xref: /openbsd-src/sys/dev/pci/if_pcn.c (revision 0f9891f1fafd8f53a63c41edb56ce51e2589b910)
1 /*	$OpenBSD: if_pcn.c,v 1.50 2024/05/24 06:02:56 jsg Exp $	*/
2 /*	$NetBSD: if_pcn.c,v 1.26 2005/05/07 09:15:44 is Exp $	*/
3 
4 /*
5  * Copyright (c) 2001 Wasabi Systems, Inc.
6  * All rights reserved.
7  *
8  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed for the NetBSD Project by
21  *	Wasabi Systems, Inc.
22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Device driver for the AMD PCnet-PCI series of Ethernet
41  * chips:
42  *
43  *	* Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
44  *	  Local Bus
45  *
46  *	* Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
47  *	  for PCI Local Bus
48  *
49  *	* Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
50  *	  Ethernet Controller for PCI Local Bus
51  *
52  *	* Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
53  *	  with OnNow Support
54  *
55  *	* Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
56  *	  Ethernet Controller with Integrated PHY
57  *
58  * This also supports the virtual PCnet-PCI Ethernet interface found
59  * in VMware.
60  *
61  * TODO:
62  *
63  *	* Split this into bus-specific and bus-independent portions.
64  *	  The core could also be used for the ILACC (Am79900) 32-bit
65  *	  Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
66  */
67 
68 #include "bpfilter.h"
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/timeout.h>
73 #include <sys/mbuf.h>
74 #include <sys/ioctl.h>
75 #include <sys/errno.h>
76 #include <sys/device.h>
77 #include <sys/queue.h>
78 #include <sys/endian.h>
79 
80 #include <net/if.h>
81 #include <net/if_dl.h>
82 
83 #include <netinet/in.h>
84 #include <netinet/if_ether.h>
85 
86 #include <net/if_media.h>
87 
88 #if NBPFILTER > 0
89 #include <net/bpf.h>
90 #endif
91 
92 #include <machine/bus.h>
93 #include <machine/intr.h>
94 
95 #include <dev/mii/miivar.h>
96 
97 #include <dev/ic/am79900reg.h>
98 #include <dev/ic/lancereg.h>
99 
100 #include <dev/pci/pcireg.h>
101 #include <dev/pci/pcivar.h>
102 #include <dev/pci/pcidevs.h>
103 
104 /*
105  * Register definitions for the AMD PCnet-PCI series of Ethernet
106  * chips.
107  *
108  * These are only the registers that we access directly from PCI
109  * space.  Everything else (accessed via the RAP + RDP/BDP) is
110  * defined in <dev/ic/lancereg.h>.
111  */
112 
113 /*
114  * PCI configuration space.
115  */
116 
117 #define	PCN_PCI_CBIO	(PCI_MAPREG_START + 0x00)
118 #define	PCN_PCI_CBMEM	(PCI_MAPREG_START + 0x04)
119 
120 /*
121  * I/O map in Word I/O mode.
122  */
123 
124 #define	PCN16_APROM	0x00
125 #define	PCN16_RDP	0x10
126 #define	PCN16_RAP	0x12
127 #define	PCN16_RESET	0x14
128 #define	PCN16_BDP	0x16
129 
130 /*
131  * I/O map in DWord I/O mode.
132  */
133 
134 #define	PCN32_APROM	0x00
135 #define	PCN32_RDP	0x10
136 #define	PCN32_RAP	0x14
137 #define	PCN32_RESET	0x18
138 #define	PCN32_BDP	0x1c
139 
140 /*
141  * Transmit descriptor list size.  This is arbitrary, but allocate
142  * enough descriptors for 128 pending transmissions, and 4 segments
143  * per packet.  This MUST work out to a power of 2.
144  *
145  * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
146  *
147  * So we play a little trick here.  We give each packet up to 16
148  * DMA segments, but only allocate the max of 512 descriptors.  The
149  * transmit logic can deal with this, we just are hoping to sneak by.
150  */
151 #define	PCN_NTXSEGS		16
152 
153 #define	PCN_TXQUEUELEN		128
154 #define	PCN_TXQUEUELEN_MASK	(PCN_TXQUEUELEN - 1)
155 #define	PCN_NTXDESC		512
156 #define	PCN_NTXDESC_MASK	(PCN_NTXDESC - 1)
157 #define	PCN_NEXTTX(x)		(((x) + 1) & PCN_NTXDESC_MASK)
158 #define	PCN_NEXTTXS(x)		(((x) + 1) & PCN_TXQUEUELEN_MASK)
159 
160 /* Tx interrupt every N + 1 packets. */
161 #define	PCN_TXINTR_MASK		7
162 
163 /*
164  * Receive descriptor list size.  We have one Rx buffer per incoming
165  * packet, so this logic is a little simpler.
166  */
167 #define	PCN_NRXDESC		128
168 #define	PCN_NRXDESC_MASK	(PCN_NRXDESC - 1)
169 #define	PCN_NEXTRX(x)		(((x) + 1) & PCN_NRXDESC_MASK)
170 
171 /*
172  * Control structures are DMA'd to the PCnet chip.  We allocate them in
173  * a single clump that maps to a single DMA segment to make several things
174  * easier.
175  */
176 struct pcn_control_data {
177 	/* The transmit descriptors. */
178 	struct letmd pcd_txdescs[PCN_NTXDESC];
179 
180 	/* The receive descriptors. */
181 	struct lermd pcd_rxdescs[PCN_NRXDESC];
182 
183 	/* The init block. */
184 	struct leinit pcd_initblock;
185 };
186 
187 #define	PCN_CDOFF(x)	offsetof(struct pcn_control_data, x)
188 #define	PCN_CDTXOFF(x)	PCN_CDOFF(pcd_txdescs[(x)])
189 #define	PCN_CDRXOFF(x)	PCN_CDOFF(pcd_rxdescs[(x)])
190 #define	PCN_CDINITOFF	PCN_CDOFF(pcd_initblock)
191 
192 /*
193  * Software state for transmit jobs.
194  */
195 struct pcn_txsoft {
196 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
197 	bus_dmamap_t txs_dmamap;	/* our DMA map */
198 	int txs_firstdesc;		/* first descriptor in packet */
199 	int txs_lastdesc;		/* last descriptor in packet */
200 };
201 
202 /*
203  * Software state for receive jobs.
204  */
205 struct pcn_rxsoft {
206 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
207 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
208 };
209 
210 /*
211  * Description of Rx FIFO watermarks for various revisions.
212  */
213 static const char * const pcn_79c970_rcvfw[] = {
214 	"16 bytes",
215 	"64 bytes",
216 	"128 bytes",
217 	NULL,
218 };
219 
220 static const char * const pcn_79c971_rcvfw[] = {
221 	"16 bytes",
222 	"64 bytes",
223 	"112 bytes",
224 	NULL,
225 };
226 
227 /*
228  * Description of Tx start points for various revisions.
229  */
230 static const char * const pcn_79c970_xmtsp[] = {
231 	"8 bytes",
232 	"64 bytes",
233 	"128 bytes",
234 	"248 bytes",
235 };
236 
237 static const char * const pcn_79c971_xmtsp[] = {
238 	"20 bytes",
239 	"64 bytes",
240 	"128 bytes",
241 	"248 bytes",
242 };
243 
244 static const char * const pcn_79c971_xmtsp_sram[] = {
245 	"44 bytes",
246 	"64 bytes",
247 	"128 bytes",
248 	"store-and-forward",
249 };
250 
251 /*
252  * Description of Tx FIFO watermarks for various revisions.
253  */
254 static const char * const pcn_79c970_xmtfw[] = {
255 	"16 bytes",
256 	"64 bytes",
257 	"128 bytes",
258 	NULL,
259 };
260 
261 static const char * const pcn_79c971_xmtfw[] = {
262 	"16 bytes",
263 	"64 bytes",
264 	"108 bytes",
265 	NULL,
266 };
267 
268 /*
269  * Software state per device.
270  */
271 struct pcn_softc {
272 	struct device sc_dev;		/* generic device information */
273 	bus_space_tag_t sc_st;		/* bus space tag */
274 	bus_space_handle_t sc_sh;	/* bus space handle */
275 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
276 	struct arpcom sc_arpcom;	/* Ethernet common data */
277 
278 	/* Points to our media routines, etc. */
279 	const struct pcn_variant *sc_variant;
280 
281 	void *sc_ih;			/* interrupt cookie */
282 
283 	struct mii_data sc_mii;		/* MII/media information */
284 
285 	struct timeout sc_tick_timeout;	/* tick timeout */
286 
287 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
288 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
289 
290 	/* Software state for transmit and receive descriptors. */
291 	struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
292 	struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
293 
294 	/* Control data structures */
295 	struct pcn_control_data *sc_control_data;
296 #define	sc_txdescs	sc_control_data->pcd_txdescs
297 #define	sc_rxdescs	sc_control_data->pcd_rxdescs
298 #define	sc_initblock	sc_control_data->pcd_initblock
299 
300 	const char * const *sc_rcvfw_desc;	/* Rx FIFO watermark info */
301 	int sc_rcvfw;
302 
303 	const char * const *sc_xmtsp_desc;	/* Tx start point info */
304 	int sc_xmtsp;
305 
306 	const char * const *sc_xmtfw_desc;	/* Tx FIFO watermark info */
307 	int sc_xmtfw;
308 
309 	int sc_flags;			/* misc. flags; see below */
310 	int sc_swstyle;			/* the software style in use */
311 
312 	int sc_txfree;			/* number of free Tx descriptors */
313 	int sc_txnext;			/* next ready Tx descriptor */
314 
315 	int sc_txsfree;			/* number of free Tx jobs */
316 	int sc_txsnext;			/* next free Tx job */
317 	int sc_txsdirty;		/* dirty Tx jobs */
318 
319 	int sc_rxptr;			/* next ready Rx descriptor/job */
320 
321 	uint32_t sc_csr5;		/* prototype CSR5 register */
322 	uint32_t sc_mode;		/* prototype MODE register */
323 };
324 
325 /* sc_flags */
326 #define	PCN_F_HAS_MII		0x0001	/* has MII */
327 
328 #define	PCN_CDTXADDR(sc, x)	((sc)->sc_cddma + PCN_CDTXOFF((x)))
329 #define	PCN_CDRXADDR(sc, x)	((sc)->sc_cddma + PCN_CDRXOFF((x)))
330 #define	PCN_CDINITADDR(sc)	((sc)->sc_cddma + PCN_CDINITOFF)
331 
332 #define	PCN_CDTXSYNC(sc, x, n, ops)					\
333 do {									\
334 	int __x, __n;							\
335 									\
336 	__x = (x);							\
337 	__n = (n);							\
338 									\
339 	/* If it will wrap around, sync to the end of the ring. */	\
340 	if ((__x + __n) > PCN_NTXDESC) {				\
341 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
342 		    PCN_CDTXOFF(__x), sizeof(struct letmd) *		\
343 		    (PCN_NTXDESC - __x), (ops));			\
344 		__n -= (PCN_NTXDESC - __x);				\
345 		__x = 0;						\
346 	}								\
347 									\
348 	/* Now sync whatever is left. */				\
349 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
350 	    PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops));	\
351 } while (/*CONSTCOND*/0)
352 
353 #define	PCN_CDRXSYNC(sc, x, ops)					\
354 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
355 	    PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
356 
357 #define	PCN_CDINITSYNC(sc, ops)						\
358 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
359 	    PCN_CDINITOFF, sizeof(struct leinit), (ops))
360 
361 #define	PCN_INIT_RXDESC(sc, x)						\
362 do {									\
363 	struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
364 	struct lermd *__rmd = &(sc)->sc_rxdescs[(x)];			\
365 	struct mbuf *__m = __rxs->rxs_mbuf;				\
366 									\
367 	/*								\
368 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
369 	 * so that the payload after the Ethernet header is aligned	\
370 	 * to a 4-byte boundary.					\
371 	 */								\
372 	__m->m_data = __m->m_ext.ext_buf + 2;				\
373 									\
374 	if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {		\
375 		__rmd->rmd2 =						\
376 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
377 		__rmd->rmd0 = 0;					\
378 	} else {							\
379 		__rmd->rmd2 = 0;					\
380 		__rmd->rmd0 =						\
381 		    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2);	\
382 	}								\
383 	__rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| 			\
384 	    (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK));			\
385 	PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
386 } while(/*CONSTCOND*/0)
387 
388 void	pcn_start(struct ifnet *);
389 void	pcn_watchdog(struct ifnet *);
390 int	pcn_ioctl(struct ifnet *, u_long, caddr_t);
391 int	pcn_init(struct ifnet *);
392 void	pcn_stop(struct ifnet *, int);
393 
394 void	pcn_reset(struct pcn_softc *);
395 void	pcn_rxdrain(struct pcn_softc *);
396 int	pcn_add_rxbuf(struct pcn_softc *, int);
397 void	pcn_tick(void *);
398 
399 void	pcn_spnd(struct pcn_softc *);
400 
401 void	pcn_set_filter(struct pcn_softc *);
402 
403 int	pcn_intr(void *);
404 void	pcn_txintr(struct pcn_softc *);
405 int	pcn_rxintr(struct pcn_softc *);
406 
407 int	pcn_mii_readreg(struct device *, int, int);
408 void	pcn_mii_writereg(struct device *, int, int, int);
409 void	pcn_mii_statchg(struct device *);
410 
411 void	pcn_79c970_mediainit(struct pcn_softc *);
412 int	pcn_79c970_mediachange(struct ifnet *);
413 void	pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
414 
415 void	pcn_79c971_mediainit(struct pcn_softc *);
416 int	pcn_79c971_mediachange(struct ifnet *);
417 void	pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
418 
419 /*
420  * Description of a PCnet-PCI variant.  Used to select media access
421  * method, mostly, and to print a nice description of the chip.
422  */
423 static const struct pcn_variant {
424 	const char *pcv_desc;
425 	void (*pcv_mediainit)(struct pcn_softc *);
426 	uint16_t pcv_chipid;
427 } pcn_variants[] = {
428 	{ "Am79c970",
429 	  pcn_79c970_mediainit,
430 	  PARTID_Am79c970 },
431 
432 	{ "Am79c970A",
433 	  pcn_79c970_mediainit,
434 	  PARTID_Am79c970A },
435 
436 	{ "Am79c971",
437 	  pcn_79c971_mediainit,
438 	  PARTID_Am79c971 },
439 
440 	{ "Am79c972",
441 	  pcn_79c971_mediainit,
442 	  PARTID_Am79c972 },
443 
444 	{ "Am79c973",
445 	  pcn_79c971_mediainit,
446 	  PARTID_Am79c973 },
447 
448 	{ "Am79c975",
449 	  pcn_79c971_mediainit,
450 	  PARTID_Am79c975 },
451 
452 	{ "Am79c976",
453 	  pcn_79c971_mediainit,
454 	  PARTID_Am79c976 },
455 
456 	{ "Am79c978",
457 	  pcn_79c971_mediainit,
458 	  PARTID_Am79c978 },
459 
460 	{ "Unknown",
461 	  pcn_79c971_mediainit,
462 	  0 },
463 };
464 
465 int	pcn_copy_small = 0;
466 
467 int	pcn_match(struct device *, void *, void *);
468 void	pcn_attach(struct device *, struct device *, void *);
469 
470 const struct cfattach pcn_ca = {
471 	sizeof(struct pcn_softc), pcn_match, pcn_attach,
472 };
473 
474 const struct pci_matchid pcn_devices[] = {
475 	{ PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCNET_PCI },
476 	{ PCI_VENDOR_AMD, PCI_PRODUCT_AMD_PCHOME_PCI }
477 };
478 
479 struct cfdriver pcn_cd = {
480 	NULL, "pcn", DV_IFNET
481 };
482 
483 /*
484  * Routines to read and write the PCnet-PCI CSR/BCR space.
485  */
486 
487 static __inline uint32_t
pcn_csr_read(struct pcn_softc * sc,int reg)488 pcn_csr_read(struct pcn_softc *sc, int reg)
489 {
490 
491 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
492 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
493 }
494 
495 static __inline void
pcn_csr_write(struct pcn_softc * sc,int reg,uint32_t val)496 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
497 {
498 
499 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
500 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
501 }
502 
503 static __inline uint32_t
pcn_bcr_read(struct pcn_softc * sc,int reg)504 pcn_bcr_read(struct pcn_softc *sc, int reg)
505 {
506 
507 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
508 	return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
509 }
510 
511 static __inline void
pcn_bcr_write(struct pcn_softc * sc,int reg,uint32_t val)512 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
513 {
514 
515 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
516 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
517 }
518 
519 static const struct pcn_variant *
pcn_lookup_variant(uint16_t chipid)520 pcn_lookup_variant(uint16_t chipid)
521 {
522 	const struct pcn_variant *pcv;
523 
524 	for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
525 		if (chipid == pcv->pcv_chipid)
526 			return (pcv);
527 	}
528 
529 	/*
530 	 * This covers unknown chips, which we simply treat like
531 	 * a generic PCnet-FAST.
532 	 */
533 	return (pcv);
534 }
535 
536 int
pcn_match(struct device * parent,void * match,void * aux)537 pcn_match(struct device *parent, void *match, void *aux)
538 {
539 	struct pci_attach_args *pa = aux;
540 
541 	/*
542 	 * IBM makes a PCI variant of this card which shows up as a
543 	 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
544 	 * this card is truly a pcn card, so we have a special case match for
545 	 * it.
546 	 */
547 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
548 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
549 	    PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
550 		return(1);
551 
552 	return (pci_matchbyid((struct pci_attach_args *)aux, pcn_devices,
553 	    nitems(pcn_devices)));
554 }
555 
556 void
pcn_attach(struct device * parent,struct device * self,void * aux)557 pcn_attach(struct device *parent, struct device *self, void *aux)
558 {
559 	struct pcn_softc *sc = (struct pcn_softc *) self;
560 	struct pci_attach_args *pa = aux;
561 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
562 	pci_chipset_tag_t pc = pa->pa_pc;
563 	pci_intr_handle_t ih;
564 	const char *intrstr = NULL;
565 	bus_space_tag_t iot, memt;
566 	bus_space_handle_t ioh, memh;
567 	bus_dma_segment_t seg;
568 	int ioh_valid, memh_valid;
569 	int i, rseg, error;
570 	uint32_t chipid, reg;
571 	uint8_t enaddr[ETHER_ADDR_LEN];
572 
573 	timeout_set(&sc->sc_tick_timeout, pcn_tick, sc);
574 
575 	/*
576 	 * Map the device.
577 	 */
578 	ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
579 	    &iot, &ioh, NULL, NULL, 0) == 0);
580 	memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
581 	    PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
582 	    &memt, &memh, NULL, NULL, 0) == 0);
583 
584 	if (memh_valid) {
585 		sc->sc_st = memt;
586 		sc->sc_sh = memh;
587 	} else if (ioh_valid) {
588 		sc->sc_st = iot;
589 		sc->sc_sh = ioh;
590 	} else {
591 		printf(": unable to map device registers\n");
592 		return;
593 	}
594 
595 	sc->sc_dmat = pa->pa_dmat;
596 
597 	/* Get it out of power save mode, if needed. */
598 	pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0);
599 
600 	/*
601 	 * Reset the chip to a known state.  This also puts the
602 	 * chip into 32-bit mode.
603 	 */
604 	pcn_reset(sc);
605 
606 #if !defined(PCN_NO_PROM)
607 
608 	/*
609 	 * Read the Ethernet address from the EEPROM.
610 	 */
611 	for (i = 0; i < ETHER_ADDR_LEN; i++)
612 		enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
613 		    PCN32_APROM + i);
614 #else
615 	/*
616 	 * The PROM is not used; instead we assume that the MAC address
617 	 * has been programmed into the device's physical address
618 	 * registers by the boot firmware
619 	 */
620 
621         for (i=0; i < 3; i++) {
622 		uint32_t val;
623 		val = pcn_csr_read(sc, LE_CSR12 + i);
624 		enaddr[2*i] = val & 0x0ff;
625 		enaddr[2*i+1] = (val >> 8) & 0x0ff;
626 	}
627 #endif
628 
629 	/*
630 	 * Now that the device is mapped, attempt to figure out what
631 	 * kind of chip we have.  Note that IDL has all 32 bits of
632 	 * the chip ID when we're in 32-bit mode.
633 	 */
634 	chipid = pcn_csr_read(sc, LE_CSR88);
635 	sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
636 
637 	/*
638 	 * Map and establish our interrupt.
639 	 */
640 	if (pci_intr_map(pa, &ih)) {
641 		printf(": unable to map interrupt\n");
642 		return;
643 	}
644 	intrstr = pci_intr_string(pc, ih);
645 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc,
646 	    self->dv_xname);
647 	if (sc->sc_ih == NULL) {
648 		printf(": unable to establish interrupt");
649 		if (intrstr != NULL)
650 			printf(" at %s", intrstr);
651 		printf("\n");
652 		return;
653 	}
654 
655 	/*
656 	 * Allocate the control data structures, and create and load the
657 	 * DMA map for it.
658 	 */
659 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
660 	     sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
661 	     0)) != 0) {
662 		printf(": unable to allocate control data, error = %d\n",
663 		    error);
664 		return;
665 	}
666 
667 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
668 	     sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
669 	     BUS_DMA_COHERENT)) != 0) {
670 		printf(": unable to map control data, error = %d\n",
671 		    error);
672 		goto fail_1;
673 	}
674 
675 	if ((error = bus_dmamap_create(sc->sc_dmat,
676 	     sizeof(struct pcn_control_data), 1,
677 	     sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
678 		printf(": unable to create control data DMA map, "
679 		    "error = %d\n", error);
680 		goto fail_2;
681 	}
682 
683 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
684 	     sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
685 	     0)) != 0) {
686 		printf(": unable to load control data DMA map, error = %d\n",
687 		    error);
688 		goto fail_3;
689 	}
690 
691 	/* Create the transmit buffer DMA maps. */
692 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
693 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
694 		     PCN_NTXSEGS, MCLBYTES, 0, 0,
695 		     &sc->sc_txsoft[i].txs_dmamap)) != 0) {
696 			printf(": unable to create tx DMA map %d, "
697 			    "error = %d\n", i, error);
698 			goto fail_4;
699 		}
700 	}
701 
702 	/* Create the receive buffer DMA maps. */
703 	for (i = 0; i < PCN_NRXDESC; i++) {
704 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
705 		     MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
706 			printf(": unable to create rx DMA map %d, "
707 			    "error = %d\n", i, error);
708 			goto fail_5;
709 		}
710 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
711 	}
712 
713 	printf(", %s, rev %d: %s, address %s\n", sc->sc_variant->pcv_desc,
714 	    CHIPID_VER(chipid), intrstr, ether_sprintf(enaddr));
715 
716 	/* Initialize our media structures. */
717 	(*sc->sc_variant->pcv_mediainit)(sc);
718 
719 	/*
720 	 * Initialize FIFO watermark info.
721 	 */
722 	switch (sc->sc_variant->pcv_chipid) {
723 	case PARTID_Am79c970:
724 	case PARTID_Am79c970A:
725 		sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
726 		sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
727 		sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
728 		break;
729 
730 	default:
731 		sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
732 		/*
733 		 * Read BCR25 to determine how much SRAM is
734 		 * on the board.  If > 0, then we the chip
735 		 * uses different Start Point thresholds.
736 		 *
737 		 * Note BCR25 and BCR26 are loaded from the
738 		 * EEPROM on RST, and unaffected by S_RESET,
739 		 * so we don't really have to worry about
740 		 * them except for this.
741 		 */
742 		reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
743 		if (reg != 0)
744 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
745 		else
746 			sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
747 		sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
748 		break;
749 	}
750 
751 	/*
752 	 * Set up defaults -- see the tables above for what these
753 	 * values mean.
754 	 *
755 	 * XXX How should we tune RCVFW and XMTFW?
756 	 */
757 	sc->sc_rcvfw = 1;	/* minimum for full-duplex */
758 	sc->sc_xmtsp = 1;
759 	sc->sc_xmtfw = 0;
760 
761 	ifp = &sc->sc_arpcom.ac_if;
762 	bcopy(enaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
763 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
764 	ifp->if_softc = sc;
765 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
766 	ifp->if_ioctl = pcn_ioctl;
767 	ifp->if_start = pcn_start;
768 	ifp->if_watchdog = pcn_watchdog;
769 	ifq_init_maxlen(&ifp->if_snd, PCN_NTXDESC -1);
770 
771 	/* Attach the interface. */
772 	if_attach(ifp);
773 	ether_ifattach(ifp);
774 	return;
775 
776 	/*
777 	 * Free any resources we've allocated during the failed attach
778 	 * attempt.  Do this in reverse order and fall through.
779 	 */
780  fail_5:
781 	for (i = 0; i < PCN_NRXDESC; i++) {
782 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
783 			bus_dmamap_destroy(sc->sc_dmat,
784 			    sc->sc_rxsoft[i].rxs_dmamap);
785 	}
786  fail_4:
787 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
788 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
789 			bus_dmamap_destroy(sc->sc_dmat,
790 			    sc->sc_txsoft[i].txs_dmamap);
791 	}
792 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
793  fail_3:
794 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
795  fail_2:
796 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
797 	    sizeof(struct pcn_control_data));
798  fail_1:
799 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
800 }
801 
802 /*
803  * pcn_start:		[ifnet interface function]
804  *
805  *	Start packet transmission on the interface.
806  */
807 void
pcn_start(struct ifnet * ifp)808 pcn_start(struct ifnet *ifp)
809 {
810 	struct pcn_softc *sc = ifp->if_softc;
811 	struct mbuf *m0;
812 	struct pcn_txsoft *txs;
813 	bus_dmamap_t dmamap;
814 	int nexttx, lasttx = -1, ofree, seg;
815 
816 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
817 		return;
818 
819 	/*
820 	 * Remember the previous number of free descriptors and
821 	 * the first descriptor we'll use.
822 	 */
823 	ofree = sc->sc_txfree;
824 
825 	/*
826 	 * Loop through the send queue, setting up transmit descriptors
827 	 * until we drain the queue, or use up all available transmit
828 	 * descriptors.
829 	 */
830 	for (;;) {
831 		if (sc->sc_txsfree == 0 ||
832 		    sc->sc_txfree < (PCN_NTXSEGS + 1)) {
833 			ifq_set_oactive(&ifp->if_snd);
834 			break;
835 		}
836 
837 		/* Grab a packet off the queue. */
838 		m0 = ifq_dequeue(&ifp->if_snd);
839 		if (m0 == NULL)
840 			break;
841 
842 		txs = &sc->sc_txsoft[sc->sc_txsnext];
843 		dmamap = txs->txs_dmamap;
844 
845 		switch (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
846 		    BUS_DMA_NOWAIT)) {
847 		case 0:
848 			break;
849 		case EFBIG:
850 			if (m_defrag(m0, M_DONTWAIT) == 0 &&
851 			    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
852 			    BUS_DMA_NOWAIT) == 0)
853 				break;
854 
855 			/* FALLTHROUGH */
856 		default:
857 			m_freem(m0);
858 			continue;
859 		}
860 
861 		/*
862 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
863 		 */
864 
865 		/* Sync the DMA map. */
866 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
867 		    BUS_DMASYNC_PREWRITE);
868 
869 		/*
870 		 * Initialize the transmit descriptors.
871 		 */
872 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
873 			for (nexttx = sc->sc_txnext, seg = 0;
874 			     seg < dmamap->dm_nsegs;
875 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
876 				/*
877 				 * If this is the first descriptor we're
878 				 * enqueueing, don't set the OWN bit just
879 				 * yet.  That could cause a race condition.
880 				 * We'll do it below.
881 				 */
882 				sc->sc_txdescs[nexttx].tmd0 = 0;
883 				sc->sc_txdescs[nexttx].tmd2 =
884 				    htole32(dmamap->dm_segs[seg].ds_addr);
885 				sc->sc_txdescs[nexttx].tmd1 =
886 				    htole32(LE_T1_ONES |
887 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
888 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
889 				     LE_T1_BCNT_MASK));
890 				lasttx = nexttx;
891 			}
892 		} else {
893 			for (nexttx = sc->sc_txnext, seg = 0;
894 			     seg < dmamap->dm_nsegs;
895 			     seg++, nexttx = PCN_NEXTTX(nexttx)) {
896 				/*
897 				 * If this is the first descriptor we're
898 				 * enqueueing, don't set the OWN bit just
899 				 * yet.  That could cause a race condition.
900 				 * We'll do it below.
901 				 */
902 				sc->sc_txdescs[nexttx].tmd0 =
903 				    htole32(dmamap->dm_segs[seg].ds_addr);
904 				sc->sc_txdescs[nexttx].tmd2 = 0;
905 				sc->sc_txdescs[nexttx].tmd1 =
906 				    htole32(LE_T1_ONES |
907 				    (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
908 				    (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
909 				     LE_T1_BCNT_MASK));
910 				lasttx = nexttx;
911 			}
912 		}
913 
914 		KASSERT(lasttx != -1);
915 		/* Interrupt on the packet, if appropriate. */
916 		if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
917 			sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
918 
919 		/* Set `start of packet' and `end of packet' appropriately. */
920 		sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
921 		sc->sc_txdescs[sc->sc_txnext].tmd1 |=
922 		    htole32(LE_T1_OWN|LE_T1_STP);
923 
924 		/* Sync the descriptors we're using. */
925 		PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
926 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
927 
928 		/* Kick the transmitter. */
929 		pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
930 
931 		/*
932 		 * Store a pointer to the packet so we can free it later,
933 		 * and remember what txdirty will be once the packet is
934 		 * done.
935 		 */
936 		txs->txs_mbuf = m0;
937 		txs->txs_firstdesc = sc->sc_txnext;
938 		txs->txs_lastdesc = lasttx;
939 
940 		/* Advance the tx pointer. */
941 		sc->sc_txfree -= dmamap->dm_nsegs;
942 		sc->sc_txnext = nexttx;
943 
944 		sc->sc_txsfree--;
945 		sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
946 
947 #if NBPFILTER > 0
948 		/* Pass the packet to any BPF listeners. */
949 		if (ifp->if_bpf)
950 			bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT);
951 #endif /* NBPFILTER > 0 */
952 	}
953 
954 	if (sc->sc_txfree != ofree) {
955 		/* Set a watchdog timer in case the chip flakes out. */
956 		ifp->if_timer = 5;
957 	}
958 }
959 
960 /*
961  * pcn_watchdog:	[ifnet interface function]
962  *
963  *	Watchdog timer handler.
964  */
965 void
pcn_watchdog(struct ifnet * ifp)966 pcn_watchdog(struct ifnet *ifp)
967 {
968 	struct pcn_softc *sc = ifp->if_softc;
969 
970 	/*
971 	 * Since we're not interrupting every packet, sweep
972 	 * up before we report an error.
973 	 */
974 	pcn_txintr(sc);
975 
976 	if (sc->sc_txfree != PCN_NTXDESC) {
977 		printf("%s: device timeout (txfree %d txsfree %d)\n",
978 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
979 		ifp->if_oerrors++;
980 
981 		/* Reset the interface. */
982 		(void) pcn_init(ifp);
983 	}
984 
985 	/* Try to get more packets going. */
986 	pcn_start(ifp);
987 }
988 
989 /*
990  * pcn_ioctl:		[ifnet interface function]
991  *
992  *	Handle control requests from the operator.
993  */
994 int
pcn_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)995 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
996 {
997 	struct pcn_softc *sc = ifp->if_softc;
998 	struct ifreq *ifr = (struct ifreq *) data;
999 	int s, error = 0;
1000 
1001 	s = splnet();
1002 
1003 	switch (cmd) {
1004 	case SIOCSIFADDR:
1005 		ifp->if_flags |= IFF_UP;
1006 		if (!(ifp->if_flags & IFF_RUNNING))
1007 			pcn_init(ifp);
1008 		break;
1009 
1010 	case SIOCSIFFLAGS:
1011 		if (ifp->if_flags & IFF_UP) {
1012 			if (ifp->if_flags & IFF_RUNNING)
1013 				error = ENETRESET;
1014 			else
1015 				pcn_init(ifp);
1016 		} else {
1017 			if (ifp->if_flags & IFF_RUNNING)
1018 				pcn_stop(ifp, 1);
1019 		}
1020 		break;
1021 
1022 	case SIOCSIFMEDIA:
1023 	case SIOCGIFMEDIA:
1024 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1025 		break;
1026 
1027 	default:
1028 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1029 	}
1030 
1031 	if (error == ENETRESET) {
1032 		if (ifp->if_flags & IFF_RUNNING)
1033 			error = pcn_init(ifp);
1034 		else
1035 			error = 0;
1036 	}
1037 
1038 	splx(s);
1039 	return (error);
1040 }
1041 
1042 /*
1043  * pcn_intr:
1044  *
1045  *	Interrupt service routine.
1046  */
1047 int
pcn_intr(void * arg)1048 pcn_intr(void *arg)
1049 {
1050 	struct pcn_softc *sc = arg;
1051 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1052 	uint32_t csr0;
1053 	int wantinit, handled = 0;
1054 
1055 	for (wantinit = 0; wantinit == 0;) {
1056 		csr0 = pcn_csr_read(sc, LE_CSR0);
1057 		if ((csr0 & LE_C0_INTR) == 0)
1058 			break;
1059 
1060 		/* ACK the bits and re-enable interrupts. */
1061 		pcn_csr_write(sc, LE_CSR0, csr0 &
1062 		    (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1063 		     LE_C0_TINT|LE_C0_IDON));
1064 
1065 		handled = 1;
1066 
1067 		if (csr0 & LE_C0_RINT)
1068 			wantinit = pcn_rxintr(sc);
1069 
1070 		if (csr0 & LE_C0_TINT)
1071 			pcn_txintr(sc);
1072 
1073 		if (csr0 & LE_C0_ERR) {
1074 			if (csr0 & LE_C0_BABL)
1075 				ifp->if_oerrors++;
1076 			if (csr0 & LE_C0_MISS)
1077 				ifp->if_ierrors++;
1078 			if (csr0 & LE_C0_MERR) {
1079 				printf("%s: memory error\n",
1080 				    sc->sc_dev.dv_xname);
1081 				wantinit = 1;
1082 				break;
1083 			}
1084 		}
1085 
1086 		if ((csr0 & LE_C0_RXON) == 0) {
1087 			printf("%s: receiver disabled\n",
1088 			    sc->sc_dev.dv_xname);
1089 			ifp->if_ierrors++;
1090 			wantinit = 1;
1091 		}
1092 
1093 		if ((csr0 & LE_C0_TXON) == 0) {
1094 			printf("%s: transmitter disabled\n",
1095 			    sc->sc_dev.dv_xname);
1096 			ifp->if_oerrors++;
1097 			wantinit = 1;
1098 		}
1099 	}
1100 
1101 	if (handled) {
1102 		if (wantinit)
1103 			pcn_init(ifp);
1104 
1105 		/* Try to get more packets going. */
1106 		pcn_start(ifp);
1107 	}
1108 
1109 	return (handled);
1110 }
1111 
1112 /*
1113  * pcn_spnd:
1114  *
1115  *	Suspend the chip.
1116  */
1117 void
pcn_spnd(struct pcn_softc * sc)1118 pcn_spnd(struct pcn_softc *sc)
1119 {
1120 	int i;
1121 
1122 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1123 
1124 	for (i = 0; i < 10000; i++) {
1125 		if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1126 			return;
1127 		delay(5);
1128 	}
1129 
1130 	printf("%s: WARNING: chip failed to enter suspended state\n",
1131 	    sc->sc_dev.dv_xname);
1132 }
1133 
1134 /*
1135  * pcn_txintr:
1136  *
1137  *	Helper; handle transmit interrupts.
1138  */
1139 void
pcn_txintr(struct pcn_softc * sc)1140 pcn_txintr(struct pcn_softc *sc)
1141 {
1142 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1143 	struct pcn_txsoft *txs;
1144 	uint32_t tmd1, tmd2, tmd;
1145 	int i, j;
1146 
1147 	/*
1148 	 * Go through our Tx list and free mbufs for those
1149 	 * frames which have been transmitted.
1150 	 */
1151 	for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1152 	     i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1153 		txs = &sc->sc_txsoft[i];
1154 
1155 		PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1156 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1157 
1158 		tmd1 = letoh32(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1159 		if (tmd1 & LE_T1_OWN)
1160 			break;
1161 
1162 		/*
1163 		 * Slightly annoying -- we have to loop through the
1164 		 * descriptors we've used looking for ERR, since it
1165 		 * can appear on any descriptor in the chain.
1166 		 */
1167 		for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1168 			tmd = letoh32(sc->sc_txdescs[j].tmd1);
1169 			if (tmd & LE_T1_ERR) {
1170 				ifp->if_oerrors++;
1171 				if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1172 					tmd2 = letoh32(sc->sc_txdescs[j].tmd0);
1173 				else
1174 					tmd2 = letoh32(sc->sc_txdescs[j].tmd2);
1175 				if (tmd2 & LE_T2_UFLO) {
1176 					if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1177 						sc->sc_xmtsp++;
1178 						printf("%s: transmit "
1179 						    "underrun; new threshold: "
1180 						    "%s\n",
1181 						    sc->sc_dev.dv_xname,
1182 						    sc->sc_xmtsp_desc[
1183 						    sc->sc_xmtsp]);
1184 						pcn_spnd(sc);
1185 						pcn_csr_write(sc, LE_CSR80,
1186 						    LE_C80_RCVFW(sc->sc_rcvfw) |
1187 						    LE_C80_XMTSP(sc->sc_xmtsp) |
1188 						    LE_C80_XMTFW(sc->sc_xmtfw));
1189 						pcn_csr_write(sc, LE_CSR5,
1190 						    sc->sc_csr5);
1191 					} else {
1192 						printf("%s: transmit "
1193 						    "underrun\n",
1194 						    sc->sc_dev.dv_xname);
1195 					}
1196 				} else if (tmd2 & LE_T2_BUFF) {
1197 					printf("%s: transmit buffer error\n",
1198 					    sc->sc_dev.dv_xname);
1199 				}
1200 				if (tmd2 & LE_T2_LCOL)
1201 					ifp->if_collisions++;
1202 				if (tmd2 & LE_T2_RTRY)
1203 					ifp->if_collisions += 16;
1204 				goto next_packet;
1205 			}
1206 			if (j == txs->txs_lastdesc)
1207 				break;
1208 		}
1209 		if (tmd1 & LE_T1_ONE)
1210 			ifp->if_collisions++;
1211 		else if (tmd & LE_T1_MORE) {
1212 			/* Real number is unknown. */
1213 			ifp->if_collisions += 2;
1214 		}
1215  next_packet:
1216 		sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1217 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1218 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1219 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1220 		m_freem(txs->txs_mbuf);
1221 		txs->txs_mbuf = NULL;
1222 	}
1223 
1224 	/* Update the dirty transmit buffer pointer. */
1225 	sc->sc_txsdirty = i;
1226 
1227 	/*
1228 	 * If there are no more pending transmissions, cancel the watchdog
1229 	 * timer.
1230 	 */
1231 	if (sc->sc_txsfree == PCN_TXQUEUELEN)
1232 		ifp->if_timer = 0;
1233 
1234 	if (ifq_is_oactive(&ifp->if_snd))
1235 		ifq_restart(&ifp->if_snd);
1236 }
1237 
1238 /*
1239  * pcn_rxintr:
1240  *
1241  *	Helper; handle receive interrupts.
1242  */
1243 int
pcn_rxintr(struct pcn_softc * sc)1244 pcn_rxintr(struct pcn_softc *sc)
1245 {
1246 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1247 	struct pcn_rxsoft *rxs;
1248 	struct mbuf *m;
1249 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1250 	uint32_t rmd1;
1251 	int i, len;
1252 	int rv = 0;
1253 
1254 	for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1255 		rxs = &sc->sc_rxsoft[i];
1256 
1257 		PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1258 
1259 		rmd1 = letoh32(sc->sc_rxdescs[i].rmd1);
1260 
1261 		if (rmd1 & LE_R1_OWN)
1262 			break;
1263 
1264 		/*
1265 		 * Check for errors and make sure the packet fit into
1266 		 * a single buffer.  We have structured this block of
1267 		 * code the way it is in order to compress it into
1268 		 * one test in the common case (no error).
1269 		 */
1270 		if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1271 		    (LE_R1_STP|LE_R1_ENP))) {
1272 			/* Make sure the packet is in a single buffer. */
1273 			if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1274 			    (LE_R1_STP|LE_R1_ENP)) {
1275 				printf("%s: packet spilled into next buffer\n",
1276 				    sc->sc_dev.dv_xname);
1277 				rv = 1; /* pcn_intr() will re-init */
1278 				goto done;
1279 			}
1280 
1281 			/*
1282 			 * If the packet had an error, simple recycle the
1283 			 * buffer.
1284 			 */
1285 			if (rmd1 & LE_R1_ERR) {
1286 				ifp->if_ierrors++;
1287 				/*
1288 				 * If we got an overflow error, chances
1289 				 * are there will be a CRC error.  In
1290 				 * this case, just print the overflow
1291 				 * error, and skip the others.
1292 				 */
1293 				if (rmd1 & LE_R1_OFLO)
1294 					printf("%s: overflow error\n",
1295 					    sc->sc_dev.dv_xname);
1296 				else {
1297 #define	PRINTIT(x, str)							\
1298 					if (rmd1 & (x))			\
1299 						printf("%s: %s\n",	\
1300 						    sc->sc_dev.dv_xname, str);
1301 					PRINTIT(LE_R1_FRAM, "framing error");
1302 					PRINTIT(LE_R1_CRC, "CRC error");
1303 					PRINTIT(LE_R1_BUFF, "buffer error");
1304 				}
1305 #undef PRINTIT
1306 				PCN_INIT_RXDESC(sc, i);
1307 				continue;
1308 			}
1309 		}
1310 
1311 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1312 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1313 
1314 		/*
1315 		 * No errors; receive the packet.
1316 		 */
1317 		if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1318 			len = letoh32(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1319 		else
1320 			len = letoh32(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1321 
1322 		/*
1323 		 * The LANCE family includes the CRC with every packet;
1324 		 * trim it off here.
1325 		 */
1326 		len -= ETHER_CRC_LEN;
1327 
1328 		/*
1329 		 * If the packet is small enough to fit in a
1330 		 * single header mbuf, allocate one and copy
1331 		 * the data into it.  This greatly reduces
1332 		 * memory consumption when we receive lots
1333 		 * of small packets.
1334 		 *
1335 		 * Otherwise, we add a new buffer to the receive
1336 		 * chain.  If this fails, we drop the packet and
1337 		 * recycle the old buffer.
1338 		 */
1339 		if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1340 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1341 			if (m == NULL)
1342 				goto dropit;
1343 			m->m_data += 2;
1344 			memcpy(mtod(m, caddr_t),
1345 			    mtod(rxs->rxs_mbuf, caddr_t), len);
1346 			PCN_INIT_RXDESC(sc, i);
1347 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1348 			    rxs->rxs_dmamap->dm_mapsize,
1349 			    BUS_DMASYNC_PREREAD);
1350 		} else {
1351 			m = rxs->rxs_mbuf;
1352 			if (pcn_add_rxbuf(sc, i) != 0) {
1353  dropit:
1354 				ifp->if_ierrors++;
1355 				PCN_INIT_RXDESC(sc, i);
1356 				bus_dmamap_sync(sc->sc_dmat,
1357 				    rxs->rxs_dmamap, 0,
1358 				    rxs->rxs_dmamap->dm_mapsize,
1359 				    BUS_DMASYNC_PREREAD);
1360 				continue;
1361 			}
1362 		}
1363 
1364 		m->m_pkthdr.len = m->m_len = len;
1365 
1366 		ml_enqueue(&ml, m);
1367 	}
1368 
1369 	/* Update the receive pointer. */
1370 	sc->sc_rxptr = i;
1371 done:
1372 	if_input(ifp, &ml);
1373 	return (rv);
1374 }
1375 
1376 /*
1377  * pcn_tick:
1378  *
1379  *	One second timer, used to tick the MII.
1380  */
1381 void
pcn_tick(void * arg)1382 pcn_tick(void *arg)
1383 {
1384 	struct pcn_softc *sc = arg;
1385 	int s;
1386 
1387 	s = splnet();
1388 	mii_tick(&sc->sc_mii);
1389 	splx(s);
1390 
1391 	timeout_add_sec(&sc->sc_tick_timeout, 1);
1392 }
1393 
1394 /*
1395  * pcn_reset:
1396  *
1397  *	Perform a soft reset on the PCnet-PCI.
1398  */
1399 void
pcn_reset(struct pcn_softc * sc)1400 pcn_reset(struct pcn_softc *sc)
1401 {
1402 
1403 	/*
1404 	 * The PCnet-PCI chip is reset by reading from the
1405 	 * RESET register.  Note that while the NE2100 LANCE
1406 	 * boards require a write after the read, the PCnet-PCI
1407 	 * chips do not require this.
1408 	 *
1409 	 * Since we don't know if we're in 16-bit or 32-bit
1410 	 * mode right now, issue both (it's safe) in the
1411 	 * hopes that one will succeed.
1412 	 */
1413 	(void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1414 	(void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1415 
1416 	/* Wait 1ms for it to finish. */
1417 	delay(1000);
1418 
1419 	/*
1420 	 * Select 32-bit I/O mode by issuing a 32-bit write to the
1421 	 * RDP.  Since the RAP is 0 after a reset, writing a 0
1422 	 * to RDP is safe (since it simply clears CSR0).
1423 	 */
1424 	bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1425 }
1426 
1427 /*
1428  * pcn_init:		[ifnet interface function]
1429  *
1430  *	Initialize the interface.  Must be called at splnet().
1431  */
1432 int
pcn_init(struct ifnet * ifp)1433 pcn_init(struct ifnet *ifp)
1434 {
1435 	struct pcn_softc *sc = ifp->if_softc;
1436 	struct pcn_rxsoft *rxs;
1437 	uint8_t *enaddr = LLADDR(ifp->if_sadl);
1438 	int i, error = 0;
1439 	uint32_t reg;
1440 
1441 	/* Cancel any pending I/O. */
1442 	pcn_stop(ifp, 0);
1443 
1444 	/* Reset the chip to a known state. */
1445 	pcn_reset(sc);
1446 
1447 	/*
1448 	 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1449 	 * else.
1450 	 *
1451 	 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1452 	 * because the structure layout is compatible with ILACC,
1453 	 * but the burst mode is only available in SSTYLE 3, and
1454 	 * burst mode should provide some performance enhancement.
1455 	 */
1456 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1457 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1458 	else
1459 		sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1460 	pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1461 
1462 	/* Initialize the transmit descriptor ring. */
1463 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1464 	PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1465 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1466 	sc->sc_txfree = PCN_NTXDESC;
1467 	sc->sc_txnext = 0;
1468 
1469 	/* Initialize the transmit job descriptors. */
1470 	for (i = 0; i < PCN_TXQUEUELEN; i++)
1471 		sc->sc_txsoft[i].txs_mbuf = NULL;
1472 	sc->sc_txsfree = PCN_TXQUEUELEN;
1473 	sc->sc_txsnext = 0;
1474 	sc->sc_txsdirty = 0;
1475 
1476 	/*
1477 	 * Initialize the receive descriptor and receive job
1478 	 * descriptor rings.
1479 	 */
1480 	for (i = 0; i < PCN_NRXDESC; i++) {
1481 		rxs = &sc->sc_rxsoft[i];
1482 		if (rxs->rxs_mbuf == NULL) {
1483 			if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1484 				printf("%s: unable to allocate or map rx "
1485 				    "buffer %d, error = %d\n",
1486 				    sc->sc_dev.dv_xname, i, error);
1487 				/*
1488 				 * XXX Should attempt to run with fewer receive
1489 				 * XXX buffers instead of just failing.
1490 				 */
1491 				pcn_rxdrain(sc);
1492 				goto out;
1493 			}
1494 		} else
1495 			PCN_INIT_RXDESC(sc, i);
1496 	}
1497 	sc->sc_rxptr = 0;
1498 
1499 	/* Initialize MODE for the initialization block. */
1500 	sc->sc_mode = 0;
1501 
1502 	/*
1503 	 * If we have MII, simply select MII in the MODE register,
1504 	 * and clear ASEL.  Otherwise, let ASEL stand (for now),
1505 	 * and leave PORTSEL alone (it is ignored with ASEL is set).
1506 	 */
1507 	if (sc->sc_flags & PCN_F_HAS_MII) {
1508 		pcn_bcr_write(sc, LE_BCR2,
1509 		    pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1510 		sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1511 
1512 		/*
1513 		 * Disable MII auto-negotiation.  We handle that in
1514 		 * our own MII layer.
1515 		 */
1516 		pcn_bcr_write(sc, LE_BCR32,
1517 		    pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1518 	}
1519 
1520 	/* Set the multicast filter in the init block. */
1521 	pcn_set_filter(sc);
1522 
1523 	/*
1524 	 * Set the Tx and Rx descriptor ring addresses in the init
1525 	 * block, the TLEN and RLEN other fields of the init block
1526 	 * MODE register.
1527 	 */
1528 	sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1529 	sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1530 	sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1531 	    ((ffs(PCN_NTXDESC) - 1) << 28) |
1532 	    ((ffs(PCN_NRXDESC) - 1) << 20));
1533 
1534 	/* Set the station address in the init block. */
1535 	sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1536 	    (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1537 	sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1538 	    (enaddr[5] << 8));
1539 
1540 	/* Initialize CSR3. */
1541 	pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1542 
1543 	/* Initialize CSR4. */
1544 	pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1545 	    LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1546 
1547 	/* Initialize CSR5. */
1548 	sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1549 	pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1550 
1551 	/*
1552 	 * If we have an Am79c971 or greater, initialize CSR7.
1553 	 *
1554 	 * XXX Might be nice to use the MII auto-poll interrupt someday.
1555 	 */
1556 	switch (sc->sc_variant->pcv_chipid) {
1557 	case PARTID_Am79c970:
1558 	case PARTID_Am79c970A:
1559 		/* Not available on these chips. */
1560 		break;
1561 
1562 	default:
1563 		pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1564 		break;
1565 	}
1566 
1567 	/*
1568 	 * On the Am79c970A and greater, initialize BCR18 to
1569 	 * enable burst mode.
1570 	 *
1571 	 * Also enable the "no underflow" option on the Am79c971 and
1572 	 * higher, which prevents the chip from generating transmit
1573 	 * underflows, yet sill provides decent performance.  Note if
1574 	 * chip is not connected to external SRAM, then we still have
1575 	 * to handle underflow errors (the NOUFLO bit is ignored in
1576 	 * that case).
1577 	 */
1578 	reg = pcn_bcr_read(sc, LE_BCR18);
1579 	switch (sc->sc_variant->pcv_chipid) {
1580 	case PARTID_Am79c970:
1581 		break;
1582 
1583 	case PARTID_Am79c970A:
1584 		reg |= LE_B18_BREADE|LE_B18_BWRITE;
1585 		break;
1586 
1587 	default:
1588 		reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1589 		break;
1590 	}
1591 	pcn_bcr_write(sc, LE_BCR18, reg);
1592 
1593 	/*
1594 	 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1595 	 */
1596 	pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1597 	    LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1598 
1599 	/*
1600 	 * Send the init block to the chip, and wait for it
1601 	 * to be processed.
1602 	 */
1603 	PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1604 	pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1605 	pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1606 	pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1607 	delay(100);
1608 	for (i = 0; i < 10000; i++) {
1609 		if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1610 			break;
1611 		delay(10);
1612 	}
1613 	PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1614 	if (i == 10000) {
1615 		printf("%s: timeout processing init block\n",
1616 		    sc->sc_dev.dv_xname);
1617 		error = EIO;
1618 		goto out;
1619 	}
1620 
1621 	/* Set the media. */
1622 	(void) (*sc->sc_mii.mii_media.ifm_change_cb)(ifp);
1623 
1624 	/* Enable interrupts and external activity (and ACK IDON). */
1625 	pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1626 
1627 	if (sc->sc_flags & PCN_F_HAS_MII) {
1628 		/* Start the one second MII clock. */
1629 		timeout_add_sec(&sc->sc_tick_timeout, 1);
1630 	}
1631 
1632 	/* ...all done! */
1633 	ifp->if_flags |= IFF_RUNNING;
1634 	ifq_clr_oactive(&ifp->if_snd);
1635 
1636  out:
1637 	if (error)
1638 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1639 	return (error);
1640 }
1641 
1642 /*
1643  * pcn_rxdrain:
1644  *
1645  *	Drain the receive queue.
1646  */
1647 void
pcn_rxdrain(struct pcn_softc * sc)1648 pcn_rxdrain(struct pcn_softc *sc)
1649 {
1650 	struct pcn_rxsoft *rxs;
1651 	int i;
1652 
1653 	for (i = 0; i < PCN_NRXDESC; i++) {
1654 		rxs = &sc->sc_rxsoft[i];
1655 		if (rxs->rxs_mbuf != NULL) {
1656 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1657 			m_freem(rxs->rxs_mbuf);
1658 			rxs->rxs_mbuf = NULL;
1659 		}
1660 	}
1661 }
1662 
1663 /*
1664  * pcn_stop:		[ifnet interface function]
1665  *
1666  *	Stop transmission on the interface.
1667  */
1668 void
pcn_stop(struct ifnet * ifp,int disable)1669 pcn_stop(struct ifnet *ifp, int disable)
1670 {
1671 	struct pcn_softc *sc = ifp->if_softc;
1672 	struct pcn_txsoft *txs;
1673 	int i;
1674 
1675 	if (sc->sc_flags & PCN_F_HAS_MII) {
1676 		/* Stop the one second clock. */
1677 		timeout_del(&sc->sc_tick_timeout);
1678 
1679 		/* Down the MII. */
1680 		mii_down(&sc->sc_mii);
1681 	}
1682 
1683 	/* Mark the interface as down and cancel the watchdog timer. */
1684 	ifp->if_flags &= ~IFF_RUNNING;
1685 	ifq_clr_oactive(&ifp->if_snd);
1686 	ifp->if_timer = 0;
1687 
1688 	/* Stop the chip. */
1689 	pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1690 
1691 	/* Release any queued transmit buffers. */
1692 	for (i = 0; i < PCN_TXQUEUELEN; i++) {
1693 		txs = &sc->sc_txsoft[i];
1694 		if (txs->txs_mbuf != NULL) {
1695 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1696 			m_freem(txs->txs_mbuf);
1697 			txs->txs_mbuf = NULL;
1698 		}
1699 	}
1700 
1701 	if (disable)
1702 		pcn_rxdrain(sc);
1703 }
1704 
1705 /*
1706  * pcn_add_rxbuf:
1707  *
1708  *	Add a receive buffer to the indicated descriptor.
1709  */
1710 int
pcn_add_rxbuf(struct pcn_softc * sc,int idx)1711 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1712 {
1713 	struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1714 	struct mbuf *m;
1715 	int error;
1716 
1717 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1718 	if (m == NULL)
1719 		return (ENOBUFS);
1720 
1721 	MCLGET(m, M_DONTWAIT);
1722 	if ((m->m_flags & M_EXT) == 0) {
1723 		m_freem(m);
1724 		return (ENOBUFS);
1725 	}
1726 
1727 	if (rxs->rxs_mbuf != NULL)
1728 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1729 
1730 	rxs->rxs_mbuf = m;
1731 
1732 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1733 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1734 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
1735 	if (error) {
1736 		printf("%s: can't load rx DMA map %d, error = %d\n",
1737 		    sc->sc_dev.dv_xname, idx, error);
1738 		panic("pcn_add_rxbuf");
1739 	}
1740 
1741 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1742 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1743 
1744 	PCN_INIT_RXDESC(sc, idx);
1745 
1746 	return (0);
1747 }
1748 
1749 /*
1750  * pcn_set_filter:
1751  *
1752  *	Set up the receive filter.
1753  */
1754 void
pcn_set_filter(struct pcn_softc * sc)1755 pcn_set_filter(struct pcn_softc *sc)
1756 {
1757 	struct arpcom *ac = &sc->sc_arpcom;
1758 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1759 	struct ether_multi *enm;
1760 	struct ether_multistep step;
1761 	uint32_t crc;
1762 
1763 	ifp->if_flags &= ~IFF_ALLMULTI;
1764 
1765 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
1766 		ifp->if_flags |= IFF_ALLMULTI;
1767 		if (ifp->if_flags & IFF_PROMISC)
1768 			sc->sc_mode |= LE_C15_PROM;
1769 		sc->sc_initblock.init_ladrf[0] =
1770 		    sc->sc_initblock.init_ladrf[1] =
1771 		    sc->sc_initblock.init_ladrf[2] =
1772 		    sc->sc_initblock.init_ladrf[3] = 0xffff;
1773 	} else {
1774 		sc->sc_initblock.init_ladrf[0] =
1775 		    sc->sc_initblock.init_ladrf[1] =
1776 		    sc->sc_initblock.init_ladrf[2] =
1777 		    sc->sc_initblock.init_ladrf[3] = 0;
1778 
1779 		/*
1780 		 * Set up the multicast address filter by passing all multicast
1781 		 * addresses through a CRC generator, and then using the high
1782 		 * order 6 bits as an index into the 64-bit logical address
1783 		 * filter.  The high order bits select the word, while the rest
1784 		 * of the bits select the bit within the word.
1785 		 */
1786 		ETHER_FIRST_MULTI(step, ac, enm);
1787 		while (enm != NULL) {
1788 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1789 
1790 			/* Just want the 6 most significant bits. */
1791 			crc >>= 26;
1792 
1793 			/* Set the corresponding bit in the filter. */
1794 			sc->sc_initblock.init_ladrf[crc >> 4] |=
1795 			    htole16(1 << (crc & 0xf));
1796 
1797 			ETHER_NEXT_MULTI(step, enm);
1798 		}
1799 	}
1800 }
1801 
1802 /*
1803  * pcn_79c970_mediainit:
1804  *
1805  *	Initialize media for the Am79c970.
1806  */
1807 void
pcn_79c970_mediainit(struct pcn_softc * sc)1808 pcn_79c970_mediainit(struct pcn_softc *sc)
1809 {
1810 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
1811 	    pcn_79c970_mediastatus);
1812 
1813 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5,
1814 	    PORTSEL_AUI, NULL);
1815 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1816 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_5|IFM_FDX,
1817 		    PORTSEL_AUI, NULL);
1818 
1819 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T,
1820 	    PORTSEL_10T, NULL);
1821 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1822 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_10_T|IFM_FDX,
1823 		    PORTSEL_10T, NULL);
1824 
1825 	ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO,
1826 	    0, NULL);
1827 	if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1828 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO|IFM_FDX,
1829 		    0, NULL);
1830 
1831 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1832 }
1833 
1834 /*
1835  * pcn_79c970_mediastatus:	[ifmedia interface function]
1836  *
1837  *	Get the current interface media status (Am79c970 version).
1838  */
1839 void
pcn_79c970_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)1840 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1841 {
1842 	struct pcn_softc *sc = ifp->if_softc;
1843 
1844 	/*
1845 	 * The currently selected media is always the active media.
1846 	 * Note: We have no way to determine what media the AUTO
1847 	 * process picked.
1848 	 */
1849 	ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1850 }
1851 
1852 /*
1853  * pcn_79c970_mediachange:	[ifmedia interface function]
1854  *
1855  *	Set hardware to newly-selected media (Am79c970 version).
1856  */
1857 int
pcn_79c970_mediachange(struct ifnet * ifp)1858 pcn_79c970_mediachange(struct ifnet *ifp)
1859 {
1860 	struct pcn_softc *sc = ifp->if_softc;
1861 	uint32_t reg;
1862 
1863 	if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
1864 		/*
1865 		 * CSR15:PORTSEL doesn't matter.  Just set BCR2:ASEL.
1866 		 */
1867 		reg = pcn_bcr_read(sc, LE_BCR2);
1868 		reg |= LE_B2_ASEL;
1869 		pcn_bcr_write(sc, LE_BCR2, reg);
1870 	} else {
1871 		/*
1872 		 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
1873 		 */
1874 		reg = pcn_bcr_read(sc, LE_BCR2);
1875 		reg &= ~LE_B2_ASEL;
1876 		pcn_bcr_write(sc, LE_BCR2, reg);
1877 
1878 		reg = pcn_csr_read(sc, LE_CSR15);
1879 		reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
1880 		    LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
1881 		pcn_csr_write(sc, LE_CSR15, reg);
1882 	}
1883 
1884 	if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
1885 		reg = LE_B9_FDEN;
1886 		if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
1887 			reg |= LE_B9_AUIFD;
1888 		pcn_bcr_write(sc, LE_BCR9, reg);
1889 	} else
1890 		pcn_bcr_write(sc, LE_BCR9, 0);
1891 
1892 	return (0);
1893 }
1894 
1895 /*
1896  * pcn_79c971_mediainit:
1897  *
1898  *	Initialize media for the Am79c971.
1899  */
1900 void
pcn_79c971_mediainit(struct pcn_softc * sc)1901 pcn_79c971_mediainit(struct pcn_softc *sc)
1902 {
1903 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1904 
1905 	/* We have MII. */
1906 	sc->sc_flags |= PCN_F_HAS_MII;
1907 
1908 	/*
1909 	 * The built-in 10BASE-T interface is mapped to the MII
1910 	 * on the PCNet-FAST.  Unfortunately, there's no EEPROM
1911 	 * word that tells us which PHY to use.
1912 	 * This driver used to ignore all but the first PHY to
1913 	 * answer, but this code was removed to support multiple
1914 	 * external PHYs. As the default instance will be the first
1915 	 * one to answer, no harm is done by letting the possibly
1916 	 * non-connected internal PHY show up.
1917 	 */
1918 
1919 	/* Initialize our media structures and probe the MII. */
1920 	sc->sc_mii.mii_ifp = ifp;
1921 	sc->sc_mii.mii_readreg = pcn_mii_readreg;
1922 	sc->sc_mii.mii_writereg = pcn_mii_writereg;
1923 	sc->sc_mii.mii_statchg = pcn_mii_statchg;
1924 	ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
1925 	    pcn_79c971_mediastatus);
1926 
1927 	mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
1928 	    MII_OFFSET_ANY, 0);
1929 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
1930 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
1931 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
1932 	} else
1933 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1934 }
1935 
1936 /*
1937  * pcn_79c971_mediastatus:	[ifmedia interface function]
1938  *
1939  *	Get the current interface media status (Am79c971 version).
1940  */
1941 void
pcn_79c971_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)1942 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1943 {
1944 	struct pcn_softc *sc = ifp->if_softc;
1945 
1946 	mii_pollstat(&sc->sc_mii);
1947 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
1948 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
1949 }
1950 
1951 /*
1952  * pcn_79c971_mediachange:	[ifmedia interface function]
1953  *
1954  *	Set hardware to newly-selected media (Am79c971 version).
1955  */
1956 int
pcn_79c971_mediachange(struct ifnet * ifp)1957 pcn_79c971_mediachange(struct ifnet *ifp)
1958 {
1959 	struct pcn_softc *sc = ifp->if_softc;
1960 
1961 	if (ifp->if_flags & IFF_UP)
1962 		mii_mediachg(&sc->sc_mii);
1963 	return (0);
1964 }
1965 
1966 /*
1967  * pcn_mii_readreg:	[mii interface function]
1968  *
1969  *	Read a PHY register on the MII.
1970  */
1971 int
pcn_mii_readreg(struct device * self,int phy,int reg)1972 pcn_mii_readreg(struct device *self, int phy, int reg)
1973 {
1974 	struct pcn_softc *sc = (void *) self;
1975 	uint32_t rv;
1976 
1977 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
1978 	rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
1979 	if (rv == 0xffff)
1980 		return (0);
1981 
1982 	return (rv);
1983 }
1984 
1985 /*
1986  * pcn_mii_writereg:	[mii interface function]
1987  *
1988  *	Write a PHY register on the MII.
1989  */
1990 void
pcn_mii_writereg(struct device * self,int phy,int reg,int val)1991 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
1992 {
1993 	struct pcn_softc *sc = (void *) self;
1994 
1995 	pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
1996 	pcn_bcr_write(sc, LE_BCR34, val);
1997 }
1998 
1999 /*
2000  * pcn_mii_statchg:	[mii interface function]
2001  *
2002  *	Callback from MII layer when media changes.
2003  */
2004 void
pcn_mii_statchg(struct device * self)2005 pcn_mii_statchg(struct device *self)
2006 {
2007 	struct pcn_softc *sc = (void *) self;
2008 
2009 	if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2010 		pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2011 	else
2012 		pcn_bcr_write(sc, LE_BCR9, 0);
2013 }
2014