1 /* $OpenBSD: kern_synch.c,v 1.218 2025/01/22 16:14:22 claudio Exp $ */ 2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1990, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/signalvar.h> 45 #include <sys/sched.h> 46 #include <sys/timeout.h> 47 #include <sys/mount.h> 48 #include <sys/syscallargs.h> 49 #include <sys/refcnt.h> 50 #include <sys/atomic.h> 51 #include <sys/tracepoint.h> 52 53 #include <ddb/db_output.h> 54 55 #include <machine/spinlock.h> 56 57 #ifdef DIAGNOSTIC 58 #include <sys/syslog.h> 59 #endif 60 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 int sleep_signal_check(struct proc *, int); 66 67 extern void proc_stop(struct proc *p, int); 68 69 /* 70 * We're only looking at 7 bits of the address; everything is 71 * aligned to 4, lots of things are aligned to greater powers 72 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 73 */ 74 #define TABLESIZE 128 75 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1)) 76 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE]; 77 78 void 79 sleep_queue_init(void) 80 { 81 int i; 82 83 for (i = 0; i < TABLESIZE; i++) 84 TAILQ_INIT(&slpque[i]); 85 } 86 87 /* 88 * Global sleep channel for threads that do not want to 89 * receive wakeup(9) broadcasts. 90 */ 91 int nowake; 92 93 /* 94 * During autoconfiguration or after a panic, a sleep will simply 95 * lower the priority briefly to allow interrupts, then return. 96 * The priority to be used (safepri) is machine-dependent, thus this 97 * value is initialized and maintained in the machine-dependent layers. 98 * This priority will typically be 0, or the lowest priority 99 * that is safe for use on the interrupt stack; it can be made 100 * higher to block network software interrupts after panics. 101 */ 102 extern int safepri; 103 104 /* 105 * General sleep call. Suspends the current process until a wakeup is 106 * performed on the specified identifier. The process will then be made 107 * runnable with the specified priority. Sleeps at most timo/hz seconds 108 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 109 * before and after sleeping, else signals are not checked. Returns 0 if 110 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 111 * signal needs to be delivered, ERESTART is returned if the current system 112 * call should be restarted if possible, and EINTR is returned if the system 113 * call should be interrupted by the signal (return EINTR). 114 */ 115 int 116 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo) 117 { 118 #ifdef MULTIPROCESSOR 119 int hold_count; 120 #endif 121 122 KASSERT((priority & ~(PRIMASK | PCATCH)) == 0); 123 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 124 125 #ifdef MULTIPROCESSOR 126 KASSERT(ident == &nowake || timo || _kernel_lock_held()); 127 #endif 128 129 #ifdef DDB 130 if (cold == 2) 131 db_stack_dump(); 132 #endif 133 if (cold || panicstr) { 134 int s; 135 /* 136 * After a panic, or during autoconfiguration, 137 * just give interrupts a chance, then just return; 138 * don't run any other procs or panic below, 139 * in case this is the idle process and already asleep. 140 */ 141 s = splhigh(); 142 splx(safepri); 143 #ifdef MULTIPROCESSOR 144 if (_kernel_lock_held()) { 145 hold_count = __mp_release_all(&kernel_lock); 146 __mp_acquire_count(&kernel_lock, hold_count); 147 } 148 #endif 149 splx(s); 150 return (0); 151 } 152 153 sleep_setup(ident, priority, wmesg); 154 return sleep_finish(timo, 1); 155 } 156 157 int 158 tsleep_nsec(const volatile void *ident, int priority, const char *wmesg, 159 uint64_t nsecs) 160 { 161 uint64_t to_ticks; 162 163 if (nsecs == INFSLP) 164 return tsleep(ident, priority, wmesg, 0); 165 #ifdef DIAGNOSTIC 166 if (nsecs == 0) { 167 log(LOG_WARNING, 168 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 169 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 170 wmesg); 171 } 172 #endif 173 /* 174 * We want to sleep at least nsecs nanoseconds worth of ticks. 175 * 176 * - Clamp nsecs to prevent arithmetic overflow. 177 * 178 * - Round nsecs up to account for any nanoseconds that do not 179 * divide evenly into tick_nsec, otherwise we'll lose them to 180 * integer division in the next step. We add (tick_nsec - 1) 181 * to keep from introducing a spurious tick if there are no 182 * such nanoseconds, i.e. nsecs % tick_nsec == 0. 183 * 184 * - Divide the rounded value to a count of ticks. We divide 185 * by (tick_nsec + 1) to discard the extra tick introduced if, 186 * before rounding, nsecs % tick_nsec == 1. 187 * 188 * - Finally, add a tick to the result. We need to wait out 189 * the current tick before we can begin counting our interval, 190 * as we do not know how much time has elapsed since the 191 * current tick began. 192 */ 193 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 194 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 195 if (to_ticks > INT_MAX) 196 to_ticks = INT_MAX; 197 return tsleep(ident, priority, wmesg, (int)to_ticks); 198 } 199 200 /* 201 * Same as tsleep, but if we have a mutex provided, then once we've 202 * entered the sleep queue we drop the mutex. After sleeping we re-lock. 203 */ 204 int 205 msleep(const volatile void *ident, struct mutex *mtx, int priority, 206 const char *wmesg, int timo) 207 { 208 int error, spl; 209 #ifdef MULTIPROCESSOR 210 int hold_count; 211 #endif 212 213 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 214 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 215 KASSERT(mtx != NULL); 216 217 #ifdef DDB 218 if (cold == 2) 219 db_stack_dump(); 220 #endif 221 if (cold || panicstr) { 222 /* 223 * After a panic, or during autoconfiguration, 224 * just give interrupts a chance, then just return; 225 * don't run any other procs or panic below, 226 * in case this is the idle process and already asleep. 227 */ 228 spl = MUTEX_OLDIPL(mtx); 229 MUTEX_OLDIPL(mtx) = safepri; 230 mtx_leave(mtx); 231 #ifdef MULTIPROCESSOR 232 if (_kernel_lock_held()) { 233 hold_count = __mp_release_all(&kernel_lock); 234 __mp_acquire_count(&kernel_lock, hold_count); 235 } 236 #endif 237 if ((priority & PNORELOCK) == 0) { 238 mtx_enter(mtx); 239 MUTEX_OLDIPL(mtx) = spl; 240 } else 241 splx(spl); 242 return (0); 243 } 244 245 sleep_setup(ident, priority, wmesg); 246 247 mtx_leave(mtx); 248 /* signal may stop the process, release mutex before that */ 249 error = sleep_finish(timo, 1); 250 251 if ((priority & PNORELOCK) == 0) 252 mtx_enter(mtx); 253 254 return error; 255 } 256 257 int 258 msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority, 259 const char *wmesg, uint64_t nsecs) 260 { 261 uint64_t to_ticks; 262 263 if (nsecs == INFSLP) 264 return msleep(ident, mtx, priority, wmesg, 0); 265 #ifdef DIAGNOSTIC 266 if (nsecs == 0) { 267 log(LOG_WARNING, 268 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 269 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 270 wmesg); 271 } 272 #endif 273 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 274 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 275 if (to_ticks > INT_MAX) 276 to_ticks = INT_MAX; 277 return msleep(ident, mtx, priority, wmesg, (int)to_ticks); 278 } 279 280 /* 281 * Same as tsleep, but if we have a rwlock provided, then once we've 282 * entered the sleep queue we drop the it. After sleeping we re-lock. 283 */ 284 int 285 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority, 286 const char *wmesg, int timo) 287 { 288 int error, status; 289 290 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 291 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 292 KASSERT(ident != rwl); 293 rw_assert_anylock(rwl); 294 status = rw_status(rwl); 295 296 sleep_setup(ident, priority, wmesg); 297 298 rw_exit(rwl); 299 /* signal may stop the process, release rwlock before that */ 300 error = sleep_finish(timo, 1); 301 302 if ((priority & PNORELOCK) == 0) 303 rw_enter(rwl, status); 304 305 return error; 306 } 307 308 int 309 rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority, 310 const char *wmesg, uint64_t nsecs) 311 { 312 uint64_t to_ticks; 313 314 if (nsecs == INFSLP) 315 return rwsleep(ident, rwl, priority, wmesg, 0); 316 #ifdef DIAGNOSTIC 317 if (nsecs == 0) { 318 log(LOG_WARNING, 319 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 320 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 321 wmesg); 322 } 323 #endif 324 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 325 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 326 if (to_ticks > INT_MAX) 327 to_ticks = INT_MAX; 328 return rwsleep(ident, rwl, priority, wmesg, (int)to_ticks); 329 } 330 331 void 332 sleep_setup(const volatile void *ident, int prio, const char *wmesg) 333 { 334 struct proc *p = curproc; 335 336 #ifdef DIAGNOSTIC 337 if (p->p_flag & P_CANTSLEEP) 338 panic("sleep: %s failed insomnia", p->p_p->ps_comm); 339 if (ident == NULL) 340 panic("sleep: no ident"); 341 if (p->p_stat != SONPROC) 342 panic("sleep: not SONPROC but %d", p->p_stat); 343 #endif 344 /* exiting processes are not allowed to catch signals */ 345 if (p->p_flag & P_WEXIT) 346 CLR(prio, PCATCH); 347 348 SCHED_LOCK(); 349 350 TRACEPOINT(sched, sleep, NULL); 351 352 p->p_wchan = ident; 353 p->p_wmesg = wmesg; 354 p->p_slptime = 0; 355 p->p_slppri = prio & PRIMASK; 356 atomic_setbits_int(&p->p_flag, P_WSLEEP); 357 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq); 358 if (prio & PCATCH) 359 atomic_setbits_int(&p->p_flag, P_SINTR); 360 p->p_stat = SSLEEP; 361 362 SCHED_UNLOCK(); 363 } 364 365 int 366 sleep_finish(int timo, int do_sleep) 367 { 368 struct proc *p = curproc; 369 int catch, error = 0, error1 = 0; 370 371 catch = p->p_flag & P_SINTR; 372 373 if (timo != 0) { 374 KASSERT((p->p_flag & P_TIMEOUT) == 0); 375 timeout_add(&p->p_sleep_to, timo); 376 } 377 378 if (catch != 0) { 379 if ((error = sleep_signal_check(p, 0)) != 0) { 380 catch = 0; 381 do_sleep = 0; 382 } 383 } 384 385 SCHED_LOCK(); 386 /* 387 * A few checks need to happen before going to sleep: 388 * - If the wakeup happens while going to sleep, p->p_wchan 389 * will be NULL. In that case unwind immediately but still 390 * check for possible signals and timeouts. 391 * - If the sleep is aborted call unsleep and take us of the 392 * sleep queue. 393 * - If requested to stop force a switch even if the sleep 394 * condition got cleared. 395 */ 396 if (p->p_wchan == NULL) 397 do_sleep = 0; 398 if (do_sleep == 0) 399 unsleep(p); 400 if (p->p_stat == SSTOP) 401 do_sleep = 1; 402 atomic_clearbits_int(&p->p_flag, P_WSLEEP); 403 404 if (do_sleep) { 405 KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP); 406 p->p_ru.ru_nvcsw++; 407 mi_switch(); 408 } else { 409 KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP); 410 p->p_stat = SONPROC; 411 } 412 413 #ifdef DIAGNOSTIC 414 if (p->p_stat != SONPROC) 415 panic("sleep_finish !SONPROC"); 416 #endif 417 418 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri; 419 SCHED_UNLOCK(); 420 421 /* 422 * Even though this belongs to the signal handling part of sleep, 423 * we need to clear it before the ktrace. 424 */ 425 atomic_clearbits_int(&p->p_flag, P_SINTR); 426 427 if (timo != 0) { 428 if (p->p_flag & P_TIMEOUT) { 429 error1 = EWOULDBLOCK; 430 } else { 431 /* This can sleep. It must not use timeouts. */ 432 timeout_del_barrier(&p->p_sleep_to); 433 } 434 atomic_clearbits_int(&p->p_flag, P_TIMEOUT); 435 } 436 437 /* 438 * Check if thread was woken up because of a unwind or signal 439 * but ignore any pending stop condition. 440 */ 441 if (catch != 0) 442 error = sleep_signal_check(p, 1); 443 444 /* Signal errors are higher priority than timeouts. */ 445 if (error == 0 && error1 != 0) 446 error = error1; 447 448 return error; 449 } 450 451 /* 452 * Check and handle signals and suspensions around a sleep cycle. 453 * The 2nd call in sleep_finish() sets after_sleep = 1. In this case 454 * any pending suspend event came in after the wakeup / unsleep and 455 * can therefor be ignored. Once the process hits userret the event 456 * will be picked up again. 457 */ 458 int 459 sleep_signal_check(struct proc *p, int after_sleep) 460 { 461 struct sigctx ctx; 462 int err, sig; 463 464 if ((err = single_thread_check(p, 1)) != 0) { 465 if (err != EWOULDBLOCK) 466 return err; 467 468 /* requested to stop */ 469 if (!after_sleep) { 470 mtx_enter(&p->p_p->ps_mtx); 471 if (--p->p_p->ps_singlecnt == 0) 472 wakeup(&p->p_p->ps_singlecnt); 473 mtx_leave(&p->p_p->ps_mtx); 474 475 SCHED_LOCK(); 476 p->p_stat = SSTOP; 477 SCHED_UNLOCK(); 478 } 479 } 480 481 if ((sig = cursig(p, &ctx, 1)) != 0) { 482 if (ctx.sig_stop) { 483 if (!after_sleep) { 484 p->p_p->ps_xsig = sig; 485 SCHED_LOCK(); 486 proc_stop(p, 0); 487 SCHED_UNLOCK(); 488 } 489 } else if (ctx.sig_intr && !ctx.sig_ignore) 490 return EINTR; 491 else 492 return ERESTART; 493 } 494 495 return 0; 496 } 497 498 int 499 wakeup_proc(struct proc *p, int flags) 500 { 501 int awakened = 0; 502 503 SCHED_ASSERT_LOCKED(); 504 505 if (p->p_wchan != NULL) { 506 awakened = 1; 507 if (flags) 508 atomic_setbits_int(&p->p_flag, flags); 509 #ifdef DIAGNOSTIC 510 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 511 panic("thread %d p_stat is %d", p->p_tid, p->p_stat); 512 #endif 513 unsleep(p); 514 if (p->p_stat == SSLEEP) 515 setrunnable(p); 516 } 517 518 return awakened; 519 } 520 521 522 /* 523 * Implement timeout for tsleep. 524 * If process hasn't been awakened (wchan non-zero), 525 * set timeout flag and undo the sleep. If proc 526 * is stopped, just unsleep so it will remain stopped. 527 */ 528 void 529 endtsleep(void *arg) 530 { 531 struct proc *p = arg; 532 533 SCHED_LOCK(); 534 wakeup_proc(p, P_TIMEOUT); 535 SCHED_UNLOCK(); 536 } 537 538 /* 539 * Remove a process from its wait queue 540 */ 541 void 542 unsleep(struct proc *p) 543 { 544 SCHED_ASSERT_LOCKED(); 545 546 if (p->p_wchan != NULL) { 547 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq); 548 p->p_wchan = NULL; 549 p->p_wmesg = NULL; 550 TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET, 551 p->p_p->ps_pid); 552 } 553 } 554 555 /* 556 * Make a number of processes sleeping on the specified identifier runnable. 557 */ 558 void 559 wakeup_n(const volatile void *ident, int n) 560 { 561 struct slpque *qp, wakeq; 562 struct proc *p; 563 struct proc *pnext; 564 565 TAILQ_INIT(&wakeq); 566 567 SCHED_LOCK(); 568 qp = &slpque[LOOKUP(ident)]; 569 for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) { 570 pnext = TAILQ_NEXT(p, p_runq); 571 #ifdef DIAGNOSTIC 572 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 573 panic("thread %d p_stat is %d", p->p_tid, p->p_stat); 574 #endif 575 KASSERT(p->p_wchan != NULL); 576 if (p->p_wchan == ident) { 577 TAILQ_REMOVE(qp, p, p_runq); 578 p->p_wchan = NULL; 579 p->p_wmesg = NULL; 580 TAILQ_INSERT_TAIL(&wakeq, p, p_runq); 581 --n; 582 } 583 } 584 while ((p = TAILQ_FIRST(&wakeq))) { 585 TAILQ_REMOVE(&wakeq, p, p_runq); 586 TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET, 587 p->p_p->ps_pid); 588 if (p->p_stat == SSLEEP) 589 setrunnable(p); 590 } 591 SCHED_UNLOCK(); 592 } 593 594 /* 595 * Make all processes sleeping on the specified identifier runnable. 596 */ 597 void 598 wakeup(const volatile void *chan) 599 { 600 wakeup_n(chan, -1); 601 } 602 603 int 604 sys_sched_yield(struct proc *p, void *v, register_t *retval) 605 { 606 struct proc *q; 607 uint8_t newprio; 608 609 /* 610 * If one of the threads of a multi-threaded process called 611 * sched_yield(2), drop its priority to ensure its siblings 612 * can make some progress. 613 */ 614 mtx_enter(&p->p_p->ps_mtx); 615 newprio = p->p_usrpri; 616 TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) 617 newprio = max(newprio, q->p_runpri); 618 mtx_leave(&p->p_p->ps_mtx); 619 620 SCHED_LOCK(); 621 setrunqueue(p->p_cpu, p, newprio); 622 p->p_ru.ru_nvcsw++; 623 mi_switch(); 624 SCHED_UNLOCK(); 625 626 return (0); 627 } 628 629 static inline int 630 thrsleep_unlock(_atomic_lock_t *atomiclock) 631 { 632 static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED; 633 634 if (atomiclock == NULL) 635 return 0; 636 637 return copyout(&unlocked, atomiclock, sizeof(unlocked)); 638 } 639 640 struct tslpentry { 641 TAILQ_ENTRY(tslpentry) tslp_link; 642 struct process *tslp_ps; 643 long tslp_ident; 644 struct proc *volatile tslp_p; 645 }; 646 647 struct tslp_bucket { 648 struct tslpqueue tsb_list; 649 struct mutex tsb_lock; 650 } __aligned(64); 651 652 /* thrsleep queue shared between processes */ 653 static struct tslp_bucket tsb_shared; 654 655 #define TSLP_BUCKET_BITS 6 656 #define TSLP_BUCKET_SIZE (1UL << TSLP_BUCKET_BITS) 657 #define TSLP_BUCKET_MASK (TSLP_BUCKET_SIZE - 1) 658 659 static struct tslp_bucket tsb_buckets[TSLP_BUCKET_SIZE]; 660 661 void 662 tslp_init(void) 663 { 664 struct tslp_bucket *tsb; 665 size_t i; 666 667 TAILQ_INIT(&tsb_shared.tsb_list); 668 mtx_init(&tsb_shared.tsb_lock, IPL_MPFLOOR); 669 670 for (i = 0; i < nitems(tsb_buckets); i++) { 671 tsb = &tsb_buckets[i]; 672 673 TAILQ_INIT(&tsb->tsb_list); 674 mtx_init(&tsb->tsb_lock, IPL_MPFLOOR); 675 } 676 } 677 678 static struct tslp_bucket * 679 thrsleep_bucket(long ident) 680 { 681 ident >>= 3; 682 ident ^= ident >> TSLP_BUCKET_BITS; 683 ident &= TSLP_BUCKET_MASK; 684 685 return &tsb_buckets[ident]; 686 } 687 688 static int 689 thrsleep(struct proc *p, struct sys___thrsleep_args *v) 690 { 691 struct sys___thrsleep_args /* { 692 syscallarg(const volatile void *) ident; 693 syscallarg(clockid_t) clock_id; 694 syscallarg(const struct timespec *) tp; 695 syscallarg(void *) lock; 696 syscallarg(const int *) abort; 697 } */ *uap = v; 698 long ident = (long)SCARG(uap, ident); 699 struct tslpentry entry; 700 struct tslp_bucket *tsb; 701 struct timespec *tsp = (struct timespec *)SCARG(uap, tp); 702 void *lock = SCARG(uap, lock); 703 const uint32_t *abortp = SCARG(uap, abort); 704 clockid_t clock_id = SCARG(uap, clock_id); 705 uint64_t to_ticks = 0; 706 int error = 0; 707 708 if (ident == 0) 709 return (EINVAL); 710 if (tsp != NULL) { 711 struct timespec now; 712 uint64_t nsecs; 713 714 if ((error = clock_gettime(p, clock_id, &now))) 715 return (error); 716 #ifdef KTRACE 717 if (KTRPOINT(p, KTR_STRUCT)) 718 ktrabstimespec(p, tsp); 719 #endif 720 721 if (timespeccmp(tsp, &now, <=)) { 722 /* already passed: still do the unlock */ 723 if ((error = thrsleep_unlock(lock))) 724 return (error); 725 return (EWOULDBLOCK); 726 } 727 728 timespecsub(tsp, &now, tsp); 729 nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP); 730 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 731 if (to_ticks > INT_MAX) 732 to_ticks = INT_MAX; 733 } 734 735 tsb = (ident == -1) ? &tsb_shared : thrsleep_bucket(ident); 736 737 /* Interlock with wakeup. */ 738 entry.tslp_ps = p->p_p; 739 entry.tslp_ident = ident; 740 entry.tslp_p = p; 741 742 mtx_enter(&tsb->tsb_lock); 743 TAILQ_INSERT_TAIL(&tsb->tsb_list, &entry, tslp_link); 744 mtx_leave(&tsb->tsb_lock); 745 746 error = thrsleep_unlock(lock); 747 if (error != 0) 748 goto leave; 749 750 if (abortp != NULL) { 751 uint32_t abort; 752 error = copyin32(abortp, &abort); 753 if (error != 0) 754 goto leave; 755 if (abort) { 756 error = EINTR; 757 goto leave; 758 } 759 } 760 761 sleep_setup(&entry, PWAIT|PCATCH, "thrsleep"); 762 error = sleep_finish(to_ticks, entry.tslp_p != NULL); 763 if (error != 0 || entry.tslp_p != NULL) { 764 mtx_enter(&tsb->tsb_lock); 765 if (entry.tslp_p != NULL) 766 TAILQ_REMOVE(&tsb->tsb_list, &entry, tslp_link); 767 else 768 error = 0; 769 mtx_leave(&tsb->tsb_lock); 770 771 if (error == ERESTART) 772 error = ECANCELED; 773 } 774 775 return (error); 776 777 leave: 778 if (entry.tslp_p != NULL) { 779 mtx_enter(&tsb->tsb_lock); 780 if (entry.tslp_p != NULL) 781 TAILQ_REMOVE(&tsb->tsb_list, &entry, tslp_link); 782 mtx_leave(&tsb->tsb_lock); 783 } 784 785 return (error); 786 } 787 788 int 789 sys___thrsleep(struct proc *p, void *v, register_t *retval) 790 { 791 struct sys___thrsleep_args /* { 792 syscallarg(const volatile void *) ident; 793 syscallarg(clockid_t) clock_id; 794 syscallarg(struct timespec *) tp; 795 syscallarg(void *) lock; 796 syscallarg(const int *) abort; 797 } */ *uap = v; 798 struct timespec ts; 799 int error; 800 801 if (SCARG(uap, tp) != NULL) { 802 if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) { 803 *retval = error; 804 return 0; 805 } 806 if (!timespecisvalid(&ts)) { 807 *retval = EINVAL; 808 return 0; 809 } 810 SCARG(uap, tp) = &ts; 811 } 812 813 *retval = thrsleep(p, uap); 814 return 0; 815 } 816 817 static void 818 tslp_wakeups(struct tslpqueue *tslpq) 819 { 820 struct tslpentry *entry, *nentry; 821 struct proc *p; 822 823 SCHED_LOCK(); 824 TAILQ_FOREACH_SAFE(entry, tslpq, tslp_link, nentry) { 825 p = entry->tslp_p; 826 entry->tslp_p = NULL; 827 wakeup_proc(p, 0); 828 } 829 SCHED_UNLOCK(); 830 } 831 832 int 833 sys___thrwakeup(struct proc *p, void *v, register_t *retval) 834 { 835 struct sys___thrwakeup_args /* { 836 syscallarg(const volatile void *) ident; 837 syscallarg(int) n; 838 } */ *uap = v; 839 struct tslpentry *entry, *nentry; 840 struct tslp_bucket *tsb; 841 long ident = (long)SCARG(uap, ident); 842 int n = SCARG(uap, n); 843 int found = 0; 844 struct tslpqueue wq = TAILQ_HEAD_INITIALIZER(wq); 845 846 if (ident == 0) { 847 *retval = EINVAL; 848 return (0); 849 } 850 851 if (ident == -1) { 852 /* 853 * Wake up all waiters with ident -1. This is needed 854 * because ident -1 can be shared by multiple userspace 855 * lock state machines concurrently. The implementation 856 * has no way to direct the wakeup to a particular 857 * state machine. 858 */ 859 mtx_enter(&tsb_shared.tsb_lock); 860 tslp_wakeups(&tsb_shared.tsb_list); 861 TAILQ_INIT(&tsb_shared.tsb_list); 862 mtx_leave(&tsb_shared.tsb_lock); 863 864 *retval = 0; 865 return (0); 866 } 867 868 tsb = thrsleep_bucket(ident); 869 870 mtx_enter(&tsb->tsb_lock); 871 TAILQ_FOREACH_SAFE(entry, &tsb->tsb_list, tslp_link, nentry) { 872 if (entry->tslp_ident == ident && entry->tslp_ps == p->p_p) { 873 TAILQ_REMOVE(&tsb->tsb_list, entry, tslp_link); 874 TAILQ_INSERT_TAIL(&wq, entry, tslp_link); 875 876 if (++found == n) 877 break; 878 } 879 } 880 881 if (found) 882 tslp_wakeups(&wq); 883 mtx_leave(&tsb->tsb_lock); 884 885 *retval = found ? 0 : ESRCH; 886 return (0); 887 } 888 889 void 890 refcnt_init(struct refcnt *r) 891 { 892 refcnt_init_trace(r, 0); 893 } 894 895 void 896 refcnt_init_trace(struct refcnt *r, int idx) 897 { 898 r->r_traceidx = idx; 899 atomic_store_int(&r->r_refs, 1); 900 TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1); 901 } 902 903 void 904 refcnt_take(struct refcnt *r) 905 { 906 u_int refs; 907 908 refs = atomic_inc_int_nv(&r->r_refs); 909 KASSERT(refs != 0); 910 TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1); 911 (void)refs; 912 } 913 914 int 915 refcnt_rele(struct refcnt *r) 916 { 917 u_int refs; 918 919 membar_exit_before_atomic(); 920 refs = atomic_dec_int_nv(&r->r_refs); 921 KASSERT(refs != ~0); 922 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1); 923 if (refs == 0) { 924 membar_enter_after_atomic(); 925 return (1); 926 } 927 return (0); 928 } 929 930 void 931 refcnt_rele_wake(struct refcnt *r) 932 { 933 if (refcnt_rele(r)) 934 wakeup_one(r); 935 } 936 937 void 938 refcnt_finalize(struct refcnt *r, const char *wmesg) 939 { 940 u_int refs; 941 942 membar_exit_before_atomic(); 943 refs = atomic_dec_int_nv(&r->r_refs); 944 KASSERT(refs != ~0); 945 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1); 946 while (refs) { 947 sleep_setup(r, PWAIT, wmesg); 948 refs = atomic_load_int(&r->r_refs); 949 sleep_finish(0, refs); 950 } 951 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 952 /* Order subsequent loads and stores after refs == 0 load. */ 953 membar_sync(); 954 } 955 956 int 957 refcnt_shared(struct refcnt *r) 958 { 959 u_int refs; 960 961 refs = atomic_load_int(&r->r_refs); 962 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 963 return (refs > 1); 964 } 965 966 unsigned int 967 refcnt_read(struct refcnt *r) 968 { 969 u_int refs; 970 971 refs = atomic_load_int(&r->r_refs); 972 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 973 return (refs); 974 } 975 976 void 977 cond_init(struct cond *c) 978 { 979 atomic_store_int(&c->c_wait, 1); 980 } 981 982 void 983 cond_signal(struct cond *c) 984 { 985 atomic_store_int(&c->c_wait, 0); 986 987 wakeup_one(c); 988 } 989 990 void 991 cond_wait(struct cond *c, const char *wmesg) 992 { 993 unsigned int wait; 994 995 wait = atomic_load_int(&c->c_wait); 996 while (wait) { 997 sleep_setup(c, PWAIT, wmesg); 998 wait = atomic_load_int(&c->c_wait); 999 sleep_finish(0, wait); 1000 } 1001 } 1002