xref: /openbsd-src/sys/kern/kern_synch.c (revision d4c5fc9dc00f5a9cadd8c2de4e52d85d3c1c6003)
1 /*	$OpenBSD: kern_synch.c,v 1.144 2018/04/24 16:28:42 pirofti Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sched.h>
47 #include <sys/timeout.h>
48 #include <sys/mount.h>
49 #include <sys/syscallargs.h>
50 #include <sys/pool.h>
51 #include <sys/refcnt.h>
52 #include <sys/atomic.h>
53 #include <sys/witness.h>
54 #include <ddb/db_output.h>
55 
56 #include <machine/spinlock.h>
57 
58 #ifdef KTRACE
59 #include <sys/ktrace.h>
60 #endif
61 
62 int	thrsleep(struct proc *, struct sys___thrsleep_args *);
63 int	thrsleep_unlock(void *);
64 
65 /*
66  * We're only looking at 7 bits of the address; everything is
67  * aligned to 4, lots of things are aligned to greater powers
68  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
69  */
70 #define TABLESIZE	128
71 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
72 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
73 
74 void
75 sleep_queue_init(void)
76 {
77 	int i;
78 
79 	for (i = 0; i < TABLESIZE; i++)
80 		TAILQ_INIT(&slpque[i]);
81 }
82 
83 
84 /*
85  * During autoconfiguration or after a panic, a sleep will simply
86  * lower the priority briefly to allow interrupts, then return.
87  * The priority to be used (safepri) is machine-dependent, thus this
88  * value is initialized and maintained in the machine-dependent layers.
89  * This priority will typically be 0, or the lowest priority
90  * that is safe for use on the interrupt stack; it can be made
91  * higher to block network software interrupts after panics.
92  */
93 extern int safepri;
94 
95 /*
96  * General sleep call.  Suspends the current process until a wakeup is
97  * performed on the specified identifier.  The process will then be made
98  * runnable with the specified priority.  Sleeps at most timo/hz seconds
99  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
100  * before and after sleeping, else signals are not checked.  Returns 0 if
101  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
102  * signal needs to be delivered, ERESTART is returned if the current system
103  * call should be restarted if possible, and EINTR is returned if the system
104  * call should be interrupted by the signal (return EINTR).
105  */
106 int
107 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
108 {
109 	struct sleep_state sls;
110 	int error, error1;
111 #ifdef MULTIPROCESSOR
112 	int hold_count;
113 #endif
114 
115 	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
116 
117 #ifdef MULTIPROCESSOR
118 	KASSERT(timo || _kernel_lock_held());
119 #endif
120 
121 #ifdef DDB
122 	if (cold == 2)
123 		db_stack_dump();
124 #endif
125 	if (cold || panicstr) {
126 		int s;
127 		/*
128 		 * After a panic, or during autoconfiguration,
129 		 * just give interrupts a chance, then just return;
130 		 * don't run any other procs or panic below,
131 		 * in case this is the idle process and already asleep.
132 		 */
133 		s = splhigh();
134 		splx(safepri);
135 #ifdef MULTIPROCESSOR
136 		if (_kernel_lock_held()) {
137 			hold_count = __mp_release_all(&kernel_lock);
138 			__mp_acquire_count(&kernel_lock, hold_count);
139 		}
140 #endif
141 		splx(s);
142 		return (0);
143 	}
144 
145 	sleep_setup(&sls, ident, priority, wmesg);
146 	sleep_setup_timeout(&sls, timo);
147 	sleep_setup_signal(&sls, priority);
148 
149 	sleep_finish(&sls, 1);
150 	error1 = sleep_finish_timeout(&sls);
151 	error = sleep_finish_signal(&sls);
152 
153 	/* Signal errors are higher priority than timeouts. */
154 	if (error == 0 && error1 != 0)
155 		error = error1;
156 
157 	return (error);
158 }
159 
160 /*
161  * Same as tsleep, but if we have a mutex provided, then once we've
162  * entered the sleep queue we drop the mutex. After sleeping we re-lock.
163  */
164 int
165 msleep(const volatile void *ident, struct mutex *mtx, int priority,
166     const char *wmesg, int timo)
167 {
168 	struct sleep_state sls;
169 	int error, error1, spl;
170 #ifdef MULTIPROCESSOR
171 	int hold_count;
172 #endif
173 	WITNESS_SAVE_DECL(lock_fl);
174 
175 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
176 	KASSERT(mtx != NULL);
177 
178 	if (cold || panicstr) {
179 		/*
180 		 * After a panic, or during autoconfiguration,
181 		 * just give interrupts a chance, then just return;
182 		 * don't run any other procs or panic below,
183 		 * in case this is the idle process and already asleep.
184 		 */
185 		spl = MUTEX_OLDIPL(mtx);
186 		MUTEX_OLDIPL(mtx) = safepri;
187 		mtx_leave(mtx);
188 #ifdef MULTIPROCESSOR
189 		if (_kernel_lock_held()) {
190 			hold_count = __mp_release_all(&kernel_lock);
191 			__mp_acquire_count(&kernel_lock, hold_count);
192 		}
193 #endif
194 		if ((priority & PNORELOCK) == 0) {
195 			mtx_enter(mtx);
196 			MUTEX_OLDIPL(mtx) = spl;
197 		} else
198 			splx(spl);
199 		return (0);
200 	}
201 
202 	sleep_setup(&sls, ident, priority, wmesg);
203 	sleep_setup_timeout(&sls, timo);
204 	sleep_setup_signal(&sls, priority);
205 
206 	WITNESS_SAVE(MUTEX_LOCK_OBJECT(mtx), lock_fl);
207 
208 	/* XXX - We need to make sure that the mutex doesn't
209 	 * unblock splsched. This can be made a bit more
210 	 * correct when the sched_lock is a mutex.
211 	 */
212 	spl = MUTEX_OLDIPL(mtx);
213 	MUTEX_OLDIPL(mtx) = splsched();
214 	mtx_leave(mtx);
215 
216 	sleep_finish(&sls, 1);
217 	error1 = sleep_finish_timeout(&sls);
218 	error = sleep_finish_signal(&sls);
219 
220 	if ((priority & PNORELOCK) == 0) {
221 		mtx_enter(mtx);
222 		MUTEX_OLDIPL(mtx) = spl; /* put the ipl back */
223 		WITNESS_RESTORE(MUTEX_LOCK_OBJECT(mtx), lock_fl);
224 	} else
225 		splx(spl);
226 
227 	/* Signal errors are higher priority than timeouts. */
228 	if (error == 0 && error1 != 0)
229 		error = error1;
230 
231 	return (error);
232 }
233 
234 /*
235  * Same as tsleep, but if we have a rwlock provided, then once we've
236  * entered the sleep queue we drop the it. After sleeping we re-lock.
237  */
238 int
239 rwsleep(const volatile void *ident, struct rwlock *wl, int priority,
240     const char *wmesg, int timo)
241 {
242 	struct sleep_state sls;
243 	int error, error1;
244 	WITNESS_SAVE_DECL(lock_fl);
245 
246 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
247 	rw_assert_wrlock(wl);
248 
249 	sleep_setup(&sls, ident, priority, wmesg);
250 	sleep_setup_timeout(&sls, timo);
251 	sleep_setup_signal(&sls, priority);
252 
253 	WITNESS_SAVE(&wl->rwl_lock_obj, lock_fl);
254 
255 	rw_exit_write(wl);
256 
257 	sleep_finish(&sls, 1);
258 	error1 = sleep_finish_timeout(&sls);
259 	error = sleep_finish_signal(&sls);
260 
261 	if ((priority & PNORELOCK) == 0) {
262 		rw_enter_write(wl);
263 		WITNESS_RESTORE(&wl->rwl_lock_obj, lock_fl);
264 	}
265 
266 	/* Signal errors are higher priority than timeouts. */
267 	if (error == 0 && error1 != 0)
268 		error = error1;
269 
270 	return (error);
271 }
272 
273 void
274 sleep_setup(struct sleep_state *sls, const volatile void *ident, int prio,
275     const char *wmesg)
276 {
277 	struct proc *p = curproc;
278 
279 #ifdef DIAGNOSTIC
280 	if (p->p_flag & P_CANTSLEEP)
281 		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
282 	if (ident == NULL)
283 		panic("tsleep: no ident");
284 	if (p->p_stat != SONPROC)
285 		panic("tsleep: not SONPROC");
286 #endif
287 
288 	sls->sls_catch = 0;
289 	sls->sls_do_sleep = 1;
290 	sls->sls_sig = 1;
291 
292 	SCHED_LOCK(sls->sls_s);
293 
294 	p->p_wchan = ident;
295 	p->p_wmesg = wmesg;
296 	p->p_slptime = 0;
297 	p->p_priority = prio & PRIMASK;
298 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
299 }
300 
301 void
302 sleep_finish(struct sleep_state *sls, int do_sleep)
303 {
304 	struct proc *p = curproc;
305 
306 	if (sls->sls_do_sleep && do_sleep) {
307 		p->p_stat = SSLEEP;
308 		p->p_ru.ru_nvcsw++;
309 		SCHED_ASSERT_LOCKED();
310 		mi_switch();
311 	} else if (!do_sleep) {
312 		unsleep(p);
313 	}
314 
315 #ifdef DIAGNOSTIC
316 	if (p->p_stat != SONPROC)
317 		panic("sleep_finish !SONPROC");
318 #endif
319 
320 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
321 	SCHED_UNLOCK(sls->sls_s);
322 
323 	/*
324 	 * Even though this belongs to the signal handling part of sleep,
325 	 * we need to clear it before the ktrace.
326 	 */
327 	atomic_clearbits_int(&p->p_flag, P_SINTR);
328 }
329 
330 void
331 sleep_setup_timeout(struct sleep_state *sls, int timo)
332 {
333 	if (timo)
334 		timeout_add(&curproc->p_sleep_to, timo);
335 }
336 
337 int
338 sleep_finish_timeout(struct sleep_state *sls)
339 {
340 	struct proc *p = curproc;
341 
342 	if (p->p_flag & P_TIMEOUT) {
343 		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
344 		return (EWOULDBLOCK);
345 	} else
346 		timeout_del(&p->p_sleep_to);
347 
348 	return (0);
349 }
350 
351 void
352 sleep_setup_signal(struct sleep_state *sls, int prio)
353 {
354 	struct proc *p = curproc;
355 
356 	if ((sls->sls_catch = (prio & PCATCH)) == 0)
357 		return;
358 
359 	/*
360 	 * We put ourselves on the sleep queue and start our timeout
361 	 * before calling CURSIG, as we could stop there, and a wakeup
362 	 * or a SIGCONT (or both) could occur while we were stopped.
363 	 * A SIGCONT would cause us to be marked as SSLEEP
364 	 * without resuming us, thus we must be ready for sleep
365 	 * when CURSIG is called.  If the wakeup happens while we're
366 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
367 	 */
368 	atomic_setbits_int(&p->p_flag, P_SINTR);
369 	if (p->p_p->ps_single != NULL || (sls->sls_sig = CURSIG(p)) != 0) {
370 		if (p->p_wchan)
371 			unsleep(p);
372 		p->p_stat = SONPROC;
373 		sls->sls_do_sleep = 0;
374 	} else if (p->p_wchan == 0) {
375 		sls->sls_catch = 0;
376 		sls->sls_do_sleep = 0;
377 	}
378 }
379 
380 int
381 sleep_finish_signal(struct sleep_state *sls)
382 {
383 	struct proc *p = curproc;
384 	int error;
385 
386 	if (sls->sls_catch != 0) {
387 		if ((error = single_thread_check(p, 1)))
388 			return (error);
389 		if (sls->sls_sig != 0 || (sls->sls_sig = CURSIG(p)) != 0) {
390 			if (p->p_p->ps_sigacts->ps_sigintr &
391 			    sigmask(sls->sls_sig))
392 				return (EINTR);
393 			return (ERESTART);
394 		}
395 	}
396 
397 	return (0);
398 }
399 
400 /*
401  * Implement timeout for tsleep.
402  * If process hasn't been awakened (wchan non-zero),
403  * set timeout flag and undo the sleep.  If proc
404  * is stopped, just unsleep so it will remain stopped.
405  */
406 void
407 endtsleep(void *arg)
408 {
409 	struct proc *p = arg;
410 	int s;
411 
412 	SCHED_LOCK(s);
413 	if (p->p_wchan) {
414 		if (p->p_stat == SSLEEP)
415 			setrunnable(p);
416 		else
417 			unsleep(p);
418 		atomic_setbits_int(&p->p_flag, P_TIMEOUT);
419 	}
420 	SCHED_UNLOCK(s);
421 }
422 
423 /*
424  * Remove a process from its wait queue
425  */
426 void
427 unsleep(struct proc *p)
428 {
429 	SCHED_ASSERT_LOCKED();
430 
431 	if (p->p_wchan) {
432 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
433 		p->p_wchan = NULL;
434 	}
435 }
436 
437 /*
438  * Make a number of processes sleeping on the specified identifier runnable.
439  */
440 void
441 wakeup_n(const volatile void *ident, int n)
442 {
443 	struct slpque *qp;
444 	struct proc *p;
445 	struct proc *pnext;
446 	int s;
447 
448 	SCHED_LOCK(s);
449 	qp = &slpque[LOOKUP(ident)];
450 	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
451 		pnext = TAILQ_NEXT(p, p_runq);
452 #ifdef DIAGNOSTIC
453 		/*
454 		 * If the rwlock passed to rwsleep() is contended, the
455 		 * CPU will end up calling wakeup() between sleep_setup()
456 		 * and sleep_finish().
457 		 */
458 		if (p == curproc) {
459 			KASSERT(p->p_stat == SONPROC);
460 			continue;
461 		}
462 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
463 			panic("wakeup: p_stat is %d", (int)p->p_stat);
464 #endif
465 		if (p->p_wchan == ident) {
466 			--n;
467 			p->p_wchan = 0;
468 			TAILQ_REMOVE(qp, p, p_runq);
469 			if (p->p_stat == SSLEEP)
470 				setrunnable(p);
471 		}
472 	}
473 	SCHED_UNLOCK(s);
474 }
475 
476 /*
477  * Make all processes sleeping on the specified identifier runnable.
478  */
479 void
480 wakeup(const volatile void *chan)
481 {
482 	wakeup_n(chan, -1);
483 }
484 
485 int
486 sys_sched_yield(struct proc *p, void *v, register_t *retval)
487 {
488 	struct proc *q;
489 	int s;
490 
491 	SCHED_LOCK(s);
492 	/*
493 	 * If one of the threads of a multi-threaded process called
494 	 * sched_yield(2), drop its priority to ensure its siblings
495 	 * can make some progress.
496 	 */
497 	p->p_priority = p->p_usrpri;
498 	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
499 		p->p_priority = max(p->p_priority, q->p_priority);
500 	p->p_stat = SRUN;
501 	setrunqueue(p);
502 	p->p_ru.ru_nvcsw++;
503 	mi_switch();
504 	SCHED_UNLOCK(s);
505 
506 	return (0);
507 }
508 
509 int
510 thrsleep_unlock(void *lock)
511 {
512 	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
513 	_atomic_lock_t *atomiclock = lock;
514 
515 	if (!lock)
516 		return 0;
517 
518 	return copyout(&unlocked, atomiclock, sizeof(unlocked));
519 }
520 
521 static int globalsleepaddr;
522 
523 int
524 thrsleep(struct proc *p, struct sys___thrsleep_args *v)
525 {
526 	struct sys___thrsleep_args /* {
527 		syscallarg(const volatile void *) ident;
528 		syscallarg(clockid_t) clock_id;
529 		syscallarg(const struct timespec *) tp;
530 		syscallarg(void *) lock;
531 		syscallarg(const int *) abort;
532 	} */ *uap = v;
533 	long ident = (long)SCARG(uap, ident);
534 	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
535 	void *lock = SCARG(uap, lock);
536 	uint64_t to_ticks = 0;
537 	int abort, error;
538 	clockid_t clock_id = SCARG(uap, clock_id);
539 
540 	if (ident == 0)
541 		return (EINVAL);
542 	if (tsp != NULL) {
543 		struct timespec now;
544 
545 		if ((error = clock_gettime(p, clock_id, &now)))
546 			return (error);
547 #ifdef KTRACE
548 		if (KTRPOINT(p, KTR_STRUCT))
549 			ktrabstimespec(p, tsp);
550 #endif
551 
552 		if (timespeccmp(tsp, &now, <)) {
553 			/* already passed: still do the unlock */
554 			if ((error = thrsleep_unlock(lock)))
555 				return (error);
556 			return (EWOULDBLOCK);
557 		}
558 
559 		timespecsub(tsp, &now, tsp);
560 		to_ticks = (uint64_t)hz * tsp->tv_sec +
561 		    (tsp->tv_nsec + tick * 1000 - 1) / (tick * 1000) + 1;
562 		if (to_ticks > INT_MAX)
563 			to_ticks = INT_MAX;
564 	}
565 
566 	p->p_thrslpid = ident;
567 
568 	if ((error = thrsleep_unlock(lock)))
569 		goto out;
570 
571 	if (SCARG(uap, abort) != NULL) {
572 		if ((error = copyin(SCARG(uap, abort), &abort,
573 		    sizeof(abort))) != 0)
574 			goto out;
575 		if (abort) {
576 			error = EINTR;
577 			goto out;
578 		}
579 	}
580 
581 	if (p->p_thrslpid == 0)
582 		error = 0;
583 	else {
584 		void *sleepaddr = &p->p_thrslpid;
585 		if (ident == -1)
586 			sleepaddr = &globalsleepaddr;
587 		error = tsleep(sleepaddr, PUSER | PCATCH, "thrsleep",
588 		    (int)to_ticks);
589 	}
590 
591 out:
592 	p->p_thrslpid = 0;
593 
594 	if (error == ERESTART)
595 		error = ECANCELED;
596 
597 	return (error);
598 
599 }
600 
601 int
602 sys___thrsleep(struct proc *p, void *v, register_t *retval)
603 {
604 	struct sys___thrsleep_args /* {
605 		syscallarg(const volatile void *) ident;
606 		syscallarg(clockid_t) clock_id;
607 		syscallarg(struct timespec *) tp;
608 		syscallarg(void *) lock;
609 		syscallarg(const int *) abort;
610 	} */ *uap = v;
611 	struct timespec ts;
612 	int error;
613 
614 	if (SCARG(uap, tp) != NULL) {
615 		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
616 			*retval = error;
617 			return 0;
618 		}
619 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000) {
620 			*retval = EINVAL;
621 			return 0;
622 		}
623 		SCARG(uap, tp) = &ts;
624 	}
625 
626 	*retval = thrsleep(p, uap);
627 	return 0;
628 }
629 
630 int
631 sys___thrwakeup(struct proc *p, void *v, register_t *retval)
632 {
633 	struct sys___thrwakeup_args /* {
634 		syscallarg(const volatile void *) ident;
635 		syscallarg(int) n;
636 	} */ *uap = v;
637 	long ident = (long)SCARG(uap, ident);
638 	int n = SCARG(uap, n);
639 	struct proc *q;
640 	int found = 0;
641 
642 	if (ident == 0)
643 		*retval = EINVAL;
644 	else if (ident == -1)
645 		wakeup(&globalsleepaddr);
646 	else {
647 		TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) {
648 			if (q->p_thrslpid == ident) {
649 				wakeup_one(&q->p_thrslpid);
650 				q->p_thrslpid = 0;
651 				if (++found == n)
652 					break;
653 			}
654 		}
655 		*retval = found ? 0 : ESRCH;
656 	}
657 
658 	return (0);
659 }
660 
661 void
662 refcnt_init(struct refcnt *r)
663 {
664 	r->refs = 1;
665 }
666 
667 void
668 refcnt_take(struct refcnt *r)
669 {
670 #ifdef DIAGNOSTIC
671 	u_int refcnt;
672 
673 	refcnt = atomic_inc_int_nv(&r->refs);
674 	KASSERT(refcnt != 0);
675 #else
676 	atomic_inc_int(&r->refs);
677 #endif
678 }
679 
680 int
681 refcnt_rele(struct refcnt *r)
682 {
683 	u_int refcnt;
684 
685 	refcnt = atomic_dec_int_nv(&r->refs);
686 	KASSERT(refcnt != ~0);
687 
688 	return (refcnt == 0);
689 }
690 
691 void
692 refcnt_rele_wake(struct refcnt *r)
693 {
694 	if (refcnt_rele(r))
695 		wakeup_one(r);
696 }
697 
698 void
699 refcnt_finalize(struct refcnt *r, const char *wmesg)
700 {
701 	struct sleep_state sls;
702 	u_int refcnt;
703 
704 	refcnt = atomic_dec_int_nv(&r->refs);
705 	while (refcnt) {
706 		sleep_setup(&sls, r, PWAIT, wmesg);
707 		refcnt = r->refs;
708 		sleep_finish(&sls, refcnt);
709 	}
710 }
711 
712 void
713 cond_init(struct cond *c)
714 {
715 	c->c_wait = 1;
716 }
717 
718 void
719 cond_signal(struct cond *c)
720 {
721 	c->c_wait = 0;
722 
723 	wakeup_one(c);
724 }
725 
726 void
727 cond_wait(struct cond *c, const char *wmesg)
728 {
729 	struct sleep_state sls;
730 	int wait;
731 
732 	wait = c->c_wait;
733 	while (wait) {
734 		sleep_setup(&sls, c, PWAIT, wmesg);
735 		wait = c->c_wait;
736 		sleep_finish(&sls, wait);
737 	}
738 }
739