1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "domwalk.h"
37 #include "cfgloop.h"
38 #include "tree-data-ref.h"
39
40 static unsigned int tree_ssa_phiopt (void);
41 static unsigned int tree_ssa_phiopt_worker (bool);
42 static bool conditional_replacement (basic_block, basic_block,
43 edge, edge, gimple, tree, tree);
44 static bool value_replacement (basic_block, basic_block,
45 edge, edge, gimple, tree, tree);
46 static bool minmax_replacement (basic_block, basic_block,
47 edge, edge, gimple, tree, tree);
48 static bool abs_replacement (basic_block, basic_block,
49 edge, edge, gimple, tree, tree);
50 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
51 struct pointer_set_t *);
52 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
53 static struct pointer_set_t * get_non_trapping (void);
54 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
55
56 /* This pass tries to replaces an if-then-else block with an
57 assignment. We have four kinds of transformations. Some of these
58 transformations are also performed by the ifcvt RTL optimizer.
59
60 Conditional Replacement
61 -----------------------
62
63 This transformation, implemented in conditional_replacement,
64 replaces
65
66 bb0:
67 if (cond) goto bb2; else goto bb1;
68 bb1:
69 bb2:
70 x = PHI <0 (bb1), 1 (bb0), ...>;
71
72 with
73
74 bb0:
75 x' = cond;
76 goto bb2;
77 bb2:
78 x = PHI <x' (bb0), ...>;
79
80 We remove bb1 as it becomes unreachable. This occurs often due to
81 gimplification of conditionals.
82
83 Value Replacement
84 -----------------
85
86 This transformation, implemented in value_replacement, replaces
87
88 bb0:
89 if (a != b) goto bb2; else goto bb1;
90 bb1:
91 bb2:
92 x = PHI <a (bb1), b (bb0), ...>;
93
94 with
95
96 bb0:
97 bb2:
98 x = PHI <b (bb0), ...>;
99
100 This opportunity can sometimes occur as a result of other
101 optimizations.
102
103 ABS Replacement
104 ---------------
105
106 This transformation, implemented in abs_replacement, replaces
107
108 bb0:
109 if (a >= 0) goto bb2; else goto bb1;
110 bb1:
111 x = -a;
112 bb2:
113 x = PHI <x (bb1), a (bb0), ...>;
114
115 with
116
117 bb0:
118 x' = ABS_EXPR< a >;
119 bb2:
120 x = PHI <x' (bb0), ...>;
121
122 MIN/MAX Replacement
123 -------------------
124
125 This transformation, minmax_replacement replaces
126
127 bb0:
128 if (a <= b) goto bb2; else goto bb1;
129 bb1:
130 bb2:
131 x = PHI <b (bb1), a (bb0), ...>;
132
133 with
134
135 bb0:
136 x' = MIN_EXPR (a, b)
137 bb2:
138 x = PHI <x' (bb0), ...>;
139
140 A similar transformation is done for MAX_EXPR. */
141
142 static unsigned int
tree_ssa_phiopt(void)143 tree_ssa_phiopt (void)
144 {
145 return tree_ssa_phiopt_worker (false);
146 }
147
148 /* This pass tries to transform conditional stores into unconditional
149 ones, enabling further simplifications with the simpler then and else
150 blocks. In particular it replaces this:
151
152 bb0:
153 if (cond) goto bb2; else goto bb1;
154 bb1:
155 *p = RHS;
156 bb2:
157
158 with
159
160 bb0:
161 if (cond) goto bb1; else goto bb2;
162 bb1:
163 condtmp' = *p;
164 bb2:
165 condtmp = PHI <RHS, condtmp'>
166 *p = condtmp;
167
168 This transformation can only be done under several constraints,
169 documented below. It also replaces:
170
171 bb0:
172 if (cond) goto bb2; else goto bb1;
173 bb1:
174 *p = RHS1;
175 goto bb3;
176 bb2:
177 *p = RHS2;
178 bb3:
179
180 with
181
182 bb0:
183 if (cond) goto bb3; else goto bb1;
184 bb1:
185 bb3:
186 condtmp = PHI <RHS1, RHS2>
187 *p = condtmp; */
188
189 static unsigned int
tree_ssa_cs_elim(void)190 tree_ssa_cs_elim (void)
191 {
192 return tree_ssa_phiopt_worker (true);
193 }
194
195 /* For conditional store replacement we need a temporary to
196 put the old contents of the memory in. */
197 static tree condstoretemp;
198
199 /* The core routine of conditional store replacement and normal
200 phi optimizations. Both share much of the infrastructure in how
201 to match applicable basic block patterns. DO_STORE_ELIM is true
202 when we want to do conditional store replacement, false otherwise. */
203 static unsigned int
tree_ssa_phiopt_worker(bool do_store_elim)204 tree_ssa_phiopt_worker (bool do_store_elim)
205 {
206 basic_block bb;
207 basic_block *bb_order;
208 unsigned n, i;
209 bool cfgchanged = false;
210 struct pointer_set_t *nontrap = 0;
211
212 if (do_store_elim)
213 {
214 condstoretemp = NULL_TREE;
215 /* Calculate the set of non-trapping memory accesses. */
216 nontrap = get_non_trapping ();
217 }
218
219 /* Search every basic block for COND_EXPR we may be able to optimize.
220
221 We walk the blocks in order that guarantees that a block with
222 a single predecessor is processed before the predecessor.
223 This ensures that we collapse inner ifs before visiting the
224 outer ones, and also that we do not try to visit a removed
225 block. */
226 bb_order = blocks_in_phiopt_order ();
227 n = n_basic_blocks - NUM_FIXED_BLOCKS;
228
229 for (i = 0; i < n; i++)
230 {
231 gimple cond_stmt, phi;
232 basic_block bb1, bb2;
233 edge e1, e2;
234 tree arg0, arg1;
235
236 bb = bb_order[i];
237
238 cond_stmt = last_stmt (bb);
239 /* Check to see if the last statement is a GIMPLE_COND. */
240 if (!cond_stmt
241 || gimple_code (cond_stmt) != GIMPLE_COND)
242 continue;
243
244 e1 = EDGE_SUCC (bb, 0);
245 bb1 = e1->dest;
246 e2 = EDGE_SUCC (bb, 1);
247 bb2 = e2->dest;
248
249 /* We cannot do the optimization on abnormal edges. */
250 if ((e1->flags & EDGE_ABNORMAL) != 0
251 || (e2->flags & EDGE_ABNORMAL) != 0)
252 continue;
253
254 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
255 if (EDGE_COUNT (bb1->succs) == 0
256 || bb2 == NULL
257 || EDGE_COUNT (bb2->succs) == 0)
258 continue;
259
260 /* Find the bb which is the fall through to the other. */
261 if (EDGE_SUCC (bb1, 0)->dest == bb2)
262 ;
263 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
264 {
265 basic_block bb_tmp = bb1;
266 edge e_tmp = e1;
267 bb1 = bb2;
268 bb2 = bb_tmp;
269 e1 = e2;
270 e2 = e_tmp;
271 }
272 else if (do_store_elim
273 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
274 {
275 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
276
277 if (!single_succ_p (bb1)
278 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
279 || !single_succ_p (bb2)
280 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
281 || EDGE_COUNT (bb3->preds) != 2)
282 continue;
283 if (cond_if_else_store_replacement (bb1, bb2, bb3))
284 cfgchanged = true;
285 continue;
286 }
287 else
288 continue;
289
290 e1 = EDGE_SUCC (bb1, 0);
291
292 /* Make sure that bb1 is just a fall through. */
293 if (!single_succ_p (bb1)
294 || (e1->flags & EDGE_FALLTHRU) == 0)
295 continue;
296
297 /* Also make sure that bb1 only have one predecessor and that it
298 is bb. */
299 if (!single_pred_p (bb1)
300 || single_pred (bb1) != bb)
301 continue;
302
303 if (do_store_elim)
304 {
305 /* bb1 is the middle block, bb2 the join block, bb the split block,
306 e1 the fallthrough edge from bb1 to bb2. We can't do the
307 optimization if the join block has more than two predecessors. */
308 if (EDGE_COUNT (bb2->preds) > 2)
309 continue;
310 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
311 cfgchanged = true;
312 }
313 else
314 {
315 gimple_seq phis = phi_nodes (bb2);
316 gimple_stmt_iterator gsi;
317
318 /* Check to make sure that there is only one non-virtual PHI node.
319 TODO: we could do it with more than one iff the other PHI nodes
320 have the same elements for these two edges. */
321 phi = NULL;
322 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
323 {
324 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
325 continue;
326 if (phi)
327 {
328 phi = NULL;
329 break;
330 }
331 phi = gsi_stmt (gsi);
332 }
333 if (!phi)
334 continue;
335
336 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
337 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
338
339 /* Something is wrong if we cannot find the arguments in the PHI
340 node. */
341 gcc_assert (arg0 != NULL && arg1 != NULL);
342
343 /* Do the replacement of conditional if it can be done. */
344 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
345 cfgchanged = true;
346 else if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
347 cfgchanged = true;
348 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
349 cfgchanged = true;
350 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
351 cfgchanged = true;
352 }
353 }
354
355 free (bb_order);
356
357 if (do_store_elim)
358 pointer_set_destroy (nontrap);
359 /* If the CFG has changed, we should cleanup the CFG. */
360 if (cfgchanged && do_store_elim)
361 {
362 /* In cond-store replacement we have added some loads on edges
363 and new VOPS (as we moved the store, and created a load). */
364 gsi_commit_edge_inserts ();
365 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
366 }
367 else if (cfgchanged)
368 return TODO_cleanup_cfg;
369 return 0;
370 }
371
372 /* Returns the list of basic blocks in the function in an order that guarantees
373 that if a block X has just a single predecessor Y, then Y is after X in the
374 ordering. */
375
376 basic_block *
blocks_in_phiopt_order(void)377 blocks_in_phiopt_order (void)
378 {
379 basic_block x, y;
380 basic_block *order = XNEWVEC (basic_block, n_basic_blocks);
381 unsigned n = n_basic_blocks - NUM_FIXED_BLOCKS;
382 unsigned np, i;
383 sbitmap visited = sbitmap_alloc (last_basic_block);
384
385 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
386 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
387
388 sbitmap_zero (visited);
389
390 MARK_VISITED (ENTRY_BLOCK_PTR);
391 FOR_EACH_BB (x)
392 {
393 if (VISITED_P (x))
394 continue;
395
396 /* Walk the predecessors of x as long as they have precisely one
397 predecessor and add them to the list, so that they get stored
398 after x. */
399 for (y = x, np = 1;
400 single_pred_p (y) && !VISITED_P (single_pred (y));
401 y = single_pred (y))
402 np++;
403 for (y = x, i = n - np;
404 single_pred_p (y) && !VISITED_P (single_pred (y));
405 y = single_pred (y), i++)
406 {
407 order[i] = y;
408 MARK_VISITED (y);
409 }
410 order[i] = y;
411 MARK_VISITED (y);
412
413 gcc_assert (i == n - 1);
414 n -= np;
415 }
416
417 sbitmap_free (visited);
418 gcc_assert (n == 0);
419 return order;
420
421 #undef MARK_VISITED
422 #undef VISITED_P
423 }
424
425
426 /* Return TRUE if block BB has no executable statements, otherwise return
427 FALSE. */
428
429 bool
empty_block_p(basic_block bb)430 empty_block_p (basic_block bb)
431 {
432 /* BB must have no executable statements. */
433 gimple_stmt_iterator gsi = gsi_after_labels (bb);
434 if (gsi_end_p (gsi))
435 return true;
436 if (is_gimple_debug (gsi_stmt (gsi)))
437 gsi_next_nondebug (&gsi);
438 return gsi_end_p (gsi);
439 }
440
441 /* Replace PHI node element whose edge is E in block BB with variable NEW.
442 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
443 is known to have two edges, one of which must reach BB). */
444
445 static void
replace_phi_edge_with_variable(basic_block cond_block,edge e,gimple phi,tree new_tree)446 replace_phi_edge_with_variable (basic_block cond_block,
447 edge e, gimple phi, tree new_tree)
448 {
449 basic_block bb = gimple_bb (phi);
450 basic_block block_to_remove;
451 gimple_stmt_iterator gsi;
452
453 /* Change the PHI argument to new. */
454 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
455
456 /* Remove the empty basic block. */
457 if (EDGE_SUCC (cond_block, 0)->dest == bb)
458 {
459 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
460 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
461 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
462 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
463
464 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
465 }
466 else
467 {
468 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
469 EDGE_SUCC (cond_block, 1)->flags
470 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
471 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
472 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
473
474 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
475 }
476 delete_basic_block (block_to_remove);
477
478 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
479 gsi = gsi_last_bb (cond_block);
480 gsi_remove (&gsi, true);
481
482 if (dump_file && (dump_flags & TDF_DETAILS))
483 fprintf (dump_file,
484 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
485 cond_block->index,
486 bb->index);
487 }
488
489 /* The function conditional_replacement does the main work of doing the
490 conditional replacement. Return true if the replacement is done.
491 Otherwise return false.
492 BB is the basic block where the replacement is going to be done on. ARG0
493 is argument 0 from PHI. Likewise for ARG1. */
494
495 static bool
conditional_replacement(basic_block cond_bb,basic_block middle_bb,edge e0,edge e1,gimple phi,tree arg0,tree arg1)496 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
497 edge e0, edge e1, gimple phi,
498 tree arg0, tree arg1)
499 {
500 tree result;
501 gimple stmt, new_stmt;
502 tree cond;
503 gimple_stmt_iterator gsi;
504 edge true_edge, false_edge;
505 tree new_var, new_var2;
506
507 /* FIXME: Gimplification of complex type is too hard for now. */
508 if (TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
509 || TREE_CODE (TREE_TYPE (arg1)) == COMPLEX_TYPE)
510 return false;
511
512 /* The PHI arguments have the constants 0 and 1, then convert
513 it to the conditional. */
514 if ((integer_zerop (arg0) && integer_onep (arg1))
515 || (integer_zerop (arg1) && integer_onep (arg0)))
516 ;
517 else
518 return false;
519
520 if (!empty_block_p (middle_bb))
521 return false;
522
523 /* At this point we know we have a GIMPLE_COND with two successors.
524 One successor is BB, the other successor is an empty block which
525 falls through into BB.
526
527 There is a single PHI node at the join point (BB) and its arguments
528 are constants (0, 1).
529
530 So, given the condition COND, and the two PHI arguments, we can
531 rewrite this PHI into non-branching code:
532
533 dest = (COND) or dest = COND'
534
535 We use the condition as-is if the argument associated with the
536 true edge has the value one or the argument associated with the
537 false edge as the value zero. Note that those conditions are not
538 the same since only one of the outgoing edges from the GIMPLE_COND
539 will directly reach BB and thus be associated with an argument. */
540
541 stmt = last_stmt (cond_bb);
542 result = PHI_RESULT (phi);
543
544 /* To handle special cases like floating point comparison, it is easier and
545 less error-prone to build a tree and gimplify it on the fly though it is
546 less efficient. */
547 cond = fold_build2_loc (gimple_location (stmt),
548 gimple_cond_code (stmt), boolean_type_node,
549 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
550
551 /* We need to know which is the true edge and which is the false
552 edge so that we know when to invert the condition below. */
553 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
554 if ((e0 == true_edge && integer_zerop (arg0))
555 || (e0 == false_edge && integer_onep (arg0))
556 || (e1 == true_edge && integer_zerop (arg1))
557 || (e1 == false_edge && integer_onep (arg1)))
558 cond = fold_build1_loc (gimple_location (stmt),
559 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
560
561 /* Insert our new statements at the end of conditional block before the
562 COND_STMT. */
563 gsi = gsi_for_stmt (stmt);
564 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
565 GSI_SAME_STMT);
566
567 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
568 {
569 source_location locus_0, locus_1;
570
571 new_var2 = create_tmp_var (TREE_TYPE (result), NULL);
572 add_referenced_var (new_var2);
573 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
574 new_var, NULL);
575 new_var2 = make_ssa_name (new_var2, new_stmt);
576 gimple_assign_set_lhs (new_stmt, new_var2);
577 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
578 new_var = new_var2;
579
580 /* Set the locus to the first argument, unless is doesn't have one. */
581 locus_0 = gimple_phi_arg_location (phi, 0);
582 locus_1 = gimple_phi_arg_location (phi, 1);
583 if (locus_0 == UNKNOWN_LOCATION)
584 locus_0 = locus_1;
585 gimple_set_location (new_stmt, locus_0);
586 }
587
588 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
589
590 /* Note that we optimized this PHI. */
591 return true;
592 }
593
594 /* Update *ARG which is defined in STMT so that it contains the
595 computed value if that seems profitable. Return true if the
596 statement is made dead by that rewriting. */
597
598 static bool
jump_function_from_stmt(tree * arg,gimple stmt)599 jump_function_from_stmt (tree *arg, gimple stmt)
600 {
601 enum tree_code code = gimple_assign_rhs_code (stmt);
602 if (code == ADDR_EXPR)
603 {
604 /* For arg = &p->i transform it to p, if possible. */
605 tree rhs1 = gimple_assign_rhs1 (stmt);
606 HOST_WIDE_INT offset;
607 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
608 &offset);
609 if (tem
610 && TREE_CODE (tem) == MEM_REF
611 && double_int_zero_p
612 (double_int_add (mem_ref_offset (tem),
613 shwi_to_double_int (offset))))
614 {
615 *arg = TREE_OPERAND (tem, 0);
616 return true;
617 }
618 }
619 /* TODO: Much like IPA-CP jump-functions we want to handle constant
620 additions symbolically here, and we'd need to update the comparison
621 code that compares the arg + cst tuples in our caller. For now the
622 code above exactly handles the VEC_BASE pattern from vec.h. */
623 return false;
624 }
625
626 /* The function value_replacement does the main work of doing the value
627 replacement. Return true if the replacement is done. Otherwise return
628 false.
629 BB is the basic block where the replacement is going to be done on. ARG0
630 is argument 0 from the PHI. Likewise for ARG1. */
631
632 static bool
value_replacement(basic_block cond_bb,basic_block middle_bb,edge e0,edge e1,gimple phi,tree arg0,tree arg1)633 value_replacement (basic_block cond_bb, basic_block middle_bb,
634 edge e0, edge e1, gimple phi,
635 tree arg0, tree arg1)
636 {
637 gimple_stmt_iterator gsi;
638 gimple cond;
639 edge true_edge, false_edge;
640 enum tree_code code;
641
642 /* If the type says honor signed zeros we cannot do this
643 optimization. */
644 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
645 return false;
646
647 /* Allow a single statement in MIDDLE_BB that defines one of the PHI
648 arguments. */
649 gsi = gsi_after_labels (middle_bb);
650 if (!gsi_end_p (gsi))
651 {
652 if (is_gimple_debug (gsi_stmt (gsi)))
653 gsi_next_nondebug (&gsi);
654 if (!gsi_end_p (gsi))
655 {
656 gimple stmt = gsi_stmt (gsi);
657 tree lhs;
658 gsi_next_nondebug (&gsi);
659 if (!gsi_end_p (gsi))
660 return false;
661 if (!is_gimple_assign (stmt))
662 return false;
663 /* Now try to adjust arg0 or arg1 according to the computation
664 in the single statement. */
665 lhs = gimple_assign_lhs (stmt);
666 if (!((lhs == arg0
667 && jump_function_from_stmt (&arg0, stmt))
668 || (lhs == arg1
669 && jump_function_from_stmt (&arg1, stmt))))
670 return false;
671 }
672 }
673
674 cond = last_stmt (cond_bb);
675 code = gimple_cond_code (cond);
676
677 /* This transformation is only valid for equality comparisons. */
678 if (code != NE_EXPR && code != EQ_EXPR)
679 return false;
680
681 /* We need to know which is the true edge and which is the false
682 edge so that we know if have abs or negative abs. */
683 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
684
685 /* At this point we know we have a COND_EXPR with two successors.
686 One successor is BB, the other successor is an empty block which
687 falls through into BB.
688
689 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
690
691 There is a single PHI node at the join point (BB) with two arguments.
692
693 We now need to verify that the two arguments in the PHI node match
694 the two arguments to the equality comparison. */
695
696 if ((operand_equal_for_phi_arg_p (arg0, gimple_cond_lhs (cond))
697 && operand_equal_for_phi_arg_p (arg1, gimple_cond_rhs (cond)))
698 || (operand_equal_for_phi_arg_p (arg1, gimple_cond_lhs (cond))
699 && operand_equal_for_phi_arg_p (arg0, gimple_cond_rhs (cond))))
700 {
701 edge e;
702 tree arg;
703
704 /* For NE_EXPR, we want to build an assignment result = arg where
705 arg is the PHI argument associated with the true edge. For
706 EQ_EXPR we want the PHI argument associated with the false edge. */
707 e = (code == NE_EXPR ? true_edge : false_edge);
708
709 /* Unfortunately, E may not reach BB (it may instead have gone to
710 OTHER_BLOCK). If that is the case, then we want the single outgoing
711 edge from OTHER_BLOCK which reaches BB and represents the desired
712 path from COND_BLOCK. */
713 if (e->dest == middle_bb)
714 e = single_succ_edge (e->dest);
715
716 /* Now we know the incoming edge to BB that has the argument for the
717 RHS of our new assignment statement. */
718 if (e0 == e)
719 arg = arg0;
720 else
721 arg = arg1;
722
723 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
724
725 /* Note that we optimized this PHI. */
726 return true;
727 }
728 return false;
729 }
730
731 /* The function minmax_replacement does the main work of doing the minmax
732 replacement. Return true if the replacement is done. Otherwise return
733 false.
734 BB is the basic block where the replacement is going to be done on. ARG0
735 is argument 0 from the PHI. Likewise for ARG1. */
736
737 static bool
minmax_replacement(basic_block cond_bb,basic_block middle_bb,edge e0,edge e1,gimple phi,tree arg0,tree arg1)738 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
739 edge e0, edge e1, gimple phi,
740 tree arg0, tree arg1)
741 {
742 tree result, type;
743 gimple cond, new_stmt;
744 edge true_edge, false_edge;
745 enum tree_code cmp, minmax, ass_code;
746 tree smaller, larger, arg_true, arg_false;
747 gimple_stmt_iterator gsi, gsi_from;
748
749 type = TREE_TYPE (PHI_RESULT (phi));
750
751 /* The optimization may be unsafe due to NaNs. */
752 if (HONOR_NANS (TYPE_MODE (type)))
753 return false;
754
755 cond = last_stmt (cond_bb);
756 cmp = gimple_cond_code (cond);
757
758 /* This transformation is only valid for order comparisons. Record which
759 operand is smaller/larger if the result of the comparison is true. */
760 if (cmp == LT_EXPR || cmp == LE_EXPR)
761 {
762 smaller = gimple_cond_lhs (cond);
763 larger = gimple_cond_rhs (cond);
764 }
765 else if (cmp == GT_EXPR || cmp == GE_EXPR)
766 {
767 smaller = gimple_cond_rhs (cond);
768 larger = gimple_cond_lhs (cond);
769 }
770 else
771 return false;
772
773 /* We need to know which is the true edge and which is the false
774 edge so that we know if have abs or negative abs. */
775 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
776
777 /* Forward the edges over the middle basic block. */
778 if (true_edge->dest == middle_bb)
779 true_edge = EDGE_SUCC (true_edge->dest, 0);
780 if (false_edge->dest == middle_bb)
781 false_edge = EDGE_SUCC (false_edge->dest, 0);
782
783 if (true_edge == e0)
784 {
785 gcc_assert (false_edge == e1);
786 arg_true = arg0;
787 arg_false = arg1;
788 }
789 else
790 {
791 gcc_assert (false_edge == e0);
792 gcc_assert (true_edge == e1);
793 arg_true = arg1;
794 arg_false = arg0;
795 }
796
797 if (empty_block_p (middle_bb))
798 {
799 if (operand_equal_for_phi_arg_p (arg_true, smaller)
800 && operand_equal_for_phi_arg_p (arg_false, larger))
801 {
802 /* Case
803
804 if (smaller < larger)
805 rslt = smaller;
806 else
807 rslt = larger; */
808 minmax = MIN_EXPR;
809 }
810 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
811 && operand_equal_for_phi_arg_p (arg_true, larger))
812 minmax = MAX_EXPR;
813 else
814 return false;
815 }
816 else
817 {
818 /* Recognize the following case, assuming d <= u:
819
820 if (a <= u)
821 b = MAX (a, d);
822 x = PHI <b, u>
823
824 This is equivalent to
825
826 b = MAX (a, d);
827 x = MIN (b, u); */
828
829 gimple assign = last_and_only_stmt (middle_bb);
830 tree lhs, op0, op1, bound;
831
832 if (!assign
833 || gimple_code (assign) != GIMPLE_ASSIGN)
834 return false;
835
836 lhs = gimple_assign_lhs (assign);
837 ass_code = gimple_assign_rhs_code (assign);
838 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
839 return false;
840 op0 = gimple_assign_rhs1 (assign);
841 op1 = gimple_assign_rhs2 (assign);
842
843 if (true_edge->src == middle_bb)
844 {
845 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
846 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
847 return false;
848
849 if (operand_equal_for_phi_arg_p (arg_false, larger))
850 {
851 /* Case
852
853 if (smaller < larger)
854 {
855 r' = MAX_EXPR (smaller, bound)
856 }
857 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
858 if (ass_code != MAX_EXPR)
859 return false;
860
861 minmax = MIN_EXPR;
862 if (operand_equal_for_phi_arg_p (op0, smaller))
863 bound = op1;
864 else if (operand_equal_for_phi_arg_p (op1, smaller))
865 bound = op0;
866 else
867 return false;
868
869 /* We need BOUND <= LARGER. */
870 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
871 bound, larger)))
872 return false;
873 }
874 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
875 {
876 /* Case
877
878 if (smaller < larger)
879 {
880 r' = MIN_EXPR (larger, bound)
881 }
882 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
883 if (ass_code != MIN_EXPR)
884 return false;
885
886 minmax = MAX_EXPR;
887 if (operand_equal_for_phi_arg_p (op0, larger))
888 bound = op1;
889 else if (operand_equal_for_phi_arg_p (op1, larger))
890 bound = op0;
891 else
892 return false;
893
894 /* We need BOUND >= SMALLER. */
895 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
896 bound, smaller)))
897 return false;
898 }
899 else
900 return false;
901 }
902 else
903 {
904 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
905 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
906 return false;
907
908 if (operand_equal_for_phi_arg_p (arg_true, larger))
909 {
910 /* Case
911
912 if (smaller > larger)
913 {
914 r' = MIN_EXPR (smaller, bound)
915 }
916 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
917 if (ass_code != MIN_EXPR)
918 return false;
919
920 minmax = MAX_EXPR;
921 if (operand_equal_for_phi_arg_p (op0, smaller))
922 bound = op1;
923 else if (operand_equal_for_phi_arg_p (op1, smaller))
924 bound = op0;
925 else
926 return false;
927
928 /* We need BOUND >= LARGER. */
929 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
930 bound, larger)))
931 return false;
932 }
933 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
934 {
935 /* Case
936
937 if (smaller > larger)
938 {
939 r' = MAX_EXPR (larger, bound)
940 }
941 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
942 if (ass_code != MAX_EXPR)
943 return false;
944
945 minmax = MIN_EXPR;
946 if (operand_equal_for_phi_arg_p (op0, larger))
947 bound = op1;
948 else if (operand_equal_for_phi_arg_p (op1, larger))
949 bound = op0;
950 else
951 return false;
952
953 /* We need BOUND <= SMALLER. */
954 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
955 bound, smaller)))
956 return false;
957 }
958 else
959 return false;
960 }
961
962 /* Move the statement from the middle block. */
963 gsi = gsi_last_bb (cond_bb);
964 gsi_from = gsi_last_nondebug_bb (middle_bb);
965 gsi_move_before (&gsi_from, &gsi);
966 }
967
968 /* Emit the statement to compute min/max. */
969 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
970 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
971 gsi = gsi_last_bb (cond_bb);
972 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
973
974 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
975 return true;
976 }
977
978 /* The function absolute_replacement does the main work of doing the absolute
979 replacement. Return true if the replacement is done. Otherwise return
980 false.
981 bb is the basic block where the replacement is going to be done on. arg0
982 is argument 0 from the phi. Likewise for arg1. */
983
984 static bool
abs_replacement(basic_block cond_bb,basic_block middle_bb,edge e0 ATTRIBUTE_UNUSED,edge e1,gimple phi,tree arg0,tree arg1)985 abs_replacement (basic_block cond_bb, basic_block middle_bb,
986 edge e0 ATTRIBUTE_UNUSED, edge e1,
987 gimple phi, tree arg0, tree arg1)
988 {
989 tree result;
990 gimple new_stmt, cond;
991 gimple_stmt_iterator gsi;
992 edge true_edge, false_edge;
993 gimple assign;
994 edge e;
995 tree rhs, lhs;
996 bool negate;
997 enum tree_code cond_code;
998
999 /* If the type says honor signed zeros we cannot do this
1000 optimization. */
1001 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1002 return false;
1003
1004 /* OTHER_BLOCK must have only one executable statement which must have the
1005 form arg0 = -arg1 or arg1 = -arg0. */
1006
1007 assign = last_and_only_stmt (middle_bb);
1008 /* If we did not find the proper negation assignment, then we can not
1009 optimize. */
1010 if (assign == NULL)
1011 return false;
1012
1013 /* If we got here, then we have found the only executable statement
1014 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1015 arg1 = -arg0, then we can not optimize. */
1016 if (gimple_code (assign) != GIMPLE_ASSIGN)
1017 return false;
1018
1019 lhs = gimple_assign_lhs (assign);
1020
1021 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1022 return false;
1023
1024 rhs = gimple_assign_rhs1 (assign);
1025
1026 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1027 if (!(lhs == arg0 && rhs == arg1)
1028 && !(lhs == arg1 && rhs == arg0))
1029 return false;
1030
1031 cond = last_stmt (cond_bb);
1032 result = PHI_RESULT (phi);
1033
1034 /* Only relationals comparing arg[01] against zero are interesting. */
1035 cond_code = gimple_cond_code (cond);
1036 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1037 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1038 return false;
1039
1040 /* Make sure the conditional is arg[01] OP y. */
1041 if (gimple_cond_lhs (cond) != rhs)
1042 return false;
1043
1044 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1045 ? real_zerop (gimple_cond_rhs (cond))
1046 : integer_zerop (gimple_cond_rhs (cond)))
1047 ;
1048 else
1049 return false;
1050
1051 /* We need to know which is the true edge and which is the false
1052 edge so that we know if have abs or negative abs. */
1053 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1054
1055 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1056 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1057 the false edge goes to OTHER_BLOCK. */
1058 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1059 e = true_edge;
1060 else
1061 e = false_edge;
1062
1063 if (e->dest == middle_bb)
1064 negate = true;
1065 else
1066 negate = false;
1067
1068 result = duplicate_ssa_name (result, NULL);
1069
1070 if (negate)
1071 {
1072 tree tmp = create_tmp_var (TREE_TYPE (result), NULL);
1073 add_referenced_var (tmp);
1074 lhs = make_ssa_name (tmp, NULL);
1075 }
1076 else
1077 lhs = result;
1078
1079 /* Build the modify expression with abs expression. */
1080 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1081
1082 gsi = gsi_last_bb (cond_bb);
1083 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1084
1085 if (negate)
1086 {
1087 /* Get the right GSI. We want to insert after the recently
1088 added ABS_EXPR statement (which we know is the first statement
1089 in the block. */
1090 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1091
1092 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1093 }
1094
1095 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1096
1097 /* Note that we optimized this PHI. */
1098 return true;
1099 }
1100
1101 /* Auxiliary functions to determine the set of memory accesses which
1102 can't trap because they are preceded by accesses to the same memory
1103 portion. We do that for MEM_REFs, so we only need to track
1104 the SSA_NAME of the pointer indirectly referenced. The algorithm
1105 simply is a walk over all instructions in dominator order. When
1106 we see an MEM_REF we determine if we've already seen a same
1107 ref anywhere up to the root of the dominator tree. If we do the
1108 current access can't trap. If we don't see any dominating access
1109 the current access might trap, but might also make later accesses
1110 non-trapping, so we remember it. We need to be careful with loads
1111 or stores, for instance a load might not trap, while a store would,
1112 so if we see a dominating read access this doesn't mean that a later
1113 write access would not trap. Hence we also need to differentiate the
1114 type of access(es) seen.
1115
1116 ??? We currently are very conservative and assume that a load might
1117 trap even if a store doesn't (write-only memory). This probably is
1118 overly conservative. */
1119
1120 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1121 through it was seen, which would constitute a no-trap region for
1122 same accesses. */
1123 struct name_to_bb
1124 {
1125 unsigned int ssa_name_ver;
1126 bool store;
1127 HOST_WIDE_INT offset, size;
1128 basic_block bb;
1129 };
1130
1131 /* The hash table for remembering what we've seen. */
1132 static htab_t seen_ssa_names;
1133
1134 /* The set of MEM_REFs which can't trap. */
1135 static struct pointer_set_t *nontrap_set;
1136
1137 /* The hash function. */
1138 static hashval_t
name_to_bb_hash(const void * p)1139 name_to_bb_hash (const void *p)
1140 {
1141 const struct name_to_bb *n = (const struct name_to_bb *) p;
1142 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1143 ^ (n->offset << 6) ^ (n->size << 3);
1144 }
1145
1146 /* The equality function of *P1 and *P2. */
1147 static int
name_to_bb_eq(const void * p1,const void * p2)1148 name_to_bb_eq (const void *p1, const void *p2)
1149 {
1150 const struct name_to_bb *n1 = (const struct name_to_bb *)p1;
1151 const struct name_to_bb *n2 = (const struct name_to_bb *)p2;
1152
1153 return n1->ssa_name_ver == n2->ssa_name_ver
1154 && n1->store == n2->store
1155 && n1->offset == n2->offset
1156 && n1->size == n2->size;
1157 }
1158
1159 /* We see the expression EXP in basic block BB. If it's an interesting
1160 expression (an MEM_REF through an SSA_NAME) possibly insert the
1161 expression into the set NONTRAP or the hash table of seen expressions.
1162 STORE is true if this expression is on the LHS, otherwise it's on
1163 the RHS. */
1164 static void
add_or_mark_expr(basic_block bb,tree exp,struct pointer_set_t * nontrap,bool store)1165 add_or_mark_expr (basic_block bb, tree exp,
1166 struct pointer_set_t *nontrap, bool store)
1167 {
1168 HOST_WIDE_INT size;
1169
1170 if (TREE_CODE (exp) == MEM_REF
1171 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1172 && host_integerp (TREE_OPERAND (exp, 1), 0)
1173 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1174 {
1175 tree name = TREE_OPERAND (exp, 0);
1176 struct name_to_bb map;
1177 void **slot;
1178 struct name_to_bb *n2bb;
1179 basic_block found_bb = 0;
1180
1181 /* Try to find the last seen MEM_REF through the same
1182 SSA_NAME, which can trap. */
1183 map.ssa_name_ver = SSA_NAME_VERSION (name);
1184 map.bb = 0;
1185 map.store = store;
1186 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
1187 map.size = size;
1188
1189 slot = htab_find_slot (seen_ssa_names, &map, INSERT);
1190 n2bb = (struct name_to_bb *) *slot;
1191 if (n2bb)
1192 found_bb = n2bb->bb;
1193
1194 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1195 (it's in a basic block on the path from us to the dominator root)
1196 then we can't trap. */
1197 if (found_bb && found_bb->aux == (void *)1)
1198 {
1199 pointer_set_insert (nontrap, exp);
1200 }
1201 else
1202 {
1203 /* EXP might trap, so insert it into the hash table. */
1204 if (n2bb)
1205 {
1206 n2bb->bb = bb;
1207 }
1208 else
1209 {
1210 n2bb = XNEW (struct name_to_bb);
1211 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1212 n2bb->bb = bb;
1213 n2bb->store = store;
1214 n2bb->offset = map.offset;
1215 n2bb->size = size;
1216 *slot = n2bb;
1217 }
1218 }
1219 }
1220 }
1221
1222 /* Called by walk_dominator_tree, when entering the block BB. */
1223 static void
nt_init_block(struct dom_walk_data * data ATTRIBUTE_UNUSED,basic_block bb)1224 nt_init_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1225 {
1226 gimple_stmt_iterator gsi;
1227 /* Mark this BB as being on the path to dominator root. */
1228 bb->aux = (void*)1;
1229
1230 /* And walk the statements in order. */
1231 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1232 {
1233 gimple stmt = gsi_stmt (gsi);
1234
1235 if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1236 {
1237 add_or_mark_expr (bb, gimple_assign_lhs (stmt), nontrap_set, true);
1238 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), nontrap_set, false);
1239 }
1240 }
1241 }
1242
1243 /* Called by walk_dominator_tree, when basic block BB is exited. */
1244 static void
nt_fini_block(struct dom_walk_data * data ATTRIBUTE_UNUSED,basic_block bb)1245 nt_fini_block (struct dom_walk_data *data ATTRIBUTE_UNUSED, basic_block bb)
1246 {
1247 /* This BB isn't on the path to dominator root anymore. */
1248 bb->aux = NULL;
1249 }
1250
1251 /* This is the entry point of gathering non trapping memory accesses.
1252 It will do a dominator walk over the whole function, and it will
1253 make use of the bb->aux pointers. It returns a set of trees
1254 (the MEM_REFs itself) which can't trap. */
1255 static struct pointer_set_t *
get_non_trapping(void)1256 get_non_trapping (void)
1257 {
1258 struct pointer_set_t *nontrap;
1259 struct dom_walk_data walk_data;
1260
1261 nontrap = pointer_set_create ();
1262 seen_ssa_names = htab_create (128, name_to_bb_hash, name_to_bb_eq,
1263 free);
1264 /* We're going to do a dominator walk, so ensure that we have
1265 dominance information. */
1266 calculate_dominance_info (CDI_DOMINATORS);
1267
1268 /* Setup callbacks for the generic dominator tree walker. */
1269 nontrap_set = nontrap;
1270 walk_data.dom_direction = CDI_DOMINATORS;
1271 walk_data.initialize_block_local_data = NULL;
1272 walk_data.before_dom_children = nt_init_block;
1273 walk_data.after_dom_children = nt_fini_block;
1274 walk_data.global_data = NULL;
1275 walk_data.block_local_data_size = 0;
1276
1277 init_walk_dominator_tree (&walk_data);
1278 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1279 fini_walk_dominator_tree (&walk_data);
1280 htab_delete (seen_ssa_names);
1281
1282 return nontrap;
1283 }
1284
1285 /* Do the main work of conditional store replacement. We already know
1286 that the recognized pattern looks like so:
1287
1288 split:
1289 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1290 MIDDLE_BB:
1291 something
1292 fallthrough (edge E0)
1293 JOIN_BB:
1294 some more
1295
1296 We check that MIDDLE_BB contains only one store, that that store
1297 doesn't trap (not via NOTRAP, but via checking if an access to the same
1298 memory location dominates us) and that the store has a "simple" RHS. */
1299
1300 static bool
cond_store_replacement(basic_block middle_bb,basic_block join_bb,edge e0,edge e1,struct pointer_set_t * nontrap)1301 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1302 edge e0, edge e1, struct pointer_set_t *nontrap)
1303 {
1304 gimple assign = last_and_only_stmt (middle_bb);
1305 tree lhs, rhs, name;
1306 gimple newphi, new_stmt;
1307 gimple_stmt_iterator gsi;
1308 source_location locus;
1309
1310 /* Check if middle_bb contains of only one store. */
1311 if (!assign
1312 || !gimple_assign_single_p (assign)
1313 || gimple_has_volatile_ops (assign))
1314 return false;
1315
1316 locus = gimple_location (assign);
1317 lhs = gimple_assign_lhs (assign);
1318 rhs = gimple_assign_rhs1 (assign);
1319 if (TREE_CODE (lhs) != MEM_REF
1320 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1321 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1322 return false;
1323
1324 /* Prove that we can move the store down. We could also check
1325 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1326 whose value is not available readily, which we want to avoid. */
1327 if (!pointer_set_contains (nontrap, lhs))
1328 return false;
1329
1330 /* Now we've checked the constraints, so do the transformation:
1331 1) Remove the single store. */
1332 gsi = gsi_for_stmt (assign);
1333 unlink_stmt_vdef (assign);
1334 gsi_remove (&gsi, true);
1335 release_defs (assign);
1336
1337 /* 2) Create a temporary where we can store the old content
1338 of the memory touched by the store, if we need to. */
1339 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1340 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1341 add_referenced_var (condstoretemp);
1342
1343 /* 3) Insert a load from the memory of the store to the temporary
1344 on the edge which did not contain the store. */
1345 lhs = unshare_expr (lhs);
1346 new_stmt = gimple_build_assign (condstoretemp, lhs);
1347 name = make_ssa_name (condstoretemp, new_stmt);
1348 gimple_assign_set_lhs (new_stmt, name);
1349 gimple_set_location (new_stmt, locus);
1350 gsi_insert_on_edge (e1, new_stmt);
1351
1352 /* 4) Create a PHI node at the join block, with one argument
1353 holding the old RHS, and the other holding the temporary
1354 where we stored the old memory contents. */
1355 newphi = create_phi_node (condstoretemp, join_bb);
1356 add_phi_arg (newphi, rhs, e0, locus);
1357 add_phi_arg (newphi, name, e1, locus);
1358
1359 lhs = unshare_expr (lhs);
1360 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1361
1362 /* 5) Insert that PHI node. */
1363 gsi = gsi_after_labels (join_bb);
1364 if (gsi_end_p (gsi))
1365 {
1366 gsi = gsi_last_bb (join_bb);
1367 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1368 }
1369 else
1370 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1371
1372 return true;
1373 }
1374
1375 /* Do the main work of conditional store replacement. */
1376
1377 static bool
cond_if_else_store_replacement_1(basic_block then_bb,basic_block else_bb,basic_block join_bb,gimple then_assign,gimple else_assign)1378 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1379 basic_block join_bb, gimple then_assign,
1380 gimple else_assign)
1381 {
1382 tree lhs_base, lhs, then_rhs, else_rhs;
1383 source_location then_locus, else_locus;
1384 gimple_stmt_iterator gsi;
1385 gimple newphi, new_stmt;
1386
1387 if (then_assign == NULL
1388 || !gimple_assign_single_p (then_assign)
1389 || gimple_clobber_p (then_assign)
1390 || gimple_has_volatile_ops (then_assign)
1391 || else_assign == NULL
1392 || !gimple_assign_single_p (else_assign)
1393 || gimple_clobber_p (else_assign)
1394 || gimple_has_volatile_ops (else_assign))
1395 return false;
1396
1397 lhs = gimple_assign_lhs (then_assign);
1398 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1399 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1400 return false;
1401
1402 lhs_base = get_base_address (lhs);
1403 if (lhs_base == NULL_TREE
1404 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1405 return false;
1406
1407 then_rhs = gimple_assign_rhs1 (then_assign);
1408 else_rhs = gimple_assign_rhs1 (else_assign);
1409 then_locus = gimple_location (then_assign);
1410 else_locus = gimple_location (else_assign);
1411
1412 /* Now we've checked the constraints, so do the transformation:
1413 1) Remove the stores. */
1414 gsi = gsi_for_stmt (then_assign);
1415 unlink_stmt_vdef (then_assign);
1416 gsi_remove (&gsi, true);
1417 release_defs (then_assign);
1418
1419 gsi = gsi_for_stmt (else_assign);
1420 unlink_stmt_vdef (else_assign);
1421 gsi_remove (&gsi, true);
1422 release_defs (else_assign);
1423
1424 /* 2) Create a temporary where we can store the old content
1425 of the memory touched by the store, if we need to. */
1426 if (!condstoretemp || TREE_TYPE (lhs) != TREE_TYPE (condstoretemp))
1427 condstoretemp = create_tmp_reg (TREE_TYPE (lhs), "cstore");
1428 add_referenced_var (condstoretemp);
1429
1430 /* 3) Create a PHI node at the join block, with one argument
1431 holding the old RHS, and the other holding the temporary
1432 where we stored the old memory contents. */
1433 newphi = create_phi_node (condstoretemp, join_bb);
1434 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1435 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1436
1437 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1438
1439 /* 4) Insert that PHI node. */
1440 gsi = gsi_after_labels (join_bb);
1441 if (gsi_end_p (gsi))
1442 {
1443 gsi = gsi_last_bb (join_bb);
1444 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1445 }
1446 else
1447 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1448
1449 return true;
1450 }
1451
1452 /* Conditional store replacement. We already know
1453 that the recognized pattern looks like so:
1454
1455 split:
1456 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1457 THEN_BB:
1458 ...
1459 X = Y;
1460 ...
1461 goto JOIN_BB;
1462 ELSE_BB:
1463 ...
1464 X = Z;
1465 ...
1466 fallthrough (edge E0)
1467 JOIN_BB:
1468 some more
1469
1470 We check that it is safe to sink the store to JOIN_BB by verifying that
1471 there are no read-after-write or write-after-write dependencies in
1472 THEN_BB and ELSE_BB. */
1473
1474 static bool
cond_if_else_store_replacement(basic_block then_bb,basic_block else_bb,basic_block join_bb)1475 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1476 basic_block join_bb)
1477 {
1478 gimple then_assign = last_and_only_stmt (then_bb);
1479 gimple else_assign = last_and_only_stmt (else_bb);
1480 VEC (data_reference_p, heap) *then_datarefs, *else_datarefs;
1481 VEC (ddr_p, heap) *then_ddrs, *else_ddrs;
1482 gimple then_store, else_store;
1483 bool found, ok = false, res;
1484 struct data_dependence_relation *ddr;
1485 data_reference_p then_dr, else_dr;
1486 int i, j;
1487 tree then_lhs, else_lhs;
1488 VEC (gimple, heap) *then_stores, *else_stores;
1489 basic_block blocks[3];
1490
1491 if (MAX_STORES_TO_SINK == 0)
1492 return false;
1493
1494 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1495 if (then_assign && else_assign)
1496 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1497 then_assign, else_assign);
1498
1499 /* Find data references. */
1500 then_datarefs = VEC_alloc (data_reference_p, heap, 1);
1501 else_datarefs = VEC_alloc (data_reference_p, heap, 1);
1502 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1503 == chrec_dont_know)
1504 || !VEC_length (data_reference_p, then_datarefs)
1505 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1506 == chrec_dont_know)
1507 || !VEC_length (data_reference_p, else_datarefs))
1508 {
1509 free_data_refs (then_datarefs);
1510 free_data_refs (else_datarefs);
1511 return false;
1512 }
1513
1514 /* Find pairs of stores with equal LHS. */
1515 then_stores = VEC_alloc (gimple, heap, 1);
1516 else_stores = VEC_alloc (gimple, heap, 1);
1517 FOR_EACH_VEC_ELT (data_reference_p, then_datarefs, i, then_dr)
1518 {
1519 if (DR_IS_READ (then_dr))
1520 continue;
1521
1522 then_store = DR_STMT (then_dr);
1523 then_lhs = gimple_get_lhs (then_store);
1524 found = false;
1525
1526 FOR_EACH_VEC_ELT (data_reference_p, else_datarefs, j, else_dr)
1527 {
1528 if (DR_IS_READ (else_dr))
1529 continue;
1530
1531 else_store = DR_STMT (else_dr);
1532 else_lhs = gimple_get_lhs (else_store);
1533
1534 if (operand_equal_p (then_lhs, else_lhs, 0))
1535 {
1536 found = true;
1537 break;
1538 }
1539 }
1540
1541 if (!found)
1542 continue;
1543
1544 VEC_safe_push (gimple, heap, then_stores, then_store);
1545 VEC_safe_push (gimple, heap, else_stores, else_store);
1546 }
1547
1548 /* No pairs of stores found. */
1549 if (!VEC_length (gimple, then_stores)
1550 || VEC_length (gimple, then_stores) > (unsigned) MAX_STORES_TO_SINK)
1551 {
1552 free_data_refs (then_datarefs);
1553 free_data_refs (else_datarefs);
1554 VEC_free (gimple, heap, then_stores);
1555 VEC_free (gimple, heap, else_stores);
1556 return false;
1557 }
1558
1559 /* Compute and check data dependencies in both basic blocks. */
1560 then_ddrs = VEC_alloc (ddr_p, heap, 1);
1561 else_ddrs = VEC_alloc (ddr_p, heap, 1);
1562 if (!compute_all_dependences (then_datarefs, &then_ddrs, NULL, false)
1563 || !compute_all_dependences (else_datarefs, &else_ddrs, NULL, false))
1564 {
1565 free_dependence_relations (then_ddrs);
1566 free_dependence_relations (else_ddrs);
1567 free_data_refs (then_datarefs);
1568 free_data_refs (else_datarefs);
1569 VEC_free (gimple, heap, then_stores);
1570 VEC_free (gimple, heap, else_stores);
1571 return false;
1572 }
1573 blocks[0] = then_bb;
1574 blocks[1] = else_bb;
1575 blocks[2] = join_bb;
1576 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1577
1578 /* Check that there are no read-after-write or write-after-write dependencies
1579 in THEN_BB. */
1580 FOR_EACH_VEC_ELT (ddr_p, then_ddrs, i, ddr)
1581 {
1582 struct data_reference *dra = DDR_A (ddr);
1583 struct data_reference *drb = DDR_B (ddr);
1584
1585 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1586 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1587 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1588 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1589 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1590 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1591 {
1592 free_dependence_relations (then_ddrs);
1593 free_dependence_relations (else_ddrs);
1594 free_data_refs (then_datarefs);
1595 free_data_refs (else_datarefs);
1596 VEC_free (gimple, heap, then_stores);
1597 VEC_free (gimple, heap, else_stores);
1598 return false;
1599 }
1600 }
1601
1602 /* Check that there are no read-after-write or write-after-write dependencies
1603 in ELSE_BB. */
1604 FOR_EACH_VEC_ELT (ddr_p, else_ddrs, i, ddr)
1605 {
1606 struct data_reference *dra = DDR_A (ddr);
1607 struct data_reference *drb = DDR_B (ddr);
1608
1609 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1610 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1611 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1612 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1613 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1614 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1615 {
1616 free_dependence_relations (then_ddrs);
1617 free_dependence_relations (else_ddrs);
1618 free_data_refs (then_datarefs);
1619 free_data_refs (else_datarefs);
1620 VEC_free (gimple, heap, then_stores);
1621 VEC_free (gimple, heap, else_stores);
1622 return false;
1623 }
1624 }
1625
1626 /* Sink stores with same LHS. */
1627 FOR_EACH_VEC_ELT (gimple, then_stores, i, then_store)
1628 {
1629 else_store = VEC_index (gimple, else_stores, i);
1630 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1631 then_store, else_store);
1632 ok = ok || res;
1633 }
1634
1635 free_dependence_relations (then_ddrs);
1636 free_dependence_relations (else_ddrs);
1637 free_data_refs (then_datarefs);
1638 free_data_refs (else_datarefs);
1639 VEC_free (gimple, heap, then_stores);
1640 VEC_free (gimple, heap, else_stores);
1641
1642 return ok;
1643 }
1644
1645 /* Always do these optimizations if we have SSA
1646 trees to work on. */
1647 static bool
gate_phiopt(void)1648 gate_phiopt (void)
1649 {
1650 return 1;
1651 }
1652
1653 struct gimple_opt_pass pass_phiopt =
1654 {
1655 {
1656 GIMPLE_PASS,
1657 "phiopt", /* name */
1658 gate_phiopt, /* gate */
1659 tree_ssa_phiopt, /* execute */
1660 NULL, /* sub */
1661 NULL, /* next */
1662 0, /* static_pass_number */
1663 TV_TREE_PHIOPT, /* tv_id */
1664 PROP_cfg | PROP_ssa, /* properties_required */
1665 0, /* properties_provided */
1666 0, /* properties_destroyed */
1667 0, /* todo_flags_start */
1668 TODO_ggc_collect
1669 | TODO_verify_ssa
1670 | TODO_verify_flow
1671 | TODO_verify_stmts /* todo_flags_finish */
1672 }
1673 };
1674
1675 static bool
gate_cselim(void)1676 gate_cselim (void)
1677 {
1678 return flag_tree_cselim;
1679 }
1680
1681 struct gimple_opt_pass pass_cselim =
1682 {
1683 {
1684 GIMPLE_PASS,
1685 "cselim", /* name */
1686 gate_cselim, /* gate */
1687 tree_ssa_cs_elim, /* execute */
1688 NULL, /* sub */
1689 NULL, /* next */
1690 0, /* static_pass_number */
1691 TV_TREE_PHIOPT, /* tv_id */
1692 PROP_cfg | PROP_ssa, /* properties_required */
1693 0, /* properties_provided */
1694 0, /* properties_destroyed */
1695 0, /* todo_flags_start */
1696 TODO_ggc_collect
1697 | TODO_verify_ssa
1698 | TODO_verify_flow
1699 | TODO_verify_stmts /* todo_flags_finish */
1700 }
1701 };
1702