1 /* $OpenBSD: uvm_page.c,v 1.180 2024/12/27 12:04:40 mpi Exp $ */ 2 /* $NetBSD: uvm_page.c,v 1.44 2000/11/27 08:40:04 chs Exp $ */ 3 4 /* 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * Copyright (c) 1991, 1993, The Regents of the University of California. 7 * 8 * All rights reserved. 9 * 10 * This code is derived from software contributed to Berkeley by 11 * The Mach Operating System project at Carnegie-Mellon University. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94 38 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp 39 * 40 * 41 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 42 * All rights reserved. 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * uvm_page.c: page ops. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/sched.h> 72 #include <sys/vnode.h> 73 #include <sys/mount.h> 74 #include <sys/proc.h> 75 #include <sys/smr.h> 76 77 #include <uvm/uvm.h> 78 79 /* 80 * for object trees 81 */ 82 RBT_GENERATE(uvm_objtree, vm_page, objt, uvm_pagecmp); 83 84 int 85 uvm_pagecmp(const struct vm_page *a, const struct vm_page *b) 86 { 87 return a->offset < b->offset ? -1 : a->offset > b->offset; 88 } 89 90 /* 91 * global vars... XXXCDC: move to uvm. structure. 92 */ 93 /* 94 * physical memory config is stored in vm_physmem. 95 */ 96 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */ 97 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */ 98 99 /* 100 * Some supported CPUs in a given architecture don't support all 101 * of the things necessary to do idle page zero'ing efficiently. 102 * We therefore provide a way to disable it from machdep code here. 103 */ 104 105 /* 106 * local variables 107 */ 108 /* 109 * these variables record the values returned by vm_page_bootstrap, 110 * for debugging purposes. The implementation of uvm_pageboot_alloc 111 * and pmap_startup here also uses them internally. 112 */ 113 static vaddr_t virtual_space_start; 114 static vaddr_t virtual_space_end; 115 116 /* 117 * local prototypes 118 */ 119 static void uvm_pageinsert(struct vm_page *); 120 static void uvm_pageremove(struct vm_page *); 121 int uvm_page_owner_locked_p(struct vm_page *, boolean_t); 122 123 /* 124 * inline functions 125 */ 126 /* 127 * uvm_pageinsert: insert a page in the object 128 * 129 * => caller must lock object 130 * => call should have already set pg's object and offset pointers 131 * and bumped the version counter 132 */ 133 static inline void 134 uvm_pageinsert(struct vm_page *pg) 135 { 136 struct vm_page *dupe; 137 138 KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) || 139 rw_write_held(pg->uobject->vmobjlock)); 140 KASSERT((pg->pg_flags & PG_TABLED) == 0); 141 142 dupe = RBT_INSERT(uvm_objtree, &pg->uobject->memt, pg); 143 /* not allowed to insert over another page */ 144 KASSERT(dupe == NULL); 145 atomic_setbits_int(&pg->pg_flags, PG_TABLED); 146 pg->uobject->uo_npages++; 147 } 148 149 /* 150 * uvm_page_remove: remove page from object 151 * 152 * => caller must lock object 153 */ 154 static inline void 155 uvm_pageremove(struct vm_page *pg) 156 { 157 KASSERT(UVM_OBJ_IS_DUMMY(pg->uobject) || 158 rw_write_held(pg->uobject->vmobjlock)); 159 KASSERT(pg->pg_flags & PG_TABLED); 160 161 RBT_REMOVE(uvm_objtree, &pg->uobject->memt, pg); 162 163 atomic_clearbits_int(&pg->pg_flags, PG_TABLED); 164 pg->uobject->uo_npages--; 165 pg->uobject = NULL; 166 pg->pg_version++; 167 } 168 169 /* 170 * uvm_page_init: init the page system. called from uvm_init(). 171 * 172 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp 173 */ 174 void 175 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp) 176 { 177 vsize_t freepages, pagecount, n; 178 vm_page_t pagearray, curpg; 179 int lcv, i; 180 paddr_t paddr, pgno; 181 struct vm_physseg *seg; 182 183 /* 184 * init the page queues and page queue locks 185 */ 186 187 TAILQ_INIT(&uvm.page_active); 188 TAILQ_INIT(&uvm.page_inactive); 189 mtx_init(&uvm.pageqlock, IPL_VM); 190 mtx_init(&uvm.fpageqlock, IPL_VM); 191 uvm_pmr_init(); 192 193 /* 194 * allocate vm_page structures. 195 */ 196 197 /* 198 * sanity check: 199 * before calling this function the MD code is expected to register 200 * some free RAM with the uvm_page_physload() function. our job 201 * now is to allocate vm_page structures for this memory. 202 */ 203 204 if (vm_nphysseg == 0) 205 panic("uvm_page_bootstrap: no memory pre-allocated"); 206 207 /* 208 * first calculate the number of free pages... 209 * 210 * note that we use start/end rather than avail_start/avail_end. 211 * this allows us to allocate extra vm_page structures in case we 212 * want to return some memory to the pool after booting. 213 */ 214 215 freepages = 0; 216 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) 217 freepages += (seg->end - seg->start); 218 219 /* 220 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can 221 * use. for each page of memory we use we need a vm_page structure. 222 * thus, the total number of pages we can use is the total size of 223 * the memory divided by the PAGE_SIZE plus the size of the vm_page 224 * structure. we add one to freepages as a fudge factor to avoid 225 * truncation errors (since we can only allocate in terms of whole 226 * pages). 227 */ 228 229 pagecount = (((paddr_t)freepages + 1) << PAGE_SHIFT) / 230 (PAGE_SIZE + sizeof(struct vm_page)); 231 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount * 232 sizeof(struct vm_page)); 233 memset(pagearray, 0, pagecount * sizeof(struct vm_page)); 234 235 /* init the vm_page structures and put them in the correct place. */ 236 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) { 237 n = seg->end - seg->start; 238 if (n > pagecount) { 239 panic("uvm_page_init: lost %ld page(s) in init", 240 (long)(n - pagecount)); 241 /* XXXCDC: shouldn't happen? */ 242 /* n = pagecount; */ 243 } 244 245 /* set up page array pointers */ 246 seg->pgs = pagearray; 247 pagearray += n; 248 pagecount -= n; 249 seg->lastpg = seg->pgs + (n - 1); 250 251 /* init and free vm_pages (we've already zeroed them) */ 252 pgno = seg->start; 253 paddr = ptoa(pgno); 254 for (i = 0, curpg = seg->pgs; i < n; 255 i++, curpg++, pgno++, paddr += PAGE_SIZE) { 256 curpg->phys_addr = paddr; 257 VM_MDPAGE_INIT(curpg); 258 if (pgno >= seg->avail_start && 259 pgno < seg->avail_end) { 260 uvmexp.npages++; 261 } 262 } 263 264 /* Add pages to free pool. */ 265 uvm_pmr_freepages(&seg->pgs[seg->avail_start - seg->start], 266 seg->avail_end - seg->avail_start); 267 } 268 269 /* 270 * pass up the values of virtual_space_start and 271 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper 272 * layers of the VM. 273 */ 274 275 *kvm_startp = round_page(virtual_space_start); 276 *kvm_endp = trunc_page(virtual_space_end); 277 278 /* init locks for kernel threads */ 279 mtx_init(&uvm.aiodoned_lock, IPL_BIO); 280 281 /* 282 * init reserve thresholds. 283 * 284 * XXX As long as some disk drivers cannot write any physical 285 * XXX page, we need DMA reachable reserves for the pagedaemon. 286 * XXX We cannot enforce such requirement but it should be ok 287 * XXX in most of the cases because the pmemrange tries hard to 288 * XXX allocate them last. 289 */ 290 uvmexp.reserve_pagedaemon = 4; 291 uvmexp.reserve_kernel = uvmexp.reserve_pagedaemon + 4; 292 293 uvm.page_init_done = TRUE; 294 } 295 296 /* 297 * uvm_setpagesize: set the page size 298 * 299 * => sets page_shift and page_mask from uvmexp.pagesize. 300 */ 301 void 302 uvm_setpagesize(void) 303 { 304 if (uvmexp.pagesize == 0) 305 uvmexp.pagesize = DEFAULT_PAGE_SIZE; 306 uvmexp.pagemask = uvmexp.pagesize - 1; 307 if ((uvmexp.pagemask & uvmexp.pagesize) != 0) 308 panic("uvm_setpagesize: page size not a power of two"); 309 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++) 310 if ((1 << uvmexp.pageshift) == uvmexp.pagesize) 311 break; 312 } 313 314 /* 315 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping 316 */ 317 vaddr_t 318 uvm_pageboot_alloc(vsize_t size) 319 { 320 #if defined(PMAP_STEAL_MEMORY) 321 vaddr_t addr; 322 323 /* 324 * defer bootstrap allocation to MD code (it may want to allocate 325 * from a direct-mapped segment). pmap_steal_memory should round 326 * off virtual_space_start/virtual_space_end. 327 */ 328 329 addr = pmap_steal_memory(size, &virtual_space_start, 330 &virtual_space_end); 331 332 return addr; 333 334 #else /* !PMAP_STEAL_MEMORY */ 335 336 static boolean_t initialized = FALSE; 337 vaddr_t addr, vaddr; 338 paddr_t paddr; 339 340 /* round to page size */ 341 size = round_page(size); 342 343 /* on first call to this function, initialize ourselves. */ 344 if (initialized == FALSE) { 345 pmap_virtual_space(&virtual_space_start, &virtual_space_end); 346 347 /* round it the way we like it */ 348 virtual_space_start = round_page(virtual_space_start); 349 virtual_space_end = trunc_page(virtual_space_end); 350 351 initialized = TRUE; 352 } 353 354 /* allocate virtual memory for this request */ 355 if (virtual_space_start == virtual_space_end || 356 (virtual_space_end - virtual_space_start) < size) 357 panic("uvm_pageboot_alloc: out of virtual space"); 358 359 addr = virtual_space_start; 360 361 #ifdef PMAP_GROWKERNEL 362 /* 363 * If the kernel pmap can't map the requested space, 364 * then allocate more resources for it. 365 */ 366 if (uvm_maxkaddr < (addr + size)) { 367 uvm_maxkaddr = pmap_growkernel(addr + size); 368 if (uvm_maxkaddr < (addr + size)) 369 panic("uvm_pageboot_alloc: pmap_growkernel() failed"); 370 } 371 #endif 372 373 virtual_space_start += size; 374 375 /* allocate and mapin physical pages to back new virtual pages */ 376 for (vaddr = round_page(addr) ; vaddr < addr + size ; 377 vaddr += PAGE_SIZE) { 378 if (!uvm_page_physget(&paddr)) 379 panic("uvm_pageboot_alloc: out of memory"); 380 381 /* 382 * Note this memory is no longer managed, so using 383 * pmap_kenter is safe. 384 */ 385 pmap_kenter_pa(vaddr, paddr, PROT_READ | PROT_WRITE); 386 } 387 pmap_update(pmap_kernel()); 388 return addr; 389 #endif /* PMAP_STEAL_MEMORY */ 390 } 391 392 #if !defined(PMAP_STEAL_MEMORY) 393 /* 394 * uvm_page_physget: "steal" one page from the vm_physmem structure. 395 * 396 * => attempt to allocate it off the end of a segment in which the "avail" 397 * values match the start/end values. if we can't do that, then we 398 * will advance both values (making them equal, and removing some 399 * vm_page structures from the non-avail area). 400 * => return false if out of memory. 401 */ 402 403 boolean_t 404 uvm_page_physget(paddr_t *paddrp) 405 { 406 int lcv; 407 struct vm_physseg *seg; 408 409 /* pass 1: try allocating from a matching end */ 410 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \ 411 (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 412 for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0; 413 lcv--, seg--) 414 #else 415 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) 416 #endif 417 { 418 if (uvm.page_init_done == TRUE) 419 panic("uvm_page_physget: called _after_ bootstrap"); 420 421 /* try from front */ 422 if (seg->avail_start == seg->start && 423 seg->avail_start < seg->avail_end) { 424 *paddrp = ptoa(seg->avail_start); 425 seg->avail_start++; 426 seg->start++; 427 /* nothing left? nuke it */ 428 if (seg->avail_start == seg->end) { 429 if (vm_nphysseg == 1) 430 panic("uvm_page_physget: out of memory!"); 431 vm_nphysseg--; 432 for (; lcv < vm_nphysseg; lcv++, seg++) 433 /* structure copy */ 434 seg[0] = seg[1]; 435 } 436 return TRUE; 437 } 438 439 /* try from rear */ 440 if (seg->avail_end == seg->end && 441 seg->avail_start < seg->avail_end) { 442 *paddrp = ptoa(seg->avail_end - 1); 443 seg->avail_end--; 444 seg->end--; 445 /* nothing left? nuke it */ 446 if (seg->avail_end == seg->start) { 447 if (vm_nphysseg == 1) 448 panic("uvm_page_physget: out of memory!"); 449 vm_nphysseg--; 450 for (; lcv < vm_nphysseg ; lcv++, seg++) 451 /* structure copy */ 452 seg[0] = seg[1]; 453 } 454 return TRUE; 455 } 456 } 457 458 /* pass2: forget about matching ends, just allocate something */ 459 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) || \ 460 (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 461 for (lcv = vm_nphysseg - 1, seg = vm_physmem + lcv; lcv >= 0; 462 lcv--, seg--) 463 #else 464 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) 465 #endif 466 { 467 468 /* any room in this bank? */ 469 if (seg->avail_start >= seg->avail_end) 470 continue; /* nope */ 471 472 *paddrp = ptoa(seg->avail_start); 473 seg->avail_start++; 474 /* truncate! */ 475 seg->start = seg->avail_start; 476 477 /* nothing left? nuke it */ 478 if (seg->avail_start == seg->end) { 479 if (vm_nphysseg == 1) 480 panic("uvm_page_physget: out of memory!"); 481 vm_nphysseg--; 482 for (; lcv < vm_nphysseg ; lcv++, seg++) 483 /* structure copy */ 484 seg[0] = seg[1]; 485 } 486 return TRUE; 487 } 488 489 return FALSE; /* whoops! */ 490 } 491 492 #endif /* PMAP_STEAL_MEMORY */ 493 494 /* 495 * uvm_page_physload: load physical memory into VM system 496 * 497 * => all args are PFs 498 * => all pages in start/end get vm_page structures 499 * => areas marked by avail_start/avail_end get added to the free page pool 500 * => we are limited to VM_PHYSSEG_MAX physical memory segments 501 */ 502 503 void 504 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start, 505 paddr_t avail_end, int flags) 506 { 507 int preload, lcv; 508 psize_t npages; 509 struct vm_page *pgs; 510 struct vm_physseg *ps, *seg; 511 512 #ifdef DIAGNOSTIC 513 if (uvmexp.pagesize == 0) 514 panic("uvm_page_physload: page size not set!"); 515 516 if (start >= end) 517 panic("uvm_page_physload: start >= end"); 518 #endif 519 520 /* do we have room? */ 521 if (vm_nphysseg == VM_PHYSSEG_MAX) { 522 printf("uvm_page_physload: unable to load physical memory " 523 "segment\n"); 524 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n", 525 VM_PHYSSEG_MAX, (long long)start, (long long)end); 526 printf("\tincrease VM_PHYSSEG_MAX\n"); 527 return; 528 } 529 530 /* 531 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been 532 * called yet, so malloc is not available). 533 */ 534 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) { 535 if (seg->pgs) 536 break; 537 } 538 preload = (lcv == vm_nphysseg); 539 540 /* if VM is already running, attempt to malloc() vm_page structures */ 541 if (!preload) { 542 /* 543 * XXXCDC: need some sort of lockout for this case 544 * right now it is only used by devices so it should be alright. 545 */ 546 paddr_t paddr; 547 548 npages = end - start; /* # of pages */ 549 550 pgs = km_alloc(round_page(npages * sizeof(*pgs)), 551 &kv_any, &kp_zero, &kd_waitok); 552 if (pgs == NULL) { 553 printf("uvm_page_physload: can not malloc vm_page " 554 "structs for segment\n"); 555 printf("\tignoring 0x%lx -> 0x%lx\n", start, end); 556 return; 557 } 558 /* init phys_addr and free pages, XXX uvmexp.npages */ 559 for (lcv = 0, paddr = ptoa(start); lcv < npages; 560 lcv++, paddr += PAGE_SIZE) { 561 pgs[lcv].phys_addr = paddr; 562 VM_MDPAGE_INIT(&pgs[lcv]); 563 if (atop(paddr) >= avail_start && 564 atop(paddr) < avail_end) { 565 if (flags & PHYSLOAD_DEVICE) { 566 atomic_setbits_int(&pgs[lcv].pg_flags, 567 PG_DEV); 568 pgs[lcv].wire_count = 1; 569 } else { 570 #if defined(VM_PHYSSEG_NOADD) 571 panic("uvm_page_physload: tried to add RAM after vm_mem_init"); 572 #endif 573 } 574 } 575 } 576 577 /* Add pages to free pool. */ 578 if ((flags & PHYSLOAD_DEVICE) == 0) { 579 uvm_pmr_freepages(&pgs[avail_start - start], 580 avail_end - avail_start); 581 } 582 583 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */ 584 } else { 585 /* gcc complains if these don't get init'd */ 586 pgs = NULL; 587 npages = 0; 588 589 } 590 591 /* now insert us in the proper place in vm_physmem[] */ 592 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM) 593 /* random: put it at the end (easy!) */ 594 ps = &vm_physmem[vm_nphysseg]; 595 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 596 { 597 int x; 598 /* sort by address for binary search */ 599 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) 600 if (start < seg->start) 601 break; 602 ps = seg; 603 /* move back other entries, if necessary ... */ 604 for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv; 605 x--, seg--) 606 /* structure copy */ 607 seg[1] = seg[0]; 608 } 609 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 610 { 611 int x; 612 /* sort by largest segment first */ 613 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg; lcv++, seg++) 614 if ((end - start) > 615 (seg->end - seg->start)) 616 break; 617 ps = &vm_physmem[lcv]; 618 /* move back other entries, if necessary ... */ 619 for (x = vm_nphysseg, seg = vm_physmem + x - 1; x > lcv; 620 x--, seg--) 621 /* structure copy */ 622 seg[1] = seg[0]; 623 } 624 #else 625 panic("uvm_page_physload: unknown physseg strategy selected!"); 626 #endif 627 628 ps->start = start; 629 ps->end = end; 630 ps->avail_start = avail_start; 631 ps->avail_end = avail_end; 632 if (preload) { 633 ps->pgs = NULL; 634 } else { 635 ps->pgs = pgs; 636 ps->lastpg = pgs + npages - 1; 637 } 638 vm_nphysseg++; 639 640 return; 641 } 642 643 #ifdef DDB /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */ 644 645 void uvm_page_physdump(void); /* SHUT UP GCC */ 646 647 /* call from DDB */ 648 void 649 uvm_page_physdump(void) 650 { 651 int lcv; 652 struct vm_physseg *seg; 653 654 printf("uvm_page_physdump: physical memory config [segs=%d of %d]:\n", 655 vm_nphysseg, VM_PHYSSEG_MAX); 656 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) 657 printf("0x%llx->0x%llx [0x%llx->0x%llx]\n", 658 (long long)seg->start, 659 (long long)seg->end, 660 (long long)seg->avail_start, 661 (long long)seg->avail_end); 662 printf("STRATEGY = "); 663 switch (VM_PHYSSEG_STRAT) { 664 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break; 665 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break; 666 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break; 667 default: printf("<<UNKNOWN>>!!!!\n"); 668 } 669 } 670 #endif 671 672 void 673 uvm_shutdown(void) 674 { 675 #ifdef UVM_SWAP_ENCRYPT 676 uvm_swap_finicrypt_all(); 677 #endif 678 smr_flush(); 679 } 680 681 /* 682 * Perform insert of a given page in the specified anon of obj. 683 * This is basically, uvm_pagealloc, but with the page already given. 684 */ 685 void 686 uvm_pagealloc_pg(struct vm_page *pg, struct uvm_object *obj, voff_t off, 687 struct vm_anon *anon) 688 { 689 int flags; 690 691 KASSERT(obj == NULL || anon == NULL); 692 KASSERT(anon == NULL || off == 0); 693 KASSERT(off == trunc_page(off)); 694 KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) || 695 rw_write_held(obj->vmobjlock)); 696 KASSERT(anon == NULL || anon->an_lock == NULL || 697 rw_write_held(anon->an_lock)); 698 699 flags = PG_BUSY | PG_FAKE; 700 pg->offset = off; 701 pg->uobject = obj; 702 pg->uanon = anon; 703 KASSERT(uvm_page_owner_locked_p(pg, TRUE)); 704 if (anon) { 705 anon->an_page = pg; 706 flags |= PQ_ANON; 707 } else if (obj) 708 uvm_pageinsert(pg); 709 atomic_setbits_int(&pg->pg_flags, flags); 710 #if defined(UVM_PAGE_TRKOWN) 711 pg->owner_tag = NULL; 712 #endif 713 UVM_PAGE_OWN(pg, "new alloc"); 714 } 715 716 /* 717 * uvm_pglistalloc: allocate a list of pages 718 * 719 * => allocated pages are placed at the tail of rlist. rlist is 720 * assumed to be properly initialized by caller. 721 * => returns 0 on success or errno on failure 722 * => doesn't take into account clean non-busy pages on inactive list 723 * that could be used(?) 724 * => params: 725 * size the size of the allocation, rounded to page size. 726 * low the low address of the allowed allocation range. 727 * high the high address of the allowed allocation range. 728 * alignment memory must be aligned to this power-of-two boundary. 729 * boundary no segment in the allocation may cross this 730 * power-of-two boundary (relative to zero). 731 * => flags: 732 * UVM_PLA_NOWAIT fail if allocation fails 733 * UVM_PLA_WAITOK wait for memory to become avail 734 * UVM_PLA_ZERO return zeroed memory 735 */ 736 int 737 uvm_pglistalloc(psize_t size, paddr_t low, paddr_t high, paddr_t alignment, 738 paddr_t boundary, struct pglist *rlist, int nsegs, int flags) 739 { 740 KASSERT((alignment & (alignment - 1)) == 0); 741 KASSERT((boundary & (boundary - 1)) == 0); 742 KASSERT(!(flags & UVM_PLA_WAITOK) ^ !(flags & UVM_PLA_NOWAIT)); 743 744 if (size == 0) 745 return EINVAL; 746 size = atop(round_page(size)); 747 748 /* 749 * XXX uvm_pglistalloc is currently only used for kernel 750 * objects. Unlike the checks in uvm_pagealloc, below, here 751 * we are always allowed to use the kernel reserve. 752 */ 753 flags |= UVM_PLA_USERESERVE; 754 755 if ((high & PAGE_MASK) != PAGE_MASK) { 756 printf("uvm_pglistalloc: Upper boundary 0x%lx " 757 "not on pagemask.\n", (unsigned long)high); 758 } 759 760 /* 761 * Our allocations are always page granularity, so our alignment 762 * must be, too. 763 */ 764 if (alignment < PAGE_SIZE) 765 alignment = PAGE_SIZE; 766 767 low = atop(roundup(low, alignment)); 768 /* 769 * high + 1 may result in overflow, in which case high becomes 0x0, 770 * which is the 'don't care' value. 771 * The only requirement in that case is that low is also 0x0, or the 772 * low<high assert will fail. 773 */ 774 high = atop(high + 1); 775 alignment = atop(alignment); 776 if (boundary < PAGE_SIZE && boundary != 0) 777 boundary = PAGE_SIZE; 778 boundary = atop(boundary); 779 780 return uvm_pmr_getpages(size, low, high, alignment, boundary, nsegs, 781 flags, rlist); 782 } 783 784 /* 785 * uvm_pglistfree: free a list of pages 786 * 787 * => pages should already be unmapped 788 */ 789 void 790 uvm_pglistfree(struct pglist *list) 791 { 792 uvm_pmr_freepageq(list); 793 } 794 795 /* 796 * interface used by the buffer cache to allocate a buffer at a time. 797 * The pages are allocated wired in DMA accessible memory 798 */ 799 int 800 uvm_pagealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size, 801 int flags) 802 { 803 struct pglist plist; 804 struct vm_page *pg; 805 int i, r; 806 807 KASSERT(UVM_OBJ_IS_BUFCACHE(obj)); 808 KERNEL_ASSERT_LOCKED(); 809 810 TAILQ_INIT(&plist); 811 r = uvm_pglistalloc(size, dma_constraint.ucr_low, 812 dma_constraint.ucr_high, 0, 0, &plist, atop(round_page(size)), 813 flags); 814 if (r == 0) { 815 i = 0; 816 while ((pg = TAILQ_FIRST(&plist)) != NULL) { 817 pg->wire_count = 1; 818 atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE); 819 KASSERT((pg->pg_flags & PG_DEV) == 0); 820 TAILQ_REMOVE(&plist, pg, pageq); 821 uvm_pagealloc_pg(pg, obj, off + ptoa(i++), NULL); 822 } 823 } 824 return r; 825 } 826 827 /* 828 * interface used by the buffer cache to reallocate a buffer at a time. 829 * The pages are reallocated wired outside the DMA accessible region. 830 * 831 */ 832 int 833 uvm_pagerealloc_multi(struct uvm_object *obj, voff_t off, vsize_t size, 834 int flags, struct uvm_constraint_range *where) 835 { 836 struct pglist plist; 837 struct vm_page *pg, *tpg; 838 int i, r; 839 voff_t offset; 840 841 KASSERT(UVM_OBJ_IS_BUFCACHE(obj)); 842 KERNEL_ASSERT_LOCKED(); 843 844 TAILQ_INIT(&plist); 845 if (size == 0) 846 panic("size 0 uvm_pagerealloc"); 847 r = uvm_pglistalloc(size, where->ucr_low, where->ucr_high, 0, 848 0, &plist, atop(round_page(size)), flags); 849 if (r == 0) { 850 i = 0; 851 while((pg = TAILQ_FIRST(&plist)) != NULL) { 852 offset = off + ptoa(i++); 853 tpg = uvm_pagelookup(obj, offset); 854 KASSERT(tpg != NULL); 855 pg->wire_count = 1; 856 atomic_setbits_int(&pg->pg_flags, PG_CLEAN | PG_FAKE); 857 KASSERT((pg->pg_flags & PG_DEV) == 0); 858 TAILQ_REMOVE(&plist, pg, pageq); 859 uvm_pagecopy(tpg, pg); 860 KASSERT(tpg->wire_count == 1); 861 tpg->wire_count = 0; 862 uvm_lock_pageq(); 863 uvm_pagefree(tpg); 864 uvm_unlock_pageq(); 865 uvm_pagealloc_pg(pg, obj, offset, NULL); 866 } 867 } 868 return r; 869 } 870 871 /* 872 * uvm_pagealloc: allocate vm_page from a particular free list. 873 * 874 * => return null if no pages free 875 * => wake up pagedaemon if number of free pages drops below low water mark 876 * => only one of obj or anon can be non-null 877 * => caller must activate/deactivate page if it is not wired. 878 */ 879 struct vm_page * 880 uvm_pagealloc(struct uvm_object *obj, voff_t off, struct vm_anon *anon, 881 int flags) 882 { 883 struct vm_page *pg = NULL; 884 int pmr_flags; 885 886 KASSERT(obj == NULL || anon == NULL); 887 KASSERT(anon == NULL || off == 0); 888 KASSERT(off == trunc_page(off)); 889 KASSERT(obj == NULL || UVM_OBJ_IS_DUMMY(obj) || 890 rw_write_held(obj->vmobjlock)); 891 KASSERT(anon == NULL || anon->an_lock == NULL || 892 rw_write_held(anon->an_lock)); 893 894 pmr_flags = UVM_PLA_NOWAIT; 895 896 /* 897 * We're allowed to use the kernel reserve if the page is 898 * being allocated to a kernel object. 899 */ 900 if ((flags & UVM_PGA_USERESERVE) || 901 (obj != NULL && UVM_OBJ_IS_KERN_OBJECT(obj))) 902 pmr_flags |= UVM_PLA_USERESERVE; 903 904 if (flags & UVM_PGA_ZERO) 905 pmr_flags |= UVM_PLA_ZERO; 906 907 pg = uvm_pmr_cache_get(pmr_flags); 908 if (pg == NULL) 909 return NULL; 910 uvm_pagealloc_pg(pg, obj, off, anon); 911 KASSERT((pg->pg_flags & PG_DEV) == 0); 912 if (flags & UVM_PGA_ZERO) 913 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 914 else 915 atomic_setbits_int(&pg->pg_flags, PG_CLEAN); 916 917 return pg; 918 } 919 920 /* 921 * uvm_pagerealloc: reallocate a page from one object to another 922 */ 923 924 void 925 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff) 926 { 927 928 /* remove it from the old object */ 929 if (pg->uobject) { 930 uvm_pageremove(pg); 931 } 932 933 /* put it in the new object */ 934 if (newobj) { 935 pg->uobject = newobj; 936 pg->offset = newoff; 937 pg->pg_version++; 938 uvm_pageinsert(pg); 939 } 940 } 941 942 /* 943 * uvm_pageclean: clean page 944 * 945 * => erase page's identity (i.e. remove from object) 946 * => caller must lock page queues if `pg' is managed 947 * => assumes all valid mappings of pg are gone 948 */ 949 void 950 uvm_pageclean(struct vm_page *pg) 951 { 952 u_int flags_to_clear = 0; 953 954 if ((pg->pg_flags & (PG_TABLED|PQ_ACTIVE|PQ_INACTIVE)) && 955 (pg->uobject == NULL || !UVM_OBJ_IS_PMAP(pg->uobject))) 956 MUTEX_ASSERT_LOCKED(&uvm.pageqlock); 957 958 #ifdef DEBUG 959 if (pg->uobject == (void *)0xdeadbeef && 960 pg->uanon == (void *)0xdeadbeef) { 961 panic("uvm_pagefree: freeing free page %p", pg); 962 } 963 #endif 964 965 KASSERT((pg->pg_flags & PG_DEV) == 0); 966 KASSERT(pg->uobject == NULL || UVM_OBJ_IS_DUMMY(pg->uobject) || 967 rw_write_held(pg->uobject->vmobjlock)); 968 KASSERT(pg->uobject != NULL || pg->uanon == NULL || 969 rw_write_held(pg->uanon->an_lock)); 970 971 /* 972 * if the page was an object page (and thus "TABLED"), remove it 973 * from the object. 974 */ 975 if (pg->pg_flags & PG_TABLED) 976 uvm_pageremove(pg); 977 978 /* 979 * now remove the page from the queues 980 */ 981 uvm_pagedequeue(pg); 982 983 /* 984 * if the page was wired, unwire it now. 985 */ 986 if (pg->wire_count) { 987 pg->wire_count = 0; 988 uvmexp.wired--; 989 } 990 if (pg->uanon) { 991 pg->uanon->an_page = NULL; 992 pg->uanon = NULL; 993 } 994 995 /* Clean page state bits. */ 996 flags_to_clear |= PQ_ANON|PQ_AOBJ|PQ_ENCRYPT|PG_ZERO|PG_FAKE|PG_BUSY| 997 PG_RELEASED|PG_CLEAN|PG_CLEANCHK; 998 atomic_clearbits_int(&pg->pg_flags, flags_to_clear); 999 1000 #ifdef DEBUG 1001 pg->uobject = (void *)0xdeadbeef; 1002 pg->offset = 0xdeadbeef; 1003 pg->uanon = (void *)0xdeadbeef; 1004 #endif 1005 } 1006 1007 /* 1008 * uvm_pagefree: free page 1009 * 1010 * => erase page's identity (i.e. remove from object) 1011 * => put page on free list 1012 * => caller must lock page queues if `pg' is managed 1013 * => assumes all valid mappings of pg are gone 1014 */ 1015 void 1016 uvm_pagefree(struct vm_page *pg) 1017 { 1018 uvm_pageclean(pg); 1019 uvm_pmr_cache_put(pg); 1020 } 1021 1022 /* 1023 * uvm_page_unbusy: unbusy an array of pages. 1024 * 1025 * => pages must either all belong to the same object, or all belong to anons. 1026 * => if pages are object-owned, object must be locked. 1027 * => if pages are anon-owned, anons must have 0 refcount. 1028 * => caller must make sure that anon-owned pages are not PG_RELEASED. 1029 */ 1030 void 1031 uvm_page_unbusy(struct vm_page **pgs, int npgs) 1032 { 1033 struct vm_page *pg; 1034 int i; 1035 1036 for (i = 0; i < npgs; i++) { 1037 pg = pgs[i]; 1038 1039 if (pg == NULL || pg == PGO_DONTCARE) { 1040 continue; 1041 } 1042 1043 KASSERT(uvm_page_owner_locked_p(pg, TRUE)); 1044 KASSERT(pg->pg_flags & PG_BUSY); 1045 1046 if (pg->pg_flags & PG_WANTED) { 1047 wakeup(pg); 1048 } 1049 if (pg->pg_flags & PG_RELEASED) { 1050 KASSERT(pg->uobject != NULL || 1051 (pg->uanon != NULL && pg->uanon->an_ref > 0)); 1052 atomic_clearbits_int(&pg->pg_flags, PG_RELEASED); 1053 pmap_page_protect(pg, PROT_NONE); 1054 uvm_pagefree(pg); 1055 } else { 1056 KASSERT((pg->pg_flags & PG_FAKE) == 0); 1057 atomic_clearbits_int(&pg->pg_flags, PG_WANTED|PG_BUSY); 1058 UVM_PAGE_OWN(pg, NULL); 1059 } 1060 } 1061 } 1062 1063 /* 1064 * uvm_pagewait: wait for a busy page 1065 * 1066 * => page must be known PG_BUSY 1067 * => object must be locked 1068 * => object will be unlocked on return 1069 */ 1070 void 1071 uvm_pagewait(struct vm_page *pg, struct rwlock *lock, const char *wmesg) 1072 { 1073 KASSERT(rw_lock_held(lock)); 1074 KASSERT((pg->pg_flags & PG_BUSY) != 0); 1075 KASSERT(uvm_page_owner_locked_p(pg, FALSE)); 1076 1077 atomic_setbits_int(&pg->pg_flags, PG_WANTED); 1078 rwsleep_nsec(pg, lock, PVM | PNORELOCK, wmesg, INFSLP); 1079 } 1080 1081 #if defined(UVM_PAGE_TRKOWN) 1082 /* 1083 * uvm_page_own: set or release page ownership 1084 * 1085 * => this is a debugging function that keeps track of who sets PG_BUSY 1086 * and where they do it. it can be used to track down problems 1087 * such a thread setting "PG_BUSY" and never releasing it. 1088 * => if "tag" is NULL then we are releasing page ownership 1089 */ 1090 void 1091 uvm_page_own(struct vm_page *pg, char *tag) 1092 { 1093 /* gain ownership? */ 1094 if (tag) { 1095 if (pg->owner_tag) { 1096 printf("uvm_page_own: page %p already owned " 1097 "by thread %d [%s]\n", pg, 1098 pg->owner, pg->owner_tag); 1099 panic("uvm_page_own"); 1100 } 1101 pg->owner = (curproc) ? curproc->p_tid : (pid_t) -1; 1102 pg->owner_tag = tag; 1103 return; 1104 } 1105 1106 /* drop ownership */ 1107 if (pg->owner_tag == NULL) { 1108 printf("uvm_page_own: dropping ownership of an non-owned " 1109 "page (%p)\n", pg); 1110 panic("uvm_page_own"); 1111 } 1112 pg->owner_tag = NULL; 1113 return; 1114 } 1115 #endif 1116 1117 /* 1118 * when VM_PHYSSEG_MAX is 1, we can simplify these functions 1119 */ 1120 1121 #if VM_PHYSSEG_MAX > 1 1122 /* 1123 * vm_physseg_find: find vm_physseg structure that belongs to a PA 1124 */ 1125 int 1126 vm_physseg_find(paddr_t pframe, int *offp) 1127 { 1128 struct vm_physseg *seg; 1129 1130 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 1131 /* binary search for it */ 1132 int start, len, try; 1133 1134 /* 1135 * if try is too large (thus target is less than try) we reduce 1136 * the length to trunc(len/2) [i.e. everything smaller than "try"] 1137 * 1138 * if the try is too small (thus target is greater than try) then 1139 * we set the new start to be (try + 1). this means we need to 1140 * reduce the length to (round(len/2) - 1). 1141 * 1142 * note "adjust" below which takes advantage of the fact that 1143 * (round(len/2) - 1) == trunc((len - 1) / 2) 1144 * for any value of len we may have 1145 */ 1146 1147 for (start = 0, len = vm_nphysseg ; len != 0 ; len = len / 2) { 1148 try = start + (len / 2); /* try in the middle */ 1149 seg = vm_physmem + try; 1150 1151 /* start past our try? */ 1152 if (pframe >= seg->start) { 1153 /* was try correct? */ 1154 if (pframe < seg->end) { 1155 if (offp) 1156 *offp = pframe - seg->start; 1157 return try; /* got it */ 1158 } 1159 start = try + 1; /* next time, start here */ 1160 len--; /* "adjust" */ 1161 } else { 1162 /* 1163 * pframe before try, just reduce length of 1164 * region, done in "for" loop 1165 */ 1166 } 1167 } 1168 return -1; 1169 1170 #else 1171 /* linear search for it */ 1172 int lcv; 1173 1174 for (lcv = 0, seg = vm_physmem; lcv < vm_nphysseg ; lcv++, seg++) { 1175 if (pframe >= seg->start && pframe < seg->end) { 1176 if (offp) 1177 *offp = pframe - seg->start; 1178 return lcv; /* got it */ 1179 } 1180 } 1181 return -1; 1182 1183 #endif 1184 } 1185 1186 /* 1187 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages 1188 * back from an I/O mapping (ugh!). used in some MD code as well. 1189 */ 1190 struct vm_page * 1191 PHYS_TO_VM_PAGE(paddr_t pa) 1192 { 1193 paddr_t pf = atop(pa); 1194 int off; 1195 int psi; 1196 1197 psi = vm_physseg_find(pf, &off); 1198 1199 return (psi == -1) ? NULL : &vm_physmem[psi].pgs[off]; 1200 } 1201 #endif /* VM_PHYSSEG_MAX > 1 */ 1202 1203 /* 1204 * uvm_pagelookup: look up a page 1205 */ 1206 struct vm_page * 1207 uvm_pagelookup(struct uvm_object *obj, voff_t off) 1208 { 1209 /* XXX if stack is too much, handroll */ 1210 struct vm_page p, *pg; 1211 1212 p.offset = off; 1213 pg = RBT_FIND(uvm_objtree, &obj->memt, &p); 1214 1215 KASSERT(pg == NULL || obj->uo_npages != 0); 1216 KASSERT(pg == NULL || (pg->pg_flags & PG_RELEASED) == 0 || 1217 (pg->pg_flags & PG_BUSY) != 0); 1218 return (pg); 1219 } 1220 1221 /* 1222 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp 1223 * 1224 * => caller must lock page queues 1225 */ 1226 void 1227 uvm_pagewire(struct vm_page *pg) 1228 { 1229 KASSERT(uvm_page_owner_locked_p(pg, TRUE)); 1230 MUTEX_ASSERT_LOCKED(&uvm.pageqlock); 1231 1232 if (pg->wire_count == 0) { 1233 uvm_pagedequeue(pg); 1234 uvmexp.wired++; 1235 } 1236 pg->wire_count++; 1237 } 1238 1239 /* 1240 * uvm_pageunwire: unwire the page. 1241 * 1242 * => activate if wire count goes to zero. 1243 * => caller must lock page queues 1244 */ 1245 void 1246 uvm_pageunwire(struct vm_page *pg) 1247 { 1248 KASSERT(uvm_page_owner_locked_p(pg, TRUE)); 1249 MUTEX_ASSERT_LOCKED(&uvm.pageqlock); 1250 1251 pg->wire_count--; 1252 if (pg->wire_count == 0) { 1253 uvm_pageactivate(pg); 1254 uvmexp.wired--; 1255 } 1256 } 1257 1258 /* 1259 * uvm_pagedeactivate: deactivate page. 1260 * 1261 * => caller must lock page queues 1262 * => caller must check to make sure page is not wired 1263 * => object that page belongs to must be locked (so we can adjust pg->flags) 1264 */ 1265 void 1266 uvm_pagedeactivate(struct vm_page *pg) 1267 { 1268 KASSERT(uvm_page_owner_locked_p(pg, FALSE)); 1269 MUTEX_ASSERT_LOCKED(&uvm.pageqlock); 1270 1271 pmap_page_protect(pg, PROT_NONE); 1272 1273 if (pg->pg_flags & PQ_ACTIVE) { 1274 TAILQ_REMOVE(&uvm.page_active, pg, pageq); 1275 atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE); 1276 uvmexp.active--; 1277 } 1278 if ((pg->pg_flags & PQ_INACTIVE) == 0) { 1279 KASSERT(pg->wire_count == 0); 1280 TAILQ_INSERT_TAIL(&uvm.page_inactive, pg, pageq); 1281 atomic_setbits_int(&pg->pg_flags, PQ_INACTIVE); 1282 uvmexp.inactive++; 1283 pmap_clear_reference(pg); 1284 /* 1285 * update the "clean" bit. this isn't 100% 1286 * accurate, and doesn't have to be. we'll 1287 * re-sync it after we zap all mappings when 1288 * scanning the inactive list. 1289 */ 1290 if ((pg->pg_flags & PG_CLEAN) != 0 && 1291 pmap_is_modified(pg)) 1292 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1293 } 1294 } 1295 1296 /* 1297 * uvm_pageactivate: activate page 1298 * 1299 * => caller must lock page queues 1300 */ 1301 void 1302 uvm_pageactivate(struct vm_page *pg) 1303 { 1304 KASSERT(uvm_page_owner_locked_p(pg, FALSE)); 1305 MUTEX_ASSERT_LOCKED(&uvm.pageqlock); 1306 1307 uvm_pagedequeue(pg); 1308 if (pg->wire_count == 0) { 1309 TAILQ_INSERT_TAIL(&uvm.page_active, pg, pageq); 1310 atomic_setbits_int(&pg->pg_flags, PQ_ACTIVE); 1311 uvmexp.active++; 1312 1313 } 1314 } 1315 1316 /* 1317 * uvm_pagedequeue: remove a page from any paging queue 1318 */ 1319 void 1320 uvm_pagedequeue(struct vm_page *pg) 1321 { 1322 if (pg->pg_flags & PQ_ACTIVE) { 1323 TAILQ_REMOVE(&uvm.page_active, pg, pageq); 1324 atomic_clearbits_int(&pg->pg_flags, PQ_ACTIVE); 1325 uvmexp.active--; 1326 } 1327 if (pg->pg_flags & PQ_INACTIVE) { 1328 TAILQ_REMOVE(&uvm.page_inactive, pg, pageq); 1329 atomic_clearbits_int(&pg->pg_flags, PQ_INACTIVE); 1330 uvmexp.inactive--; 1331 } 1332 } 1333 /* 1334 * uvm_pagezero: zero fill a page 1335 */ 1336 void 1337 uvm_pagezero(struct vm_page *pg) 1338 { 1339 atomic_clearbits_int(&pg->pg_flags, PG_CLEAN); 1340 pmap_zero_page(pg); 1341 } 1342 1343 /* 1344 * uvm_pagecopy: copy a page 1345 */ 1346 void 1347 uvm_pagecopy(struct vm_page *src, struct vm_page *dst) 1348 { 1349 atomic_clearbits_int(&dst->pg_flags, PG_CLEAN); 1350 pmap_copy_page(src, dst); 1351 } 1352 1353 /* 1354 * uvm_page_owner_locked_p: return true if object associated with page is 1355 * locked. this is a weak check for runtime assertions only. 1356 */ 1357 int 1358 uvm_page_owner_locked_p(struct vm_page *pg, boolean_t exclusive) 1359 { 1360 if (pg->uobject != NULL) { 1361 if (UVM_OBJ_IS_DUMMY(pg->uobject)) 1362 return 1; 1363 return exclusive 1364 ? rw_write_held(pg->uobject->vmobjlock) 1365 : rw_lock_held(pg->uobject->vmobjlock); 1366 } 1367 if (pg->uanon != NULL) { 1368 return rw_write_held(pg->uanon->an_lock); 1369 } 1370 return 1; 1371 } 1372 1373 /* 1374 * uvm_pagecount: count the number of physical pages in the address range. 1375 */ 1376 psize_t 1377 uvm_pagecount(struct uvm_constraint_range* constraint) 1378 { 1379 int lcv; 1380 psize_t sz; 1381 paddr_t low, high; 1382 paddr_t ps_low, ps_high; 1383 1384 /* Algorithm uses page numbers. */ 1385 low = atop(constraint->ucr_low); 1386 high = atop(constraint->ucr_high); 1387 1388 sz = 0; 1389 for (lcv = 0; lcv < vm_nphysseg; lcv++) { 1390 ps_low = MAX(low, vm_physmem[lcv].avail_start); 1391 ps_high = MIN(high, vm_physmem[lcv].avail_end); 1392 if (ps_low < ps_high) 1393 sz += ps_high - ps_low; 1394 } 1395 return sz; 1396 } 1397