1 /* $OpenBSD: kern_sched.c,v 1.103 2024/11/24 13:05:14 claudio Exp $ */ 2 /* 3 * Copyright (c) 2007, 2008 Artur Grabowski <art@openbsd.org> 4 * 5 * Permission to use, copy, modify, and distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <sys/param.h> 19 20 #include <sys/sched.h> 21 #include <sys/proc.h> 22 #include <sys/kthread.h> 23 #include <sys/systm.h> 24 #include <sys/clockintr.h> 25 #include <sys/resourcevar.h> 26 #include <sys/task.h> 27 #include <sys/time.h> 28 #include <sys/smr.h> 29 #include <sys/tracepoint.h> 30 31 #include <uvm/uvm_extern.h> 32 33 void sched_kthreads_create(void *); 34 35 int sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p); 36 struct proc *sched_steal_proc(struct cpu_info *); 37 38 /* 39 * To help choosing which cpu should run which process we keep track 40 * of cpus which are currently idle and which cpus have processes 41 * queued. 42 */ 43 struct cpuset sched_idle_cpus; 44 struct cpuset sched_queued_cpus; 45 struct cpuset sched_all_cpus; 46 47 /* 48 * Some general scheduler counters. 49 */ 50 uint64_t sched_nmigrations; /* Cpu migration counter */ 51 uint64_t sched_nomigrations; /* Cpu no migration counter */ 52 uint64_t sched_noidle; /* Times we didn't pick the idle task */ 53 uint64_t sched_stolen; /* Times we stole proc from other cpus */ 54 uint64_t sched_choose; /* Times we chose a cpu */ 55 uint64_t sched_wasidle; /* Times we came out of idle */ 56 57 int sched_smt; 58 59 /* 60 * A few notes about cpu_switchto that is implemented in MD code. 61 * 62 * cpu_switchto takes two arguments, the old proc and the proc 63 * it should switch to. The new proc will never be NULL, so we always have 64 * a saved state that we need to switch to. The old proc however can 65 * be NULL if the process is exiting. NULL for the old proc simply 66 * means "don't bother saving old state". 67 * 68 * cpu_switchto is supposed to atomically load the new state of the process 69 * including the pcb, pmap and setting curproc, the p_cpu pointer in the 70 * proc and p_stat to SONPROC. Atomically with respect to interrupts, other 71 * cpus in the system must not depend on this state being consistent. 72 * Therefore no locking is necessary in cpu_switchto other than blocking 73 * interrupts during the context switch. 74 */ 75 76 /* 77 * sched_init_cpu is called from main() for the boot cpu, then it's the 78 * responsibility of the MD code to call it for all other cpus. 79 */ 80 void 81 sched_init_cpu(struct cpu_info *ci) 82 { 83 struct schedstate_percpu *spc = &ci->ci_schedstate; 84 int i; 85 86 for (i = 0; i < SCHED_NQS; i++) 87 TAILQ_INIT(&spc->spc_qs[i]); 88 89 spc->spc_idleproc = NULL; 90 91 clockintr_bind(&spc->spc_itimer, ci, itimer_update, NULL); 92 clockintr_bind(&spc->spc_profclock, ci, profclock, NULL); 93 clockintr_bind(&spc->spc_roundrobin, ci, roundrobin, NULL); 94 clockintr_bind(&spc->spc_statclock, ci, statclock, NULL); 95 96 kthread_create_deferred(sched_kthreads_create, ci); 97 98 LIST_INIT(&spc->spc_deadproc); 99 SIMPLEQ_INIT(&spc->spc_deferred); 100 101 /* 102 * Slight hack here until the cpuset code handles cpu_info 103 * structures. 104 */ 105 cpuset_init_cpu(ci); 106 107 #ifdef __HAVE_CPU_TOPOLOGY 108 if (!sched_smt && ci->ci_smt_id > 0) 109 return; 110 #endif 111 cpuset_add(&sched_all_cpus, ci); 112 } 113 114 void 115 sched_kthreads_create(void *v) 116 { 117 struct cpu_info *ci = v; 118 struct schedstate_percpu *spc = &ci->ci_schedstate; 119 static int num; 120 121 if (fork1(&proc0, FORK_SHAREVM|FORK_SHAREFILES|FORK_NOZOMBIE| 122 FORK_SYSTEM|FORK_IDLE, sched_idle, ci, NULL, 123 &spc->spc_idleproc)) 124 panic("fork idle"); 125 126 /* Name it as specified. */ 127 snprintf(spc->spc_idleproc->p_p->ps_comm, 128 sizeof(spc->spc_idleproc->p_p->ps_comm), 129 "idle%d", num); 130 131 num++; 132 } 133 134 void 135 sched_idle(void *v) 136 { 137 struct schedstate_percpu *spc; 138 struct proc *p = curproc; 139 struct cpu_info *ci = v; 140 141 KERNEL_UNLOCK(); 142 143 spc = &ci->ci_schedstate; 144 145 /* 146 * First time we enter here, we're not supposed to idle, 147 * just go away for a while. 148 */ 149 SCHED_LOCK(); 150 cpuset_add(&sched_idle_cpus, ci); 151 p->p_stat = SSLEEP; 152 p->p_cpu = ci; 153 atomic_setbits_int(&p->p_flag, P_CPUPEG); 154 mi_switch(); 155 cpuset_del(&sched_idle_cpus, ci); 156 SCHED_UNLOCK(); 157 158 KASSERT(ci == curcpu()); 159 KASSERT(curproc == spc->spc_idleproc); 160 161 while (1) { 162 while (!cpu_is_idle(curcpu())) { 163 struct proc *dead; 164 165 SCHED_LOCK(); 166 p->p_stat = SSLEEP; 167 mi_switch(); 168 SCHED_UNLOCK(); 169 170 while ((dead = LIST_FIRST(&spc->spc_deadproc))) { 171 LIST_REMOVE(dead, p_hash); 172 exit2(dead); 173 } 174 } 175 176 splassert(IPL_NONE); 177 178 smr_idle(); 179 180 cpuset_add(&sched_idle_cpus, ci); 181 cpu_idle_enter(); 182 while (spc->spc_whichqs == 0) { 183 #ifdef MULTIPROCESSOR 184 if (spc->spc_schedflags & SPCF_SHOULDHALT && 185 (spc->spc_schedflags & SPCF_HALTED) == 0) { 186 cpuset_del(&sched_idle_cpus, ci); 187 SCHED_LOCK(); 188 atomic_setbits_int(&spc->spc_schedflags, 189 spc->spc_whichqs ? 0 : SPCF_HALTED); 190 SCHED_UNLOCK(); 191 wakeup(spc); 192 } 193 #endif 194 cpu_idle_cycle(); 195 } 196 cpu_idle_leave(); 197 cpuset_del(&sched_idle_cpus, ci); 198 } 199 } 200 201 /* 202 * To free our address space we have to jump through a few hoops. 203 * The freeing is done by the reaper, but until we have one reaper 204 * per cpu, we have no way of putting this proc on the deadproc list 205 * and waking up the reaper without risking having our address space and 206 * stack torn from under us before we manage to switch to another proc. 207 * Therefore we have a per-cpu list of dead processes where we put this 208 * proc and have idle clean up that list and move it to the reaper list. 209 * All this will be unnecessary once we can bind the reaper this cpu 210 * and not risk having it switch to another in case it sleeps. 211 */ 212 void 213 sched_exit(struct proc *p) 214 { 215 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 216 217 LIST_INSERT_HEAD(&spc->spc_deadproc, p, p_hash); 218 219 tuagg_add_runtime(); 220 221 KERNEL_ASSERT_LOCKED(); 222 sched_toidle(); 223 } 224 225 void 226 sched_toidle(void) 227 { 228 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 229 struct proc *idle; 230 231 #ifdef MULTIPROCESSOR 232 /* This process no longer needs to hold the kernel lock. */ 233 if (_kernel_lock_held()) 234 __mp_release_all(&kernel_lock); 235 #endif 236 237 if (ISSET(spc->spc_schedflags, SPCF_ITIMER)) { 238 atomic_clearbits_int(&spc->spc_schedflags, SPCF_ITIMER); 239 clockintr_cancel(&spc->spc_itimer); 240 } 241 if (ISSET(spc->spc_schedflags, SPCF_PROFCLOCK)) { 242 atomic_clearbits_int(&spc->spc_schedflags, SPCF_PROFCLOCK); 243 clockintr_cancel(&spc->spc_profclock); 244 } 245 246 atomic_clearbits_int(&spc->spc_schedflags, SPCF_SWITCHCLEAR); 247 248 SCHED_LOCK(); 249 idle = spc->spc_idleproc; 250 idle->p_stat = SRUN; 251 252 uvmexp.swtch++; 253 if (curproc != NULL) 254 TRACEPOINT(sched, off__cpu, idle->p_tid + THREAD_PID_OFFSET, 255 idle->p_p->ps_pid); 256 cpu_switchto(NULL, idle); 257 panic("cpu_switchto returned"); 258 } 259 260 /* 261 * Run queue management. 262 */ 263 void 264 sched_init_runqueues(void) 265 { 266 } 267 268 void 269 setrunqueue(struct cpu_info *ci, struct proc *p, uint8_t prio) 270 { 271 struct schedstate_percpu *spc; 272 int queue = prio >> 2; 273 274 if (ci == NULL) 275 ci = sched_choosecpu(p); 276 277 KASSERT(ci != NULL); 278 SCHED_ASSERT_LOCKED(); 279 KASSERT(p->p_wchan == NULL); 280 KASSERT(!ISSET(p->p_flag, P_WSLEEP)); 281 282 p->p_cpu = ci; 283 p->p_stat = SRUN; 284 p->p_runpri = prio; 285 286 spc = &p->p_cpu->ci_schedstate; 287 spc->spc_nrun++; 288 TRACEPOINT(sched, enqueue, p->p_tid + THREAD_PID_OFFSET, 289 p->p_p->ps_pid); 290 291 TAILQ_INSERT_TAIL(&spc->spc_qs[queue], p, p_runq); 292 spc->spc_whichqs |= (1U << queue); 293 cpuset_add(&sched_queued_cpus, p->p_cpu); 294 295 if (cpuset_isset(&sched_idle_cpus, p->p_cpu)) 296 cpu_unidle(p->p_cpu); 297 else if (prio < spc->spc_curpriority) 298 need_resched(ci); 299 } 300 301 void 302 remrunqueue(struct proc *p) 303 { 304 struct schedstate_percpu *spc; 305 int queue = p->p_runpri >> 2; 306 307 SCHED_ASSERT_LOCKED(); 308 spc = &p->p_cpu->ci_schedstate; 309 spc->spc_nrun--; 310 TRACEPOINT(sched, dequeue, p->p_tid + THREAD_PID_OFFSET, 311 p->p_p->ps_pid); 312 313 TAILQ_REMOVE(&spc->spc_qs[queue], p, p_runq); 314 if (TAILQ_EMPTY(&spc->spc_qs[queue])) { 315 spc->spc_whichqs &= ~(1U << queue); 316 if (spc->spc_whichqs == 0) 317 cpuset_del(&sched_queued_cpus, p->p_cpu); 318 } 319 } 320 321 struct proc * 322 sched_chooseproc(void) 323 { 324 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 325 struct proc *p; 326 int queue; 327 328 SCHED_ASSERT_LOCKED(); 329 330 #ifdef MULTIPROCESSOR 331 if (spc->spc_schedflags & SPCF_SHOULDHALT) { 332 if (spc->spc_whichqs) { 333 for (queue = 0; queue < SCHED_NQS; queue++) { 334 while ((p = TAILQ_FIRST(&spc->spc_qs[queue]))) { 335 remrunqueue(p); 336 setrunqueue(NULL, p, p->p_runpri); 337 if (p->p_cpu == curcpu()) { 338 KASSERT(p->p_flag & P_CPUPEG); 339 goto again; 340 } 341 } 342 } 343 } 344 p = spc->spc_idleproc; 345 if (p == NULL) 346 panic("no idleproc set on CPU%d", 347 CPU_INFO_UNIT(curcpu())); 348 p->p_stat = SRUN; 349 KASSERT(p->p_wchan == NULL); 350 return (p); 351 } 352 again: 353 #endif 354 355 if (spc->spc_whichqs) { 356 queue = ffs(spc->spc_whichqs) - 1; 357 p = TAILQ_FIRST(&spc->spc_qs[queue]); 358 remrunqueue(p); 359 sched_noidle++; 360 if (p->p_stat != SRUN) 361 panic("thread %d not in SRUN: %d", p->p_tid, p->p_stat); 362 } else if ((p = sched_steal_proc(curcpu())) == NULL) { 363 p = spc->spc_idleproc; 364 if (p == NULL) 365 panic("no idleproc set on CPU%d", 366 CPU_INFO_UNIT(curcpu())); 367 p->p_stat = SRUN; 368 } 369 370 KASSERT(p->p_wchan == NULL); 371 KASSERT(!ISSET(p->p_flag, P_WSLEEP)); 372 return (p); 373 } 374 375 struct cpu_info * 376 sched_choosecpu_fork(struct proc *parent, int flags) 377 { 378 #ifdef MULTIPROCESSOR 379 struct cpu_info *choice = NULL; 380 int run, best_run = INT_MAX; 381 struct cpu_info *ci; 382 struct cpuset set; 383 384 #if 0 385 /* 386 * XXX 387 * Don't do this until we have a painless way to move the cpu in exec. 388 * Preferably when nuking the old pmap and getting a new one on a 389 * new cpu. 390 */ 391 /* 392 * PPWAIT forks are simple. We know that the parent will not 393 * run until we exec and choose another cpu, so we just steal its 394 * cpu. 395 */ 396 if (flags & FORK_PPWAIT) 397 return (parent->p_cpu); 398 #endif 399 400 /* 401 * Look at all cpus that are currently idle and have nothing queued. 402 * If there are none, pick the one with least queued procs first, 403 * then the one with lowest load average. 404 */ 405 cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus); 406 cpuset_intersection(&set, &set, &sched_all_cpus); 407 if (cpuset_first(&set) == NULL) 408 cpuset_copy(&set, &sched_all_cpus); 409 410 while ((ci = cpuset_first(&set)) != NULL) { 411 cpuset_del(&set, ci); 412 413 run = ci->ci_schedstate.spc_nrun; 414 415 if (choice == NULL || run < best_run) { 416 choice = ci; 417 best_run = run; 418 } 419 } 420 421 return (choice); 422 #else 423 return (curcpu()); 424 #endif 425 } 426 427 struct cpu_info * 428 sched_choosecpu(struct proc *p) 429 { 430 #ifdef MULTIPROCESSOR 431 struct cpu_info *choice = NULL; 432 int last_cost = INT_MAX; 433 struct cpu_info *ci; 434 struct cpuset set; 435 436 /* 437 * If pegged to a cpu, don't allow it to move. 438 */ 439 if (p->p_flag & P_CPUPEG) 440 return (p->p_cpu); 441 442 sched_choose++; 443 444 /* 445 * Look at all cpus that are currently idle and have nothing queued. 446 * If there are none, pick the cheapest of those. 447 * (idle + queued could mean that the cpu is handling an interrupt 448 * at this moment and haven't had time to leave idle yet). 449 */ 450 cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus); 451 cpuset_intersection(&set, &set, &sched_all_cpus); 452 453 /* 454 * First, just check if our current cpu is in that set, if it is, 455 * this is simple. 456 * Also, our cpu might not be idle, but if it's the current cpu 457 * and it has nothing else queued and we're curproc, take it. 458 */ 459 if (cpuset_isset(&set, p->p_cpu) || 460 (p->p_cpu == curcpu() && p->p_cpu->ci_schedstate.spc_nrun == 0 && 461 (p->p_cpu->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0 && 462 curproc == p)) { 463 sched_wasidle++; 464 return (p->p_cpu); 465 } 466 467 if (cpuset_first(&set) == NULL) 468 cpuset_copy(&set, &sched_all_cpus); 469 470 while ((ci = cpuset_first(&set)) != NULL) { 471 int cost = sched_proc_to_cpu_cost(ci, p); 472 473 if (choice == NULL || cost < last_cost) { 474 choice = ci; 475 last_cost = cost; 476 } 477 cpuset_del(&set, ci); 478 } 479 480 if (p->p_cpu != choice) 481 sched_nmigrations++; 482 else 483 sched_nomigrations++; 484 485 return (choice); 486 #else 487 return (curcpu()); 488 #endif 489 } 490 491 /* 492 * Attempt to steal a proc from some cpu. 493 */ 494 struct proc * 495 sched_steal_proc(struct cpu_info *self) 496 { 497 struct proc *best = NULL; 498 #ifdef MULTIPROCESSOR 499 struct schedstate_percpu *spc; 500 int bestcost = INT_MAX; 501 struct cpu_info *ci; 502 struct cpuset set; 503 504 KASSERT((self->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0); 505 506 /* Don't steal if we don't want to schedule processes in this CPU. */ 507 if (!cpuset_isset(&sched_all_cpus, self)) 508 return (NULL); 509 510 cpuset_copy(&set, &sched_queued_cpus); 511 512 while ((ci = cpuset_first(&set)) != NULL) { 513 struct proc *p; 514 int queue; 515 int cost; 516 517 cpuset_del(&set, ci); 518 519 spc = &ci->ci_schedstate; 520 521 queue = ffs(spc->spc_whichqs) - 1; 522 TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) { 523 if (p->p_flag & P_CPUPEG) 524 continue; 525 526 cost = sched_proc_to_cpu_cost(self, p); 527 528 if (best == NULL || cost < bestcost) { 529 best = p; 530 bestcost = cost; 531 } 532 } 533 } 534 if (best == NULL) 535 return (NULL); 536 537 TRACEPOINT(sched, steal, best->p_tid + THREAD_PID_OFFSET, 538 best->p_p->ps_pid, CPU_INFO_UNIT(self)); 539 540 remrunqueue(best); 541 best->p_cpu = self; 542 543 sched_stolen++; 544 #endif 545 return (best); 546 } 547 548 #ifdef MULTIPROCESSOR 549 /* 550 * Base 2 logarithm of an int. returns 0 for 0 (yeye, I know). 551 */ 552 static int 553 log2(unsigned int i) 554 { 555 int ret = 0; 556 557 while (i >>= 1) 558 ret++; 559 560 return (ret); 561 } 562 563 /* 564 * Calculate the cost of moving the proc to this cpu. 565 * 566 * What we want is some guesstimate of how much "performance" it will 567 * cost us to move the proc here. Not just for caches and TLBs and NUMA 568 * memory, but also for the proc itself. A highly loaded cpu might not 569 * be the best candidate for this proc since it won't get run. 570 * 571 * Just total guesstimates for now. 572 */ 573 574 int sched_cost_priority = 1; 575 int sched_cost_runnable = 3; 576 int sched_cost_resident = 1; 577 #endif 578 579 int 580 sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p) 581 { 582 int cost = 0; 583 #ifdef MULTIPROCESSOR 584 struct schedstate_percpu *spc; 585 int l2resident = 0; 586 587 spc = &ci->ci_schedstate; 588 589 /* 590 * First, account for the priority of the proc we want to move. 591 * More willing to move, the lower the priority of the destination 592 * and the higher the priority of the proc. 593 */ 594 if (!cpuset_isset(&sched_idle_cpus, ci)) { 595 cost += (p->p_usrpri - spc->spc_curpriority) * 596 sched_cost_priority; 597 cost += sched_cost_runnable; 598 } 599 if (cpuset_isset(&sched_queued_cpus, ci)) 600 cost += spc->spc_nrun * sched_cost_runnable; 601 602 /* 603 * Try to avoid the primary cpu as it handles hardware interrupts. 604 * 605 * XXX Needs to be revisited when we distribute interrupts 606 * over cpus. 607 */ 608 if (CPU_IS_PRIMARY(ci)) 609 cost += sched_cost_runnable; 610 611 /* 612 * If the proc is on this cpu already, lower the cost by how much 613 * it has been running and an estimate of its footprint. 614 */ 615 if (p->p_cpu == ci && p->p_slptime == 0) { 616 l2resident = 617 log2(pmap_resident_count(p->p_vmspace->vm_map.pmap)); 618 cost -= l2resident * sched_cost_resident; 619 } 620 #endif 621 return (cost); 622 } 623 624 /* 625 * Peg a proc to a cpu. 626 */ 627 void 628 sched_peg_curproc(struct cpu_info *ci) 629 { 630 struct proc *p = curproc; 631 632 SCHED_LOCK(); 633 atomic_setbits_int(&p->p_flag, P_CPUPEG); 634 setrunqueue(ci, p, p->p_usrpri); 635 p->p_ru.ru_nvcsw++; 636 mi_switch(); 637 SCHED_UNLOCK(); 638 } 639 640 void 641 sched_unpeg_curproc(void) 642 { 643 struct proc *p = curproc; 644 645 atomic_clearbits_int(&p->p_flag, P_CPUPEG); 646 } 647 648 #ifdef MULTIPROCESSOR 649 650 void 651 sched_start_secondary_cpus(void) 652 { 653 CPU_INFO_ITERATOR cii; 654 struct cpu_info *ci; 655 656 CPU_INFO_FOREACH(cii, ci) { 657 struct schedstate_percpu *spc = &ci->ci_schedstate; 658 659 if (CPU_IS_PRIMARY(ci) || !CPU_IS_RUNNING(ci)) 660 continue; 661 atomic_clearbits_int(&spc->spc_schedflags, 662 SPCF_SHOULDHALT | SPCF_HALTED); 663 #ifdef __HAVE_CPU_TOPOLOGY 664 if (!sched_smt && ci->ci_smt_id > 0) 665 continue; 666 #endif 667 cpuset_add(&sched_all_cpus, ci); 668 } 669 } 670 671 void 672 sched_stop_secondary_cpus(void) 673 { 674 CPU_INFO_ITERATOR cii; 675 struct cpu_info *ci; 676 677 /* 678 * Make sure we stop the secondary CPUs. 679 */ 680 CPU_INFO_FOREACH(cii, ci) { 681 struct schedstate_percpu *spc = &ci->ci_schedstate; 682 683 if (CPU_IS_PRIMARY(ci) || !CPU_IS_RUNNING(ci)) 684 continue; 685 cpuset_del(&sched_all_cpus, ci); 686 atomic_setbits_int(&spc->spc_schedflags, SPCF_SHOULDHALT); 687 } 688 CPU_INFO_FOREACH(cii, ci) { 689 struct schedstate_percpu *spc = &ci->ci_schedstate; 690 691 if (CPU_IS_PRIMARY(ci) || !CPU_IS_RUNNING(ci)) 692 continue; 693 while ((spc->spc_schedflags & SPCF_HALTED) == 0) { 694 sleep_setup(spc, PZERO, "schedstate"); 695 sleep_finish(0, 696 (spc->spc_schedflags & SPCF_HALTED) == 0); 697 } 698 } 699 } 700 701 struct sched_barrier_state { 702 struct cpu_info *ci; 703 struct cond cond; 704 }; 705 706 void 707 sched_barrier_task(void *arg) 708 { 709 struct sched_barrier_state *sb = arg; 710 struct cpu_info *ci = sb->ci; 711 712 sched_peg_curproc(ci); 713 cond_signal(&sb->cond); 714 sched_unpeg_curproc(); 715 } 716 717 void 718 sched_barrier(struct cpu_info *ci) 719 { 720 struct sched_barrier_state sb; 721 struct task task; 722 CPU_INFO_ITERATOR cii; 723 724 if (ci == NULL) { 725 CPU_INFO_FOREACH(cii, ci) { 726 if (CPU_IS_PRIMARY(ci)) 727 break; 728 } 729 } 730 KASSERT(ci != NULL); 731 732 if (ci == curcpu()) 733 return; 734 735 sb.ci = ci; 736 cond_init(&sb.cond); 737 task_set(&task, sched_barrier_task, &sb); 738 739 task_add(systqmp, &task); 740 cond_wait(&sb.cond, "sbar"); 741 } 742 743 #else 744 745 void 746 sched_barrier(struct cpu_info *ci) 747 { 748 } 749 750 #endif 751 752 /* 753 * Functions to manipulate cpu sets. 754 */ 755 struct cpu_info *cpuset_infos[MAXCPUS]; 756 static struct cpuset cpuset_all; 757 758 void 759 cpuset_init_cpu(struct cpu_info *ci) 760 { 761 cpuset_add(&cpuset_all, ci); 762 cpuset_infos[CPU_INFO_UNIT(ci)] = ci; 763 } 764 765 void 766 cpuset_clear(struct cpuset *cs) 767 { 768 memset(cs, 0, sizeof(*cs)); 769 } 770 771 void 772 cpuset_add(struct cpuset *cs, struct cpu_info *ci) 773 { 774 unsigned int num = CPU_INFO_UNIT(ci); 775 atomic_setbits_int(&cs->cs_set[num/32], (1U << (num % 32))); 776 } 777 778 void 779 cpuset_del(struct cpuset *cs, struct cpu_info *ci) 780 { 781 unsigned int num = CPU_INFO_UNIT(ci); 782 atomic_clearbits_int(&cs->cs_set[num/32], (1U << (num % 32))); 783 } 784 785 int 786 cpuset_isset(struct cpuset *cs, struct cpu_info *ci) 787 { 788 unsigned int num = CPU_INFO_UNIT(ci); 789 return (cs->cs_set[num/32] & (1U << (num % 32))); 790 } 791 792 void 793 cpuset_add_all(struct cpuset *cs) 794 { 795 cpuset_copy(cs, &cpuset_all); 796 } 797 798 void 799 cpuset_copy(struct cpuset *to, struct cpuset *from) 800 { 801 memcpy(to, from, sizeof(*to)); 802 } 803 804 struct cpu_info * 805 cpuset_first(struct cpuset *cs) 806 { 807 int i; 808 809 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 810 if (cs->cs_set[i]) 811 return (cpuset_infos[i * 32 + ffs(cs->cs_set[i]) - 1]); 812 813 return (NULL); 814 } 815 816 void 817 cpuset_union(struct cpuset *to, struct cpuset *a, struct cpuset *b) 818 { 819 int i; 820 821 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 822 to->cs_set[i] = a->cs_set[i] | b->cs_set[i]; 823 } 824 825 void 826 cpuset_intersection(struct cpuset *to, struct cpuset *a, struct cpuset *b) 827 { 828 int i; 829 830 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 831 to->cs_set[i] = a->cs_set[i] & b->cs_set[i]; 832 } 833 834 void 835 cpuset_complement(struct cpuset *to, struct cpuset *a, struct cpuset *b) 836 { 837 int i; 838 839 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 840 to->cs_set[i] = b->cs_set[i] & ~a->cs_set[i]; 841 } 842 843 int 844 cpuset_cardinality(struct cpuset *cs) 845 { 846 int cardinality, i, n; 847 848 cardinality = 0; 849 850 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 851 for (n = cs->cs_set[i]; n != 0; n &= n - 1) 852 cardinality++; 853 854 return (cardinality); 855 } 856 857 int 858 sysctl_hwncpuonline(void) 859 { 860 return cpuset_cardinality(&sched_all_cpus); 861 } 862 863 int 864 cpu_is_online(struct cpu_info *ci) 865 { 866 return cpuset_isset(&sched_all_cpus, ci); 867 } 868 869 #ifdef __HAVE_CPU_TOPOLOGY 870 871 #include <sys/sysctl.h> 872 873 int 874 sysctl_hwsmt(void *oldp, size_t *oldlenp, void *newp, size_t newlen) 875 { 876 CPU_INFO_ITERATOR cii; 877 struct cpu_info *ci; 878 int err, newsmt; 879 880 newsmt = sched_smt; 881 err = sysctl_int_bounded(oldp, oldlenp, newp, newlen, &newsmt, 0, 1); 882 if (err) 883 return err; 884 if (newsmt == sched_smt) 885 return 0; 886 887 sched_smt = newsmt; 888 CPU_INFO_FOREACH(cii, ci) { 889 if (CPU_IS_PRIMARY(ci) || !CPU_IS_RUNNING(ci)) 890 continue; 891 if (ci->ci_smt_id == 0) 892 continue; 893 if (sched_smt) 894 cpuset_add(&sched_all_cpus, ci); 895 else 896 cpuset_del(&sched_all_cpus, ci); 897 } 898 899 return 0; 900 } 901 902 #endif 903