xref: /plan9/sys/src/cmd/unix/drawterm/libsec/rsagen.c (revision 8ccd4a6360d974db7bd7bbd4f37e7018419ea908)
1 #include "os.h"
2 #include <mp.h>
3 #include <libsec.h>
4 
5 static void
genrand(mpint * p,int n)6 genrand(mpint *p, int n)
7 {
8 	mpdigit x;
9 
10 	// generate n random bits with high set
11 	mpbits(p, n);
12 	genrandom((uchar*)p->p, (n+7)/8);
13 	p->top = (n+Dbits-1)/Dbits;
14 	x = 1;
15 	x <<= ((n-1)%Dbits);
16 	p->p[p->top-1] &= (x-1);
17 	p->p[p->top-1] |= x;
18 }
19 
20 RSApriv*
rsagen(int nlen,int elen,int rounds)21 rsagen(int nlen, int elen, int rounds)
22 {
23 	mpint *p, *q, *e, *d, *phi, *n, *t1, *t2, *kp, *kq, *c2;
24 	RSApriv *rsa;
25 
26 	p = mpnew(nlen/2);
27 	q = mpnew(nlen/2);
28 	n = mpnew(nlen);
29 	e = mpnew(elen);
30 	d = mpnew(0);
31 	phi = mpnew(nlen);
32 
33 	// create the prime factors and euclid's function
34 	genstrongprime(p, nlen/2, rounds);
35 	genstrongprime(q, nlen - mpsignif(p) + 1, rounds);
36 	mpmul(p, q, n);
37 	mpsub(p, mpone, e);
38 	mpsub(q, mpone, d);
39 	mpmul(e, d, phi);
40 
41 	// find an e relatively prime to phi
42 	t1 = mpnew(0);
43 	t2 = mpnew(0);
44 	genrand(e, elen);
45 	for(;;){
46 		mpextendedgcd(e, phi, d, t1, t2);
47 		if(mpcmp(d, mpone) == 0)
48 			break;
49 		mpadd(mpone, e, e);
50 	}
51 	mpfree(t1);
52 	mpfree(t2);
53 
54 	// d = e**-1 mod phi
55 	mpinvert(e, phi, d);
56 
57 	// compute chinese remainder coefficient
58 	c2 = mpnew(0);
59 	mpinvert(p, q, c2);
60 
61 	// for crt a**k mod p == (a**(k mod p-1)) mod p
62 	kq = mpnew(0);
63 	kp = mpnew(0);
64 	mpsub(p, mpone, phi);
65 	mpmod(d, phi, kp);
66 	mpsub(q, mpone, phi);
67 	mpmod(d, phi, kq);
68 
69 	rsa = rsaprivalloc();
70 	rsa->pub.ek = e;
71 	rsa->pub.n = n;
72 	rsa->dk = d;
73 	rsa->kp = kp;
74 	rsa->kq = kq;
75 	rsa->p = p;
76 	rsa->q = q;
77 	rsa->c2 = c2;
78 
79 	mpfree(phi);
80 
81 	return rsa;
82 }
83