xref: /csrg-svn/lib/libm/common_source/expm1.c (revision 34931)
1 /*
2  * Copyright (c) 1985 Regents of the University of California.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms are permitted
6  * provided that the above copyright notice and this paragraph are
7  * duplicated in all such forms and that any documentation,
8  * advertising materials, and other materials related to such
9  * distribution and use acknowledge that the software was developed
10  * by the University of California, Berkeley.  The name of the
11  * University may not be used to endorse or promote products derived
12  * from this software without specific prior written permission.
13  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
15  * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
16  *
17  * All recipients should regard themselves as participants in an ongoing
18  * research project and hence should feel obligated to report their
19  * experiences (good or bad) with these elementary function codes, using
20  * the sendbug(8) program, to the authors.
21  */
22 
23 #ifndef lint
24 static char sccsid[] = "@(#)expm1.c	5.3 (Berkeley) 06/30/88";
25 #endif /* not lint */
26 
27 /* EXPM1(X)
28  * RETURN THE EXPONENTIAL OF X MINUS ONE
29  * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
30  * CODED IN C BY K.C. NG, 1/19/85;
31  * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
32  *
33  * Required system supported functions:
34  *	scalb(x,n)
35  *	copysign(x,y)
36  *	finite(x)
37  *
38  * Kernel function:
39  *	exp__E(x,c)
40  *
41  * Method:
42  *	1. Argument Reduction: given the input x, find r and integer k such
43  *	   that
44  *	                   x = k*ln2 + r,  |r| <= 0.5*ln2 .
45  *	   r will be represented as r := z+c for better accuracy.
46  *
47  *	2. Compute EXPM1(r)=exp(r)-1 by
48  *
49  *			EXPM1(r=z+c) := z + exp__E(z,c)
50  *
51  *	3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
52  *
53  * 	Remarks:
54  *	   1. When k=1 and z < -0.25, we use the following formula for
55  *	      better accuracy:
56  *			EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
57  *	   2. To avoid rounding error in 1-2^-k where k is large, we use
58  *			EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
59  *	      when k>56.
60  *
61  * Special cases:
62  *	EXPM1(INF) is INF, EXPM1(NaN) is NaN;
63  *	EXPM1(-INF)= -1;
64  *	for finite argument, only EXPM1(0)=0 is exact.
65  *
66  * Accuracy:
67  *	EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
68  *	1,166,000 random arguments on a VAX, the maximum observed error was
69  *	.872 ulps (units of the last place).
70  *
71  * Constants:
72  * The hexadecimal values are the intended ones for the following constants.
73  * The decimal values may be used, provided that the compiler will convert
74  * from decimal to binary accurately enough to produce the hexadecimal values
75  * shown.
76  */
77 
78 #if defined(vax)||defined(tahoe)	/* VAX D format */
79 #ifdef vax
80 #define _0x(A,B)	0x/**/A/**/B
81 #else	/* vax */
82 #define _0x(A,B)	0x/**/B/**/A
83 #endif	/* vax */
84 /* static double */
85 /* ln2hi  =  6.9314718055829871446E-1    , Hex  2^  0   *  .B17217F7D00000 */
86 /* ln2lo  =  1.6465949582897081279E-12   , Hex  2^-39   *  .E7BCD5E4F1D9CC */
87 /* lnhuge =  9.4961163736712506989E1     , Hex  2^  7   *  .BDEC1DA73E9010 */
88 /* invln2 =  1.4426950408889634148E0     ; Hex  2^  1   *  .B8AA3B295C17F1 */
89 static long     ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
90 static long     ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
91 static long    lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};
92 static long    invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
93 #define    ln2hi    (*(double*)ln2hix)
94 #define    ln2lo    (*(double*)ln2lox)
95 #define   lnhuge    (*(double*)lnhugex)
96 #define   invln2    (*(double*)invln2x)
97 #else	/* defined(vax)||defined(tahoe)	*/
98 static double
99 ln2hi  =  6.9314718036912381649E-1    , /*Hex  2^ -1   *  1.62E42FEE00000 */
100 ln2lo  =  1.9082149292705877000E-10   , /*Hex  2^-33   *  1.A39EF35793C76 */
101 lnhuge =  7.1602103751842355450E2     , /*Hex  2^  9   *  1.6602B15B7ECF2 */
102 invln2 =  1.4426950408889633870E0     ; /*Hex  2^  0   *  1.71547652B82FE */
103 #endif	/* defined(vax)||defined(tahoe)	*/
104 
105 double expm1(x)
106 double x;
107 {
108 	static double one=1.0, half=1.0/2.0;
109 	double scalb(), copysign(), exp__E(), z,hi,lo,c;
110 	int k,finite();
111 #if defined(vax)||defined(tahoe)
112 	static prec=56;
113 #else	/* defined(vax)||defined(tahoe) */
114 	static prec=53;
115 #endif	/* defined(vax)||defined(tahoe) */
116 #if !defined(vax)&&!defined(tahoe)
117 	if(x!=x) return(x);	/* x is NaN */
118 #endif	/* !defined(vax)&&!defined(tahoe) */
119 
120 	if( x <= lnhuge ) {
121 		if( x >= -40.0 ) {
122 
123 		    /* argument reduction : x - k*ln2 */
124 			k= invln2 *x+copysign(0.5,x);	/* k=NINT(x/ln2) */
125 			hi=x-k*ln2hi ;
126 			z=hi-(lo=k*ln2lo);
127 			c=(hi-z)-lo;
128 
129 			if(k==0) return(z+exp__E(z,c));
130 			if(k==1)
131 			    if(z< -0.25)
132 				{x=z+half;x +=exp__E(z,c); return(x+x);}
133 			    else
134 				{z+=exp__E(z,c); x=half+z; return(x+x);}
135 		    /* end of k=1 */
136 
137 			else {
138 			    if(k<=prec)
139 			      { x=one-scalb(one,-k); z += exp__E(z,c);}
140 			    else if(k<100)
141 			      { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
142 			    else
143 			      { x = exp__E(z,c)+z; z=one;}
144 
145 			    return (scalb(x+z,k));
146 			}
147 		}
148 		/* end of x > lnunfl */
149 
150 		else
151 		     /* expm1(-big#) rounded to -1 (inexact) */
152 		     if(finite(x))
153 			 { ln2hi+ln2lo; return(-one);}
154 
155 		     /* expm1(-INF) is -1 */
156 		     else return(-one);
157 	}
158 	/* end of x < lnhuge */
159 
160 	else
161 	/*  expm1(INF) is INF, expm1(+big#) overflows to INF */
162 	    return( finite(x) ?  scalb(one,5000) : x);
163 }
164