 	    ars->disk_number[raid->volume] = disk_number;
1674 	    retval = 1;
1675 	}
1676 	break;
1677     }
1678 
1679 adaptec_out:
1680     kfree(meta, M_AR);
1681     return retval;
1682 }
1683 
1684 /* Highpoint V2 RocketRAID Metadata */
1685 static int
1686 ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
1687 {
1688     struct ata_raid_subdisk *ars = device_get_softc(dev);
1689     device_t parent = device_get_parent(dev);
1690     struct hptv2_raid_conf *meta;
1691     struct ar_softc *raid = NULL;
1692     int array, disk_number = 0, retval = 0;
1693 
1694     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1695 	M_AR, M_WAITOK | M_ZERO);
1696 
1697     if (ata_raid_rw(parent, HPTV2_LBA(parent),
1698 		    meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
1699 	if (testing || bootverbose)
1700 	    device_printf(parent, "HighPoint (v2) read metadata failed\n");
1701 	goto hptv2_out;
1702     }
1703 
1704     /* check if this is a HighPoint v2 RAID struct */
1705     if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
1706 	if (testing || bootverbose)
1707 	    device_printf(parent, "HighPoint (v2) check1 failed\n");
1708 	goto hptv2_out;
1709     }
1710 
1711     /* is this disk defined, or an old leftover/spare ? */
1712     if (!meta->magic_0) {
1713 	if (testing || bootverbose)
1714 	    device_printf(parent, "HighPoint (v2) check2 failed\n");
1715 	goto hptv2_out;
1716     }
1717 
1718     if (testing || bootverbose)
1719 	ata_raid_hptv2_print_meta(meta);
1720 
1721     /* now convert HighPoint (v2) metadata into our generic form */
1722     for (array = 0; array < MAX_ARRAYS; array++) {
1723 	if (!raidp[array]) {
1724 	    raidp[array] =
1725 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1726 					  M_WAITOK | M_ZERO);
1727 	}
1728 	raid = raidp[array];
1729 	if (raid->format && (raid->format != AR_F_HPTV2_RAID))
1730 	    continue;
1731 
1732 	switch (meta->type) {
1733 	case HPTV2_T_RAID0:
1734 	    if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
1735 		(HPTV2_O_RAID0|HPTV2_O_OK))
1736 		goto highpoint_raid1;
1737 	    if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
1738 		goto highpoint_raid01;
1739 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1740 		continue;
1741 	    raid->magic_0 = meta->magic_0;
1742 	    raid->type = AR_T_RAID0;
1743 	    raid->interleave = 1 << meta->stripe_shift;
1744 	    disk_number = meta->disk_number;
1745 	    if (!(meta->order & HPTV2_O_OK))
1746 		meta->magic = 0;        /* mark bad */
1747 	    break;
1748 
1749 	case HPTV2_T_RAID1:
1750 highpoint_raid1:
1751 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1752 		continue;
1753 	    raid->magic_0 = meta->magic_0;
1754 	    raid->type = AR_T_RAID1;
1755 	    disk_number = (meta->disk_number > 0);
1756 	    break;
1757 
1758 	case HPTV2_T_RAID01_RAID0:
1759 highpoint_raid01:
1760 	    if (meta->order & HPTV2_O_RAID0) {
1761 		if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
1762 		    (raid->magic_1 && raid->magic_1 != meta->magic_1))
1763 		    continue;
1764 		raid->magic_0 = meta->magic_0;
1765 		raid->magic_1 = meta->magic_1;
1766 		raid->type = AR_T_RAID01;
1767 		raid->interleave = 1 << meta->stripe_shift;
1768 		disk_number = meta->disk_number;
1769 	    }
1770 	    else {
1771 		if (raid->magic_1 && raid->magic_1 != meta->magic_1)
1772 		    continue;
1773 		raid->magic_1 = meta->magic_1;
1774 		raid->type = AR_T_RAID01;
1775 		raid->interleave = 1 << meta->stripe_shift;
1776 		disk_number = meta->disk_number + meta->array_width;
1777 		if (!(meta->order & HPTV2_O_RAID1))
1778 		    meta->magic = 0;    /* mark bad */
1779 	    }
1780 	    break;
1781 
1782 	case HPTV2_T_SPAN:
1783 	    if (raid->magic_0 && raid->magic_0 != meta->magic_0)
1784 		continue;
1785 	    raid->magic_0 = meta->magic_0;
1786 	    raid->type = AR_T_SPAN;
1787 	    disk_number = meta->disk_number;
1788 	    break;
1789 
1790 	default:
1791 	    device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
1792 			  meta->type);
1793 	    kfree(raidp[array], M_AR);
1794 	    raidp[array] = NULL;
1795 	    goto hptv2_out;
1796 	}
1797 
1798 	raid->format |= AR_F_HPTV2_RAID;
1799 	raid->disks[disk_number].dev = parent;
1800 	raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
1801 	raid->lun = array;
1802 	strncpy(raid->name, meta->name_1,
1803 		min(sizeof(raid->name), sizeof(meta->name_1)));
1804 	if (meta->magic == HPTV2_MAGIC_OK) {
1805 	    raid->disks[disk_number].flags |= AR_DF_ONLINE;
1806 	    raid->width = meta->array_width;
1807 	    raid->total_sectors = meta->total_sectors;
1808 	    raid->heads = 255;
1809 	    raid->sectors = 63;
1810 	    raid->cylinders = raid->total_sectors / (63 * 255);
1811 	    raid->offset_sectors = HPTV2_LBA(parent) + 1;
1812 	    raid->rebuild_lba = meta->rebuild_lba;
1813 	    raid->disks[disk_number].sectors =
1814 		raid->total_sectors / raid->width;
1815 	}
1816 	else
1817 	    raid->disks[disk_number].flags &= ~AR_DF_ONLINE;
1818 
1819 	if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
1820 	    raid->total_disks = raid->width;
1821 	if (disk_number >= raid->total_disks)
1822 	    raid->total_disks = disk_number + 1;
1823 	ars->raid[raid->volume] = raid;
1824 	ars->disk_number[raid->volume] = disk_number;
1825 	retval = 1;
1826 	break;
1827     }
1828 
1829 hptv2_out:
1830     kfree(meta, M_AR);
1831     return retval;
1832 }
1833 
1834 static int
1835 ata_raid_hptv2_write_meta(struct ar_softc *rdp)
1836 {
1837     struct hptv2_raid_conf *meta;
1838     struct timeval timestamp;
1839     int disk, error = 0;
1840 
1841     meta = (struct hptv2_raid_conf *)kmalloc(sizeof(struct hptv2_raid_conf),
1842 	M_AR, M_WAITOK | M_ZERO);
1843 
1844     microtime(&timestamp);
1845     rdp->magic_0 = timestamp.tv_sec + 2;
1846     rdp->magic_1 = timestamp.tv_sec;
1847 
1848     for (disk = 0; disk < rdp->total_disks; disk++) {
1849 	if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
1850 	    (AR_DF_PRESENT | AR_DF_ONLINE))
1851 	    meta->magic = HPTV2_MAGIC_OK;
1852 	if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
1853 	    meta->magic_0 = rdp->magic_0;
1854 	    if (strlen(rdp->name))
1855 		strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
1856 	    else
1857 		strcpy(meta->name_1, "FreeBSD");
1858 	}
1859 	meta->disk_number = disk;
1860 
1861 	switch (rdp->type) {
1862 	case AR_T_RAID0:
1863 	    meta->type = HPTV2_T_RAID0;
1864 	    strcpy(meta->name_2, "RAID 0");
1865 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
1866 		meta->order = HPTV2_O_OK;
1867 	    break;
1868 
1869 	case AR_T_RAID1:
1870 	    meta->type = HPTV2_T_RAID0;
1871 	    strcpy(meta->name_2, "RAID 1");
1872 	    meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
1873 	    meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
1874 	    break;
1875 
1876 	case AR_T_RAID01:
1877 	    meta->type = HPTV2_T_RAID01_RAID0;
1878 	    strcpy(meta->name_2, "RAID 0+1");
1879 	    if (rdp->disks[disk].flags & AR_DF_ONLINE) {
1880 		if (disk < rdp->width) {
1881 		    meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
1882 		    meta->magic_0 = rdp->magic_0 - 1;
1883 		}
1884 		else {
1885 		    meta->order = HPTV2_O_RAID1;
1886 		    meta->disk_number -= rdp->width;
1887 		}
1888 	    }
1889 	    else
1890 		meta->magic_0 = rdp->magic_0 - 1;
1891 	    meta->magic_1 = rdp->magic_1;
1892 	    break;
1893 
1894 	case AR_T_SPAN:
1895 	    meta->type = HPTV2_T_SPAN;
1896 	    strcpy(meta->name_2, "SPAN");
1897 	    break;
1898 	default:
1899 	    kfree(meta, M_AR);
1900 	    return ENODEV;
1901 	}
1902 
1903 	meta->array_width = rdp->width;
1904 	meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
1905 	meta->total_sectors = rdp->total_sectors;
1906 	meta->rebuild_lba = rdp->rebuild_lba;
1907 	if (testing || bootverbose)
1908 	    ata_raid_hptv2_print_meta(meta);
1909 	if (rdp->disks[disk].dev) {
1910 	    if (ata_raid_rw(rdp->disks[disk].dev,
1911 			    HPTV2_LBA(rdp->disks[disk].dev), meta,
1912 			    sizeof(struct promise_raid_conf),
1913 			    ATA_R_WRITE | ATA_R_DIRECT)) {
1914 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
1915 		error = EIO;
1916 	    }
1917 	}
1918     }
1919     kfree(meta, M_AR);
1920     return error;
1921 }
1922 
1923 /* Highpoint V3 RocketRAID Metadata */
1924 static int
1925 ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
1926 {
1927     struct ata_raid_subdisk *ars = device_get_softc(dev);
1928     device_t parent = device_get_parent(dev);
1929     struct hptv3_raid_conf *meta;
1930     struct ar_softc *raid = NULL;
1931     int array, disk_number, retval = 0;
1932 
1933     meta = (struct hptv3_raid_conf *)kmalloc(sizeof(struct hptv3_raid_conf),
1934 	M_AR, M_WAITOK | M_ZERO);
1935 
1936     if (ata_raid_rw(parent, HPTV3_LBA(parent),
1937 		    meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
1938 	if (testing || bootverbose)
1939 	    device_printf(parent, "HighPoint (v3) read metadata failed\n");
1940 	goto hptv3_out;
1941     }
1942 
1943     /* check if this is a HighPoint v3 RAID struct */
1944     if (meta->magic != HPTV3_MAGIC) {
1945 	if (testing || bootverbose)
1946 	    device_printf(parent, "HighPoint (v3) check1 failed\n");
1947 	goto hptv3_out;
1948     }
1949 
1950     /* check if there are any config_entries */
1951     if (meta->config_entries < 1) {
1952 	if (testing || bootverbose)
1953 	    device_printf(parent, "HighPoint (v3) check2 failed\n");
1954 	goto hptv3_out;
1955     }
1956 
1957     if (testing || bootverbose)
1958 	ata_raid_hptv3_print_meta(meta);
1959 
1960     /* now convert HighPoint (v3) metadata into our generic form */
1961     for (array = 0; array < MAX_ARRAYS; array++) {
1962 	if (!raidp[array]) {
1963 	    raidp[array] =
1964 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
1965 					  M_WAITOK | M_ZERO);
1966 	}
1967 	raid = raidp[array];
1968 	if (raid->format && (raid->format != AR_F_HPTV3_RAID))
1969 	    continue;
1970 
1971 	if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
1972 	    continue;
1973 
1974 	switch (meta->configs[0].type) {
1975 	case HPTV3_T_RAID0:
1976 	    raid->type = AR_T_RAID0;
1977 	    raid->width = meta->configs[0].total_disks;
1978 	    disk_number = meta->configs[0].disk_number;
1979 	    break;
1980 
1981 	case HPTV3_T_RAID1:
1982 	    raid->type = AR_T_RAID1;
1983 	    raid->width = meta->configs[0].total_disks / 2;
1984 	    disk_number = meta->configs[0].disk_number;
1985 	    break;
1986 
1987 	case HPTV3_T_RAID5:
1988 	    raid->type = AR_T_RAID5;
1989 	    raid->width = meta->configs[0].total_disks;
1990 	    disk_number = meta->configs[0].disk_number;
1991 	    break;
1992 
1993 	case HPTV3_T_SPAN:
1994 	    raid->type = AR_T_SPAN;
1995 	    raid->width = meta->configs[0].total_disks;
1996 	    disk_number = meta->configs[0].disk_number;
1997 	    break;
1998 
1999 	default:
2000 	    device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
2001 			  meta->configs[0].type);
2002 	    kfree(raidp[array], M_AR);
2003 	    raidp[array] = NULL;
2004 	    goto hptv3_out;
2005 	}
2006 	if (meta->config_entries == 2) {
2007 	    switch (meta->configs[1].type) {
2008 	    case HPTV3_T_RAID1:
2009 		if (raid->type == AR_T_RAID0) {
2010 		    raid->type = AR_T_RAID01;
2011 		    disk_number = meta->configs[1].disk_number +
2012 				  (meta->configs[0].disk_number << 1);
2013 		    break;
2014 		}
2015 	    default:
2016 		device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
2017 			      meta->configs[1].type);
2018 		kfree(raidp[array], M_AR);
2019 		raidp[array] = NULL;
2020 		goto hptv3_out;
2021 	    }
2022 	}
2023 
2024 	raid->magic_0 = meta->magic_0;
2025 	raid->format = AR_F_HPTV3_RAID;
2026 	raid->generation = meta->timestamp;
2027 	raid->interleave = 1 << meta->configs[0].stripe_shift;
2028 	raid->total_disks = meta->configs[0].total_disks +
2029 	    meta->configs[1].total_disks;
2030 	raid->total_sectors = meta->configs[0].total_sectors +
2031 	    ((u_int64_t)meta->configs_high[0].total_sectors << 32);
2032 	raid->heads = 255;
2033 	raid->sectors = 63;
2034 	raid->cylinders = raid->total_sectors / (63 * 255);
2035 	raid->offset_sectors = 0;
2036 	raid->rebuild_lba = meta->configs[0].rebuild_lba +
2037 	    ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
2038 	raid->lun = array;
2039 	strncpy(raid->name, meta->name,
2040 		min(sizeof(raid->name), sizeof(meta->name)));
2041 	raid->disks[disk_number].sectors = raid->total_sectors /
2042 	    (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
2043 	raid->disks[disk_number].dev = parent;
2044 	raid->disks[disk_number].flags =
2045 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2046 	ars->raid[raid->volume] = raid;
2047 	ars->disk_number[raid->volume] = disk_number;
2048 	retval = 1;
2049 	break;
2050     }
2051 
2052 hptv3_out:
2053     kfree(meta, M_AR);
2054     return retval;
2055 }
2056 
2057 /* Intel MatrixRAID Metadata */
2058 static int
2059 ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
2060 {
2061     struct ata_raid_subdisk *ars = device_get_softc(dev);
2062     device_t parent = device_get_parent(dev);
2063     struct intel_raid_conf *meta;
2064     struct intel_raid_mapping *map;
2065     struct ar_softc *raid = NULL;
2066     u_int32_t checksum, *ptr;
2067     int array, count, disk, volume = 1, retval = 0;
2068     char *tmp;
2069 
2070     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2071 
2072     if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
2073 	if (testing || bootverbose)
2074 	    device_printf(parent, "Intel read metadata failed\n");
2075 	goto intel_out;
2076     }
2077     tmp = (char *)meta;
2078     bcopy(tmp, tmp+1024, 512);
2079     bcopy(tmp+512, tmp, 1024);
2080     bzero(tmp+1024, 512);
2081 
2082     /* check if this is a Intel RAID struct */
2083     if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
2084 	if (testing || bootverbose)
2085 	    device_printf(parent, "Intel check1 failed\n");
2086 	goto intel_out;
2087     }
2088 
2089     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2090 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2091 	checksum += *ptr++;
2092     }
2093     checksum -= meta->checksum;
2094     if (checksum != meta->checksum) {
2095 	if (testing || bootverbose)
2096 	    device_printf(parent, "Intel check2 failed\n");
2097 	goto intel_out;
2098     }
2099 
2100     if (testing || bootverbose)
2101 	ata_raid_intel_print_meta(meta);
2102 
2103     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2104 
2105     /* now convert Intel metadata into our generic form */
2106     for (array = 0; array < MAX_ARRAYS; array++) {
2107 	if (!raidp[array]) {
2108 	    raidp[array] =
2109 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2110 					  M_WAITOK | M_ZERO);
2111 	}
2112 	raid = raidp[array];
2113 	if (raid->format && (raid->format != AR_F_INTEL_RAID))
2114 	    continue;
2115 
2116 	if ((raid->format & AR_F_INTEL_RAID) &&
2117 	    (raid->magic_0 != meta->config_id))
2118 	    continue;
2119 
2120 	/*
2121 	 * update our knowledge about the array config based on generation
2122 	 * NOTE: there can be multiple volumes on a disk set
2123 	 */
2124 	if (!meta->generation || meta->generation > raid->generation) {
2125 	    switch (map->type) {
2126 	    case INTEL_T_RAID0:
2127 		raid->type = AR_T_RAID0;
2128 		raid->width = map->total_disks;
2129 		break;
2130 
2131 	    case INTEL_T_RAID1:
2132 		if (map->total_disks == 4)
2133 		    raid->type = AR_T_RAID01;
2134 		else
2135 		    raid->type = AR_T_RAID1;
2136 		raid->width = map->total_disks / 2;
2137 		break;
2138 
2139 	    case INTEL_T_RAID5:
2140 		raid->type = AR_T_RAID5;
2141 		raid->width = map->total_disks;
2142 		break;
2143 
2144 	    default:
2145 		device_printf(parent, "Intel unknown RAID type 0x%02x\n",
2146 			      map->type);
2147 		kfree(raidp[array], M_AR);
2148 		raidp[array] = NULL;
2149 		goto intel_out;
2150 	    }
2151 
2152 	    switch (map->status) {
2153 	    case INTEL_S_READY:
2154 		raid->status = AR_S_READY;
2155 		break;
2156 	    case INTEL_S_DEGRADED:
2157 		raid->status |= AR_S_DEGRADED;
2158 		break;
2159 	    case INTEL_S_DISABLED:
2160 	    case INTEL_S_FAILURE:
2161 		raid->status = 0;
2162 	    }
2163 
2164 	    raid->magic_0 = meta->config_id;
2165 	    raid->format = AR_F_INTEL_RAID;
2166 	    raid->generation = meta->generation;
2167 	    raid->interleave = map->stripe_sectors;
2168 	    raid->total_disks = map->total_disks;
2169 	    raid->total_sectors = map->total_sectors;
2170 	    raid->heads = 255;
2171 	    raid->sectors = 63;
2172 	    raid->cylinders = raid->total_sectors / (63 * 255);
2173 	    raid->offset_sectors = map->offset;
2174 	    raid->rebuild_lba = 0;
2175 	    raid->lun = array;
2176 	    raid->volume = volume - 1;
2177 	    strncpy(raid->name, map->name,
2178 		    min(sizeof(raid->name), sizeof(map->name)));
2179 
2180 	    /* clear out any old info */
2181 	    for (disk = 0; disk < raid->total_disks; disk++) {
2182 		raid->disks[disk].dev = NULL;
2183 		bcopy(meta->disk[map->disk_idx[disk]].serial,
2184 		      raid->disks[disk].serial,
2185 		      sizeof(raid->disks[disk].serial));
2186 		raid->disks[disk].sectors =
2187 		    meta->disk[map->disk_idx[disk]].sectors;
2188 		raid->disks[disk].flags = 0;
2189 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
2190 		    raid->disks[disk].flags |= AR_DF_ONLINE;
2191 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
2192 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
2193 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
2194 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
2195 		    raid->disks[disk].flags |= AR_DF_SPARE;
2196 		}
2197 		if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
2198 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
2199 	    }
2200 	}
2201 	if (meta->generation >= raid->generation) {
2202 	    for (disk = 0; disk < raid->total_disks; disk++) {
2203 		struct ata_device *atadev = device_get_softc(parent);
2204 
2205 		if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
2206 		    sizeof(raid->disks[disk].serial))) {
2207 		    raid->disks[disk].dev = parent;
2208 		    raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
2209 		    ars->raid[raid->volume] = raid;
2210 		    ars->disk_number[raid->volume] = disk;
2211 		    retval = 1;
2212 		}
2213 	    }
2214 	}
2215 	else
2216 	    goto intel_out;
2217 
2218 	if (retval) {
2219 	    if (volume < meta->total_volumes) {
2220 		map = (struct intel_raid_mapping *)
2221 		      &map->disk_idx[map->total_disks];
2222 		volume++;
2223 		retval = 0;
2224 		continue;
2225 	    }
2226 	    break;
2227 	}
2228 	else {
2229 	    kfree(raidp[array], M_AR);
2230 	    raidp[array] = NULL;
2231 	    if (volume == 2)
2232 		retval = 1;
2233 	}
2234     }
2235 
2236 intel_out:
2237     kfree(meta, M_AR);
2238     return retval;
2239 }
2240 
2241 static int
2242 ata_raid_intel_write_meta(struct ar_softc *rdp)
2243 {
2244     struct intel_raid_conf *meta;
2245     struct intel_raid_mapping *map;
2246     struct timeval timestamp;
2247     u_int32_t checksum, *ptr;
2248     int count, disk, error = 0;
2249     char *tmp;
2250 
2251     meta = (struct intel_raid_conf *)kmalloc(1536, M_AR, M_WAITOK | M_ZERO);
2252 
2253     rdp->generation++;
2254     microtime(&timestamp);
2255 
2256     bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
2257     bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
2258     meta->config_id = timestamp.tv_sec;
2259     meta->generation = rdp->generation;
2260     meta->total_disks = rdp->total_disks;
2261     meta->total_volumes = 1;                                    /* XXX SOS */
2262     for (disk = 0; disk < rdp->total_disks; disk++) {
2263 	if (rdp->disks[disk].dev) {
2264 	    struct ata_channel *ch =
2265 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
2266 	    struct ata_device *atadev =
2267 		device_get_softc(rdp->disks[disk].dev);
2268 
2269 	    bcopy(atadev->param.serial, meta->disk[disk].serial,
2270 		  sizeof(rdp->disks[disk].serial));
2271 	    meta->disk[disk].sectors = rdp->disks[disk].sectors;
2272 	    meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
2273 	}
2274 	else
2275 	    meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
2276 	meta->disk[disk].flags = 0;
2277 	if (rdp->disks[disk].flags & AR_DF_SPARE)
2278 	    meta->disk[disk].flags  |= INTEL_F_SPARE;
2279 	else {
2280 	    if (rdp->disks[disk].flags & AR_DF_ONLINE)
2281 		meta->disk[disk].flags |= INTEL_F_ONLINE;
2282 	    else
2283 		meta->disk[disk].flags |= INTEL_F_DOWN;
2284 	    if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
2285 		meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
2286 	}
2287     }
2288     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
2289 
2290     bcopy(rdp->name, map->name, sizeof(rdp->name));
2291     map->total_sectors = rdp->total_sectors;
2292     map->state = 12;                                            /* XXX SOS */
2293     map->offset = rdp->offset_sectors;
2294     map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
2295     map->stripe_sectors =  rdp->interleave;
2296     map->disk_sectors = rdp->total_sectors / rdp->width;
2297     map->status = INTEL_S_READY;                                /* XXX SOS */
2298     switch (rdp->type) {
2299     case AR_T_RAID0:
2300 	map->type = INTEL_T_RAID0;
2301 	break;
2302     case AR_T_RAID1:
2303 	map->type = INTEL_T_RAID1;
2304 	break;
2305     case AR_T_RAID01:
2306 	map->type = INTEL_T_RAID1;
2307 	break;
2308     case AR_T_RAID5:
2309 	map->type = INTEL_T_RAID5;
2310 	break;
2311     default:
2312 	kfree(meta, M_AR);
2313 	return ENODEV;
2314     }
2315     map->total_disks = rdp->total_disks;
2316     map->magic[0] = 0x02;
2317     map->magic[1] = 0xff;
2318     map->magic[2] = 0x01;
2319     for (disk = 0; disk < rdp->total_disks; disk++)
2320 	map->disk_idx[disk] = disk;
2321 
2322     meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
2323     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
2324 	 count < (meta->config_size / sizeof(u_int32_t)); count++) {
2325 	checksum += *ptr++;
2326     }
2327     meta->checksum = checksum;
2328 
2329     if (testing || bootverbose)
2330 	ata_raid_intel_print_meta(meta);
2331 
2332     tmp = (char *)meta;
2333     bcopy(tmp, tmp+1024, 512);
2334     bcopy(tmp+512, tmp, 1024);
2335     bzero(tmp+1024, 512);
2336 
2337     for (disk = 0; disk < rdp->total_disks; disk++) {
2338 	if (rdp->disks[disk].dev) {
2339 	    if (ata_raid_rw(rdp->disks[disk].dev,
2340 			    INTEL_LBA(rdp->disks[disk].dev),
2341 			    meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
2342 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2343 		error = EIO;
2344 	    }
2345 	}
2346     }
2347     kfree(meta, M_AR);
2348     return error;
2349 }
2350 
2351 
2352 /* Integrated Technology Express Metadata */
2353 static int
2354 ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
2355 {
2356     struct ata_raid_subdisk *ars = device_get_softc(dev);
2357     device_t parent = device_get_parent(dev);
2358     struct ite_raid_conf *meta;
2359     struct ar_softc *raid = NULL;
2360     int array, disk_number, count, retval = 0;
2361     u_int16_t *ptr;
2362 
2363     meta = (struct ite_raid_conf *)kmalloc(sizeof(struct ite_raid_conf), M_AR,
2364 	M_WAITOK | M_ZERO);
2365 
2366     if (ata_raid_rw(parent, ITE_LBA(parent),
2367 		    meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
2368 	if (testing || bootverbose)
2369 	    device_printf(parent, "ITE read metadata failed\n");
2370 	goto ite_out;
2371     }
2372 
2373     /* check if this is a ITE RAID struct */
2374     for (ptr = (u_int16_t *)meta->ite_id, count = 0;
2375 	 count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
2376 	ptr[count] = be16toh(ptr[count]);
2377 
2378     if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
2379 	if (testing || bootverbose)
2380 	    device_printf(parent, "ITE check1 failed\n");
2381 	goto ite_out;
2382     }
2383 
2384     if (testing || bootverbose)
2385 	ata_raid_ite_print_meta(meta);
2386 
2387     /* now convert ITE metadata into our generic form */
2388     for (array = 0; array < MAX_ARRAYS; array++) {
2389 	if ((raid = raidp[array])) {
2390 	    if (raid->format != AR_F_ITE_RAID)
2391 		continue;
2392 	    if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
2393 		continue;
2394 	}
2395 
2396 	/* if we dont have a disks timestamp the RAID is invalidated */
2397 	if (*((u_int64_t *)meta->timestamp_1) == 0)
2398 	    goto ite_out;
2399 
2400 	if (!raid) {
2401 	    raidp[array] = (struct ar_softc *)kmalloc(sizeof(struct ar_softc),
2402 						     M_AR, M_WAITOK | M_ZERO);
2403 	}
2404 
2405 	switch (meta->type) {
2406 	case ITE_T_RAID0:
2407 	    raid->type = AR_T_RAID0;
2408 	    raid->width = meta->array_width;
2409 	    raid->total_disks = meta->array_width;
2410 	    disk_number = meta->disk_number;
2411 	    break;
2412 
2413 	case ITE_T_RAID1:
2414 	    raid->type = AR_T_RAID1;
2415 	    raid->width = 1;
2416 	    raid->total_disks = 2;
2417 	    disk_number = meta->disk_number;
2418 	    break;
2419 
2420 	case ITE_T_RAID01:
2421 	    raid->type = AR_T_RAID01;
2422 	    raid->width = meta->array_width;
2423 	    raid->total_disks = 4;
2424 	    disk_number = ((meta->disk_number & 0x02) >> 1) |
2425 			  ((meta->disk_number & 0x01) << 1);
2426 	    break;
2427 
2428 	case ITE_T_SPAN:
2429 	    raid->type = AR_T_SPAN;
2430 	    raid->width = 1;
2431 	    raid->total_disks = meta->array_width;
2432 	    disk_number = meta->disk_number;
2433 	    break;
2434 
2435 	default:
2436 	    device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
2437 	    kfree(raidp[array], M_AR);
2438 	    raidp[array] = NULL;
2439 	    goto ite_out;
2440 	}
2441 
2442 	raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
2443 	raid->format = AR_F_ITE_RAID;
2444 	raid->generation = 0;
2445 	raid->interleave = meta->stripe_sectors;
2446 	raid->total_sectors = meta->total_sectors;
2447 	raid->heads = 255;
2448 	raid->sectors = 63;
2449 	raid->cylinders = raid->total_sectors / (63 * 255);
2450 	raid->offset_sectors = 0;
2451 	raid->rebuild_lba = 0;
2452 	raid->lun = array;
2453 
2454 	raid->disks[disk_number].dev = parent;
2455 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2456 	raid->disks[disk_number].flags =
2457 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2458 	ars->raid[raid->volume] = raid;
2459 	ars->disk_number[raid->volume] = disk_number;
2460 	retval = 1;
2461 	break;
2462     }
2463 ite_out:
2464     kfree(meta, M_AR);
2465     return retval;
2466 }
2467 
2468 /* JMicron Technology Corp Metadata */
2469 static int
2470 ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
2471 {
2472     struct ata_raid_subdisk *ars = device_get_softc(dev);
2473     device_t parent = device_get_parent(dev);
2474     struct jmicron_raid_conf *meta;
2475     struct ar_softc *raid = NULL;
2476     u_int16_t checksum, *ptr;
2477     u_int64_t disk_size;
2478     int count, array, disk, total_disks, retval = 0;
2479 
2480     meta = (struct jmicron_raid_conf *)
2481 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2482 
2483     if (ata_raid_rw(parent, JMICRON_LBA(parent),
2484 		    meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
2485 	if (testing || bootverbose)
2486 	    device_printf(parent,
2487 			  "JMicron read metadata failed\n");
2488     }
2489 
2490     /* check for JMicron signature */
2491     if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
2492 	if (testing || bootverbose)
2493 	    device_printf(parent, "JMicron check1 failed\n");
2494 	goto jmicron_out;
2495     }
2496 
2497     /* calculate checksum and compare for valid */
2498     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2499 	checksum += *ptr++;
2500     if (checksum) {
2501 	if (testing || bootverbose)
2502 	    device_printf(parent, "JMicron check2 failed\n");
2503 	goto jmicron_out;
2504     }
2505 
2506     if (testing || bootverbose)
2507 	ata_raid_jmicron_print_meta(meta);
2508 
2509     /* now convert JMicron meta into our generic form */
2510     for (array = 0; array < MAX_ARRAYS; array++) {
2511 jmicron_next:
2512 	if (!raidp[array]) {
2513 	    raidp[array] =
2514 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2515 					  M_WAITOK | M_ZERO);
2516 	}
2517 	raid = raidp[array];
2518 	if (raid->format && (raid->format != AR_F_JMICRON_RAID))
2519 	    continue;
2520 
2521 	for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
2522 	    if (meta->disks[disk]) {
2523 		if (raid->format == AR_F_JMICRON_RAID) {
2524 		    if (bcmp(&meta->disks[disk],
2525 			raid->disks[disk].serial, sizeof(u_int32_t))) {
2526 			array++;
2527 			goto jmicron_next;
2528 		    }
2529 		}
2530 		else
2531 		    bcopy(&meta->disks[disk],
2532 			  raid->disks[disk].serial, sizeof(u_int32_t));
2533 		total_disks++;
2534 	    }
2535 	}
2536 	/* handle spares XXX SOS */
2537 
2538 	switch (meta->type) {
2539 	case JM_T_RAID0:
2540 	    raid->type = AR_T_RAID0;
2541 	    raid->width = total_disks;
2542 	    break;
2543 
2544 	case JM_T_RAID1:
2545 	    raid->type = AR_T_RAID1;
2546 	    raid->width = 1;
2547 	    break;
2548 
2549 	case JM_T_RAID01:
2550 	    raid->type = AR_T_RAID01;
2551 	    raid->width = total_disks / 2;
2552 	    break;
2553 
2554 	case JM_T_RAID5:
2555 	    raid->type = AR_T_RAID5;
2556 	    raid->width = total_disks;
2557 	    break;
2558 
2559 	case JM_T_JBOD:
2560 	    raid->type = AR_T_SPAN;
2561 	    raid->width = 1;
2562 	    break;
2563 
2564 	default:
2565 	    device_printf(parent,
2566 			  "JMicron unknown RAID type 0x%02x\n", meta->type);
2567 	    kfree(raidp[array], M_AR);
2568 	    raidp[array] = NULL;
2569 	    goto jmicron_out;
2570 	}
2571 	disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
2572 	raid->format = AR_F_JMICRON_RAID;
2573 	strncpy(raid->name, meta->name, sizeof(meta->name));
2574 	raid->generation = 0;
2575 	raid->interleave = 2 << meta->stripe_shift;
2576 	raid->total_disks = total_disks;
2577 	raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
2578 	raid->heads = 255;
2579 	raid->sectors = 63;
2580 	raid->cylinders = raid->total_sectors / (63 * 255);
2581 	raid->offset_sectors = meta->offset * 16;
2582 	raid->rebuild_lba = 0;
2583 	raid->lun = array;
2584 
2585 	for (disk = 0; disk < raid->total_disks; disk++) {
2586 	    if (meta->disks[disk] == meta->disk_id) {
2587 		raid->disks[disk].dev = parent;
2588 		raid->disks[disk].sectors = disk_size;
2589 		raid->disks[disk].flags =
2590 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2591 		ars->raid[raid->volume] = raid;
2592 		ars->disk_number[raid->volume] = disk;
2593 		retval = 1;
2594 		break;
2595 	    }
2596 	}
2597 	break;
2598     }
2599 jmicron_out:
2600     kfree(meta, M_AR);
2601     return retval;
2602 }
2603 
2604 static int
2605 ata_raid_jmicron_write_meta(struct ar_softc *rdp)
2606 {
2607     struct jmicron_raid_conf *meta;
2608     u_int64_t disk_sectors;
2609     int disk, error = 0;
2610 
2611     meta = (struct jmicron_raid_conf *)
2612 	kmalloc(sizeof(struct jmicron_raid_conf), M_AR, M_WAITOK | M_ZERO);
2613 
2614     rdp->generation++;
2615     switch (rdp->type) {
2616     case AR_T_JBOD:
2617 	meta->type = JM_T_JBOD;
2618 	break;
2619 
2620     case AR_T_RAID0:
2621 	meta->type = JM_T_RAID0;
2622 	break;
2623 
2624     case AR_T_RAID1:
2625 	meta->type = JM_T_RAID1;
2626 	break;
2627 
2628     case AR_T_RAID5:
2629 	meta->type = JM_T_RAID5;
2630 	break;
2631 
2632     case AR_T_RAID01:
2633 	meta->type = JM_T_RAID01;
2634 	break;
2635 
2636     default:
2637 	kfree(meta, M_AR);
2638 	return ENODEV;
2639     }
2640     bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
2641     meta->version = JMICRON_VERSION;
2642     meta->offset = rdp->offset_sectors / 16;
2643     disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
2644     meta->disk_sectors_low = disk_sectors & 0xffff;
2645     meta->disk_sectors_high = disk_sectors >> 16;
2646     strncpy(meta->name, rdp->name, sizeof(meta->name));
2647     meta->stripe_shift = ffs(rdp->interleave) - 2;
2648 
2649     for (disk = 0; disk < rdp->total_disks; disk++) {
2650 	if (rdp->disks[disk].serial[0])
2651 	    bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
2652 	else
2653 	    meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
2654     }
2655 
2656     for (disk = 0; disk < rdp->total_disks; disk++) {
2657 	if (rdp->disks[disk].dev) {
2658 	    u_int16_t checksum = 0, *ptr;
2659 	    int count;
2660 
2661 	    meta->disk_id = meta->disks[disk];
2662 	    meta->checksum = 0;
2663 	    for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
2664 		checksum += *ptr++;
2665 	    meta->checksum -= checksum;
2666 
2667 	    if (testing || bootverbose)
2668 		ata_raid_jmicron_print_meta(meta);
2669 
2670 	    if (ata_raid_rw(rdp->disks[disk].dev,
2671 			    JMICRON_LBA(rdp->disks[disk].dev),
2672 			    meta, sizeof(struct jmicron_raid_conf),
2673 			    ATA_R_WRITE | ATA_R_DIRECT)) {
2674 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
2675 		error = EIO;
2676 	    }
2677 	}
2678     }
2679     /* handle spares XXX SOS */
2680 
2681     kfree(meta, M_AR);
2682     return error;
2683 }
2684 
2685 /* LSILogic V2 MegaRAID Metadata */
2686 static int
2687 ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
2688 {
2689     struct ata_raid_subdisk *ars = device_get_softc(dev);
2690     device_t parent = device_get_parent(dev);
2691     struct lsiv2_raid_conf *meta;
2692     struct ar_softc *raid = NULL;
2693     int array, retval = 0;
2694 
2695     meta = (struct lsiv2_raid_conf *)kmalloc(sizeof(struct lsiv2_raid_conf),
2696 	M_AR, M_WAITOK | M_ZERO);
2697 
2698     if (ata_raid_rw(parent, LSIV2_LBA(parent),
2699 		    meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
2700 	if (testing || bootverbose)
2701 	    device_printf(parent, "LSI (v2) read metadata failed\n");
2702 	goto lsiv2_out;
2703     }
2704 
2705     /* check if this is a LSI RAID struct */
2706     if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
2707 	if (testing || bootverbose)
2708 	    device_printf(parent, "LSI (v2) check1 failed\n");
2709 	goto lsiv2_out;
2710     }
2711 
2712     if (testing || bootverbose)
2713 	ata_raid_lsiv2_print_meta(meta);
2714 
2715     /* now convert LSI (v2) config meta into our generic form */
2716     for (array = 0; array < MAX_ARRAYS; array++) {
2717 	int raid_entry, conf_entry;
2718 
2719 	if (!raidp[array + meta->raid_number]) {
2720 	    raidp[array + meta->raid_number] =
2721 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2722 					  M_WAITOK | M_ZERO);
2723 	}
2724 	raid = raidp[array + meta->raid_number];
2725 	if (raid->format && (raid->format != AR_F_LSIV2_RAID))
2726 	    continue;
2727 
2728 	if (raid->magic_0 &&
2729 	    ((raid->magic_0 != meta->timestamp) ||
2730 	     (raid->magic_1 != meta->raid_number)))
2731 	    continue;
2732 
2733 	array += meta->raid_number;
2734 
2735 	raid_entry = meta->raid_number;
2736 	conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
2737 		     meta->disk_number - 1;
2738 
2739 	switch (meta->configs[raid_entry].raid.type) {
2740 	case LSIV2_T_RAID0:
2741 	    raid->magic_0 = meta->timestamp;
2742 	    raid->magic_1 = meta->raid_number;
2743 	    raid->type = AR_T_RAID0;
2744 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2745 	    raid->width = meta->configs[raid_entry].raid.array_width;
2746 	    break;
2747 
2748 	case LSIV2_T_RAID1:
2749 	    raid->magic_0 = meta->timestamp;
2750 	    raid->magic_1 = meta->raid_number;
2751 	    raid->type = AR_T_RAID1;
2752 	    raid->width = meta->configs[raid_entry].raid.array_width;
2753 	    break;
2754 
2755 	case LSIV2_T_RAID0 | LSIV2_T_RAID1:
2756 	    raid->magic_0 = meta->timestamp;
2757 	    raid->magic_1 = meta->raid_number;
2758 	    raid->type = AR_T_RAID01;
2759 	    raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
2760 	    raid->width = meta->configs[raid_entry].raid.array_width;
2761 	    break;
2762 
2763 	default:
2764 	    device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
2765 			  meta->configs[raid_entry].raid.type);
2766 	    kfree(raidp[array], M_AR);
2767 	    raidp[array] = NULL;
2768 	    goto lsiv2_out;
2769 	}
2770 
2771 	raid->format = AR_F_LSIV2_RAID;
2772 	raid->generation = 0;
2773 	raid->total_disks = meta->configs[raid_entry].raid.disk_count;
2774 	raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
2775 	raid->heads = 255;
2776 	raid->sectors = 63;
2777 	raid->cylinders = raid->total_sectors / (63 * 255);
2778 	raid->offset_sectors = 0;
2779 	raid->rebuild_lba = 0;
2780 	raid->lun = array;
2781 
2782 	if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
2783 	    raid->disks[meta->disk_number].dev = parent;
2784 	    raid->disks[meta->disk_number].sectors =
2785 		meta->configs[conf_entry].disk.disk_sectors;
2786 	    raid->disks[meta->disk_number].flags =
2787 		(AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
2788 	    ars->raid[raid->volume] = raid;
2789 	    ars->disk_number[raid->volume] = meta->disk_number;
2790 	    retval = 1;
2791 	}
2792 	else
2793 	    raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;
2794 
2795 	break;
2796     }
2797 
2798 lsiv2_out:
2799     kfree(meta, M_AR);
2800     return retval;
2801 }
2802 
2803 /* LSILogic V3 MegaRAID Metadata */
2804 static int
2805 ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
2806 {
2807     struct ata_raid_subdisk *ars = device_get_softc(dev);
2808     device_t parent = device_get_parent(dev);
2809     struct lsiv3_raid_conf *meta;
2810     struct ar_softc *raid = NULL;
2811     u_int8_t checksum, *ptr;
2812     int array, entry, count, disk_number, retval = 0;
2813 
2814     meta = (struct lsiv3_raid_conf *)kmalloc(sizeof(struct lsiv3_raid_conf),
2815 	M_AR, M_WAITOK | M_ZERO);
2816 
2817     if (ata_raid_rw(parent, LSIV3_LBA(parent),
2818 		    meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
2819 	if (testing || bootverbose)
2820 	    device_printf(parent, "LSI (v3) read metadata failed\n");
2821 	goto lsiv3_out;
2822     }
2823 
2824     /* check if this is a LSI RAID struct */
2825     if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
2826 	if (testing || bootverbose)
2827 	    device_printf(parent, "LSI (v3) check1 failed\n");
2828 	goto lsiv3_out;
2829     }
2830 
2831     /* check if the checksum is OK */
2832     for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
2833 	checksum += *ptr++;
2834     if (checksum) {
2835 	if (testing || bootverbose)
2836 	    device_printf(parent, "LSI (v3) check2 failed\n");
2837 	goto lsiv3_out;
2838     }
2839 
2840     if (testing || bootverbose)
2841 	ata_raid_lsiv3_print_meta(meta);
2842 
2843     /* now convert LSI (v3) config meta into our generic form */
2844     for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
2845 	if (!raidp[array]) {
2846 	    raidp[array] =
2847 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2848 					  M_WAITOK | M_ZERO);
2849 	}
2850 	raid = raidp[array];
2851 	if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
2852 	    array++;
2853 	    continue;
2854 	}
2855 
2856 	if ((raid->format == AR_F_LSIV3_RAID) &&
2857 	    (raid->magic_0 != meta->timestamp)) {
2858 	    array++;
2859 	    continue;
2860 	}
2861 
2862 	switch (meta->raid[entry].total_disks) {
2863 	case 0:
2864 	    entry++;
2865 	    continue;
2866 	case 1:
2867 	    if (meta->raid[entry].device == meta->device) {
2868 		disk_number = 0;
2869 		break;
2870 	    }
2871 	    if (raid->format)
2872 		array++;
2873 	    entry++;
2874 	    continue;
2875 	case 2:
2876 	    disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
2877 	    break;
2878 	default:
2879 	    device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
2880 	    disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
2881 			  (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
2882 	    break;
2883 	}
2884 
2885 	switch (meta->raid[entry].type) {
2886 	case LSIV3_T_RAID0:
2887 	    raid->type = AR_T_RAID0;
2888 	    raid->width = meta->raid[entry].total_disks;
2889 	    break;
2890 
2891 	case LSIV3_T_RAID1:
2892 	    raid->type = AR_T_RAID1;
2893 	    raid->width = meta->raid[entry].array_width;
2894 	    break;
2895 
2896 	default:
2897 	    device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
2898 			  meta->raid[entry].type);
2899 	    kfree(raidp[array], M_AR);
2900 	    raidp[array] = NULL;
2901 	    entry++;
2902 	    continue;
2903 	}
2904 
2905 	raid->magic_0 = meta->timestamp;
2906 	raid->format = AR_F_LSIV3_RAID;
2907 	raid->generation = 0;
2908 	raid->interleave = meta->raid[entry].stripe_pages * 8;
2909 	raid->total_disks = meta->raid[entry].total_disks;
2910 	raid->total_sectors = raid->width * meta->raid[entry].sectors;
2911 	raid->heads = 255;
2912 	raid->sectors = 63;
2913 	raid->cylinders = raid->total_sectors / (63 * 255);
2914 	raid->offset_sectors = meta->raid[entry].offset;
2915 	raid->rebuild_lba = 0;
2916 	raid->lun = array;
2917 
2918 	raid->disks[disk_number].dev = parent;
2919 	raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
2920 	raid->disks[disk_number].flags =
2921 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
2922 	ars->raid[raid->volume] = raid;
2923 	ars->disk_number[raid->volume] = disk_number;
2924 	retval = 1;
2925 	entry++;
2926 	array++;
2927     }
2928 
2929 lsiv3_out:
2930     kfree(meta, M_AR);
2931     return retval;
2932 }
2933 
2934 /* nVidia MediaShield Metadata */
2935 static int
2936 ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
2937 {
2938     struct ata_raid_subdisk *ars = device_get_softc(dev);
2939     device_t parent = device_get_parent(dev);
2940     struct nvidia_raid_conf *meta;
2941     struct ar_softc *raid = NULL;
2942     u_int32_t checksum, *ptr;
2943     int array, count, retval = 0;
2944 
2945     meta = (struct nvidia_raid_conf *)kmalloc(sizeof(struct nvidia_raid_conf),
2946 	M_AR, M_WAITOK | M_ZERO);
2947 
2948     if (ata_raid_rw(parent, NVIDIA_LBA(parent),
2949 		    meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
2950 	if (testing || bootverbose)
2951 	    device_printf(parent, "nVidia read metadata failed\n");
2952 	goto nvidia_out;
2953     }
2954 
2955     /* check if this is a nVidia RAID struct */
2956     if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
2957 	if (testing || bootverbose)
2958 	    device_printf(parent, "nVidia check1 failed\n");
2959 	goto nvidia_out;
2960     }
2961 
2962     /* check if the checksum is OK */
2963     for (checksum = 0, ptr = (u_int32_t*)meta, count = 0;
2964 	 count < meta->config_size; count++)
2965 	checksum += *ptr++;
2966     if (checksum) {
2967 	if (testing || bootverbose)
2968 	    device_printf(parent, "nVidia check2 failed\n");
2969 	goto nvidia_out;
2970     }
2971 
2972     if (testing || bootverbose)
2973 	ata_raid_nvidia_print_meta(meta);
2974 
2975     /* now convert nVidia meta into our generic form */
2976     for (array = 0; array < MAX_ARRAYS; array++) {
2977 	if (!raidp[array]) {
2978 	    raidp[array] =
2979 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
2980 					  M_WAITOK | M_ZERO);
2981 	}
2982 	raid = raidp[array];
2983 	if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
2984 	    continue;
2985 
2986 	if (raid->format == AR_F_NVIDIA_RAID &&
2987 	    ((raid->magic_0 != meta->magic_1) ||
2988 	     (raid->magic_1 != meta->magic_2))) {
2989 	    continue;
2990 	}
2991 
2992 	switch (meta->type) {
2993 	case NV_T_SPAN:
2994 	    raid->type = AR_T_SPAN;
2995 	    break;
2996 
2997 	case NV_T_RAID0:
2998 	    raid->type = AR_T_RAID0;
2999 	    break;
3000 
3001 	case NV_T_RAID1:
3002 	    raid->type = AR_T_RAID1;
3003 	    break;
3004 
3005 	case NV_T_RAID5:
3006 	    raid->type = AR_T_RAID5;
3007 	    break;
3008 
3009 	case NV_T_RAID01:
3010 	    raid->type = AR_T_RAID01;
3011 	    break;
3012 
3013 	default:
3014 	    device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
3015 			  meta->type);
3016 	    kfree(raidp[array], M_AR);
3017 	    raidp[array] = NULL;
3018 	    goto nvidia_out;
3019 	}
3020 	raid->magic_0 = meta->magic_1;
3021 	raid->magic_1 = meta->magic_2;
3022 	raid->format = AR_F_NVIDIA_RAID;
3023 	raid->generation = 0;
3024 	raid->interleave = meta->stripe_sectors;
3025 	raid->width = meta->array_width;
3026 	raid->total_disks = meta->total_disks;
3027 	raid->total_sectors = meta->total_sectors;
3028 	raid->heads = 255;
3029 	raid->sectors = 63;
3030 	raid->cylinders = raid->total_sectors / (63 * 255);
3031 	raid->offset_sectors = 0;
3032 	raid->rebuild_lba = meta->rebuild_lba;
3033 	raid->lun = array;
3034 	raid->status = AR_S_READY;
3035 	if (meta->status & NV_S_DEGRADED)
3036 	    raid->status |= AR_S_DEGRADED;
3037 
3038 	raid->disks[meta->disk_number].dev = parent;
3039 	raid->disks[meta->disk_number].sectors =
3040 	    raid->total_sectors / raid->width;
3041 	raid->disks[meta->disk_number].flags =
3042 	    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
3043 	ars->raid[raid->volume] = raid;
3044 	ars->disk_number[raid->volume] = meta->disk_number;
3045 	retval = 1;
3046 	break;
3047     }
3048 
3049 nvidia_out:
3050     kfree(meta, M_AR);
3051     return retval;
3052 }
3053 
3054 /* Promise FastTrak Metadata */
3055 static int
3056 ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
3057 {
3058     struct ata_raid_subdisk *ars = device_get_softc(dev);
3059     device_t parent = device_get_parent(dev);
3060     struct promise_raid_conf *meta;
3061     struct ar_softc *raid;
3062     u_int32_t checksum, *ptr;
3063     int array, count, disk, disksum = 0, retval = 0;
3064 
3065     meta = (struct promise_raid_conf *)
3066 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK | M_ZERO);
3067 
3068     if (ata_raid_rw(parent, PROMISE_LBA(parent),
3069 		    meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
3070 	if (testing || bootverbose)
3071 	    device_printf(parent, "%s read metadata failed\n",
3072 			  native ? "FreeBSD" : "Promise");
3073 	goto promise_out;
3074     }
3075 
3076     /* check the signature */
3077     if (native) {
3078 	if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
3079 	    if (testing || bootverbose)
3080 		device_printf(parent, "FreeBSD check1 failed\n");
3081 	    goto promise_out;
3082 	}
3083     }
3084     else {
3085 	if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
3086 	    if (testing || bootverbose)
3087 		device_printf(parent, "Promise check1 failed\n");
3088 	    goto promise_out;
3089 	}
3090     }
3091 
3092     /* check if the checksum is OK */
3093     for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
3094 	checksum += *ptr++;
3095     if (checksum != *ptr) {
3096 	if (testing || bootverbose)
3097 	    device_printf(parent, "%s check2 failed\n",
3098 			  native ? "FreeBSD" : "Promise");
3099 	goto promise_out;
3100     }
3101 
3102     /* check on disk integrity status */
3103     if (meta->raid.integrity != PR_I_VALID) {
3104 	if (testing || bootverbose)
3105 	    device_printf(parent, "%s check3 failed\n",
3106 			  native ? "FreeBSD" : "Promise");
3107 	goto promise_out;
3108     }
3109 
3110     if (testing || bootverbose)
3111 	ata_raid_promise_print_meta(meta);
3112 
3113     /* now convert Promise metadata into our generic form */
3114     for (array = 0; array < MAX_ARRAYS; array++) {
3115 	if (!raidp[array]) {
3116 	    raidp[array] =
3117 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3118 					  M_WAITOK | M_ZERO);
3119 	}
3120 	raid = raidp[array];
3121 	if (raid->format &&
3122 	    (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
3123 	    continue;
3124 
3125 	if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
3126 	    !(meta->raid.magic_1 == (raid->magic_1)))
3127 	    continue;
3128 
3129 	/* update our knowledge about the array config based on generation */
3130 	if (!meta->raid.generation || meta->raid.generation > raid->generation){
3131 	    switch (meta->raid.type) {
3132 	    case PR_T_SPAN:
3133 		raid->type = AR_T_SPAN;
3134 		break;
3135 
3136 	    case PR_T_JBOD:
3137 		raid->type = AR_T_JBOD;
3138 		break;
3139 
3140 	    case PR_T_RAID0:
3141 		raid->type = AR_T_RAID0;
3142 		break;
3143 
3144 	    case PR_T_RAID1:
3145 		raid->type = AR_T_RAID1;
3146 		if (meta->raid.array_width > 1)
3147 		    raid->type = AR_T_RAID01;
3148 		break;
3149 
3150 	    case PR_T_RAID5:
3151 		raid->type = AR_T_RAID5;
3152 		break;
3153 
3154 	    default:
3155 		device_printf(parent, "%s unknown RAID type 0x%02x\n",
3156 			      native ? "FreeBSD" : "Promise", meta->raid.type);
3157 		kfree(raidp[array], M_AR);
3158 		raidp[array] = NULL;
3159 		goto promise_out;
3160 	    }
3161 	    raid->magic_1 = meta->raid.magic_1;
3162 	    raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
3163 	    raid->generation = meta->raid.generation;
3164 	    raid->interleave = 1 << meta->raid.stripe_shift;
3165 	    raid->width = meta->raid.array_width;
3166 	    raid->total_disks = meta->raid.total_disks;
3167 	    raid->heads = meta->raid.heads + 1;
3168 	    raid->sectors = meta->raid.sectors;
3169 	    raid->cylinders = meta->raid.cylinders + 1;
3170 	    raid->total_sectors = meta->raid.total_sectors;
3171 	    raid->offset_sectors = 0;
3172 	    raid->rebuild_lba = meta->raid.rebuild_lba;
3173 	    raid->lun = array;
3174 	    if ((meta->raid.status &
3175 		 (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
3176 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
3177 		raid->status |= AR_S_READY;
3178 		if (meta->raid.status & PR_S_DEGRADED)
3179 		    raid->status |= AR_S_DEGRADED;
3180 	    }
3181 	    else
3182 		raid->status &= ~AR_S_READY;
3183 
3184 	    /* convert disk flags to our internal types */
3185 	    for (disk = 0; disk < meta->raid.total_disks; disk++) {
3186 		raid->disks[disk].dev = NULL;
3187 		raid->disks[disk].flags = 0;
3188 		*((u_int64_t *)(raid->disks[disk].serial)) =
3189 		    meta->raid.disk[disk].magic_0;
3190 		disksum += meta->raid.disk[disk].flags;
3191 		if (meta->raid.disk[disk].flags & PR_F_ONLINE)
3192 		    raid->disks[disk].flags |= AR_DF_ONLINE;
3193 		if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
3194 		    raid->disks[disk].flags |= AR_DF_ASSIGNED;
3195 		if (meta->raid.disk[disk].flags & PR_F_SPARE) {
3196 		    raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
3197 		    raid->disks[disk].flags |= AR_DF_SPARE;
3198 		}
3199 		if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
3200 		    raid->disks[disk].flags &= ~AR_DF_ONLINE;
3201 	    }
3202 	    if (!disksum) {
3203 		device_printf(parent, "%s subdisks has no flags\n",
3204 			      native ? "FreeBSD" : "Promise");
3205 		kfree(raidp[array], M_AR);
3206 		raidp[array] = NULL;
3207 		goto promise_out;
3208 	    }
3209 	}
3210 	if (meta->raid.generation >= raid->generation) {
3211 	    int disk_number = meta->raid.disk_number;
3212 
3213 	    if (raid->disks[disk_number].flags && (meta->magic_0 ==
3214 		*((u_int64_t *)(raid->disks[disk_number].serial)))) {
3215 		raid->disks[disk_number].dev = parent;
3216 		raid->disks[disk_number].flags |= AR_DF_PRESENT;
3217 		raid->disks[disk_number].sectors = meta->raid.disk_sectors;
3218 		if ((raid->disks[disk_number].flags &
3219 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
3220 		    (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
3221 		    ars->raid[raid->volume] = raid;
3222 		    ars->disk_number[raid->volume] = disk_number;
3223 		    retval = 1;
3224 		}
3225 	    }
3226 	}
3227 	break;
3228     }
3229 
3230 promise_out:
3231     kfree(meta, M_AR);
3232     return retval;
3233 }
3234 
3235 static int
3236 ata_raid_promise_write_meta(struct ar_softc *rdp)
3237 {
3238     struct promise_raid_conf *meta;
3239     struct timeval timestamp;
3240     u_int32_t *ckptr;
3241     int count, disk, drive, error = 0;
3242 
3243     meta = (struct promise_raid_conf *)
3244 	kmalloc(sizeof(struct promise_raid_conf), M_AR, M_WAITOK);
3245 
3246     rdp->generation++;
3247     microtime(&timestamp);
3248 
3249     for (disk = 0; disk < rdp->total_disks; disk++) {
3250 	for (count = 0; count < sizeof(struct promise_raid_conf); count++)
3251 	    *(((u_int8_t *)meta) + count) = 255 - (count % 256);
3252 	meta->dummy_0 = 0x00020000;
3253 	meta->raid.disk_number = disk;
3254 
3255 	if (rdp->disks[disk].dev) {
3256 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3257 	    struct ata_channel *ch =
3258 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3259 
3260 	    meta->raid.channel = ch->unit;
3261 	    meta->raid.device = ATA_DEV(atadev->unit);
3262 	    meta->raid.disk_sectors = rdp->disks[disk].sectors;
3263 	    meta->raid.disk_offset = rdp->offset_sectors;
3264 	}
3265 	else {
3266 	    meta->raid.channel = 0;
3267 	    meta->raid.device = 0;
3268 	    meta->raid.disk_sectors = 0;
3269 	    meta->raid.disk_offset = 0;
3270 	}
3271 	meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
3272 	meta->magic_1 = timestamp.tv_sec >> 16;
3273 	meta->magic_2 = timestamp.tv_sec;
3274 	meta->raid.integrity = PR_I_VALID;
3275 	meta->raid.magic_0 = meta->magic_0;
3276 	meta->raid.rebuild_lba = rdp->rebuild_lba;
3277 	meta->raid.generation = rdp->generation;
3278 
3279 	if (rdp->status & AR_S_READY) {
3280 	    meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
3281 	    meta->raid.status =
3282 		(PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
3283 	    if (rdp->status & AR_S_DEGRADED)
3284 		meta->raid.status |= PR_S_DEGRADED;
3285 	    else
3286 		meta->raid.status |= PR_S_FUNCTIONAL;
3287 	}
3288 	else {
3289 	    meta->raid.flags = PR_F_DOWN;
3290 	    meta->raid.status = 0;
3291 	}
3292 
3293 	switch (rdp->type) {
3294 	case AR_T_RAID0:
3295 	    meta->raid.type = PR_T_RAID0;
3296 	    break;
3297 	case AR_T_RAID1:
3298 	    meta->raid.type = PR_T_RAID1;
3299 	    break;
3300 	case AR_T_RAID01:
3301 	    meta->raid.type = PR_T_RAID1;
3302 	    break;
3303 	case AR_T_RAID5:
3304 	    meta->raid.type = PR_T_RAID5;
3305 	    break;
3306 	case AR_T_SPAN:
3307 	    meta->raid.type = PR_T_SPAN;
3308 	    break;
3309 	case AR_T_JBOD:
3310 	    meta->raid.type = PR_T_JBOD;
3311 	    break;
3312 	default:
3313 	    kfree(meta, M_AR);
3314 	    return ENODEV;
3315 	}
3316 
3317 	meta->raid.total_disks = rdp->total_disks;
3318 	meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
3319 	meta->raid.array_width = rdp->width;
3320 	meta->raid.array_number = rdp->lun;
3321 	meta->raid.total_sectors = rdp->total_sectors;
3322 	meta->raid.cylinders = rdp->cylinders - 1;
3323 	meta->raid.heads = rdp->heads - 1;
3324 	meta->raid.sectors = rdp->sectors;
3325 	meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;
3326 
3327 	bzero(&meta->raid.disk, 8 * 12);
3328 	for (drive = 0; drive < rdp->total_disks; drive++) {
3329 	    meta->raid.disk[drive].flags = 0;
3330 	    if (rdp->disks[drive].flags & AR_DF_PRESENT)
3331 		meta->raid.disk[drive].flags |= PR_F_VALID;
3332 	    if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
3333 		meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
3334 	    if (rdp->disks[drive].flags & AR_DF_ONLINE)
3335 		meta->raid.disk[drive].flags |= PR_F_ONLINE;
3336 	    else
3337 		if (rdp->disks[drive].flags & AR_DF_PRESENT)
3338 		    meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
3339 	    if (rdp->disks[drive].flags & AR_DF_SPARE)
3340 		meta->raid.disk[drive].flags |= PR_F_SPARE;
3341 	    meta->raid.disk[drive].dummy_0 = 0x0;
3342 	    if (rdp->disks[drive].dev) {
3343 		struct ata_channel *ch =
3344 		    device_get_softc(device_get_parent(rdp->disks[drive].dev));
3345 		struct ata_device *atadev =
3346 		    device_get_softc(rdp->disks[drive].dev);
3347 
3348 		meta->raid.disk[drive].channel = ch->unit;
3349 		meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
3350 	    }
3351 	    meta->raid.disk[drive].magic_0 =
3352 		PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
3353 	}
3354 
3355 	if (rdp->disks[disk].dev) {
3356 	    if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
3357 		(AR_DF_PRESENT | AR_DF_ONLINE)) {
3358 		if (rdp->format == AR_F_FREEBSD_RAID)
3359 		    bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
3360 		else
3361 		    bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
3362 	    }
3363 	    else
3364 		bzero(meta->promise_id, sizeof(meta->promise_id));
3365 	    meta->checksum = 0;
3366 	    for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
3367 		meta->checksum += *ckptr++;
3368 	    if (testing || bootverbose)
3369 		ata_raid_promise_print_meta(meta);
3370 	    if (ata_raid_rw(rdp->disks[disk].dev,
3371 			    PROMISE_LBA(rdp->disks[disk].dev),
3372 			    meta, sizeof(struct promise_raid_conf),
3373 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3374 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3375 		error = EIO;
3376 	    }
3377 	}
3378     }
3379     kfree(meta, M_AR);
3380     return error;
3381 }
3382 
3383 /* Silicon Image Medley Metadata */
3384 static int
3385 ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
3386 {
3387     struct ata_raid_subdisk *ars = device_get_softc(dev);
3388     device_t parent = device_get_parent(dev);
3389     struct sii_raid_conf *meta;
3390     struct ar_softc *raid = NULL;
3391     u_int16_t checksum, *ptr;
3392     int array, count, disk, retval = 0;
3393 
3394     meta = (struct sii_raid_conf *)kmalloc(sizeof(struct sii_raid_conf), M_AR,
3395 	M_WAITOK | M_ZERO);
3396 
3397     if (ata_raid_rw(parent, SII_LBA(parent),
3398 		    meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
3399 	if (testing || bootverbose)
3400 	    device_printf(parent, "Silicon Image read metadata failed\n");
3401 	goto sii_out;
3402     }
3403 
3404     /* check if this is a Silicon Image (Medley) RAID struct */
3405     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
3406 	checksum += *ptr++;
3407     if (checksum) {
3408 	if (testing || bootverbose)
3409 	    device_printf(parent, "Silicon Image check1 failed\n");
3410 	goto sii_out;
3411     }
3412 
3413     for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
3414 	checksum += *ptr++;
3415     if (checksum != meta->checksum_1) {
3416 	if (testing || bootverbose)
3417 	    device_printf(parent, "Silicon Image check2 failed\n");
3418 	goto sii_out;
3419     }
3420 
3421     /* check verison */
3422     if (meta->version_major != 0x0002 ||
3423 	(meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
3424 	if (testing || bootverbose)
3425 	    device_printf(parent, "Silicon Image check3 failed\n");
3426 	goto sii_out;
3427     }
3428 
3429     if (testing || bootverbose)
3430 	ata_raid_sii_print_meta(meta);
3431 
3432     /* now convert Silicon Image meta into our generic form */
3433     for (array = 0; array < MAX_ARRAYS; array++) {
3434 	if (!raidp[array]) {
3435 	    raidp[array] =
3436 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3437 					  M_WAITOK | M_ZERO);
3438 	}
3439 	raid = raidp[array];
3440 	if (raid->format && (raid->format != AR_F_SII_RAID))
3441 	    continue;
3442 
3443 	if (raid->format == AR_F_SII_RAID &&
3444 	    (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
3445 	    continue;
3446 	}
3447 
3448 	/* update our knowledge about the array config based on generation */
3449 	if (!meta->generation || meta->generation > raid->generation) {
3450 	    switch (meta->type) {
3451 	    case SII_T_RAID0:
3452 		raid->type = AR_T_RAID0;
3453 		break;
3454 
3455 	    case SII_T_RAID1:
3456 		raid->type = AR_T_RAID1;
3457 		break;
3458 
3459 	    case SII_T_RAID01:
3460 		raid->type = AR_T_RAID01;
3461 		break;
3462 
3463 	    case SII_T_SPARE:
3464 		device_printf(parent, "Silicon Image SPARE disk\n");
3465 		kfree(raidp[array], M_AR);
3466 		raidp[array] = NULL;
3467 		goto sii_out;
3468 
3469 	    default:
3470 		device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
3471 			      meta->type);
3472 		kfree(raidp[array], M_AR);
3473 		raidp[array] = NULL;
3474 		goto sii_out;
3475 	    }
3476 	    raid->magic_0 = *((u_int64_t *)meta->timestamp);
3477 	    raid->format = AR_F_SII_RAID;
3478 	    raid->generation = meta->generation;
3479 	    raid->interleave = meta->stripe_sectors;
3480 	    raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
3481 	    raid->total_disks =
3482 		((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
3483 		((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
3484 	    raid->total_sectors = meta->total_sectors;
3485 	    raid->heads = 255;
3486 	    raid->sectors = 63;
3487 	    raid->cylinders = raid->total_sectors / (63 * 255);
3488 	    raid->offset_sectors = 0;
3489 	    raid->rebuild_lba = meta->rebuild_lba;
3490 	    raid->lun = array;
3491 	    strncpy(raid->name, meta->name,
3492 		    min(sizeof(raid->name), sizeof(meta->name)));
3493 
3494 	    /* clear out any old info */
3495 	    if (raid->generation) {
3496 		for (disk = 0; disk < raid->total_disks; disk++) {
3497 		    raid->disks[disk].dev = NULL;
3498 		    raid->disks[disk].flags = 0;
3499 		}
3500 	    }
3501 	}
3502 	if (meta->generation >= raid->generation) {
3503 	    /* XXX SOS add check for the right physical disk by serial# */
3504 	    if (meta->status & SII_S_READY) {
3505 		int disk_number = (raid->type == AR_T_RAID01) ?
3506 		    meta->raid1_ident + (meta->raid0_ident << 1) :
3507 		    meta->disk_number;
3508 
3509 		raid->disks[disk_number].dev = parent;
3510 		raid->disks[disk_number].sectors =
3511 		    raid->total_sectors / raid->width;
3512 		raid->disks[disk_number].flags =
3513 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3514 		ars->raid[raid->volume] = raid;
3515 		ars->disk_number[raid->volume] = disk_number;
3516 		retval = 1;
3517 	    }
3518 	}
3519 	break;
3520     }
3521 
3522 sii_out:
3523     kfree(meta, M_AR);
3524     return retval;
3525 }
3526 
3527 /* Silicon Integrated Systems Metadata */
3528 static int
3529 ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
3530 {
3531     struct ata_raid_subdisk *ars = device_get_softc(dev);
3532     device_t parent = device_get_parent(dev);
3533     struct sis_raid_conf *meta;
3534     struct ar_softc *raid = NULL;
3535     int array, disk_number, drive, retval = 0;
3536 
3537     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3538 	M_WAITOK | M_ZERO);
3539 
3540     if (ata_raid_rw(parent, SIS_LBA(parent),
3541 		    meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
3542 	if (testing || bootverbose)
3543 	    device_printf(parent,
3544 			  "Silicon Integrated Systems read metadata failed\n");
3545     }
3546 
3547     /* check for SiS magic */
3548     if (meta->magic != SIS_MAGIC) {
3549 	if (testing || bootverbose)
3550 	    device_printf(parent,
3551 			  "Silicon Integrated Systems check1 failed\n");
3552 	goto sis_out;
3553     }
3554 
3555     if (testing || bootverbose)
3556 	ata_raid_sis_print_meta(meta);
3557 
3558     /* now convert SiS meta into our generic form */
3559     for (array = 0; array < MAX_ARRAYS; array++) {
3560 	if (!raidp[array]) {
3561 	    raidp[array] =
3562 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3563 					  M_WAITOK | M_ZERO);
3564 	}
3565 
3566 	raid = raidp[array];
3567 	if (raid->format && (raid->format != AR_F_SIS_RAID))
3568 	    continue;
3569 
3570 	if ((raid->format == AR_F_SIS_RAID) &&
3571 	    ((raid->magic_0 != meta->controller_pci_id) ||
3572 	     (raid->magic_1 != meta->timestamp))) {
3573 	    continue;
3574 	}
3575 
3576 	switch (meta->type_total_disks & SIS_T_MASK) {
3577 	case SIS_T_JBOD:
3578 	    raid->type = AR_T_JBOD;
3579 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3580 	    raid->total_sectors += SIS_LBA(parent);
3581 	    break;
3582 
3583 	case SIS_T_RAID0:
3584 	    raid->type = AR_T_RAID0;
3585 	    raid->width = (meta->type_total_disks & SIS_D_MASK);
3586 	    if (!raid->total_sectors ||
3587 		(raid->total_sectors > (raid->width * SIS_LBA(parent))))
3588 		raid->total_sectors = raid->width * SIS_LBA(parent);
3589 	    break;
3590 
3591 	case SIS_T_RAID1:
3592 	    raid->type = AR_T_RAID1;
3593 	    raid->width = 1;
3594 	    if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
3595 		raid->total_sectors = SIS_LBA(parent);
3596 	    break;
3597 
3598 	default:
3599 	    device_printf(parent, "Silicon Integrated Systems "
3600 			  "unknown RAID type 0x%08x\n", meta->magic);
3601 	    kfree(raidp[array], M_AR);
3602 	    raidp[array] = NULL;
3603 	    goto sis_out;
3604 	}
3605 	raid->magic_0 = meta->controller_pci_id;
3606 	raid->magic_1 = meta->timestamp;
3607 	raid->format = AR_F_SIS_RAID;
3608 	raid->generation = 0;
3609 	raid->interleave = meta->stripe_sectors;
3610 	raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
3611 	raid->heads = 255;
3612 	raid->sectors = 63;
3613 	raid->cylinders = raid->total_sectors / (63 * 255);
3614 	raid->offset_sectors = 0;
3615 	raid->rebuild_lba = 0;
3616 	raid->lun = array;
3617 	/* XXX SOS if total_disks > 2 this doesn't float */
3618 	if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
3619 	    disk_number = 0;
3620 	else
3621 	    disk_number = 1;
3622 
3623 	for (drive = 0; drive < raid->total_disks; drive++) {
3624 	    raid->disks[drive].sectors = raid->total_sectors/raid->width;
3625 	    if (drive == disk_number) {
3626 		raid->disks[disk_number].dev = parent;
3627 		raid->disks[disk_number].flags =
3628 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3629 		ars->raid[raid->volume] = raid;
3630 		ars->disk_number[raid->volume] = disk_number;
3631 	    }
3632 	}
3633 	retval = 1;
3634 	break;
3635     }
3636 
3637 sis_out:
3638     kfree(meta, M_AR);
3639     return retval;
3640 }
3641 
3642 static int
3643 ata_raid_sis_write_meta(struct ar_softc *rdp)
3644 {
3645     struct sis_raid_conf *meta;
3646     struct timeval timestamp;
3647     int disk, error = 0;
3648 
3649     meta = (struct sis_raid_conf *)kmalloc(sizeof(struct sis_raid_conf), M_AR,
3650 	M_WAITOK | M_ZERO);
3651 
3652     rdp->generation++;
3653     microtime(&timestamp);
3654 
3655     meta->magic = SIS_MAGIC;
3656     /* XXX SOS if total_disks > 2 this doesn't float */
3657     for (disk = 0; disk < rdp->total_disks; disk++) {
3658 	if (rdp->disks[disk].dev) {
3659 	    struct ata_channel *ch =
3660 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3661 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3662 	    int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3663 
3664 	    meta->disks |= disk_number << ((1 - disk) << 2);
3665 	}
3666     }
3667     switch (rdp->type) {
3668     case AR_T_JBOD:
3669 	meta->type_total_disks = SIS_T_JBOD;
3670 	break;
3671 
3672     case AR_T_RAID0:
3673 	meta->type_total_disks = SIS_T_RAID0;
3674 	break;
3675 
3676     case AR_T_RAID1:
3677 	meta->type_total_disks = SIS_T_RAID1;
3678 	break;
3679 
3680     default:
3681 	kfree(meta, M_AR);
3682 	return ENODEV;
3683     }
3684     meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
3685     meta->stripe_sectors = rdp->interleave;
3686     meta->timestamp = timestamp.tv_sec;
3687 
3688     for (disk = 0; disk < rdp->total_disks; disk++) {
3689 	if (rdp->disks[disk].dev) {
3690 	    struct ata_channel *ch =
3691 		device_get_softc(device_get_parent(rdp->disks[disk].dev));
3692 	    struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
3693 
3694 	    meta->controller_pci_id =
3695 		(pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
3696 		pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
3697 	    bcopy(atadev->param.model, meta->model, sizeof(meta->model));
3698 
3699 	    /* XXX SOS if total_disks > 2 this may not float */
3700 	    meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);
3701 
3702 	    if (testing || bootverbose)
3703 		ata_raid_sis_print_meta(meta);
3704 
3705 	    if (ata_raid_rw(rdp->disks[disk].dev,
3706 			    SIS_LBA(rdp->disks[disk].dev),
3707 			    meta, sizeof(struct sis_raid_conf),
3708 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3709 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3710 		error = EIO;
3711 	    }
3712 	}
3713     }
3714     kfree(meta, M_AR);
3715     return error;
3716 }
3717 
3718 /* VIA Tech V-RAID Metadata */
3719 static int
3720 ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
3721 {
3722     struct ata_raid_subdisk *ars = device_get_softc(dev);
3723     device_t parent = device_get_parent(dev);
3724     struct via_raid_conf *meta;
3725     struct ar_softc *raid = NULL;
3726     u_int8_t checksum, *ptr;
3727     int array, count, disk, retval = 0;
3728 
3729     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3730 	M_WAITOK | M_ZERO);
3731 
3732     if (ata_raid_rw(parent, VIA_LBA(parent),
3733 		    meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
3734 	if (testing || bootverbose)
3735 	    device_printf(parent, "VIA read metadata failed\n");
3736 	goto via_out;
3737     }
3738 
3739     /* check if this is a VIA RAID struct */
3740     if (meta->magic != VIA_MAGIC) {
3741 	if (testing || bootverbose)
3742 	    device_printf(parent, "VIA check1 failed\n");
3743 	goto via_out;
3744     }
3745 
3746     /* calculate checksum and compare for valid */
3747     for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3748 	checksum += *ptr++;
3749     if (checksum != meta->checksum) {
3750 	if (testing || bootverbose)
3751 	    device_printf(parent, "VIA check2 failed\n");
3752 	goto via_out;
3753     }
3754 
3755     if (testing || bootverbose)
3756 	ata_raid_via_print_meta(meta);
3757 
3758     /* now convert VIA meta into our generic form */
3759     for (array = 0; array < MAX_ARRAYS; array++) {
3760 	if (!raidp[array]) {
3761 	    raidp[array] =
3762 		(struct ar_softc *)kmalloc(sizeof(struct ar_softc), M_AR,
3763 					  M_WAITOK | M_ZERO);
3764 	}
3765 	raid = raidp[array];
3766 	if (raid->format && (raid->format != AR_F_VIA_RAID))
3767 	    continue;
3768 
3769 	if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
3770 	    continue;
3771 
3772 	switch (meta->type & VIA_T_MASK) {
3773 	case VIA_T_RAID0:
3774 	    raid->type = AR_T_RAID0;
3775 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3776 	    if (!raid->total_sectors ||
3777 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3778 		raid->total_sectors = raid->width * meta->disk_sectors;
3779 	    break;
3780 
3781 	case VIA_T_RAID1:
3782 	    raid->type = AR_T_RAID1;
3783 	    raid->width = 1;
3784 	    raid->total_sectors = meta->disk_sectors;
3785 	    break;
3786 
3787 	case VIA_T_RAID01:
3788 	    raid->type = AR_T_RAID01;
3789 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3790 	    if (!raid->total_sectors ||
3791 		(raid->total_sectors > (raid->width * meta->disk_sectors)))
3792 		raid->total_sectors = raid->width * meta->disk_sectors;
3793 	    break;
3794 
3795 	case VIA_T_RAID5:
3796 	    raid->type = AR_T_RAID5;
3797 	    raid->width = meta->stripe_layout & VIA_L_DISKS;
3798 	    if (!raid->total_sectors ||
3799 		(raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
3800 		raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
3801 	    break;
3802 
3803 	case VIA_T_SPAN:
3804 	    raid->type = AR_T_SPAN;
3805 	    raid->width = 1;
3806 	    raid->total_sectors += meta->disk_sectors;
3807 	    break;
3808 
3809 	default:
3810 	    device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
3811 	    kfree(raidp[array], M_AR);
3812 	    raidp[array] = NULL;
3813 	    goto via_out;
3814 	}
3815 	raid->magic_0 = meta->disks[0];
3816 	raid->format = AR_F_VIA_RAID;
3817 	raid->generation = 0;
3818 	raid->interleave =
3819 	    0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
3820 	for (count = 0, disk = 0; disk < 8; disk++)
3821 	    if (meta->disks[disk])
3822 		count++;
3823 	raid->total_disks = count;
3824 	raid->heads = 255;
3825 	raid->sectors = 63;
3826 	raid->cylinders = raid->total_sectors / (63 * 255);
3827 	raid->offset_sectors = 0;
3828 	raid->rebuild_lba = 0;
3829 	raid->lun = array;
3830 
3831 	for (disk = 0; disk < raid->total_disks; disk++) {
3832 	    if (meta->disks[disk] == meta->disk_id) {
3833 		raid->disks[disk].dev = parent;
3834 		bcopy(&meta->disk_id, raid->disks[disk].serial,
3835 		      sizeof(u_int32_t));
3836 		raid->disks[disk].sectors = meta->disk_sectors;
3837 		raid->disks[disk].flags =
3838 		    (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
3839 		ars->raid[raid->volume] = raid;
3840 		ars->disk_number[raid->volume] = disk;
3841 		retval = 1;
3842 		break;
3843 	    }
3844 	}
3845 	break;
3846     }
3847 
3848 via_out:
3849     kfree(meta, M_AR);
3850     return retval;
3851 }
3852 
3853 static int
3854 ata_raid_via_write_meta(struct ar_softc *rdp)
3855 {
3856     struct via_raid_conf *meta;
3857     int disk, error = 0;
3858 
3859     meta = (struct via_raid_conf *)kmalloc(sizeof(struct via_raid_conf), M_AR,
3860 	M_WAITOK | M_ZERO);
3861 
3862     rdp->generation++;
3863 
3864     meta->magic = VIA_MAGIC;
3865     meta->dummy_0 = 0x02;
3866     switch (rdp->type) {
3867     case AR_T_SPAN:
3868 	meta->type = VIA_T_SPAN;
3869 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3870 	break;
3871 
3872     case AR_T_RAID0:
3873 	meta->type = VIA_T_RAID0;
3874 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3875 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3876 	break;
3877 
3878     case AR_T_RAID1:
3879 	meta->type = VIA_T_RAID1;
3880 	meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
3881 	break;
3882 
3883     case AR_T_RAID5:
3884 	meta->type = VIA_T_RAID5;
3885 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3886 	meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
3887 	break;
3888 
3889     case AR_T_RAID01:
3890 	meta->type = VIA_T_RAID01;
3891 	meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
3892 	meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
3893 	break;
3894 
3895     default:
3896 	kfree(meta, M_AR);
3897 	return ENODEV;
3898     }
3899     meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
3900     meta->disk_sectors =
3901 	rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
3902     for (disk = 0; disk < rdp->total_disks; disk++)
3903 	meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
3904 
3905     for (disk = 0; disk < rdp->total_disks; disk++) {
3906 	if (rdp->disks[disk].dev) {
3907 	    u_int8_t *ptr;
3908 	    int count;
3909 
3910 	    meta->disk_index = disk * sizeof(u_int32_t);
3911 	    if (rdp->type == AR_T_RAID01)
3912 		meta->disk_index = ((meta->disk_index & 0x08) << 2) |
3913 				   (meta->disk_index & ~0x08);
3914 	    meta->disk_id = meta->disks[disk];
3915 	    meta->checksum = 0;
3916 	    for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
3917 		meta->checksum += *ptr++;
3918 
3919 	    if (testing || bootverbose)
3920 		ata_raid_via_print_meta(meta);
3921 
3922 	    if (ata_raid_rw(rdp->disks[disk].dev,
3923 			    VIA_LBA(rdp->disks[disk].dev),
3924 			    meta, sizeof(struct via_raid_conf),
3925 			    ATA_R_WRITE | ATA_R_DIRECT)) {
3926 		device_printf(rdp->disks[disk].dev, "write metadata failed\n");
3927 		error = EIO;
3928 	    }
3929 	}
3930     }
3931     kfree(meta, M_AR);
3932     return error;
3933 }
3934 
3935 static struct ata_request *
3936 ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
3937 {
3938     struct ata_request *request;
3939 
3940     if (!(request = ata_alloc_request())) {
3941 	kprintf("FAILURE - out of memory in ata_raid_init_request\n");
3942 	return NULL;
3943     }
3944     request->timeout = 5;
3945     request->retries = 2;
3946     request->callback = ata_raid_done;
3947     request->driver = rdp;
3948     request->bio = bio;
3949     switch (request->bio->bio_buf->b_cmd) {
3950     case BUF_CMD_READ:
3951 	request->flags = ATA_R_READ;
3952 	break;
3953     case BUF_CMD_WRITE:
3954 	request->flags = ATA_R_WRITE;
3955 	break;
3956     default:
3957 	kprintf("ar%d: FAILURE - unknown BUF operation\n", rdp->lun);
3958 	ata_free_request(request);
3959 #if 0
3960 	bio->bio_buf->b_flags |= B_ERROR;
3961 	bio->bio_buf->b_error = EIO;
3962 	biodone(bio);
3963 #endif /* 0 */
3964 	return(NULL);
3965     }
3966     return request;
3967 }
3968 
3969 static int
3970 ata_raid_send_request(struct ata_request *request)
3971 {
3972     struct ata_device *atadev = device_get_softc(request->dev);
3973 
3974     request->transfersize = min(request->bytecount, atadev->max_iosize);
3975     if (request->flags & ATA_R_READ) {
3976 	if (atadev->mode >= ATA_DMA) {
3977 	    request->flags |= ATA_R_DMA;
3978 	    request->u.ata.command = ATA_READ_DMA;
3979 	}
3980 	else if (atadev->max_iosize > DEV_BSIZE)
3981 	    request->u.ata.command = ATA_READ_MUL;
3982 	else
3983 	    request->u.ata.command = ATA_READ;
3984     }
3985     else if (request->flags & ATA_R_WRITE) {
3986 	if (atadev->mode >= ATA_DMA) {
3987 	    request->flags |= ATA_R_DMA;
3988 	    request->u.ata.command = ATA_WRITE_DMA;
3989 	}
3990 	else if (atadev->max_iosize > DEV_BSIZE)
3991 	    request->u.ata.command = ATA_WRITE_MUL;
3992 	else
3993 	    request->u.ata.command = ATA_WRITE;
3994     }
3995     else {
3996 	device_printf(request->dev, "FAILURE - unknown IO operation\n");
3997 	ata_free_request(request);
3998 	return EIO;
3999     }
4000     request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
4001     ata_queue_request(request);
4002     return 0;
4003 }
4004 
4005 static int
4006 ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
4007 {
4008     struct ata_device *atadev = device_get_softc(dev);
4009     struct ata_request *request;
4010     int error;
4011 
4012     if (bcount % DEV_BSIZE) {
4013 	device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
4014 	return ENOMEM;
4015     }
4016 
4017     if (!(request = ata_alloc_request())) {
4018 	device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
4019 	return ENOMEM;
4020     }
4021 
4022     /* setup request */
4023     request->dev = dev;
4024     request->timeout = 10;
4025     request->retries = 0;
4026     request->data = data;
4027     request->bytecount = bcount;
4028     request->transfersize = DEV_BSIZE;
4029     request->u.ata.lba = lba;
4030     request->u.ata.count = request->bytecount / DEV_BSIZE;
4031     request->flags = flags;
4032 
4033     if (flags & ATA_R_READ) {
4034 	if (atadev->mode >= ATA_DMA) {
4035 	    request->u.ata.command = ATA_READ_DMA;
4036 	    request->flags |= ATA_R_DMA;
4037 	}
4038 	else
4039 	    request->u.ata.command = ATA_READ;
4040 	ata_queue_request(request);
4041     }
4042     else if (flags & ATA_R_WRITE) {
4043 	if (atadev->mode >= ATA_DMA) {
4044 	    request->u.ata.command = ATA_WRITE_DMA;
4045 	    request->flags |= ATA_R_DMA;
4046 	}
4047 	else
4048 	    request->u.ata.command = ATA_WRITE;
4049 	ata_queue_request(request);
4050     }
4051     else {
4052 	device_printf(dev, "FAILURE - unknown IO operation\n");
4053 	request->result = EIO;
4054     }
4055     error = request->result;
4056     ata_free_request(request);
4057     return error;
4058 }
4059 
4060 /*
4061  * module handeling
4062  */
4063 static int
4064 ata_raid_subdisk_probe(device_t dev)
4065 {
4066     device_quiet(dev);
4067     return 0;
4068 }
4069 
4070 static int
4071 ata_raid_subdisk_attach(device_t dev)
4072 {
4073     struct ata_raid_subdisk *ars = device_get_softc(dev);
4074     int volume;
4075 
4076     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4077 	ars->raid[volume] = NULL;
4078 	ars->disk_number[volume] = -1;
4079     }
4080     ata_raid_read_metadata(dev);
4081     return 0;
4082 }
4083 
4084 static int
4085 ata_raid_subdisk_detach(device_t dev)
4086 {
4087     struct ata_raid_subdisk *ars = device_get_softc(dev);
4088     int volume;
4089 
4090     for (volume = 0; volume < MAX_VOLUMES; volume++) {
4091 	if (ars->raid[volume]) {
4092 	    ars->raid[volume]->disks[ars->disk_number[volume]].flags &=
4093 		~(AR_DF_PRESENT | AR_DF_ONLINE);
4094 	    ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
4095 	    ata_raid_config_changed(ars->raid[volume], 1);
4096 	    ars->raid[volume] = NULL;
4097 	    ars->disk_number[volume] = -1;
4098 	}
4099     }
4100     return 0;
4101 }
4102 
4103 static device_method_t ata_raid_sub_methods[] = {
4104     /* device interface */
4105     DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
4106     DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
4107     DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
4108     { 0, 0 }
4109 };
4110 
4111 static driver_t ata_raid_sub_driver = {
4112     "subdisk",
4113     ata_raid_sub_methods,
4114     sizeof(struct ata_raid_subdisk)
4115 };
4116 
4117 DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);
4118 
4119 static int
4120 ata_raid_module_event_handler(module_t mod, int what, void *arg)
4121 {
4122     int i;
4123 
4124     switch (what) {
4125     case MOD_LOAD:
4126 	if (testing || bootverbose)
4127 	    kprintf("ATA PseudoRAID loaded\n");
4128 #if 0
4129 	/* setup table to hold metadata for all ATA PseudoRAID arrays */
4130 	ata_raid_arrays = kmalloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
4131 				M_AR, M_WAITOK | M_ZERO);
4132 #endif
4133 	/* attach found PseudoRAID arrays */
4134 	for (i = 0; i < MAX_ARRAYS; i++) {
4135 	    struct ar_softc *rdp = ata_raid_arrays[i];
4136 
4137 	    if (!rdp || !rdp->format)
4138 		continue;
4139 	    if (testing || bootverbose)
4140 		ata_raid_print_meta(rdp);
4141 	    ata_raid_attach(rdp, 0);
4142 	}
4143 	ata_raid_ioctl_func = ata_raid_ioctl;
4144 	return 0;
4145 
4146     case MOD_UNLOAD:
4147 	/* detach found PseudoRAID arrays */
4148 	for (i = 0; i < MAX_ARRAYS; i++) {
4149 	    struct ar_softc *rdp = ata_raid_arrays[i];
4150 
4151 	    if (!rdp || !rdp->status)
4152 		continue;
4153 	    disk_destroy(&rdp->disk);
4154 	}
4155 	if (testing || bootverbose)
4156 	    kprintf("ATA PseudoRAID unloaded\n");
4157 #if 0
4158 	kfree(ata_raid_arrays, M_AR);
4159 #endif
4160 	ata_raid_ioctl_func = NULL;
4161 	return 0;
4162 
4163     default:
4164 	return EOPNOTSUPP;
4165     }
4166 }
4167 
4168 static moduledata_t ata_raid_moduledata =
4169     { "ataraid", ata_raid_module_event_handler, NULL };
4170 DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
4171 MODULE_VERSION(ataraid, 1);
4172 MODULE_DEPEND(ataraid, ata, 1, 1, 1);
4173 MODULE_DEPEND(ataraid, ad, 1, 1, 1);
4174 
4175 static char *
4176 ata_raid_format(struct ar_softc *rdp)
4177 {
4178     switch (rdp->format) {
4179     case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
4180     case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
4181     case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
4182     case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
4183     case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
4184     case AR_F_ITE_RAID:         return "Integrated Technology Express";
4185     case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
4186     case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
4187     case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
4188     case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
4189     case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
4190     case AR_F_SII_RAID:         return "Silicon Image Medley";
4191     case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
4192     case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
4193     default:                    return "UNKNOWN";
4194     }
4195 }
4196 
4197 static char *
4198 ata_raid_type(struct ar_softc *rdp)
4199 {
4200     switch (rdp->type) {
4201     case AR_T_JBOD:     return "JBOD";
4202     case AR_T_SPAN:     return "SPAN";
4203     case AR_T_RAID0:    return "RAID0";
4204     case AR_T_RAID1:    return "RAID1";
4205     case AR_T_RAID3:    return "RAID3";
4206     case AR_T_RAID4:    return "RAID4";
4207     case AR_T_RAID5:    return "RAID5";
4208     case AR_T_RAID01:   return "RAID0+1";
4209     default:            return "UNKNOWN";
4210     }
4211 }
4212 
4213 static char *
4214 ata_raid_flags(struct ar_softc *rdp)
4215 {
4216     switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
4217     case AR_S_READY:                                    return "READY";
4218     case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
4219     case AR_S_READY | AR_S_REBUILDING:
4220     case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
4221     default:                                            return "BROKEN";
4222     }
4223 }
4224 
4225 /* debugging gunk */
4226 static void
4227 ata_raid_print_meta(struct ar_softc *raid)
4228 {
4229     int i;
4230 
4231     kprintf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
4232     kprintf("=================================================\n");
4233     kprintf("format              %s\n", ata_raid_format(raid));
4234     kprintf("type                %s\n", ata_raid_type(raid));
4235     kprintf("flags               0x%02x %b\n", raid->status, raid->status,
4236 	   "\20\3REBUILDING\2DEGRADED\1READY\n");
4237     kprintf("magic_0             0x%016jx\n", raid->magic_0);
4238     kprintf("magic_1             0x%016jx\n",raid->magic_1);
4239     kprintf("generation          %u\n", raid->generation);
4240     kprintf("total_sectors       %ju\n", raid->total_sectors);
4241     kprintf("offset_sectors      %ju\n", raid->offset_sectors);
4242     kprintf("heads               %u\n", raid->heads);
4243     kprintf("sectors             %u\n", raid->sectors);
4244     kprintf("cylinders           %u\n", raid->cylinders);
4245     kprintf("width               %u\n", raid->width);
4246     kprintf("interleave          %u\n", raid->interleave);
4247     kprintf("total_disks         %u\n", raid->total_disks);
4248     for (i = 0; i < raid->total_disks; i++) {
4249 	kprintf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
4250 	       raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
4251 	if (raid->disks[i].dev) {
4252 	    kprintf("        ");
4253 	    device_printf(raid->disks[i].dev, " sectors %jd\n",
4254 			  raid->disks[i].sectors);
4255 	}
4256     }
4257     kprintf("=================================================\n");
4258 }
4259 
4260 static char *
4261 ata_raid_adaptec_type(int type)
4262 {
4263     static char buffer[16];
4264 
4265     switch (type) {
4266     case ADP_T_RAID0:   return "RAID0";
4267     case ADP_T_RAID1:   return "RAID1";
4268     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4269 			return buffer;
4270     }
4271 }
4272 
4273 static void
4274 ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
4275 {
4276     int i;
4277 
4278     kprintf("********* ATA Adaptec HostRAID Metadata *********\n");
4279     kprintf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
4280     kprintf("generation          0x%08x\n", be32toh(meta->generation));
4281     kprintf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
4282     kprintf("total_configs       %u\n", be16toh(meta->total_configs));
4283     kprintf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
4284     kprintf("checksum            0x%04x\n", be16toh(meta->checksum));
4285     kprintf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
4286     kprintf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
4287     kprintf("flags               0x%08x\n", be32toh(meta->flags));
4288     kprintf("timestamp           0x%08x\n", be32toh(meta->timestamp));
4289     kprintf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
4290 	   be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
4291 	   be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
4292     kprintf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
4293 	   be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
4294 	   be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));
4295 
4296     for (i = 0; i < be16toh(meta->total_configs); i++) {
4297 	kprintf("    %d   total_disks  %u\n", i,
4298 	       be16toh(meta->configs[i].disk_number));
4299 	kprintf("    %d   generation   %u\n", i,
4300 	       be16toh(meta->configs[i].generation));
4301 	kprintf("    %d   magic_0      0x%08x\n", i,
4302 	       be32toh(meta->configs[i].magic_0));
4303 	kprintf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
4304 	kprintf("    %d   type         %s\n", i,
4305 	       ata_raid_adaptec_type(meta->configs[i].type));
4306 	kprintf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
4307 	kprintf("    %d   flags        %d\n", i,
4308 	       be32toh(meta->configs[i].flags));
4309 	kprintf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
4310 	kprintf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
4311 	kprintf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
4312 	kprintf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
4313 	kprintf("    %d   disk_number  %u\n", i,
4314 	       be32toh(meta->configs[i].disk_number));
4315 	kprintf("    %d   dummy_6      0x%08x\n", i,
4316 	       be32toh(meta->configs[i].dummy_6));
4317 	kprintf("    %d   sectors      %u\n", i,
4318 	       be32toh(meta->configs[i].sectors));
4319 	kprintf("    %d   stripe_shift %u\n", i,
4320 	       be16toh(meta->configs[i].stripe_shift));
4321 	kprintf("    %d   dummy_7      0x%08x\n", i,
4322 	       be32toh(meta->configs[i].dummy_7));
4323 	kprintf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
4324 	       be32toh(meta->configs[i].dummy_8[0]),
4325 	       be32toh(meta->configs[i].dummy_8[1]),
4326 	       be32toh(meta->configs[i].dummy_8[2]),
4327 	       be32toh(meta->configs[i].dummy_8[3]));
4328 	kprintf("    %d   name         <%s>\n", i, meta->configs[i].name);
4329     }
4330     kprintf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
4331     kprintf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
4332     kprintf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
4333     kprintf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
4334     kprintf("=================================================\n");
4335 }
4336 
4337 static char *
4338 ata_raid_hptv2_type(int type)
4339 {
4340     static char buffer[16];
4341 
4342     switch (type) {
4343     case HPTV2_T_RAID0:         return "RAID0";
4344     case HPTV2_T_RAID1:         return "RAID1";
4345     case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
4346     case HPTV2_T_SPAN:          return "SPAN";
4347     case HPTV2_T_RAID_3:        return "RAID3";
4348     case HPTV2_T_RAID_5:        return "RAID5";
4349     case HPTV2_T_JBOD:          return "JBOD";
4350     case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
4351     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4352 			return buffer;
4353     }
4354 }
4355 
4356 static void
4357 ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
4358 {
4359     int i;
4360 
4361     kprintf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
4362     kprintf("magic               0x%08x\n", meta->magic);
4363     kprintf("magic_0             0x%08x\n", meta->magic_0);
4364     kprintf("magic_1             0x%08x\n", meta->magic_1);
4365     kprintf("order               0x%08x\n", meta->order);
4366     kprintf("array_width         %u\n", meta->array_width);
4367     kprintf("stripe_shift        %u\n", meta->stripe_shift);
4368     kprintf("type                %s\n", ata_raid_hptv2_type(meta->type));
4369     kprintf("disk_number         %u\n", meta->disk_number);
4370     kprintf("total_sectors       %u\n", meta->total_sectors);
4371     kprintf("disk_mode           0x%08x\n", meta->disk_mode);
4372     kprintf("boot_mode           0x%08x\n", meta->boot_mode);
4373     kprintf("boot_disk           0x%02x\n", meta->boot_disk);
4374     kprintf("boot_protect        0x%02x\n", meta->boot_protect);
4375     kprintf("log_entries         0x%02x\n", meta->error_log_entries);
4376     kprintf("log_index           0x%02x\n", meta->error_log_index);
4377     if (meta->error_log_entries) {
4378 	kprintf("    timestamp  reason disk  status  sectors lba\n");
4379 	for (i = meta->error_log_index;
4380 	     i < meta->error_log_index + meta->error_log_entries; i++)
4381 	    kprintf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
4382 		   meta->errorlog[i%32].timestamp,
4383 		   meta->errorlog[i%32].reason,
4384 		   meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
4385 		   meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
4386     }
4387     kprintf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
4388     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4389     kprintf("name_1              <%.15s>\n", meta->name_1);
4390     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4391     kprintf("name_2              <%.15s>\n", meta->name_2);
4392     kprintf("=================================================\n");
4393 }
4394 
4395 static char *
4396 ata_raid_hptv3_type(int type)
4397 {
4398     static char buffer[16];
4399 
4400     switch (type) {
4401     case HPTV3_T_SPARE: return "SPARE";
4402     case HPTV3_T_JBOD:  return "JBOD";
4403     case HPTV3_T_SPAN:  return "SPAN";
4404     case HPTV3_T_RAID0: return "RAID0";
4405     case HPTV3_T_RAID1: return "RAID1";
4406     case HPTV3_T_RAID3: return "RAID3";
4407     case HPTV3_T_RAID5: return "RAID5";
4408     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4409 			return buffer;
4410     }
4411 }
4412 
4413 static void
4414 ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
4415 {
4416     int i;
4417 
4418     kprintf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
4419     kprintf("magic               0x%08x\n", meta->magic);
4420     kprintf("magic_0             0x%08x\n", meta->magic_0);
4421     kprintf("checksum_0          0x%02x\n", meta->checksum_0);
4422     kprintf("mode                0x%02x\n", meta->mode);
4423     kprintf("user_mode           0x%02x\n", meta->user_mode);
4424     kprintf("config_entries      0x%02x\n", meta->config_entries);
4425     for (i = 0; i < meta->config_entries; i++) {
4426 	kprintf("config %d:\n", i);
4427 	kprintf("    total_sectors       %ju\n",
4428 	       meta->configs[0].total_sectors +
4429 	       ((u_int64_t)meta->configs_high[0].total_sectors << 32));
4430 	kprintf("    type                %s\n",
4431 	       ata_raid_hptv3_type(meta->configs[i].type));
4432 	kprintf("    total_disks         %u\n", meta->configs[i].total_disks);
4433 	kprintf("    disk_number         %u\n", meta->configs[i].disk_number);
4434 	kprintf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
4435 	kprintf("    status              %b\n", meta->configs[i].status,
4436 	       "\20\2RAID5\1NEED_REBUILD\n");
4437 	kprintf("    critical_disks      %u\n", meta->configs[i].critical_disks);
4438 	kprintf("    rebuild_lba         %ju\n",
4439 	       meta->configs_high[0].rebuild_lba +
4440 	       ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
4441     }
4442     kprintf("name                <%.16s>\n", meta->name);
4443     kprintf("timestamp           0x%08x\n", meta->timestamp);
4444     kprintf("description         <%.16s>\n", meta->description);
4445     kprintf("creator             <%.16s>\n", meta->creator);
4446     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4447     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4448     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4449     kprintf("flags               %b\n", meta->flags,
4450 	   "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
4451     kprintf("=================================================\n");
4452 }
4453 
4454 static char *
4455 ata_raid_intel_type(int type)
4456 {
4457     static char buffer[16];
4458 
4459     switch (type) {
4460     case INTEL_T_RAID0: return "RAID0";
4461     case INTEL_T_RAID1: return "RAID1";
4462     case INTEL_T_RAID5: return "RAID5";
4463     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4464 			return buffer;
4465     }
4466 }
4467 
4468 static void
4469 ata_raid_intel_print_meta(struct intel_raid_conf *meta)
4470 {
4471     struct intel_raid_mapping *map;
4472     int i, j;
4473 
4474     kprintf("********* ATA Intel MatrixRAID Metadata *********\n");
4475     kprintf("intel_id            <%.24s>\n", meta->intel_id);
4476     kprintf("version             <%.6s>\n", meta->version);
4477     kprintf("checksum            0x%08x\n", meta->checksum);
4478     kprintf("config_size         0x%08x\n", meta->config_size);
4479     kprintf("config_id           0x%08x\n", meta->config_id);
4480     kprintf("generation          0x%08x\n", meta->generation);
4481     kprintf("total_disks         %u\n", meta->total_disks);
4482     kprintf("total_volumes       %u\n", meta->total_volumes);
4483     kprintf("DISK#   serial disk_sectors disk_id flags\n");
4484     for (i = 0; i < meta->total_disks; i++ ) {
4485 	kprintf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
4486 	       meta->disk[i].serial, meta->disk[i].sectors,
4487 	       meta->disk[i].id, meta->disk[i].flags);
4488     }
4489     map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
4490     for (j = 0; j < meta->total_volumes; j++) {
4491 	kprintf("name                %.16s\n", map->name);
4492 	kprintf("total_sectors       %ju\n", map->total_sectors);
4493 	kprintf("state               %u\n", map->state);
4494 	kprintf("reserved            %u\n", map->reserved);
4495 	kprintf("offset              %u\n", map->offset);
4496 	kprintf("disk_sectors        %u\n", map->disk_sectors);
4497 	kprintf("stripe_count        %u\n", map->stripe_count);
4498 	kprintf("stripe_sectors      %u\n", map->stripe_sectors);
4499 	kprintf("status              %u\n", map->status);
4500 	kprintf("type                %s\n", ata_raid_intel_type(map->type));
4501 	kprintf("total_disks         %u\n", map->total_disks);
4502 	kprintf("magic[0]            0x%02x\n", map->magic[0]);
4503 	kprintf("magic[1]            0x%02x\n", map->magic[1]);
4504 	kprintf("magic[2]            0x%02x\n", map->magic[2]);
4505 	for (i = 0; i < map->total_disks; i++ ) {
4506 	    kprintf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
4507 	}
4508 	map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
4509     }
4510     kprintf("=================================================\n");
4511 }
4512 
4513 static char *
4514 ata_raid_ite_type(int type)
4515 {
4516     static char buffer[16];
4517 
4518     switch (type) {
4519     case ITE_T_RAID0:   return "RAID0";
4520     case ITE_T_RAID1:   return "RAID1";
4521     case ITE_T_RAID01:  return "RAID0+1";
4522     case ITE_T_SPAN:    return "SPAN";
4523     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4524 			return buffer;
4525     }
4526 }
4527 
4528 static void
4529 ata_raid_ite_print_meta(struct ite_raid_conf *meta)
4530 {
4531     kprintf("*** ATA Integrated Technology Express Metadata **\n");
4532     kprintf("ite_id              <%.40s>\n", meta->ite_id);
4533     kprintf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4534 	   *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
4535 	   meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
4536 	   meta->timestamp_0[7], meta->timestamp_0[6]);
4537     kprintf("total_sectors       %jd\n", meta->total_sectors);
4538     kprintf("type                %s\n", ata_raid_ite_type(meta->type));
4539     kprintf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
4540     kprintf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
4541 	   *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
4542 	   meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
4543 	   meta->timestamp_1[7], meta->timestamp_1[6]);
4544     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4545     kprintf("array_width         %u\n", meta->array_width);
4546     kprintf("disk_number         %u\n", meta->disk_number);
4547     kprintf("disk_sectors        %u\n", meta->disk_sectors);
4548     kprintf("=================================================\n");
4549 }
4550 
4551 static char *
4552 ata_raid_jmicron_type(int type)
4553 {
4554     static char buffer[16];
4555 
4556     switch (type) {
4557     case JM_T_RAID0:	return "RAID0";
4558     case JM_T_RAID1:	return "RAID1";
4559     case JM_T_RAID01:	return "RAID0+1";
4560     case JM_T_JBOD:	return "JBOD";
4561     case JM_T_RAID5:	return "RAID5";
4562     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4563 			return buffer;
4564     }
4565 }
4566 
4567 static void
4568 ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
4569 {
4570     int i;
4571 
4572     kprintf("***** ATA JMicron Technology Corp Metadata ******\n");
4573     kprintf("signature           %.2s\n", meta->signature);
4574     kprintf("version             0x%04x\n", meta->version);
4575     kprintf("checksum            0x%04x\n", meta->checksum);
4576     kprintf("disk_id             0x%08x\n", meta->disk_id);
4577     kprintf("offset              0x%08x\n", meta->offset);
4578     kprintf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
4579     kprintf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
4580     kprintf("name                %.16s\n", meta->name);
4581     kprintf("type                %s\n", ata_raid_jmicron_type(meta->type));
4582     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4583     kprintf("flags               0x%04x\n", meta->flags);
4584     kprintf("spare:\n");
4585     for (i=0; i < 2 && meta->spare[i]; i++)
4586 	kprintf("    %d                  0x%08x\n", i, meta->spare[i]);
4587     kprintf("disks:\n");
4588     for (i=0; i < 8 && meta->disks[i]; i++)
4589 	kprintf("    %d                  0x%08x\n", i, meta->disks[i]);
4590     kprintf("=================================================\n");
4591 }
4592 
4593 static char *
4594 ata_raid_lsiv2_type(int type)
4595 {
4596     static char buffer[16];
4597 
4598     switch (type) {
4599     case LSIV2_T_RAID0: return "RAID0";
4600     case LSIV2_T_RAID1: return "RAID1";
4601     case LSIV2_T_SPARE: return "SPARE";
4602     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4603 			return buffer;
4604     }
4605 }
4606 
4607 static void
4608 ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
4609 {
4610     int i;
4611 
4612     kprintf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
4613     kprintf("lsi_id              <%s>\n", meta->lsi_id);
4614     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4615     kprintf("flags               0x%02x\n", meta->flags);
4616     kprintf("version             0x%04x\n", meta->version);
4617     kprintf("config_entries      0x%02x\n", meta->config_entries);
4618     kprintf("raid_count          0x%02x\n", meta->raid_count);
4619     kprintf("total_disks         0x%02x\n", meta->total_disks);
4620     kprintf("dummy_1             0x%02x\n", meta->dummy_1);
4621     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4622     for (i = 0; i < meta->config_entries; i++) {
4623 	kprintf("    type             %s\n",
4624 	       ata_raid_lsiv2_type(meta->configs[i].raid.type));
4625 	kprintf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
4626 	kprintf("    stripe_sectors   %u\n",
4627 	       meta->configs[i].raid.stripe_sectors);
4628 	kprintf("    array_width      %u\n",
4629 	       meta->configs[i].raid.array_width);
4630 	kprintf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
4631 	kprintf("    config_offset    %u\n",
4632 	       meta->configs[i].raid.config_offset);
4633 	kprintf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
4634 	kprintf("    flags            %02x\n", meta->configs[i].raid.flags);
4635 	kprintf("    total_sectors    %u\n",
4636 	       meta->configs[i].raid.total_sectors);
4637     }
4638     kprintf("disk_number         0x%02x\n", meta->disk_number);
4639     kprintf("raid_number         0x%02x\n", meta->raid_number);
4640     kprintf("timestamp           0x%08x\n", meta->timestamp);
4641     kprintf("=================================================\n");
4642 }
4643 
4644 static char *
4645 ata_raid_lsiv3_type(int type)
4646 {
4647     static char buffer[16];
4648 
4649     switch (type) {
4650     case LSIV3_T_RAID0: return "RAID0";
4651     case LSIV3_T_RAID1: return "RAID1";
4652     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4653 			return buffer;
4654     }
4655 }
4656 
4657 static void
4658 ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
4659 {
4660     int i;
4661 
4662     kprintf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
4663     kprintf("lsi_id              <%.6s>\n", meta->lsi_id);
4664     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4665     kprintf("version             0x%04x\n", meta->version);
4666     kprintf("dummy_0             0x%04x\n", meta->dummy_1);
4667     kprintf("RAID configs:\n");
4668     for (i = 0; i < 8; i++) {
4669 	if (meta->raid[i].total_disks) {
4670 	    kprintf("%02d  stripe_pages       %u\n", i,
4671 		   meta->raid[i].stripe_pages);
4672 	    kprintf("%02d  type               %s\n", i,
4673 		   ata_raid_lsiv3_type(meta->raid[i].type));
4674 	    kprintf("%02d  total_disks        %u\n", i,
4675 		   meta->raid[i].total_disks);
4676 	    kprintf("%02d  array_width        %u\n", i,
4677 		   meta->raid[i].array_width);
4678 	    kprintf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
4679 	    kprintf("%02d  offset             %u\n", i, meta->raid[i].offset);
4680 	    kprintf("%02d  device             0x%02x\n", i,
4681 		   meta->raid[i].device);
4682 	}
4683     }
4684     kprintf("DISK configs:\n");
4685     for (i = 0; i < 6; i++) {
4686 	    if (meta->disk[i].disk_sectors) {
4687 	    kprintf("%02d  disk_sectors       %u\n", i,
4688 		   meta->disk[i].disk_sectors);
4689 	    kprintf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
4690 	}
4691     }
4692     kprintf("device              0x%02x\n", meta->device);
4693     kprintf("timestamp           0x%08x\n", meta->timestamp);
4694     kprintf("checksum_1          0x%02x\n", meta->checksum_1);
4695     kprintf("=================================================\n");
4696 }
4697 
4698 static char *
4699 ata_raid_nvidia_type(int type)
4700 {
4701     static char buffer[16];
4702 
4703     switch (type) {
4704     case NV_T_SPAN:     return "SPAN";
4705     case NV_T_RAID0:    return "RAID0";
4706     case NV_T_RAID1:    return "RAID1";
4707     case NV_T_RAID3:    return "RAID3";
4708     case NV_T_RAID5:    return "RAID5";
4709     case NV_T_RAID01:   return "RAID0+1";
4710     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4711 			return buffer;
4712     }
4713 }
4714 
4715 static void
4716 ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
4717 {
4718     kprintf("******** ATA nVidia MediaShield Metadata ********\n");
4719     kprintf("nvidia_id           <%.8s>\n", meta->nvidia_id);
4720     kprintf("config_size         %d\n", meta->config_size);
4721     kprintf("checksum            0x%08x\n", meta->checksum);
4722     kprintf("version             0x%04x\n", meta->version);
4723     kprintf("disk_number         %d\n", meta->disk_number);
4724     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4725     kprintf("total_sectors       %d\n", meta->total_sectors);
4726     kprintf("sectors_size        %d\n", meta->sector_size);
4727     kprintf("serial              %.16s\n", meta->serial);
4728     kprintf("revision            %.4s\n", meta->revision);
4729     kprintf("dummy_1             0x%08x\n", meta->dummy_1);
4730     kprintf("magic_0             0x%08x\n", meta->magic_0);
4731     kprintf("magic_1             0x%016jx\n", meta->magic_1);
4732     kprintf("magic_2             0x%016jx\n", meta->magic_2);
4733     kprintf("flags               0x%02x\n", meta->flags);
4734     kprintf("array_width         %d\n", meta->array_width);
4735     kprintf("total_disks         %d\n", meta->total_disks);
4736     kprintf("dummy_2             0x%02x\n", meta->dummy_2);
4737     kprintf("type                %s\n", ata_raid_nvidia_type(meta->type));
4738     kprintf("dummy_3             0x%04x\n", meta->dummy_3);
4739     kprintf("stripe_sectors      %d\n", meta->stripe_sectors);
4740     kprintf("stripe_bytes        %d\n", meta->stripe_bytes);
4741     kprintf("stripe_shift        %d\n", meta->stripe_shift);
4742     kprintf("stripe_mask         0x%08x\n", meta->stripe_mask);
4743     kprintf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
4744     kprintf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
4745     kprintf("rebuild_lba         %d\n", meta->rebuild_lba);
4746     kprintf("dummy_4             0x%08x\n", meta->dummy_4);
4747     kprintf("dummy_5             0x%08x\n", meta->dummy_5);
4748     kprintf("status              0x%08x\n", meta->status);
4749     kprintf("=================================================\n");
4750 }
4751 
4752 static char *
4753 ata_raid_promise_type(int type)
4754 {
4755     static char buffer[16];
4756 
4757     switch (type) {
4758     case PR_T_RAID0:    return "RAID0";
4759     case PR_T_RAID1:    return "RAID1";
4760     case PR_T_RAID3:    return "RAID3";
4761     case PR_T_RAID5:    return "RAID5";
4762     case PR_T_SPAN:     return "SPAN";
4763     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4764 			return buffer;
4765     }
4766 }
4767 
4768 static void
4769 ata_raid_promise_print_meta(struct promise_raid_conf *meta)
4770 {
4771     int i;
4772 
4773     kprintf("********* ATA Promise FastTrak Metadata *********\n");
4774     kprintf("promise_id          <%s>\n", meta->promise_id);
4775     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4776     kprintf("magic_0             0x%016jx\n", meta->magic_0);
4777     kprintf("magic_1             0x%04x\n", meta->magic_1);
4778     kprintf("magic_2             0x%08x\n", meta->magic_2);
4779     kprintf("integrity           0x%08x %b\n", meta->raid.integrity,
4780 		meta->raid.integrity, "\20\10VALID\n" );
4781     kprintf("flags               0x%02x %b\n",
4782 	   meta->raid.flags, meta->raid.flags,
4783 	   "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4784 	   "\3ASSIGNED\2ONLINE\1VALID\n");
4785     kprintf("disk_number         %d\n", meta->raid.disk_number);
4786     kprintf("channel             0x%02x\n", meta->raid.channel);
4787     kprintf("device              0x%02x\n", meta->raid.device);
4788     kprintf("magic_0             0x%016jx\n", meta->raid.magic_0);
4789     kprintf("disk_offset         %u\n", meta->raid.disk_offset);
4790     kprintf("disk_sectors        %u\n", meta->raid.disk_sectors);
4791     kprintf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
4792     kprintf("generation          0x%04x\n", meta->raid.generation);
4793     kprintf("status              0x%02x %b\n",
4794 	    meta->raid.status, meta->raid.status,
4795 	   "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
4796     kprintf("type                %s\n", ata_raid_promise_type(meta->raid.type));
4797     kprintf("total_disks         %u\n", meta->raid.total_disks);
4798     kprintf("stripe_shift        %u\n", meta->raid.stripe_shift);
4799     kprintf("array_width         %u\n", meta->raid.array_width);
4800     kprintf("array_number        %u\n", meta->raid.array_number);
4801     kprintf("total_sectors       %u\n", meta->raid.total_sectors);
4802     kprintf("cylinders           %u\n", meta->raid.cylinders);
4803     kprintf("heads               %u\n", meta->raid.heads);
4804     kprintf("sectors             %u\n", meta->raid.sectors);
4805     kprintf("magic_1             0x%016jx\n", meta->raid.magic_1);
4806     kprintf("DISK#   flags dummy_0 channel device  magic_0\n");
4807     for (i = 0; i < 8; i++) {
4808 	kprintf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
4809 	       i, meta->raid.disk[i].flags,
4810 	       "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
4811 	       "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
4812 	       meta->raid.disk[i].channel, meta->raid.disk[i].device);
4813 	kprintf("0x%016jx\n", meta->raid.disk[i].magic_0);
4814     }
4815     kprintf("checksum            0x%08x\n", meta->checksum);
4816     kprintf("=================================================\n");
4817 }
4818 
4819 static char *
4820 ata_raid_sii_type(int type)
4821 {
4822     static char buffer[16];
4823 
4824     switch (type) {
4825     case SII_T_RAID0:   return "RAID0";
4826     case SII_T_RAID1:   return "RAID1";
4827     case SII_T_RAID01:  return "RAID0+1";
4828     case SII_T_SPARE:   return "SPARE";
4829     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4830 			return buffer;
4831     }
4832 }
4833 
4834 static void
4835 ata_raid_sii_print_meta(struct sii_raid_conf *meta)
4836 {
4837     kprintf("******* ATA Silicon Image Medley Metadata *******\n");
4838     kprintf("total_sectors       %ju\n", meta->total_sectors);
4839     kprintf("dummy_0             0x%04x\n", meta->dummy_0);
4840     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4841     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4842     kprintf("version_minor       0x%04x\n", meta->version_minor);
4843     kprintf("version_major       0x%04x\n", meta->version_major);
4844     kprintf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
4845 	   meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
4846 	   meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
4847     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4848     kprintf("dummy_2             0x%04x\n", meta->dummy_2);
4849     kprintf("disk_number         %u\n", meta->disk_number);
4850     kprintf("type                %s\n", ata_raid_sii_type(meta->type));
4851     kprintf("raid0_disks         %u\n", meta->raid0_disks);
4852     kprintf("raid0_ident         %u\n", meta->raid0_ident);
4853     kprintf("raid1_disks         %u\n", meta->raid1_disks);
4854     kprintf("raid1_ident         %u\n", meta->raid1_ident);
4855     kprintf("rebuild_lba         %ju\n", meta->rebuild_lba);
4856     kprintf("generation          0x%08x\n", meta->generation);
4857     kprintf("status              0x%02x %b\n",
4858 	    meta->status, meta->status,
4859 	   "\20\1READY\n");
4860     kprintf("base_raid1_position %02x\n", meta->base_raid1_position);
4861     kprintf("base_raid0_position %02x\n", meta->base_raid0_position);
4862     kprintf("position            %02x\n", meta->position);
4863     kprintf("dummy_3             %04x\n", meta->dummy_3);
4864     kprintf("name                <%.16s>\n", meta->name);
4865     kprintf("checksum_0          0x%04x\n", meta->checksum_0);
4866     kprintf("checksum_1          0x%04x\n", meta->checksum_1);
4867     kprintf("=================================================\n");
4868 }
4869 
4870 static char *
4871 ata_raid_sis_type(int type)
4872 {
4873     static char buffer[16];
4874 
4875     switch (type) {
4876     case SIS_T_JBOD:    return "JBOD";
4877     case SIS_T_RAID0:   return "RAID0";
4878     case SIS_T_RAID1:   return "RAID1";
4879     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4880 			return buffer;
4881     }
4882 }
4883 
4884 static void
4885 ata_raid_sis_print_meta(struct sis_raid_conf *meta)
4886 {
4887     kprintf("**** ATA Silicon Integrated Systems Metadata ****\n");
4888     kprintf("magic               0x%04x\n", meta->magic);
4889     kprintf("disks               0x%02x\n", meta->disks);
4890     kprintf("type                %s\n",
4891 	   ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
4892     kprintf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
4893     kprintf("dummy_0             0x%08x\n", meta->dummy_0);
4894     kprintf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
4895     kprintf("stripe_sectors      %u\n", meta->stripe_sectors);
4896     kprintf("dummy_1             0x%04x\n", meta->dummy_1);
4897     kprintf("timestamp           0x%08x\n", meta->timestamp);
4898     kprintf("model               %.40s\n", meta->model);
4899     kprintf("disk_number         %u\n", meta->disk_number);
4900     kprintf("dummy_2             0x%02x 0x%02x 0x%02x\n",
4901 	   meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
4902     kprintf("=================================================\n");
4903 }
4904 
4905 static char *
4906 ata_raid_via_type(int type)
4907 {
4908     static char buffer[16];
4909 
4910     switch (type) {
4911     case VIA_T_RAID0:   return "RAID0";
4912     case VIA_T_RAID1:   return "RAID1";
4913     case VIA_T_RAID5:   return "RAID5";
4914     case VIA_T_RAID01:  return "RAID0+1";
4915     case VIA_T_SPAN:    return "SPAN";
4916     default:            ksprintf(buffer, "UNKNOWN 0x%02x", type);
4917 			return buffer;
4918     }
4919 }
4920 
4921 static void
4922 ata_raid_via_print_meta(struct via_raid_conf *meta)
4923 {
4924     int i;
4925 
4926     kprintf("*************** ATA VIA Metadata ****************\n");
4927     kprintf("magic               0x%02x\n", meta->magic);
4928     kprintf("dummy_0             0x%02x\n", meta->dummy_0);
4929     kprintf("type                %s\n",
4930 	   ata_raid_via_type(meta->type & VIA_T_MASK));
4931     kprintf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
4932     kprintf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
4933     kprintf("disk_index          0x%02x\n", meta->disk_index);
4934     kprintf("stripe_layout       0x%02x\n", meta->stripe_layout);
4935     kprintf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
4936     kprintf(" stripe_sectors     %d\n",
4937 	   0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
4938     kprintf("disk_sectors        %ju\n", meta->disk_sectors);
4939     kprintf("disk_id             0x%08x\n", meta->disk_id);
4940     kprintf("DISK#   disk_id\n");
4941     for (i = 0; i < 8; i++) {
4942 	if (meta->disks[i])
4943 	    kprintf("  %d    0x%08x\n", i, meta->disks[i]);
4944     }
4945     kprintf("checksum            0x%02x\n", meta->checksum);
4946     kprintf("=================================================\n");
4947 }
4948