1 /* $OpenBSD: if_sis.c,v 1.146 2024/08/31 16:23:09 deraadt Exp $ */ 2 /* 3 * Copyright (c) 1997, 1998, 1999 4 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by Bill Paul. 17 * 4. Neither the name of the author nor the names of any co-contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 31 * THE POSSIBILITY OF SUCH DAMAGE. 32 * 33 * $FreeBSD: src/sys/pci/if_sis.c,v 1.30 2001/02/06 10:11:47 phk Exp $ 34 */ 35 36 /* 37 * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are 38 * available from http://www.sis.com.tw. 39 * 40 * This driver also supports the NatSemi DP83815. Datasheets are 41 * available from http://www.national.com. 42 * 43 * Written by Bill Paul <wpaul@ee.columbia.edu> 44 * Electrical Engineering Department 45 * Columbia University, New York City 46 */ 47 48 /* 49 * The SiS 900 is a fairly simple chip. It uses bus master DMA with 50 * simple TX and RX descriptors of 3 longwords in size. The receiver 51 * has a single perfect filter entry for the station address and a 52 * 128-bit multicast hash table. The SiS 900 has a built-in MII-based 53 * transceiver while the 7016 requires an external transceiver chip. 54 * Both chips offer the standard bit-bang MII interface as well as 55 * an enhanced PHY interface which simplifies accessing MII registers. 56 * 57 * The only downside to this chipset is that RX descriptors must be 58 * longword aligned. 59 */ 60 61 #include "bpfilter.h" 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/mbuf.h> 66 #include <sys/ioctl.h> 67 #include <sys/errno.h> 68 #include <sys/timeout.h> 69 70 #include <net/if.h> 71 72 #include <netinet/in.h> 73 #include <netinet/if_ether.h> 74 75 #include <net/if_media.h> 76 77 #if NBPFILTER > 0 78 #include <net/bpf.h> 79 #endif 80 81 #include <sys/device.h> 82 83 #include <dev/mii/miivar.h> 84 85 #include <dev/pci/pcireg.h> 86 #include <dev/pci/pcivar.h> 87 #include <dev/pci/pcidevs.h> 88 89 #define SIS_USEIOSPACE 90 91 #include <dev/pci/if_sisreg.h> 92 93 int sis_probe(struct device *, void *, void *); 94 void sis_attach(struct device *, struct device *, void *); 95 int sis_activate(struct device *, int); 96 97 const struct cfattach sis_ca = { 98 sizeof(struct sis_softc), sis_probe, sis_attach, NULL, 99 sis_activate 100 }; 101 102 struct cfdriver sis_cd = { 103 NULL, "sis", DV_IFNET 104 }; 105 106 int sis_intr(void *); 107 void sis_fill_rx_ring(struct sis_softc *); 108 int sis_newbuf(struct sis_softc *, struct sis_desc *); 109 int sis_encap(struct sis_softc *, struct mbuf *, u_int32_t *); 110 void sis_rxeof(struct sis_softc *); 111 void sis_txeof(struct sis_softc *); 112 void sis_tick(void *); 113 void sis_start(struct ifnet *); 114 int sis_ioctl(struct ifnet *, u_long, caddr_t); 115 void sis_init(void *); 116 void sis_stop(struct sis_softc *); 117 void sis_watchdog(struct ifnet *); 118 int sis_ifmedia_upd(struct ifnet *); 119 void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); 120 121 u_int16_t sis_reverse(u_int16_t); 122 void sis_delay(struct sis_softc *); 123 void sis_eeprom_idle(struct sis_softc *); 124 void sis_eeprom_putbyte(struct sis_softc *, int); 125 void sis_eeprom_getword(struct sis_softc *, int, u_int16_t *); 126 #if defined(__amd64__) || defined(__i386__) 127 void sis_read_cmos(struct sis_softc *, struct pci_attach_args *, caddr_t, int, int); 128 #endif 129 void sis_read_mac(struct sis_softc *, struct pci_attach_args *); 130 void sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int); 131 void sis_read96x_mac(struct sis_softc *); 132 133 void sis_mii_sync(struct sis_softc *); 134 void sis_mii_send(struct sis_softc *, u_int32_t, int); 135 int sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *); 136 int sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *); 137 int sis_miibus_readreg(struct device *, int, int); 138 void sis_miibus_writereg(struct device *, int, int, int); 139 void sis_miibus_statchg(struct device *); 140 141 u_int32_t sis_mchash(struct sis_softc *, const uint8_t *); 142 void sis_iff(struct sis_softc *); 143 void sis_iff_ns(struct sis_softc *); 144 void sis_iff_sis(struct sis_softc *); 145 void sis_reset(struct sis_softc *); 146 int sis_ring_init(struct sis_softc *); 147 148 #define SIS_SETBIT(sc, reg, x) \ 149 CSR_WRITE_4(sc, reg, \ 150 CSR_READ_4(sc, reg) | (x)) 151 152 #define SIS_CLRBIT(sc, reg, x) \ 153 CSR_WRITE_4(sc, reg, \ 154 CSR_READ_4(sc, reg) & ~(x)) 155 156 #define SIO_SET(x) \ 157 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) 158 159 #define SIO_CLR(x) \ 160 CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) 161 162 const struct pci_matchid sis_devices[] = { 163 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900 }, 164 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016 }, 165 { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815 } 166 }; 167 168 /* 169 * Routine to reverse the bits in a word. Stolen almost 170 * verbatim from /usr/games/fortune. 171 */ 172 u_int16_t 173 sis_reverse(u_int16_t n) 174 { 175 n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); 176 n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); 177 n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); 178 n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); 179 180 return (n); 181 } 182 183 void 184 sis_delay(struct sis_softc *sc) 185 { 186 int idx; 187 188 for (idx = (300 / 33) + 1; idx > 0; idx--) 189 CSR_READ_4(sc, SIS_CSR); 190 } 191 192 void 193 sis_eeprom_idle(struct sis_softc *sc) 194 { 195 int i; 196 197 SIO_SET(SIS_EECTL_CSEL); 198 sis_delay(sc); 199 SIO_SET(SIS_EECTL_CLK); 200 sis_delay(sc); 201 202 for (i = 0; i < 25; i++) { 203 SIO_CLR(SIS_EECTL_CLK); 204 sis_delay(sc); 205 SIO_SET(SIS_EECTL_CLK); 206 sis_delay(sc); 207 } 208 209 SIO_CLR(SIS_EECTL_CLK); 210 sis_delay(sc); 211 SIO_CLR(SIS_EECTL_CSEL); 212 sis_delay(sc); 213 CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); 214 } 215 216 /* 217 * Send a read command and address to the EEPROM, check for ACK. 218 */ 219 void 220 sis_eeprom_putbyte(struct sis_softc *sc, int addr) 221 { 222 int d, i; 223 224 d = addr | SIS_EECMD_READ; 225 226 /* 227 * Feed in each bit and strobe the clock. 228 */ 229 for (i = 0x400; i; i >>= 1) { 230 if (d & i) 231 SIO_SET(SIS_EECTL_DIN); 232 else 233 SIO_CLR(SIS_EECTL_DIN); 234 sis_delay(sc); 235 SIO_SET(SIS_EECTL_CLK); 236 sis_delay(sc); 237 SIO_CLR(SIS_EECTL_CLK); 238 sis_delay(sc); 239 } 240 } 241 242 /* 243 * Read a word of data stored in the EEPROM at address 'addr.' 244 */ 245 void 246 sis_eeprom_getword(struct sis_softc *sc, int addr, u_int16_t *dest) 247 { 248 int i; 249 u_int16_t word = 0; 250 251 /* Force EEPROM to idle state. */ 252 sis_eeprom_idle(sc); 253 254 /* Enter EEPROM access mode. */ 255 sis_delay(sc); 256 SIO_CLR(SIS_EECTL_CLK); 257 sis_delay(sc); 258 SIO_SET(SIS_EECTL_CSEL); 259 sis_delay(sc); 260 261 /* 262 * Send address of word we want to read. 263 */ 264 sis_eeprom_putbyte(sc, addr); 265 266 /* 267 * Start reading bits from EEPROM. 268 */ 269 for (i = 0x8000; i; i >>= 1) { 270 SIO_SET(SIS_EECTL_CLK); 271 sis_delay(sc); 272 if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) 273 word |= i; 274 sis_delay(sc); 275 SIO_CLR(SIS_EECTL_CLK); 276 sis_delay(sc); 277 } 278 279 /* Turn off EEPROM access mode. */ 280 sis_eeprom_idle(sc); 281 282 *dest = word; 283 } 284 285 /* 286 * Read a sequence of words from the EEPROM. 287 */ 288 void 289 sis_read_eeprom(struct sis_softc *sc, caddr_t dest, 290 int off, int cnt, int swap) 291 { 292 int i; 293 u_int16_t word = 0, *ptr; 294 295 for (i = 0; i < cnt; i++) { 296 sis_eeprom_getword(sc, off + i, &word); 297 ptr = (u_int16_t *)(dest + (i * 2)); 298 if (swap) 299 *ptr = letoh16(word); 300 else 301 *ptr = word; 302 } 303 } 304 305 #if defined(__amd64__) || defined(__i386__) 306 void 307 sis_read_cmos(struct sis_softc *sc, struct pci_attach_args *pa, 308 caddr_t dest, int off, int cnt) 309 { 310 u_int32_t reg; 311 int i; 312 313 reg = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x48); 314 pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg | 0x40); 315 316 for (i = 0; i < cnt; i++) { 317 bus_space_write_1(pa->pa_iot, 0x0, 0x70, i + off); 318 *(dest + i) = bus_space_read_1(pa->pa_iot, 0x0, 0x71); 319 } 320 321 pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg & ~0x40); 322 } 323 #endif 324 325 void 326 sis_read_mac(struct sis_softc *sc, struct pci_attach_args *pa) 327 { 328 uint32_t rxfilt, csrsave; 329 u_int16_t *enaddr = (u_int16_t *) &sc->arpcom.ac_enaddr; 330 331 rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL); 332 csrsave = CSR_READ_4(sc, SIS_CSR); 333 334 CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | csrsave); 335 CSR_WRITE_4(sc, SIS_CSR, 0); 336 337 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE); 338 339 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 340 enaddr[0] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff); 341 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); 342 enaddr[1] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff); 343 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 344 enaddr[2] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff); 345 346 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt); 347 CSR_WRITE_4(sc, SIS_CSR, csrsave); 348 } 349 350 void 351 sis_read96x_mac(struct sis_softc *sc) 352 { 353 int i; 354 355 SIO_SET(SIS96x_EECTL_REQ); 356 357 for (i = 0; i < 2000; i++) { 358 if ((CSR_READ_4(sc, SIS_EECTL) & SIS96x_EECTL_GNT)) { 359 sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 360 SIS_EE_NODEADDR, 3, 1); 361 break; 362 } else 363 DELAY(1); 364 } 365 366 SIO_SET(SIS96x_EECTL_DONE); 367 } 368 369 /* 370 * Sync the PHYs by setting data bit and strobing the clock 32 times. 371 */ 372 void 373 sis_mii_sync(struct sis_softc *sc) 374 { 375 int i; 376 377 SIO_SET(SIS_MII_DIR|SIS_MII_DATA); 378 379 for (i = 0; i < 32; i++) { 380 SIO_SET(SIS_MII_CLK); 381 DELAY(1); 382 SIO_CLR(SIS_MII_CLK); 383 DELAY(1); 384 } 385 } 386 387 /* 388 * Clock a series of bits through the MII. 389 */ 390 void 391 sis_mii_send(struct sis_softc *sc, u_int32_t bits, int cnt) 392 { 393 int i; 394 395 SIO_CLR(SIS_MII_CLK); 396 397 for (i = (0x1 << (cnt - 1)); i; i >>= 1) { 398 if (bits & i) 399 SIO_SET(SIS_MII_DATA); 400 else 401 SIO_CLR(SIS_MII_DATA); 402 DELAY(1); 403 SIO_CLR(SIS_MII_CLK); 404 DELAY(1); 405 SIO_SET(SIS_MII_CLK); 406 } 407 } 408 409 /* 410 * Read an PHY register through the MII. 411 */ 412 int 413 sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame) 414 { 415 int i, ack, s; 416 417 s = splnet(); 418 419 /* 420 * Set up frame for RX. 421 */ 422 frame->mii_stdelim = SIS_MII_STARTDELIM; 423 frame->mii_opcode = SIS_MII_READOP; 424 frame->mii_turnaround = 0; 425 frame->mii_data = 0; 426 427 /* 428 * Turn on data xmit. 429 */ 430 SIO_SET(SIS_MII_DIR); 431 432 sis_mii_sync(sc); 433 434 /* 435 * Send command/address info. 436 */ 437 sis_mii_send(sc, frame->mii_stdelim, 2); 438 sis_mii_send(sc, frame->mii_opcode, 2); 439 sis_mii_send(sc, frame->mii_phyaddr, 5); 440 sis_mii_send(sc, frame->mii_regaddr, 5); 441 442 /* Idle bit */ 443 SIO_CLR((SIS_MII_CLK|SIS_MII_DATA)); 444 DELAY(1); 445 SIO_SET(SIS_MII_CLK); 446 DELAY(1); 447 448 /* Turn off xmit. */ 449 SIO_CLR(SIS_MII_DIR); 450 451 /* Check for ack */ 452 SIO_CLR(SIS_MII_CLK); 453 DELAY(1); 454 ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA; 455 SIO_SET(SIS_MII_CLK); 456 DELAY(1); 457 458 /* 459 * Now try reading data bits. If the ack failed, we still 460 * need to clock through 16 cycles to keep the PHY(s) in sync. 461 */ 462 if (ack) { 463 for(i = 0; i < 16; i++) { 464 SIO_CLR(SIS_MII_CLK); 465 DELAY(1); 466 SIO_SET(SIS_MII_CLK); 467 DELAY(1); 468 } 469 goto fail; 470 } 471 472 for (i = 0x8000; i; i >>= 1) { 473 SIO_CLR(SIS_MII_CLK); 474 DELAY(1); 475 if (!ack) { 476 if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA) 477 frame->mii_data |= i; 478 DELAY(1); 479 } 480 SIO_SET(SIS_MII_CLK); 481 DELAY(1); 482 } 483 484 fail: 485 486 SIO_CLR(SIS_MII_CLK); 487 DELAY(1); 488 SIO_SET(SIS_MII_CLK); 489 DELAY(1); 490 491 splx(s); 492 493 if (ack) 494 return (1); 495 return (0); 496 } 497 498 /* 499 * Write to a PHY register through the MII. 500 */ 501 int 502 sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame) 503 { 504 int s; 505 506 s = splnet(); 507 /* 508 * Set up frame for TX. 509 */ 510 511 frame->mii_stdelim = SIS_MII_STARTDELIM; 512 frame->mii_opcode = SIS_MII_WRITEOP; 513 frame->mii_turnaround = SIS_MII_TURNAROUND; 514 515 /* 516 * Turn on data output. 517 */ 518 SIO_SET(SIS_MII_DIR); 519 520 sis_mii_sync(sc); 521 522 sis_mii_send(sc, frame->mii_stdelim, 2); 523 sis_mii_send(sc, frame->mii_opcode, 2); 524 sis_mii_send(sc, frame->mii_phyaddr, 5); 525 sis_mii_send(sc, frame->mii_regaddr, 5); 526 sis_mii_send(sc, frame->mii_turnaround, 2); 527 sis_mii_send(sc, frame->mii_data, 16); 528 529 /* Idle bit. */ 530 SIO_SET(SIS_MII_CLK); 531 DELAY(1); 532 SIO_CLR(SIS_MII_CLK); 533 DELAY(1); 534 535 /* 536 * Turn off xmit. 537 */ 538 SIO_CLR(SIS_MII_DIR); 539 540 splx(s); 541 542 return (0); 543 } 544 545 int 546 sis_miibus_readreg(struct device *self, int phy, int reg) 547 { 548 struct sis_softc *sc = (struct sis_softc *)self; 549 struct sis_mii_frame frame; 550 551 if (sc->sis_type == SIS_TYPE_83815) { 552 if (phy != 0) 553 return (0); 554 /* 555 * The NatSemi chip can take a while after 556 * a reset to come ready, during which the BMSR 557 * returns a value of 0. This is *never* supposed 558 * to happen: some of the BMSR bits are meant to 559 * be hardwired in the on position, and this can 560 * confuse the miibus code a bit during the probe 561 * and attach phase. So we make an effort to check 562 * for this condition and wait for it to clear. 563 */ 564 if (!CSR_READ_4(sc, NS_BMSR)) 565 DELAY(1000); 566 return CSR_READ_4(sc, NS_BMCR + (reg * 4)); 567 } 568 569 /* 570 * Chipsets < SIS_635 seem not to be able to read/write 571 * through mdio. Use the enhanced PHY access register 572 * again for them. 573 */ 574 if (sc->sis_type == SIS_TYPE_900 && 575 sc->sis_rev < SIS_REV_635) { 576 int i, val = 0; 577 578 if (phy != 0) 579 return (0); 580 581 CSR_WRITE_4(sc, SIS_PHYCTL, 582 (phy << 11) | (reg << 6) | SIS_PHYOP_READ); 583 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 584 585 for (i = 0; i < SIS_TIMEOUT; i++) { 586 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 587 break; 588 } 589 590 if (i == SIS_TIMEOUT) { 591 printf("%s: PHY failed to come ready\n", 592 sc->sc_dev.dv_xname); 593 return (0); 594 } 595 596 val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; 597 598 if (val == 0xFFFF) 599 return (0); 600 601 return (val); 602 } else { 603 bzero(&frame, sizeof(frame)); 604 605 frame.mii_phyaddr = phy; 606 frame.mii_regaddr = reg; 607 sis_mii_readreg(sc, &frame); 608 609 return (frame.mii_data); 610 } 611 } 612 613 void 614 sis_miibus_writereg(struct device *self, int phy, int reg, int data) 615 { 616 struct sis_softc *sc = (struct sis_softc *)self; 617 struct sis_mii_frame frame; 618 619 if (sc->sis_type == SIS_TYPE_83815) { 620 if (phy != 0) 621 return; 622 CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); 623 return; 624 } 625 626 /* 627 * Chipsets < SIS_635 seem not to be able to read/write 628 * through mdio. Use the enhanced PHY access register 629 * again for them. 630 */ 631 if (sc->sis_type == SIS_TYPE_900 && 632 sc->sis_rev < SIS_REV_635) { 633 int i; 634 635 if (phy != 0) 636 return; 637 638 CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | 639 (reg << 6) | SIS_PHYOP_WRITE); 640 SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); 641 642 for (i = 0; i < SIS_TIMEOUT; i++) { 643 if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) 644 break; 645 } 646 647 if (i == SIS_TIMEOUT) 648 printf("%s: PHY failed to come ready\n", 649 sc->sc_dev.dv_xname); 650 } else { 651 bzero(&frame, sizeof(frame)); 652 653 frame.mii_phyaddr = phy; 654 frame.mii_regaddr = reg; 655 frame.mii_data = data; 656 sis_mii_writereg(sc, &frame); 657 } 658 } 659 660 void 661 sis_miibus_statchg(struct device *self) 662 { 663 struct sis_softc *sc = (struct sis_softc *)self; 664 struct ifnet *ifp = &sc->arpcom.ac_if; 665 struct mii_data *mii = &sc->sc_mii; 666 667 if ((ifp->if_flags & IFF_RUNNING) == 0) 668 return; 669 670 sc->sis_link = 0; 671 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 672 (IFM_ACTIVE | IFM_AVALID)) { 673 switch (IFM_SUBTYPE(mii->mii_media_active)) { 674 case IFM_10_T: 675 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); 676 sc->sis_link++; 677 break; 678 case IFM_100_TX: 679 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 680 sc->sis_link++; 681 break; 682 default: 683 break; 684 } 685 } 686 687 if (!sc->sis_link) { 688 /* 689 * Stopping MACs seem to reset SIS_TX_LISTPTR and 690 * SIS_RX_LISTPTR which in turn requires resetting 691 * TX/RX buffers. So just don't do anything for 692 * lost link. 693 */ 694 return; 695 } 696 697 /* Set full/half duplex mode. */ 698 if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { 699 SIS_SETBIT(sc, SIS_TX_CFG, 700 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 701 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 702 } else { 703 SIS_CLRBIT(sc, SIS_TX_CFG, 704 (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); 705 SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); 706 } 707 708 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { 709 /* 710 * MPII03.D: Half Duplex Excessive Collisions. 711 * Also page 49 in 83816 manual 712 */ 713 SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D); 714 } 715 716 /* 717 * Some DP83815s experience problems when used with short 718 * (< 30m/100ft) Ethernet cables in 100baseTX mode. This 719 * sequence adjusts the DSP's signal attenuation to fix the 720 * problem. 721 */ 722 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A && 723 IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { 724 uint32_t reg; 725 726 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 727 reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff; 728 CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000); 729 DELAY(100); 730 reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff; 731 if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) { 732 #ifdef DEBUG 733 printf("%s: Applying short cable fix (reg=%x)\n", 734 sc->sc_dev.dv_xname, reg); 735 #endif 736 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8); 737 SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20); 738 } 739 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 740 } 741 /* Enable TX/RX MACs. */ 742 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 743 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE); 744 } 745 746 u_int32_t 747 sis_mchash(struct sis_softc *sc, const uint8_t *addr) 748 { 749 uint32_t crc; 750 751 /* Compute CRC for the address value. */ 752 crc = ether_crc32_be(addr, ETHER_ADDR_LEN); 753 754 /* 755 * return the filter bit position 756 * 757 * The NatSemi chip has a 512-bit filter, which is 758 * different than the SiS, so we special-case it. 759 */ 760 if (sc->sis_type == SIS_TYPE_83815) 761 return (crc >> 23); 762 else if (sc->sis_rev >= SIS_REV_635 || 763 sc->sis_rev == SIS_REV_900B) 764 return (crc >> 24); 765 else 766 return (crc >> 25); 767 } 768 769 void 770 sis_iff(struct sis_softc *sc) 771 { 772 if (sc->sis_type == SIS_TYPE_83815) 773 sis_iff_ns(sc); 774 else 775 sis_iff_sis(sc); 776 } 777 778 void 779 sis_iff_ns(struct sis_softc *sc) 780 { 781 struct ifnet *ifp = &sc->arpcom.ac_if; 782 struct arpcom *ac = &sc->arpcom; 783 struct ether_multi *enm; 784 struct ether_multistep step; 785 u_int32_t h = 0, i, rxfilt; 786 int bit, index; 787 788 rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL); 789 if (rxfilt & SIS_RXFILTCTL_ENABLE) { 790 /* 791 * Filter should be disabled to program other bits. 792 */ 793 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE); 794 CSR_READ_4(sc, SIS_RXFILT_CTL); 795 } 796 rxfilt &= ~(SIS_RXFILTCTL_ALLMULTI | SIS_RXFILTCTL_ALLPHYS | 797 NS_RXFILTCTL_ARP | SIS_RXFILTCTL_BROAD | NS_RXFILTCTL_MCHASH | 798 NS_RXFILTCTL_PERFECT); 799 ifp->if_flags &= ~IFF_ALLMULTI; 800 801 /* 802 * Always accept ARP frames. 803 * Always accept broadcast frames. 804 * Always accept frames destined to our station address. 805 */ 806 rxfilt |= NS_RXFILTCTL_ARP | SIS_RXFILTCTL_BROAD | 807 NS_RXFILTCTL_PERFECT; 808 809 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { 810 ifp->if_flags |= IFF_ALLMULTI; 811 rxfilt |= SIS_RXFILTCTL_ALLMULTI; 812 if (ifp->if_flags & IFF_PROMISC) 813 rxfilt |= SIS_RXFILTCTL_ALLPHYS; 814 } else { 815 /* 816 * We have to explicitly enable the multicast hash table 817 * on the NatSemi chip if we want to use it, which we do. 818 */ 819 rxfilt |= NS_RXFILTCTL_MCHASH; 820 821 /* first, zot all the existing hash bits */ 822 for (i = 0; i < 32; i++) { 823 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i * 2)); 824 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); 825 } 826 827 ETHER_FIRST_MULTI(step, ac, enm); 828 while (enm != NULL) { 829 h = sis_mchash(sc, enm->enm_addrlo); 830 831 index = h >> 3; 832 bit = h & 0x1F; 833 834 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index); 835 836 if (bit > 0xF) 837 bit -= 0x10; 838 839 SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); 840 841 ETHER_NEXT_MULTI(step, enm); 842 } 843 } 844 845 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt); 846 /* Turn the receive filter on. */ 847 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt | SIS_RXFILTCTL_ENABLE); 848 CSR_READ_4(sc, SIS_RXFILT_CTL); 849 } 850 851 void 852 sis_iff_sis(struct sis_softc *sc) 853 { 854 struct ifnet *ifp = &sc->arpcom.ac_if; 855 struct arpcom *ac = &sc->arpcom; 856 struct ether_multi *enm; 857 struct ether_multistep step; 858 u_int32_t h, i, maxmulti, rxfilt; 859 u_int16_t hashes[16]; 860 861 /* hash table size */ 862 if (sc->sis_rev >= SIS_REV_635 || 863 sc->sis_rev == SIS_REV_900B) 864 maxmulti = 16; 865 else 866 maxmulti = 8; 867 868 rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL); 869 if (rxfilt & SIS_RXFILTCTL_ENABLE) { 870 /* 871 * Filter should be disabled to program other bits. 872 */ 873 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE); 874 CSR_READ_4(sc, SIS_RXFILT_CTL); 875 } 876 rxfilt &= ~(SIS_RXFILTCTL_ALLMULTI | SIS_RXFILTCTL_ALLPHYS | 877 SIS_RXFILTCTL_BROAD); 878 ifp->if_flags &= ~IFF_ALLMULTI; 879 880 /* 881 * Always accept broadcast frames. 882 */ 883 rxfilt |= SIS_RXFILTCTL_BROAD; 884 885 if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 || 886 ac->ac_multicnt > maxmulti) { 887 ifp->if_flags |= IFF_ALLMULTI; 888 rxfilt |= SIS_RXFILTCTL_ALLMULTI; 889 if (ifp->if_flags & IFF_PROMISC) 890 rxfilt |= SIS_RXFILTCTL_ALLPHYS; 891 892 for (i = 0; i < maxmulti; i++) 893 hashes[i] = ~0; 894 } else { 895 for (i = 0; i < maxmulti; i++) 896 hashes[i] = 0; 897 898 ETHER_FIRST_MULTI(step, ac, enm); 899 while (enm != NULL) { 900 h = sis_mchash(sc, enm->enm_addrlo); 901 902 hashes[h >> 4] |= 1 << (h & 0xf); 903 904 ETHER_NEXT_MULTI(step, enm); 905 } 906 } 907 908 for (i = 0; i < maxmulti; i++) { 909 CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); 910 CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); 911 } 912 913 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt); 914 /* Turn the receive filter on. */ 915 CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt | SIS_RXFILTCTL_ENABLE); 916 CSR_READ_4(sc, SIS_RXFILT_CTL); 917 } 918 919 void 920 sis_reset(struct sis_softc *sc) 921 { 922 int i; 923 924 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); 925 926 for (i = 0; i < SIS_TIMEOUT; i++) { 927 if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) 928 break; 929 } 930 931 if (i == SIS_TIMEOUT) 932 printf("%s: reset never completed\n", sc->sc_dev.dv_xname); 933 934 /* Wait a little while for the chip to get its brains in order. */ 935 DELAY(1000); 936 937 /* 938 * If this is a NetSemi chip, make sure to clear 939 * PME mode. 940 */ 941 if (sc->sis_type == SIS_TYPE_83815) { 942 CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); 943 CSR_WRITE_4(sc, NS_CLKRUN, 0); 944 } 945 } 946 947 /* 948 * Probe for an SiS chip. Check the PCI vendor and device 949 * IDs against our list and return a device name if we find a match. 950 */ 951 int 952 sis_probe(struct device *parent, void *match, void *aux) 953 { 954 return (pci_matchbyid((struct pci_attach_args *)aux, sis_devices, 955 nitems(sis_devices))); 956 } 957 958 /* 959 * Attach the interface. Allocate softc structures, do ifmedia 960 * setup and ethernet/BPF attach. 961 */ 962 void 963 sis_attach(struct device *parent, struct device *self, void *aux) 964 { 965 int i; 966 const char *intrstr = NULL; 967 struct sis_softc *sc = (struct sis_softc *)self; 968 struct pci_attach_args *pa = aux; 969 pci_chipset_tag_t pc = pa->pa_pc; 970 pci_intr_handle_t ih; 971 struct ifnet *ifp; 972 bus_size_t size; 973 974 sc->sis_stopped = 1; 975 976 pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0); 977 978 /* 979 * Map control/status registers. 980 */ 981 982 #ifdef SIS_USEIOSPACE 983 if (pci_mapreg_map(pa, SIS_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, 984 &sc->sis_btag, &sc->sis_bhandle, NULL, &size, 0)) { 985 printf(": can't map i/o space\n"); 986 return; 987 } 988 #else 989 if (pci_mapreg_map(pa, SIS_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, 990 &sc->sis_btag, &sc->sis_bhandle, NULL, &size, 0)) { 991 printf(": can't map mem space\n"); 992 return; 993 } 994 #endif 995 996 /* Allocate interrupt */ 997 if (pci_intr_map(pa, &ih)) { 998 printf(": couldn't map interrupt\n"); 999 goto fail_1; 1000 } 1001 intrstr = pci_intr_string(pc, ih); 1002 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sis_intr, sc, 1003 self->dv_xname); 1004 if (sc->sc_ih == NULL) { 1005 printf(": couldn't establish interrupt"); 1006 if (intrstr != NULL) 1007 printf(" at %s", intrstr); 1008 printf("\n"); 1009 goto fail_1; 1010 } 1011 1012 switch (PCI_PRODUCT(pa->pa_id)) { 1013 case PCI_PRODUCT_SIS_900: 1014 sc->sis_type = SIS_TYPE_900; 1015 break; 1016 case PCI_PRODUCT_SIS_7016: 1017 sc->sis_type = SIS_TYPE_7016; 1018 break; 1019 case PCI_PRODUCT_NS_DP83815: 1020 sc->sis_type = SIS_TYPE_83815; 1021 break; 1022 default: 1023 break; 1024 } 1025 sc->sis_rev = PCI_REVISION(pa->pa_class); 1026 1027 /* Reset the adapter. */ 1028 sis_reset(sc); 1029 1030 if (sc->sis_type == SIS_TYPE_900 && 1031 (sc->sis_rev == SIS_REV_635 || 1032 sc->sis_rev == SIS_REV_900B)) { 1033 SIO_SET(SIS_CFG_RND_CNT); 1034 SIO_SET(SIS_CFG_PERR_DETECT); 1035 } 1036 1037 /* 1038 * Get station address from the EEPROM. 1039 */ 1040 switch (PCI_VENDOR(pa->pa_id)) { 1041 case PCI_VENDOR_NS: 1042 sc->sis_srr = CSR_READ_4(sc, NS_SRR); 1043 1044 if (sc->sis_srr == NS_SRR_15C) 1045 printf(", DP83815C"); 1046 else if (sc->sis_srr == NS_SRR_15D) 1047 printf(", DP83815D"); 1048 else if (sc->sis_srr == NS_SRR_16A) 1049 printf(", DP83816A"); 1050 else 1051 printf(", srr %x", sc->sis_srr); 1052 1053 /* 1054 * Reading the MAC address out of the EEPROM on 1055 * the NatSemi chip takes a bit more work than 1056 * you'd expect. The address spans 4 16-bit words, 1057 * with the first word containing only a single bit. 1058 * You have to shift everything over one bit to 1059 * get it aligned properly. Also, the bits are 1060 * stored backwards (the LSB is really the MSB, 1061 * and so on) so you have to reverse them in order 1062 * to get the MAC address into the form we want. 1063 * Why? Who the hell knows. 1064 */ 1065 { 1066 u_int16_t tmp[4]; 1067 1068 sis_read_eeprom(sc, (caddr_t)&tmp, NS_EE_NODEADDR, 1069 4, 0); 1070 1071 /* Shift everything over one bit. */ 1072 tmp[3] = tmp[3] >> 1; 1073 tmp[3] |= tmp[2] << 15; 1074 tmp[2] = tmp[2] >> 1; 1075 tmp[2] |= tmp[1] << 15; 1076 tmp[1] = tmp[1] >> 1; 1077 tmp[1] |= tmp[0] << 15; 1078 1079 /* Now reverse all the bits. */ 1080 tmp[3] = letoh16(sis_reverse(tmp[3])); 1081 tmp[2] = letoh16(sis_reverse(tmp[2])); 1082 tmp[1] = letoh16(sis_reverse(tmp[1])); 1083 1084 bcopy(&tmp[1], sc->arpcom.ac_enaddr, 1085 ETHER_ADDR_LEN); 1086 } 1087 break; 1088 case PCI_VENDOR_SIS: 1089 default: 1090 #if defined(__amd64__) || defined(__i386__) 1091 /* 1092 * If this is a SiS 630E chipset with an embedded 1093 * SiS 900 controller, we have to read the MAC address 1094 * from the APC CMOS RAM. Our method for doing this 1095 * is very ugly since we have to reach out and grab 1096 * ahold of hardware for which we cannot properly 1097 * allocate resources. This code is only compiled on 1098 * the i386 architecture since the SiS 630E chipset 1099 * is for x86 motherboards only. Note that there are 1100 * a lot of magic numbers in this hack. These are 1101 * taken from SiS's Linux driver. I'd like to replace 1102 * them with proper symbolic definitions, but that 1103 * requires some datasheets that I don't have access 1104 * to at the moment. 1105 */ 1106 if (sc->sis_rev == SIS_REV_630S || 1107 sc->sis_rev == SIS_REV_630E) 1108 sis_read_cmos(sc, pa, (caddr_t)&sc->arpcom.ac_enaddr, 1109 0x9, 6); 1110 else 1111 #endif 1112 if (sc->sis_rev == SIS_REV_96x) 1113 sis_read96x_mac(sc); 1114 else if (sc->sis_rev == SIS_REV_635 || 1115 sc->sis_rev == SIS_REV_630ET || 1116 sc->sis_rev == SIS_REV_630EA1) 1117 sis_read_mac(sc, pa); 1118 else 1119 sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 1120 SIS_EE_NODEADDR, 3, 1); 1121 break; 1122 } 1123 1124 printf(": %s, address %s\n", intrstr, 1125 ether_sprintf(sc->arpcom.ac_enaddr)); 1126 1127 sc->sc_dmat = pa->pa_dmat; 1128 1129 if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sis_list_data), 1130 PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg, 1131 BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) { 1132 printf(": can't alloc list mem\n"); 1133 goto fail_2; 1134 } 1135 if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg, 1136 sizeof(struct sis_list_data), &sc->sc_listkva, 1137 BUS_DMA_NOWAIT) != 0) { 1138 printf(": can't map list mem\n"); 1139 goto fail_2; 1140 } 1141 if (bus_dmamap_create(sc->sc_dmat, sizeof(struct sis_list_data), 1, 1142 sizeof(struct sis_list_data), 0, BUS_DMA_NOWAIT, 1143 &sc->sc_listmap) != 0) { 1144 printf(": can't alloc list map\n"); 1145 goto fail_2; 1146 } 1147 if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva, 1148 sizeof(struct sis_list_data), NULL, BUS_DMA_NOWAIT) != 0) { 1149 printf(": can't load list map\n"); 1150 goto fail_2; 1151 } 1152 sc->sis_ldata = (struct sis_list_data *)sc->sc_listkva; 1153 1154 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1155 if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 1156 BUS_DMA_NOWAIT, &sc->sis_ldata->sis_rx_list[i].map) != 0) { 1157 printf(": can't create rx map\n"); 1158 goto fail_2; 1159 } 1160 } 1161 1162 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1163 if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1164 SIS_MAXTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT, 1165 &sc->sis_ldata->sis_tx_list[i].map) != 0) { 1166 printf(": can't create tx map\n"); 1167 goto fail_2; 1168 } 1169 } 1170 if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, SIS_MAXTXSEGS, 1171 MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) { 1172 printf(": can't create tx spare map\n"); 1173 goto fail_2; 1174 } 1175 1176 timeout_set(&sc->sis_timeout, sis_tick, sc); 1177 1178 ifp = &sc->arpcom.ac_if; 1179 ifp->if_softc = sc; 1180 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1181 ifp->if_ioctl = sis_ioctl; 1182 ifp->if_start = sis_start; 1183 ifp->if_watchdog = sis_watchdog; 1184 ifq_init_maxlen(&ifp->if_snd, SIS_TX_LIST_CNT - 1); 1185 bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); 1186 ifp->if_hardmtu = 1518; /* determined experimentally on DP83815 */ 1187 1188 ifp->if_capabilities = IFCAP_VLAN_MTU; 1189 1190 sc->sc_mii.mii_ifp = ifp; 1191 sc->sc_mii.mii_readreg = sis_miibus_readreg; 1192 sc->sc_mii.mii_writereg = sis_miibus_writereg; 1193 sc->sc_mii.mii_statchg = sis_miibus_statchg; 1194 ifmedia_init(&sc->sc_mii.mii_media, 0, sis_ifmedia_upd,sis_ifmedia_sts); 1195 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 1196 0); 1197 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { 1198 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); 1199 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); 1200 } else 1201 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 1202 1203 /* 1204 * Call MI attach routines. 1205 */ 1206 if_attach(ifp); 1207 ether_ifattach(ifp); 1208 return; 1209 1210 fail_2: 1211 pci_intr_disestablish(pc, sc->sc_ih); 1212 1213 fail_1: 1214 bus_space_unmap(sc->sis_btag, sc->sis_bhandle, size); 1215 } 1216 1217 int 1218 sis_activate(struct device *self, int act) 1219 { 1220 struct sis_softc *sc = (struct sis_softc *)self; 1221 struct ifnet *ifp = &sc->arpcom.ac_if; 1222 1223 switch (act) { 1224 case DVACT_SUSPEND: 1225 if (ifp->if_flags & IFF_RUNNING) 1226 sis_stop(sc); 1227 break; 1228 case DVACT_RESUME: 1229 if (ifp->if_flags & IFF_UP) 1230 sis_init(sc); 1231 break; 1232 } 1233 return (0); 1234 } 1235 1236 /* 1237 * Initialize the TX and RX descriptors and allocate mbufs for them. Note that 1238 * we arrange the descriptors in a closed ring, so that the last descriptor 1239 * points back to the first. 1240 */ 1241 int 1242 sis_ring_init(struct sis_softc *sc) 1243 { 1244 struct sis_list_data *ld; 1245 struct sis_ring_data *cd; 1246 int i, nexti; 1247 1248 cd = &sc->sis_cdata; 1249 ld = sc->sis_ldata; 1250 1251 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 1252 if (i == (SIS_TX_LIST_CNT - 1)) 1253 nexti = 0; 1254 else 1255 nexti = i + 1; 1256 ld->sis_tx_list[i].sis_nextdesc = &ld->sis_tx_list[nexti]; 1257 ld->sis_tx_list[i].sis_next = 1258 htole32(sc->sc_listmap->dm_segs[0].ds_addr + 1259 offsetof(struct sis_list_data, sis_tx_list[nexti])); 1260 ld->sis_tx_list[i].sis_mbuf = NULL; 1261 ld->sis_tx_list[i].sis_ptr = 0; 1262 ld->sis_tx_list[i].sis_ctl = 0; 1263 } 1264 1265 cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0; 1266 1267 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 1268 if (i == SIS_RX_LIST_CNT - 1) 1269 nexti = 0; 1270 else 1271 nexti = i + 1; 1272 ld->sis_rx_list[i].sis_nextdesc = &ld->sis_rx_list[nexti]; 1273 ld->sis_rx_list[i].sis_next = 1274 htole32(sc->sc_listmap->dm_segs[0].ds_addr + 1275 offsetof(struct sis_list_data, sis_rx_list[nexti])); 1276 ld->sis_rx_list[i].sis_ctl = 0; 1277 } 1278 1279 cd->sis_rx_prod = cd->sis_rx_cons = 0; 1280 if_rxr_init(&cd->sis_rx_ring, 2, SIS_RX_LIST_CNT - 1); 1281 sis_fill_rx_ring(sc); 1282 1283 return (0); 1284 } 1285 1286 void 1287 sis_fill_rx_ring(struct sis_softc *sc) 1288 { 1289 struct sis_list_data *ld; 1290 struct sis_ring_data *cd; 1291 u_int slots; 1292 1293 cd = &sc->sis_cdata; 1294 ld = sc->sis_ldata; 1295 1296 for (slots = if_rxr_get(&cd->sis_rx_ring, SIS_RX_LIST_CNT); 1297 slots > 0; slots--) { 1298 if (sis_newbuf(sc, &ld->sis_rx_list[cd->sis_rx_prod])) 1299 break; 1300 1301 SIS_INC(cd->sis_rx_prod, SIS_RX_LIST_CNT); 1302 } 1303 if_rxr_put(&cd->sis_rx_ring, slots); 1304 } 1305 1306 /* 1307 * Initialize an RX descriptor and attach an MBUF cluster. 1308 */ 1309 int 1310 sis_newbuf(struct sis_softc *sc, struct sis_desc *c) 1311 { 1312 struct mbuf *m_new = NULL; 1313 1314 if (c == NULL) 1315 return (EINVAL); 1316 1317 m_new = MCLGETL(NULL, M_DONTWAIT, MCLBYTES); 1318 if (!m_new) 1319 return (ENOBUFS); 1320 1321 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; 1322 1323 if (bus_dmamap_load_mbuf(sc->sc_dmat, c->map, m_new, 1324 BUS_DMA_NOWAIT)) { 1325 m_free(m_new); 1326 return (ENOBUFS); 1327 } 1328 1329 bus_dmamap_sync(sc->sc_dmat, c->map, 0, c->map->dm_mapsize, 1330 BUS_DMASYNC_PREREAD); 1331 1332 c->sis_mbuf = m_new; 1333 c->sis_ptr = htole32(c->map->dm_segs[0].ds_addr); 1334 1335 bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, 1336 ((caddr_t)c - sc->sc_listkva), sizeof(struct sis_desc), 1337 BUS_DMASYNC_PREWRITE); 1338 1339 c->sis_ctl = htole32(ETHER_MAX_DIX_LEN); 1340 1341 bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, 1342 ((caddr_t)c - sc->sc_listkva), sizeof(struct sis_desc), 1343 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1344 1345 return (0); 1346 } 1347 1348 /* 1349 * A frame has been uploaded: pass the resulting mbuf chain up to 1350 * the higher level protocols. 1351 */ 1352 void 1353 sis_rxeof(struct sis_softc *sc) 1354 { 1355 struct mbuf_list ml = MBUF_LIST_INITIALIZER(); 1356 struct mbuf *m; 1357 struct ifnet *ifp; 1358 struct sis_desc *cur_rx; 1359 int total_len = 0; 1360 u_int32_t rxstat; 1361 1362 ifp = &sc->arpcom.ac_if; 1363 1364 while (if_rxr_inuse(&sc->sis_cdata.sis_rx_ring) > 0) { 1365 cur_rx = &sc->sis_ldata->sis_rx_list[sc->sis_cdata.sis_rx_cons]; 1366 bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, 1367 ((caddr_t)cur_rx - sc->sc_listkva), 1368 sizeof(struct sis_desc), 1369 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1370 if (!SIS_OWNDESC(cur_rx)) 1371 break; 1372 1373 rxstat = letoh32(cur_rx->sis_rxstat); 1374 m = cur_rx->sis_mbuf; 1375 cur_rx->sis_mbuf = NULL; 1376 total_len = SIS_RXBYTES(cur_rx); 1377 /* from here on the buffer is consumed */ 1378 SIS_INC(sc->sis_cdata.sis_rx_cons, SIS_RX_LIST_CNT); 1379 if_rxr_put(&sc->sis_cdata.sis_rx_ring, 1); 1380 1381 /* 1382 * DP83816A sometimes produces zero-length packets 1383 * shortly after initialisation. 1384 */ 1385 if (total_len == 0) { 1386 m_freem(m); 1387 continue; 1388 } 1389 1390 /* The ethernet CRC is always included */ 1391 total_len -= ETHER_CRC_LEN; 1392 1393 /* 1394 * If an error occurs, update stats, clear the 1395 * status word and leave the mbuf cluster in place: 1396 * it should simply get re-used next time this descriptor 1397 * comes up in the ring. However, don't report long 1398 * frames as errors since they could be VLANs. 1399 */ 1400 if (rxstat & SIS_RXSTAT_GIANT && 1401 total_len <= (ETHER_MAX_DIX_LEN - ETHER_CRC_LEN)) 1402 rxstat &= ~SIS_RXSTAT_GIANT; 1403 if (SIS_RXSTAT_ERROR(rxstat)) { 1404 ifp->if_ierrors++; 1405 if (rxstat & SIS_RXSTAT_COLL) 1406 ifp->if_collisions++; 1407 m_freem(m); 1408 continue; 1409 } 1410 1411 /* No errors; receive the packet. */ 1412 bus_dmamap_sync(sc->sc_dmat, cur_rx->map, 0, 1413 cur_rx->map->dm_mapsize, BUS_DMASYNC_POSTREAD); 1414 #ifdef __STRICT_ALIGNMENT 1415 /* 1416 * On some architectures, we do not have alignment problems, 1417 * so try to allocate a new buffer for the receive ring, and 1418 * pass up the one where the packet is already, saving the 1419 * expensive copy done in m_devget(). 1420 * If we are on an architecture with alignment problems, or 1421 * if the allocation fails, then use m_devget and leave the 1422 * existing buffer in the receive ring. 1423 */ 1424 { 1425 struct mbuf *m0; 1426 m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN); 1427 m_freem(m); 1428 if (m0 == NULL) { 1429 ifp->if_ierrors++; 1430 continue; 1431 } 1432 m = m0; 1433 } 1434 #else 1435 m->m_pkthdr.len = m->m_len = total_len; 1436 #endif 1437 1438 ml_enqueue(&ml, m); 1439 } 1440 1441 if (ifiq_input(&ifp->if_rcv, &ml)) 1442 if_rxr_livelocked(&sc->sis_cdata.sis_rx_ring); 1443 1444 sis_fill_rx_ring(sc); 1445 } 1446 1447 /* 1448 * A frame was downloaded to the chip. It's safe for us to clean up 1449 * the list buffers. 1450 */ 1451 1452 void 1453 sis_txeof(struct sis_softc *sc) 1454 { 1455 struct ifnet *ifp; 1456 u_int32_t idx, ctl, txstat; 1457 1458 ifp = &sc->arpcom.ac_if; 1459 1460 /* 1461 * Go through our tx list and free mbufs for those 1462 * frames that have been transmitted. 1463 */ 1464 for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0; 1465 sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT)) { 1466 struct sis_desc *cur_tx = &sc->sis_ldata->sis_tx_list[idx]; 1467 1468 bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, 1469 ((caddr_t)cur_tx - sc->sc_listkva), 1470 sizeof(struct sis_desc), 1471 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1472 1473 if (SIS_OWNDESC(cur_tx)) 1474 break; 1475 1476 ctl = letoh32(cur_tx->sis_ctl); 1477 1478 if (ctl & SIS_CMDSTS_MORE) 1479 continue; 1480 1481 txstat = letoh32(cur_tx->sis_txstat); 1482 1483 if (!(ctl & SIS_CMDSTS_PKT_OK)) { 1484 ifp->if_oerrors++; 1485 if (txstat & SIS_TXSTAT_EXCESSCOLLS) 1486 ifp->if_collisions++; 1487 if (txstat & SIS_TXSTAT_OUTOFWINCOLL) 1488 ifp->if_collisions++; 1489 } 1490 1491 ifp->if_collisions += (txstat & SIS_TXSTAT_COLLCNT) >> 16; 1492 1493 if (cur_tx->map->dm_nsegs != 0) { 1494 bus_dmamap_t map = cur_tx->map; 1495 1496 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1497 BUS_DMASYNC_POSTWRITE); 1498 bus_dmamap_unload(sc->sc_dmat, map); 1499 } 1500 if (cur_tx->sis_mbuf != NULL) { 1501 m_freem(cur_tx->sis_mbuf); 1502 cur_tx->sis_mbuf = NULL; 1503 } 1504 } 1505 1506 if (idx != sc->sis_cdata.sis_tx_cons) { 1507 /* we freed up some buffers */ 1508 sc->sis_cdata.sis_tx_cons = idx; 1509 ifq_clr_oactive(&ifp->if_snd); 1510 } 1511 1512 ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5; 1513 } 1514 1515 void 1516 sis_tick(void *xsc) 1517 { 1518 struct sis_softc *sc = (struct sis_softc *)xsc; 1519 struct mii_data *mii; 1520 int s; 1521 1522 s = splnet(); 1523 1524 mii = &sc->sc_mii; 1525 mii_tick(mii); 1526 1527 if (!sc->sis_link) 1528 sis_miibus_statchg(&sc->sc_dev); 1529 1530 timeout_add_sec(&sc->sis_timeout, 1); 1531 1532 splx(s); 1533 } 1534 1535 int 1536 sis_intr(void *arg) 1537 { 1538 struct sis_softc *sc = arg; 1539 struct ifnet *ifp = &sc->arpcom.ac_if; 1540 u_int32_t status; 1541 1542 if (sc->sis_stopped) /* Most likely shared interrupt */ 1543 return (0); 1544 1545 /* Reading the ISR register clears all interrupts. */ 1546 status = CSR_READ_4(sc, SIS_ISR); 1547 if ((status & SIS_INTRS) == 0) 1548 return (0); 1549 1550 if (status & 1551 (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | 1552 SIS_ISR_TX_OK | SIS_ISR_TX_IDLE)) 1553 sis_txeof(sc); 1554 1555 if (status & 1556 (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | 1557 SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE)) 1558 sis_rxeof(sc); 1559 1560 if (status & (SIS_ISR_RX_IDLE)) { 1561 /* consume what's there so that sis_rx_cons points 1562 * to the first HW owned descriptor. */ 1563 sis_rxeof(sc); 1564 /* reprogram the RX listptr */ 1565 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 1566 sc->sc_listmap->dm_segs[0].ds_addr + 1567 offsetof(struct sis_list_data, 1568 sis_rx_list[sc->sis_cdata.sis_rx_cons])); 1569 } 1570 1571 if (status & SIS_ISR_SYSERR) 1572 sis_init(sc); 1573 1574 /* 1575 * XXX: Re-enable RX engine every time otherwise it occasionally 1576 * stops under unknown circumstances. 1577 */ 1578 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); 1579 1580 if (!ifq_empty(&ifp->if_snd)) 1581 sis_start(ifp); 1582 1583 return (1); 1584 } 1585 1586 /* 1587 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1588 * pointers to the fragment pointers. 1589 */ 1590 int 1591 sis_encap(struct sis_softc *sc, struct mbuf *m_head, u_int32_t *txidx) 1592 { 1593 struct sis_desc *f = NULL; 1594 bus_dmamap_t map; 1595 int frag, cur, i, error; 1596 1597 map = sc->sc_tx_sparemap; 1598 1599 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, 1600 BUS_DMA_NOWAIT); 1601 switch (error) { 1602 case 0: 1603 break; 1604 1605 case EFBIG: 1606 if (m_defrag(m_head, M_DONTWAIT) == 0 && 1607 bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, 1608 BUS_DMA_NOWAIT) == 0) 1609 break; 1610 1611 /* FALLTHROUGH */ 1612 default: 1613 return (ENOBUFS); 1614 } 1615 1616 if ((SIS_TX_LIST_CNT - (sc->sis_cdata.sis_tx_cnt + map->dm_nsegs)) < 2) { 1617 bus_dmamap_unload(sc->sc_dmat, map); 1618 return (ENOBUFS); 1619 } 1620 1621 /* 1622 * Start packing the mbufs in this chain into 1623 * the fragment pointers. Stop when we run out 1624 * of fragments or hit the end of the mbuf chain. 1625 */ 1626 cur = frag = *txidx; 1627 1628 for (i = 0; i < map->dm_nsegs; i++) { 1629 f = &sc->sis_ldata->sis_tx_list[frag]; 1630 f->sis_ctl = htole32(SIS_CMDSTS_MORE | map->dm_segs[i].ds_len); 1631 f->sis_ptr = htole32(map->dm_segs[i].ds_addr); 1632 if (i != 0) 1633 f->sis_ctl |= htole32(SIS_CMDSTS_OWN); 1634 cur = frag; 1635 SIS_INC(frag, SIS_TX_LIST_CNT); 1636 } 1637 1638 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 1639 BUS_DMASYNC_PREWRITE); 1640 1641 sc->sis_ldata->sis_tx_list[cur].sis_mbuf = m_head; 1642 sc->sis_ldata->sis_tx_list[cur].sis_ctl &= ~htole32(SIS_CMDSTS_MORE); 1643 sc->sis_ldata->sis_tx_list[*txidx].sis_ctl |= htole32(SIS_CMDSTS_OWN); 1644 sc->sis_cdata.sis_tx_cnt += map->dm_nsegs; 1645 *txidx = frag; 1646 1647 bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, 1648 offsetof(struct sis_list_data, sis_tx_list[0]), 1649 sizeof(struct sis_desc) * SIS_TX_LIST_CNT, 1650 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1651 1652 return (0); 1653 } 1654 1655 /* 1656 * Main transmit routine. To avoid having to do mbuf copies, we put pointers 1657 * to the mbuf data regions directly in the transmit lists. We also save a 1658 * copy of the pointers since the transmit list fragment pointers are 1659 * physical addresses. 1660 */ 1661 1662 void 1663 sis_start(struct ifnet *ifp) 1664 { 1665 struct sis_softc *sc; 1666 struct mbuf *m_head = NULL; 1667 u_int32_t idx, queued = 0; 1668 1669 sc = ifp->if_softc; 1670 1671 if (!sc->sis_link) 1672 return; 1673 1674 idx = sc->sis_cdata.sis_tx_prod; 1675 1676 if (ifq_is_oactive(&ifp->if_snd)) 1677 return; 1678 1679 while(sc->sis_ldata->sis_tx_list[idx].sis_mbuf == NULL) { 1680 m_head = ifq_deq_begin(&ifp->if_snd); 1681 if (m_head == NULL) 1682 break; 1683 1684 if (sis_encap(sc, m_head, &idx)) { 1685 ifq_deq_rollback(&ifp->if_snd, m_head); 1686 ifq_set_oactive(&ifp->if_snd); 1687 break; 1688 } 1689 1690 /* now we are committed to transmit the packet */ 1691 ifq_deq_commit(&ifp->if_snd, m_head); 1692 1693 queued++; 1694 1695 /* 1696 * If there's a BPF listener, bounce a copy of this frame 1697 * to him. 1698 */ 1699 #if NBPFILTER > 0 1700 if (ifp->if_bpf) 1701 bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); 1702 #endif 1703 } 1704 1705 if (queued) { 1706 /* Transmit */ 1707 sc->sis_cdata.sis_tx_prod = idx; 1708 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); 1709 1710 /* 1711 * Set a timeout in case the chip goes out to lunch. 1712 */ 1713 ifp->if_timer = 5; 1714 } 1715 } 1716 1717 void 1718 sis_init(void *xsc) 1719 { 1720 struct sis_softc *sc = (struct sis_softc *)xsc; 1721 struct ifnet *ifp = &sc->arpcom.ac_if; 1722 struct mii_data *mii; 1723 int s; 1724 1725 s = splnet(); 1726 1727 /* 1728 * Cancel pending I/O and free all RX/TX buffers. 1729 */ 1730 sis_stop(sc); 1731 1732 /* 1733 * Reset the chip to a known state. 1734 */ 1735 sis_reset(sc); 1736 1737 #if NS_IHR_DELAY > 0 1738 /* Configure interrupt holdoff register. */ 1739 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr == NS_SRR_16A) 1740 CSR_WRITE_4(sc, NS_IHR, NS_IHR_VALUE); 1741 #endif 1742 1743 mii = &sc->sc_mii; 1744 1745 /* Set MAC address */ 1746 if (sc->sis_type == SIS_TYPE_83815) { 1747 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); 1748 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 1749 htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[0])); 1750 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); 1751 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 1752 htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[1])); 1753 CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); 1754 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 1755 htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[2])); 1756 } else { 1757 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); 1758 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 1759 htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[0])); 1760 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); 1761 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 1762 htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[1])); 1763 CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); 1764 CSR_WRITE_4(sc, SIS_RXFILT_DATA, 1765 htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[2])); 1766 } 1767 1768 /* Init circular TX/RX lists. */ 1769 if (sis_ring_init(sc) != 0) { 1770 printf("%s: initialization failed: no memory for rx buffers\n", 1771 sc->sc_dev.dv_xname); 1772 sis_stop(sc); 1773 splx(s); 1774 return; 1775 } 1776 1777 /* 1778 * Page 78 of the DP83815 data sheet (september 2002 version) 1779 * recommends the following register settings "for optimum 1780 * performance." for rev 15C. The driver from NS also sets 1781 * the PHY_CR register for later versions. 1782 * 1783 * This resolves an issue with tons of errors in AcceptPerfectMatch 1784 * (non-IFF_PROMISC) mode. 1785 */ 1786 if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) { 1787 CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); 1788 CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); 1789 /* set val for c2 */ 1790 CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); 1791 /* load/kill c2 */ 1792 CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); 1793 /* raise SD off, from 4 to c */ 1794 CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); 1795 CSR_WRITE_4(sc, NS_PHY_PAGE, 0); 1796 } 1797 1798 /* 1799 * Program promiscuous mode and multicast filters. 1800 */ 1801 sis_iff(sc); 1802 1803 /* 1804 * Load the address of the RX and TX lists. 1805 */ 1806 CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr + 1807 offsetof(struct sis_list_data, sis_rx_list[0])); 1808 CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr + 1809 offsetof(struct sis_list_data, sis_tx_list[0])); 1810 1811 /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of 1812 * the PCI bus. When this bit is set, the Max DMA Burst Size 1813 * for TX/RX DMA should be no larger than 16 double words. 1814 */ 1815 if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) 1816 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); 1817 else 1818 CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); 1819 1820 /* Accept Long Packets for VLAN support */ 1821 SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); 1822 1823 /* 1824 * Assume 100Mbps link, actual MAC configuration is done 1825 * after getting a valid link. 1826 */ 1827 CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); 1828 1829 /* 1830 * Enable interrupts. 1831 */ 1832 CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); 1833 CSR_WRITE_4(sc, SIS_IER, 1); 1834 1835 /* Clear MAC disable. */ 1836 SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 1837 1838 sc->sis_link = 0; 1839 mii_mediachg(mii); 1840 1841 sc->sis_stopped = 0; 1842 ifp->if_flags |= IFF_RUNNING; 1843 ifq_clr_oactive(&ifp->if_snd); 1844 1845 splx(s); 1846 1847 timeout_add_sec(&sc->sis_timeout, 1); 1848 } 1849 1850 /* 1851 * Set media options. 1852 */ 1853 int 1854 sis_ifmedia_upd(struct ifnet *ifp) 1855 { 1856 struct sis_softc *sc; 1857 struct mii_data *mii; 1858 1859 sc = ifp->if_softc; 1860 1861 mii = &sc->sc_mii; 1862 if (mii->mii_instance) { 1863 struct mii_softc *miisc; 1864 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 1865 mii_phy_reset(miisc); 1866 } 1867 mii_mediachg(mii); 1868 1869 return (0); 1870 } 1871 1872 /* 1873 * Report current media status. 1874 */ 1875 void 1876 sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1877 { 1878 struct sis_softc *sc; 1879 struct mii_data *mii; 1880 1881 sc = ifp->if_softc; 1882 1883 mii = &sc->sc_mii; 1884 mii_pollstat(mii); 1885 ifmr->ifm_active = mii->mii_media_active; 1886 ifmr->ifm_status = mii->mii_media_status; 1887 } 1888 1889 int 1890 sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1891 { 1892 struct sis_softc *sc = ifp->if_softc; 1893 struct ifreq *ifr = (struct ifreq *) data; 1894 struct mii_data *mii; 1895 int s, error = 0; 1896 1897 s = splnet(); 1898 1899 switch(command) { 1900 case SIOCSIFADDR: 1901 ifp->if_flags |= IFF_UP; 1902 if (!(ifp->if_flags & IFF_RUNNING)) 1903 sis_init(sc); 1904 break; 1905 1906 case SIOCSIFFLAGS: 1907 if (ifp->if_flags & IFF_UP) { 1908 if (ifp->if_flags & IFF_RUNNING) 1909 error = ENETRESET; 1910 else 1911 sis_init(sc); 1912 } else { 1913 if (ifp->if_flags & IFF_RUNNING) 1914 sis_stop(sc); 1915 } 1916 break; 1917 1918 case SIOCGIFMEDIA: 1919 case SIOCSIFMEDIA: 1920 mii = &sc->sc_mii; 1921 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1922 break; 1923 1924 case SIOCGIFRXR: 1925 error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data, 1926 NULL, MCLBYTES, &sc->sis_cdata.sis_rx_ring); 1927 break; 1928 1929 default: 1930 error = ether_ioctl(ifp, &sc->arpcom, command, data); 1931 } 1932 1933 if (error == ENETRESET) { 1934 if (ifp->if_flags & IFF_RUNNING) 1935 sis_iff(sc); 1936 error = 0; 1937 } 1938 1939 splx(s); 1940 return(error); 1941 } 1942 1943 void 1944 sis_watchdog(struct ifnet *ifp) 1945 { 1946 struct sis_softc *sc; 1947 int s; 1948 1949 sc = ifp->if_softc; 1950 1951 if (sc->sis_stopped) 1952 return; 1953 1954 ifp->if_oerrors++; 1955 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); 1956 1957 s = splnet(); 1958 sis_init(sc); 1959 1960 if (!ifq_empty(&ifp->if_snd)) 1961 sis_start(ifp); 1962 1963 splx(s); 1964 } 1965 1966 /* 1967 * Stop the adapter and free any mbufs allocated to the 1968 * RX and TX lists. 1969 */ 1970 void 1971 sis_stop(struct sis_softc *sc) 1972 { 1973 int i; 1974 struct ifnet *ifp; 1975 1976 if (sc->sis_stopped) 1977 return; 1978 1979 ifp = &sc->arpcom.ac_if; 1980 ifp->if_timer = 0; 1981 1982 timeout_del(&sc->sis_timeout); 1983 1984 ifp->if_flags &= ~IFF_RUNNING; 1985 ifq_clr_oactive(&ifp->if_snd); 1986 sc->sis_stopped = 1; 1987 1988 CSR_WRITE_4(sc, SIS_IER, 0); 1989 CSR_WRITE_4(sc, SIS_IMR, 0); 1990 CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */ 1991 SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); 1992 DELAY(1000); 1993 CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); 1994 CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); 1995 1996 sc->sis_link = 0; 1997 1998 /* 1999 * Free data in the RX lists. 2000 */ 2001 for (i = 0; i < SIS_RX_LIST_CNT; i++) { 2002 if (sc->sis_ldata->sis_rx_list[i].map->dm_nsegs != 0) { 2003 bus_dmamap_t map = sc->sis_ldata->sis_rx_list[i].map; 2004 2005 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 2006 BUS_DMASYNC_POSTREAD); 2007 bus_dmamap_unload(sc->sc_dmat, map); 2008 } 2009 if (sc->sis_ldata->sis_rx_list[i].sis_mbuf != NULL) { 2010 m_freem(sc->sis_ldata->sis_rx_list[i].sis_mbuf); 2011 sc->sis_ldata->sis_rx_list[i].sis_mbuf = NULL; 2012 } 2013 bzero(&sc->sis_ldata->sis_rx_list[i], 2014 sizeof(struct sis_desc) - sizeof(bus_dmamap_t)); 2015 } 2016 2017 /* 2018 * Free the TX list buffers. 2019 */ 2020 for (i = 0; i < SIS_TX_LIST_CNT; i++) { 2021 if (sc->sis_ldata->sis_tx_list[i].map->dm_nsegs != 0) { 2022 bus_dmamap_t map = sc->sis_ldata->sis_tx_list[i].map; 2023 2024 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, 2025 BUS_DMASYNC_POSTWRITE); 2026 bus_dmamap_unload(sc->sc_dmat, map); 2027 } 2028 if (sc->sis_ldata->sis_tx_list[i].sis_mbuf != NULL) { 2029 m_freem(sc->sis_ldata->sis_tx_list[i].sis_mbuf); 2030 sc->sis_ldata->sis_tx_list[i].sis_mbuf = NULL; 2031 } 2032 bzero(&sc->sis_ldata->sis_tx_list[i], 2033 sizeof(struct sis_desc) - sizeof(bus_dmamap_t)); 2034 } 2035 } 2036