xref: /openbsd-src/sys/dev/pci/if_age.c (revision 0f9891f1fafd8f53a63c41edb56ce51e2589b910)
1 /*	$OpenBSD: if_age.c,v 1.40 2024/05/24 06:02:53 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31 
32 #include "bpfilter.h"
33 #include "vlan.h"
34 
35 #include <sys/param.h>
36 #include <sys/endian.h>
37 #include <sys/systm.h>
38 #include <sys/sockio.h>
39 #include <sys/mbuf.h>
40 #include <sys/queue.h>
41 #include <sys/device.h>
42 #include <sys/timeout.h>
43 
44 #include <machine/bus.h>
45 
46 #include <net/if.h>
47 #include <net/if_dl.h>
48 #include <net/if_media.h>
49 
50 #include <netinet/in.h>
51 #include <netinet/if_ether.h>
52 
53 #if NBPFILTER > 0
54 #include <net/bpf.h>
55 #endif
56 
57 #include <dev/mii/mii.h>
58 #include <dev/mii/miivar.h>
59 
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcivar.h>
62 #include <dev/pci/pcidevs.h>
63 
64 #include <dev/pci/if_agereg.h>
65 
66 int	age_match(struct device *, void *, void *);
67 void	age_attach(struct device *, struct device *, void *);
68 int	age_detach(struct device *, int);
69 
70 int	age_miibus_readreg(struct device *, int, int);
71 void	age_miibus_writereg(struct device *, int, int, int);
72 void	age_miibus_statchg(struct device *);
73 
74 int	age_init(struct ifnet *);
75 int	age_ioctl(struct ifnet *, u_long, caddr_t);
76 void	age_start(struct ifnet *);
77 void	age_watchdog(struct ifnet *);
78 void	age_mediastatus(struct ifnet *, struct ifmediareq *);
79 int	age_mediachange(struct ifnet *);
80 
81 int	age_intr(void *);
82 int	age_dma_alloc(struct age_softc *);
83 void	age_dma_free(struct age_softc *);
84 void	age_get_macaddr(struct age_softc *);
85 void	age_phy_reset(struct age_softc *);
86 
87 int	age_encap(struct age_softc *, struct mbuf *);
88 void	age_init_tx_ring(struct age_softc *);
89 int	age_init_rx_ring(struct age_softc *);
90 void	age_init_rr_ring(struct age_softc *);
91 void	age_init_cmb_block(struct age_softc *);
92 void	age_init_smb_block(struct age_softc *);
93 int	age_newbuf(struct age_softc *, struct age_rxdesc *);
94 void	age_mac_config(struct age_softc *);
95 void	age_txintr(struct age_softc *, int);
96 void	age_rxeof(struct age_softc *sc, struct rx_rdesc *);
97 void	age_rxintr(struct age_softc *, int);
98 void	age_tick(void *);
99 void	age_reset(struct age_softc *);
100 void	age_stop(struct age_softc *);
101 void	age_stats_update(struct age_softc *);
102 void	age_stop_txmac(struct age_softc *);
103 void	age_stop_rxmac(struct age_softc *);
104 void	age_rxvlan(struct age_softc *sc);
105 void	age_iff(struct age_softc *);
106 
107 const struct pci_matchid age_devices[] = {
108 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 }
109 };
110 
111 const struct cfattach age_ca = {
112 	sizeof (struct age_softc), age_match, age_attach
113 };
114 
115 struct cfdriver age_cd = {
116 	 NULL, "age", DV_IFNET
117 };
118 
119 int agedebug = 0;
120 #define	DPRINTF(x)	do { if (agedebug) printf x; } while (0)
121 
122 #define AGE_CSUM_FEATURES	(M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)
123 
124 int
age_match(struct device * dev,void * match,void * aux)125 age_match(struct device *dev, void *match, void *aux)
126 {
127 	 return pci_matchbyid((struct pci_attach_args *)aux, age_devices,
128 	     sizeof (age_devices) / sizeof (age_devices[0]));
129 }
130 
131 void
age_attach(struct device * parent,struct device * self,void * aux)132 age_attach(struct device *parent, struct device *self, void *aux)
133 {
134 	struct age_softc *sc = (struct age_softc *)self;
135 	struct pci_attach_args *pa = aux;
136 	pci_chipset_tag_t pc = pa->pa_pc;
137 	pci_intr_handle_t ih;
138 	const char *intrstr;
139 	struct ifnet *ifp;
140 	pcireg_t memtype;
141 	int error = 0;
142 
143 	/*
144 	 * Allocate IO memory
145 	 */
146 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR);
147 	if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
148 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) {
149 		printf(": can't map mem space\n");
150 		return;
151 	}
152 
153 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
154 		printf(": can't map interrupt\n");
155 		goto fail;
156 	}
157 
158 	/*
159 	 * Allocate IRQ
160 	 */
161 	intrstr = pci_intr_string(pc, ih);
162 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc,
163 	    sc->sc_dev.dv_xname);
164 	if (sc->sc_irq_handle == NULL) {
165 		printf(": could not establish interrupt");
166 		if (intrstr != NULL)
167 			printf(" at %s", intrstr);
168 		printf("\n");
169 		goto fail;
170 	}
171 	printf(": %s", intrstr);
172 
173 	sc->sc_dmat = pa->pa_dmat;
174 	sc->sc_pct = pa->pa_pc;
175 	sc->sc_pcitag = pa->pa_tag;
176 
177 	/* Set PHY address. */
178 	sc->age_phyaddr = AGE_PHY_ADDR;
179 
180 	/* Reset PHY. */
181 	age_phy_reset(sc);
182 
183 	/* Reset the ethernet controller. */
184 	age_reset(sc);
185 
186 	/* Get PCI and chip id/revision. */
187 	sc->age_rev = PCI_REVISION(pa->pa_class);
188 	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
189 	    MASTER_CHIP_REV_SHIFT;
190 	if (agedebug) {
191 		printf("%s: PCI device revision : 0x%04x\n",
192 		    sc->sc_dev.dv_xname, sc->age_rev);
193 		printf("%s: Chip id/revision : 0x%04x\n",
194 		    sc->sc_dev.dv_xname, sc->age_chip_rev);
195 	}
196 
197 	if (agedebug) {
198 		printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname,
199 		    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
200 		    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
201 	}
202 
203 	/* Set max allowable DMA size. */
204 	sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
205 	sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
206 
207 	/* Allocate DMA stuffs */
208 	error = age_dma_alloc(sc);
209 	if (error)
210 		goto fail;
211 
212 	/* Load station address. */
213 	age_get_macaddr(sc);
214 
215 	ifp = &sc->sc_arpcom.ac_if;
216 	ifp->if_softc = sc;
217 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
218 	ifp->if_ioctl = age_ioctl;
219 	ifp->if_start = age_start;
220 	ifp->if_watchdog = age_watchdog;
221 	ifq_init_maxlen(&ifp->if_snd, AGE_TX_RING_CNT - 1);
222 	bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN);
223 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
224 
225 	ifp->if_capabilities = IFCAP_VLAN_MTU;
226 
227 #ifdef AGE_CHECKSUM
228 	ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
229 				IFCAP_CSUM_UDPv4;
230 #endif
231 
232 #if NVLAN > 0
233 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
234 #endif
235 
236 	printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
237 
238 	/* Set up MII bus. */
239 	sc->sc_miibus.mii_ifp = ifp;
240 	sc->sc_miibus.mii_readreg = age_miibus_readreg;
241 	sc->sc_miibus.mii_writereg = age_miibus_writereg;
242 	sc->sc_miibus.mii_statchg = age_miibus_statchg;
243 
244 	ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange,
245 	    age_mediastatus);
246 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
247 	   MII_OFFSET_ANY, MIIF_DOPAUSE);
248 
249 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
250 		printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
251 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
252 		    0, NULL);
253 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
254 	} else
255 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
256 
257 	if_attach(ifp);
258 	ether_ifattach(ifp);
259 
260 	timeout_set(&sc->age_tick_ch, age_tick, sc);
261 
262 	return;
263 fail:
264 	age_dma_free(sc);
265 	if (sc->sc_irq_handle != NULL)
266 		pci_intr_disestablish(pc, sc->sc_irq_handle);
267 	if (sc->sc_mem_size)
268 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
269 }
270 
271 int
age_detach(struct device * self,int flags)272 age_detach(struct device *self, int flags)
273 {
274 	struct age_softc *sc = (struct age_softc *)self;
275 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
276 	int s;
277 
278 	s = splnet();
279 	age_stop(sc);
280 	splx(s);
281 
282 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
283 
284 	/* Delete all remaining media. */
285 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
286 
287 	ether_ifdetach(ifp);
288 	if_detach(ifp);
289 	age_dma_free(sc);
290 
291 	if (sc->sc_irq_handle != NULL) {
292 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
293 		sc->sc_irq_handle = NULL;
294 	}
295 
296 	return (0);
297 }
298 
299 /*
300  *	Read a PHY register on the MII of the L1.
301  */
302 int
age_miibus_readreg(struct device * dev,int phy,int reg)303 age_miibus_readreg(struct device *dev, int phy, int reg)
304 {
305 	struct age_softc *sc = (struct age_softc *)dev;
306 	uint32_t v;
307 	int i;
308 
309 	if (phy != sc->age_phyaddr)
310 		return (0);
311 
312 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
313 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
314 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
315 		DELAY(1);
316 		v = CSR_READ_4(sc, AGE_MDIO);
317 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
318 			break;
319 	}
320 
321 	if (i == 0) {
322 		printf("%s: phy read timeout: phy %d, reg %d\n",
323 			sc->sc_dev.dv_xname, phy, reg);
324 		return (0);
325 	}
326 
327 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
328 }
329 
330 /*
331  * 	Write a PHY register on the MII of the L1.
332  */
333 void
age_miibus_writereg(struct device * dev,int phy,int reg,int val)334 age_miibus_writereg(struct device *dev, int phy, int reg, int val)
335 {
336 	struct age_softc *sc = (struct age_softc *)dev;
337 	uint32_t v;
338 	int i;
339 
340 	if (phy != sc->age_phyaddr)
341 		return;
342 
343 	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
344 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
345 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
346 
347 	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
348 		DELAY(1);
349 		v = CSR_READ_4(sc, AGE_MDIO);
350 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
351 			break;
352 	}
353 
354 	if (i == 0) {
355 		printf("%s: phy write timeout: phy %d, reg %d\n",
356 		    sc->sc_dev.dv_xname, phy, reg);
357 	}
358 }
359 
360 /*
361  *	Callback from MII layer when media changes.
362  */
363 void
age_miibus_statchg(struct device * dev)364 age_miibus_statchg(struct device *dev)
365 {
366 	struct age_softc *sc = (struct age_softc *)dev;
367 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
368 	struct mii_data *mii = &sc->sc_miibus;
369 
370 	if ((ifp->if_flags & IFF_RUNNING) == 0)
371 		return;
372 
373 	sc->age_flags &= ~AGE_FLAG_LINK;
374 	if ((mii->mii_media_status & IFM_AVALID) != 0) {
375 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
376 		case IFM_10_T:
377 		case IFM_100_TX:
378 		case IFM_1000_T:
379 			sc->age_flags |= AGE_FLAG_LINK;
380 			break;
381 		default:
382 			break;
383 		}
384 	}
385 
386 	/* Stop Rx/Tx MACs. */
387 	age_stop_rxmac(sc);
388 	age_stop_txmac(sc);
389 
390 	/* Program MACs with resolved speed/duplex/flow-control. */
391 	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
392 		uint32_t reg;
393 
394 		age_mac_config(sc);
395 		reg = CSR_READ_4(sc, AGE_MAC_CFG);
396 		/* Restart DMA engine and Tx/Rx MAC. */
397 		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
398 		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
399 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
400 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
401 	}
402 }
403 
404 /*
405  *	Get the current interface media status.
406  */
407 void
age_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)408 age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
409 {
410 	struct age_softc *sc = ifp->if_softc;
411 	struct mii_data *mii = &sc->sc_miibus;
412 
413 	mii_pollstat(mii);
414 	ifmr->ifm_status = mii->mii_media_status;
415 	ifmr->ifm_active = mii->mii_media_active;
416 }
417 
418 /*
419  *	Set hardware to newly-selected media.
420  */
421 int
age_mediachange(struct ifnet * ifp)422 age_mediachange(struct ifnet *ifp)
423 {
424 	struct age_softc *sc = ifp->if_softc;
425 	struct mii_data *mii = &sc->sc_miibus;
426 	int error;
427 
428 	if (mii->mii_instance != 0) {
429 		struct mii_softc *miisc;
430 
431 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
432 			mii_phy_reset(miisc);
433 	}
434 	error = mii_mediachg(mii);
435 
436 	return (error);
437 }
438 
439 int
age_intr(void * arg)440 age_intr(void *arg)
441 {
442         struct age_softc *sc = arg;
443         struct ifnet *ifp = &sc->sc_arpcom.ac_if;
444 	struct cmb *cmb;
445         uint32_t status;
446 
447 	status = CSR_READ_4(sc, AGE_INTR_STATUS);
448 	if (status == 0 || (status & AGE_INTRS) == 0)
449 		return (0);
450 
451 	/* Disable interrupts. */
452 	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
453 
454 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
455 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
456 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
457 	cmb = sc->age_rdata.age_cmb_block;
458 	status = letoh32(cmb->intr_status);
459 	if ((status & AGE_INTRS) == 0)
460 		goto back;
461 
462 	sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >>
463 	    TPD_CONS_SHIFT;
464 	sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >>
465 	    RRD_PROD_SHIFT;
466 	/* Let hardware know CMB was served. */
467 	cmb->intr_status = 0;
468 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
469 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
470 	    BUS_DMASYNC_PREWRITE);
471 
472 	if (ifp->if_flags & IFF_RUNNING) {
473 		if (status & INTR_CMB_RX)
474 			age_rxintr(sc, sc->age_rr_prod);
475 
476 		if (status & INTR_CMB_TX)
477 			age_txintr(sc, sc->age_tpd_cons);
478 
479 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
480 			if (status & INTR_DMA_RD_TO_RST)
481 				printf("%s: DMA read error! -- resetting\n",
482 				    sc->sc_dev.dv_xname);
483 			if (status & INTR_DMA_WR_TO_RST)
484 				printf("%s: DMA write error! -- resetting\n",
485 				    sc->sc_dev.dv_xname);
486 			age_init(ifp);
487 		}
488 
489 		age_start(ifp);
490 
491 		if (status & INTR_SMB)
492 			age_stats_update(sc);
493 	}
494 
495 	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
496 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
497 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
498 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
499 
500 back:
501 	/* Re-enable interrupts. */
502 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
503 
504 	return (1);
505 }
506 
507 void
age_get_macaddr(struct age_softc * sc)508 age_get_macaddr(struct age_softc *sc)
509 {
510 	uint32_t ea[2], reg;
511 	int i, vpdc;
512 
513 	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
514 	if ((reg & SPI_VPD_ENB) != 0) {
515 		/* Get VPD stored in TWSI EEPROM. */
516 		reg &= ~SPI_VPD_ENB;
517 		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
518 	}
519 
520 	if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
521 	    PCI_CAP_VPD, &vpdc, NULL)) {
522 		/*
523 		 * PCI VPD capability found, let TWSI reload EEPROM.
524 		 * This will set Ethernet address of controller.
525 		 */
526 		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
527 		    TWSI_CTRL_SW_LD_START);
528 		for (i = 100; i > 0; i--) {
529 			DELAY(1000);
530 			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
531 			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
532 				break;
533 		}
534 		if (i == 0)
535 			printf("%s: reloading EEPROM timeout!\n",
536 			    sc->sc_dev.dv_xname);
537 	} else {
538 		if (agedebug)
539 			printf("%s: PCI VPD capability not found!\n",
540 			    sc->sc_dev.dv_xname);
541 	}
542 
543 	ea[0] = CSR_READ_4(sc, AGE_PAR0);
544 	ea[1] = CSR_READ_4(sc, AGE_PAR1);
545 	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
546 	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
547 	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
548 	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
549 	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
550 	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
551 }
552 
553 void
age_phy_reset(struct age_softc * sc)554 age_phy_reset(struct age_softc *sc)
555 {
556 	uint16_t reg, pn;
557 	int i, linkup;
558 
559 	/* Reset PHY. */
560 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
561 	DELAY(2000);
562 	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
563 	DELAY(2000);
564 
565 #define	ATPHY_DBG_ADDR		0x1D
566 #define	ATPHY_DBG_DATA		0x1E
567 #define	ATPHY_CDTC		0x16
568 #define	PHY_CDTC_ENB		0x0001
569 #define	PHY_CDTC_POFF		8
570 #define	ATPHY_CDTS		0x1C
571 #define	PHY_CDTS_STAT_OK	0x0000
572 #define	PHY_CDTS_STAT_SHORT	0x0100
573 #define	PHY_CDTS_STAT_OPEN	0x0200
574 #define	PHY_CDTS_STAT_INVAL	0x0300
575 #define	PHY_CDTS_STAT_MASK	0x0300
576 
577 	/* Check power saving mode. Magic from Linux. */
578 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
579 	for (linkup = 0, pn = 0; pn < 4; pn++) {
580 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
581 		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
582 		for (i = 200; i > 0; i--) {
583 			DELAY(1000);
584 			reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
585 			    ATPHY_CDTC);
586 			if ((reg & PHY_CDTC_ENB) == 0)
587 				break;
588 		}
589 		DELAY(1000);
590 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
591 		    ATPHY_CDTS);
592 		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
593 			linkup++;
594 			break;
595 		}
596 	}
597 	age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR,
598 	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
599 	if (linkup == 0) {
600 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
601 		    ATPHY_DBG_ADDR, 0);
602 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
603 		    ATPHY_DBG_DATA, 0x124E);
604 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
605 		    ATPHY_DBG_ADDR, 1);
606 		reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr,
607 		    ATPHY_DBG_DATA);
608 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
609 		    ATPHY_DBG_DATA, reg | 0x03);
610 		/* XXX */
611 		DELAY(1500 * 1000);
612 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
613 		    ATPHY_DBG_ADDR, 0);
614 		age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr,
615 		    ATPHY_DBG_DATA, 0x024E);
616 	}
617 
618 #undef	ATPHY_DBG_ADDR
619 #undef	ATPHY_DBG_DATA
620 #undef	ATPHY_CDTC
621 #undef	PHY_CDTC_ENB
622 #undef	PHY_CDTC_POFF
623 #undef	ATPHY_CDTS
624 #undef	PHY_CDTS_STAT_OK
625 #undef	PHY_CDTS_STAT_SHORT
626 #undef	PHY_CDTS_STAT_OPEN
627 #undef	PHY_CDTS_STAT_INVAL
628 #undef	PHY_CDTS_STAT_MASK
629 }
630 
631 int
age_dma_alloc(struct age_softc * sc)632 age_dma_alloc(struct age_softc *sc)
633 {
634 	struct age_txdesc *txd;
635 	struct age_rxdesc *rxd;
636 	int nsegs, error, i;
637 
638 	/*
639 	 * Create DMA stuffs for TX ring
640 	 */
641 	error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
642 	    AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
643 	if (error)
644 		return (ENOBUFS);
645 
646 	/* Allocate DMA'able memory for TX ring */
647 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
648 	    ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1,
649 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
650 	if (error) {
651 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
652 		    sc->sc_dev.dv_xname);
653 		return error;
654 	}
655 
656 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
657 	    nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring,
658 	    BUS_DMA_NOWAIT);
659 	if (error)
660 		return (ENOBUFS);
661 
662 	/*  Load the DMA map for Tx ring. */
663 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
664 	    sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
665 	if (error) {
666 		printf("%s: could not load DMA'able memory for Tx ring.\n",
667 		    sc->sc_dev.dv_xname);
668 		bus_dmamem_free(sc->sc_dmat,
669 		    (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1);
670 		return error;
671 	}
672 
673 	sc->age_rdata.age_tx_ring_paddr =
674 	    sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;
675 
676 	/*
677 	 * Create DMA stuffs for RX ring
678 	 */
679 	error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
680 	    AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
681 	if (error)
682 		return (ENOBUFS);
683 
684 	/* Allocate DMA'able memory for RX ring */
685 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
686 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1,
687 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
688 	if (error) {
689 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
690 		    sc->sc_dev.dv_xname);
691 		return error;
692 	}
693 
694 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
695 	    nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring,
696 	    BUS_DMA_NOWAIT);
697 	if (error)
698 		return (ENOBUFS);
699 
700 	/* Load the DMA map for Rx ring. */
701 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
702 	    sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
703 	if (error) {
704 		printf("%s: could not load DMA'able memory for Rx ring.\n",
705 		    sc->sc_dev.dv_xname);
706 		bus_dmamem_free(sc->sc_dmat,
707 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
708 		return error;
709 	}
710 
711 	sc->age_rdata.age_rx_ring_paddr =
712 	    sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;
713 
714 	/*
715 	 * Create DMA stuffs for RX return ring
716 	 */
717 	error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
718 	    AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
719 	if (error)
720 		return (ENOBUFS);
721 
722 	/* Allocate DMA'able memory for RX return ring */
723 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
724 	    ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1,
725 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
726 	if (error) {
727 		printf("%s: could not allocate DMA'able memory for Rx "
728 		    "return ring.\n", sc->sc_dev.dv_xname);
729 		return error;
730 	}
731 
732 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
733 	    nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring,
734 	    BUS_DMA_NOWAIT);
735 	if (error)
736 		return (ENOBUFS);
737 
738 	/*  Load the DMA map for Rx return ring. */
739 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
740 	    sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
741 	if (error) {
742 		printf("%s: could not load DMA'able memory for Rx return ring."
743 		    "\n", sc->sc_dev.dv_xname);
744 		bus_dmamem_free(sc->sc_dmat,
745 		    (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1);
746 		return error;
747 	}
748 
749 	sc->age_rdata.age_rr_ring_paddr =
750 	    sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;
751 
752 	/*
753 	 * Create DMA stuffs for CMB block
754 	 */
755 	error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
756 	    AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
757 	    &sc->age_cdata.age_cmb_block_map);
758 	if (error)
759 		return (ENOBUFS);
760 
761 	/* Allocate DMA'able memory for CMB block */
762 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
763 	    ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1,
764 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
765 	if (error) {
766 		printf("%s: could not allocate DMA'able memory for "
767 		    "CMB block\n", sc->sc_dev.dv_xname);
768 		return error;
769 	}
770 
771 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
772 	    nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block,
773 	    BUS_DMA_NOWAIT);
774 	if (error)
775 		return (ENOBUFS);
776 
777 	/*  Load the DMA map for CMB block. */
778 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
779 	    sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
780 	    BUS_DMA_WAITOK);
781 	if (error) {
782 		printf("%s: could not load DMA'able memory for CMB block\n",
783 		    sc->sc_dev.dv_xname);
784 		bus_dmamem_free(sc->sc_dmat,
785 		    (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1);
786 		return error;
787 	}
788 
789 	sc->age_rdata.age_cmb_block_paddr =
790 	    sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;
791 
792 	/*
793 	 * Create DMA stuffs for SMB block
794 	 */
795 	error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
796 	    AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
797 	    &sc->age_cdata.age_smb_block_map);
798 	if (error)
799 		return (ENOBUFS);
800 
801 	/* Allocate DMA'able memory for SMB block */
802 	error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
803 	    ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1,
804 	    &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO);
805 	if (error) {
806 		printf("%s: could not allocate DMA'able memory for "
807 		    "SMB block\n", sc->sc_dev.dv_xname);
808 		return error;
809 	}
810 
811 	error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
812 	    nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block,
813 	    BUS_DMA_NOWAIT);
814 	if (error)
815 		return (ENOBUFS);
816 
817 	/*  Load the DMA map for SMB block */
818 	error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
819 	    sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
820 	    BUS_DMA_WAITOK);
821 	if (error) {
822 		printf("%s: could not load DMA'able memory for SMB block\n",
823 		    sc->sc_dev.dv_xname);
824 		bus_dmamem_free(sc->sc_dmat,
825 		    (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1);
826 		return error;
827 	}
828 
829 	sc->age_rdata.age_smb_block_paddr =
830 	    sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;
831 
832 	/* Create DMA maps for Tx buffers. */
833 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
834 		txd = &sc->age_cdata.age_txdesc[i];
835 		txd->tx_m = NULL;
836 		txd->tx_dmamap = NULL;
837 		error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
838 		    AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
839 		    &txd->tx_dmamap);
840 		if (error) {
841 			printf("%s: could not create Tx dmamap.\n",
842 			    sc->sc_dev.dv_xname);
843 			return error;
844 		}
845 	}
846 
847 	/* Create DMA maps for Rx buffers. */
848 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
849 	    BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
850 	if (error) {
851 		printf("%s: could not create spare Rx dmamap.\n",
852 		    sc->sc_dev.dv_xname);
853 		return error;
854 	}
855 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
856 		rxd = &sc->age_cdata.age_rxdesc[i];
857 		rxd->rx_m = NULL;
858 		rxd->rx_dmamap = NULL;
859 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
860 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
861 		if (error) {
862 			printf("%s: could not create Rx dmamap.\n",
863 			    sc->sc_dev.dv_xname);
864 			return error;
865 		}
866 	}
867 
868 	return (0);
869 }
870 
871 void
age_dma_free(struct age_softc * sc)872 age_dma_free(struct age_softc *sc)
873 {
874 	struct age_txdesc *txd;
875 	struct age_rxdesc *rxd;
876 	int i;
877 
878 	/* Tx buffers */
879 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
880 		txd = &sc->age_cdata.age_txdesc[i];
881 		if (txd->tx_dmamap != NULL) {
882 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
883 			txd->tx_dmamap = NULL;
884 		}
885 	}
886 	/* Rx buffers */
887 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
888 		rxd = &sc->age_cdata.age_rxdesc[i];
889 		if (rxd->rx_dmamap != NULL) {
890 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
891 			rxd->rx_dmamap = NULL;
892 		}
893 	}
894 	if (sc->age_cdata.age_rx_sparemap != NULL) {
895 		bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
896 		sc->age_cdata.age_rx_sparemap = NULL;
897 	}
898 
899 	/* Tx ring. */
900 	if (sc->age_cdata.age_tx_ring_map != NULL)
901 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
902 	if (sc->age_cdata.age_tx_ring_map != NULL &&
903 	    sc->age_rdata.age_tx_ring != NULL)
904 		bus_dmamem_free(sc->sc_dmat,
905 		    (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1);
906 	sc->age_rdata.age_tx_ring = NULL;
907 	sc->age_cdata.age_tx_ring_map = NULL;
908 
909 	/* Rx ring. */
910 	if (sc->age_cdata.age_rx_ring_map != NULL)
911 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
912 	if (sc->age_cdata.age_rx_ring_map != NULL &&
913 	    sc->age_rdata.age_rx_ring != NULL)
914 		bus_dmamem_free(sc->sc_dmat,
915 		    (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1);
916 	sc->age_rdata.age_rx_ring = NULL;
917 	sc->age_cdata.age_rx_ring_map = NULL;
918 
919 	/* Rx return ring. */
920 	if (sc->age_cdata.age_rr_ring_map != NULL)
921 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
922 	if (sc->age_cdata.age_rr_ring_map != NULL &&
923 	    sc->age_rdata.age_rr_ring != NULL)
924 		bus_dmamem_free(sc->sc_dmat,
925 		    (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1);
926 	sc->age_rdata.age_rr_ring = NULL;
927 	sc->age_cdata.age_rr_ring_map = NULL;
928 
929 	/* CMB block */
930 	if (sc->age_cdata.age_cmb_block_map != NULL)
931 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
932 	if (sc->age_cdata.age_cmb_block_map != NULL &&
933 	    sc->age_rdata.age_cmb_block != NULL)
934 		bus_dmamem_free(sc->sc_dmat,
935 		    (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1);
936 	sc->age_rdata.age_cmb_block = NULL;
937 	sc->age_cdata.age_cmb_block_map = NULL;
938 
939 	/* SMB block */
940 	if (sc->age_cdata.age_smb_block_map != NULL)
941 		bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
942 	if (sc->age_cdata.age_smb_block_map != NULL &&
943 	    sc->age_rdata.age_smb_block != NULL)
944 		bus_dmamem_free(sc->sc_dmat,
945 		    (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1);
946 	sc->age_rdata.age_smb_block = NULL;
947 	sc->age_cdata.age_smb_block_map = NULL;
948 }
949 
950 void
age_start(struct ifnet * ifp)951 age_start(struct ifnet *ifp)
952 {
953         struct age_softc *sc = ifp->if_softc;
954         struct mbuf *m;
955 	int enq;
956 
957 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
958 		return;
959 	if ((sc->age_flags & AGE_FLAG_LINK) == 0)
960 		return;
961 	if (ifq_empty(&ifp->if_snd))
962 		return;
963 
964 	enq = 0;
965 	for (;;) {
966 		if (sc->age_cdata.age_tx_cnt + AGE_MAXTXSEGS >=
967 		    AGE_TX_RING_CNT - 2) {
968 			ifq_set_oactive(&ifp->if_snd);
969 			break;
970 		}
971 
972 		m = ifq_dequeue(&ifp->if_snd);
973 		if (m == NULL)
974 			break;
975 
976 		/*
977 		 * Pack the data into the transmit ring. If we
978 		 * don't have room, set the OACTIVE flag and wait
979 		 * for the NIC to drain the ring.
980 		 */
981 		if (age_encap(sc, m) != 0) {
982 			ifp->if_oerrors++;
983 			continue;
984 		}
985 		enq = 1;
986 
987 #if NBPFILTER > 0
988 		/*
989 		 * If there's a BPF listener, bounce a copy of this frame
990 		 * to him.
991 		 */
992 		if (ifp->if_bpf != NULL)
993 			bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT);
994 #endif
995 	}
996 
997 	if (enq) {
998 		/* Update mbox. */
999 		AGE_COMMIT_MBOX(sc);
1000 		/* Set a timeout in case the chip goes out to lunch. */
1001 		ifp->if_timer = AGE_TX_TIMEOUT;
1002 	}
1003 }
1004 
1005 void
age_watchdog(struct ifnet * ifp)1006 age_watchdog(struct ifnet *ifp)
1007 {
1008 	struct age_softc *sc = ifp->if_softc;
1009 
1010 	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1011 		printf("%s: watchdog timeout (missed link)\n",
1012 		    sc->sc_dev.dv_xname);
1013 		ifp->if_oerrors++;
1014 		age_init(ifp);
1015 		return;
1016 	}
1017 
1018 	if (sc->age_cdata.age_tx_cnt == 0) {
1019 		printf("%s: watchdog timeout (missed Tx interrupts) "
1020 		    "-- recovering\n", sc->sc_dev.dv_xname);
1021 		age_start(ifp);
1022 		return;
1023 	}
1024 
1025 	printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1026 	ifp->if_oerrors++;
1027 	age_init(ifp);
1028 	age_start(ifp);
1029 }
1030 
1031 int
age_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)1032 age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1033 {
1034 	struct age_softc *sc = ifp->if_softc;
1035 	struct mii_data *mii = &sc->sc_miibus;
1036 	struct ifreq *ifr = (struct ifreq *)data;
1037 	int s, error = 0;
1038 
1039 	s = splnet();
1040 
1041 	switch (cmd) {
1042 	case SIOCSIFADDR:
1043 		ifp->if_flags |= IFF_UP;
1044 		if (!(ifp->if_flags & IFF_RUNNING))
1045 			 age_init(ifp);
1046 		break;
1047 
1048 	case SIOCSIFFLAGS:
1049 		if (ifp->if_flags & IFF_UP) {
1050 			if (ifp->if_flags & IFF_RUNNING)
1051 				error = ENETRESET;
1052 			else
1053 				age_init(ifp);
1054 		} else {
1055 			if (ifp->if_flags & IFF_RUNNING)
1056 				age_stop(sc);
1057 		}
1058 		break;
1059 
1060 	case SIOCSIFMEDIA:
1061 	case SIOCGIFMEDIA:
1062 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1063 		break;
1064 
1065 	default:
1066 		error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data);
1067 		break;
1068 	}
1069 
1070 	if (error == ENETRESET) {
1071 		if (ifp->if_flags & IFF_RUNNING)
1072 			age_iff(sc);
1073 		error = 0;
1074 	}
1075 
1076 	splx(s);
1077 	return (error);
1078 }
1079 
1080 void
age_mac_config(struct age_softc * sc)1081 age_mac_config(struct age_softc *sc)
1082 {
1083 	struct mii_data *mii = &sc->sc_miibus;
1084 	uint32_t reg;
1085 
1086 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1087 	reg &= ~MAC_CFG_FULL_DUPLEX;
1088 	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1089 	reg &= ~MAC_CFG_SPEED_MASK;
1090 
1091 	/* Reprogram MAC with resolved speed/duplex. */
1092 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1093 	case IFM_10_T:
1094 	case IFM_100_TX:
1095 		reg |= MAC_CFG_SPEED_10_100;
1096 		break;
1097 	case IFM_1000_T:
1098 		reg |= MAC_CFG_SPEED_1000;
1099 		break;
1100 	}
1101 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1102 		reg |= MAC_CFG_FULL_DUPLEX;
1103 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1104 			reg |= MAC_CFG_TX_FC;
1105 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1106 			reg |= MAC_CFG_RX_FC;
1107 	}
1108 
1109 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1110 }
1111 
1112 int
age_encap(struct age_softc * sc,struct mbuf * m)1113 age_encap(struct age_softc *sc, struct mbuf *m)
1114 {
1115 	struct age_txdesc *txd, *txd_last;
1116 	struct tx_desc *desc;
1117 	bus_dmamap_t map;
1118 	uint32_t cflags, poff, vtag;
1119 	int error, i, prod;
1120 
1121 	cflags = vtag = 0;
1122 	poff = 0;
1123 
1124 	prod = sc->age_cdata.age_tx_prod;
1125 	txd = &sc->age_cdata.age_txdesc[prod];
1126 	txd_last = txd;
1127 	map = txd->tx_dmamap;
1128 
1129 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
1130 	if (error != 0 && error != EFBIG)
1131 		goto drop;
1132 	if (error != 0) {
1133 		if (m_defrag(m, M_DONTWAIT)) {
1134 			error = ENOBUFS;
1135 			goto drop;
1136 		}
1137 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1138 		    BUS_DMA_NOWAIT);
1139 		if (error != 0)
1140 			goto drop;
1141 	}
1142 
1143 	/* Configure Tx IP/TCP/UDP checksum offload. */
1144 	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1145 		cflags |= AGE_TD_CSUM;
1146 		if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0)
1147 			cflags |= AGE_TD_TCPCSUM;
1148 		if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0)
1149 			cflags |= AGE_TD_UDPCSUM;
1150 		/* Set checksum start offset. */
1151 		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1152 	}
1153 
1154 #if NVLAN > 0
1155 	/* Configure VLAN hardware tag insertion. */
1156 	if (m->m_flags & M_VLANTAG) {
1157 		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1158 		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1159 		cflags |= AGE_TD_INSERT_VLAN_TAG;
1160 	}
1161 #endif
1162 
1163 	desc = NULL;
1164 	for (i = 0; i < map->dm_nsegs; i++) {
1165 		desc = &sc->age_rdata.age_tx_ring[prod];
1166 		desc->addr = htole64(map->dm_segs[i].ds_addr);
1167 		desc->len =
1168 		    htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
1169 		desc->flags = htole32(cflags);
1170 		sc->age_cdata.age_tx_cnt++;
1171 		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1172 	}
1173 
1174 	/* Update producer index. */
1175 	sc->age_cdata.age_tx_prod = prod;
1176 
1177 	/* Set EOP on the last descriptor. */
1178 	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1179 	desc = &sc->age_rdata.age_tx_ring[prod];
1180 	desc->flags |= htole32(AGE_TD_EOP);
1181 
1182 	/* Swap dmamap of the first and the last. */
1183 	txd = &sc->age_cdata.age_txdesc[prod];
1184 	map = txd_last->tx_dmamap;
1185 	txd_last->tx_dmamap = txd->tx_dmamap;
1186 	txd->tx_dmamap = map;
1187 	txd->tx_m = m;
1188 
1189 	/* Sync descriptors. */
1190 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1191 	    BUS_DMASYNC_PREWRITE);
1192 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1193 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1194 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1195 
1196 	return (0);
1197 
1198  drop:
1199 	m_freem(m);
1200 	return (error);
1201 }
1202 
1203 void
age_txintr(struct age_softc * sc,int tpd_cons)1204 age_txintr(struct age_softc *sc, int tpd_cons)
1205 {
1206 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1207 	struct age_txdesc *txd;
1208 	int cons, prog;
1209 
1210 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1211 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1212 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1213 
1214 	/*
1215 	 * Go through our Tx list and free mbufs for those
1216 	 * frames which have been transmitted.
1217 	 */
1218 	cons = sc->age_cdata.age_tx_cons;
1219 	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
1220 		if (sc->age_cdata.age_tx_cnt <= 0)
1221 			break;
1222 		prog++;
1223 		ifq_clr_oactive(&ifp->if_snd);
1224 		sc->age_cdata.age_tx_cnt--;
1225 		txd = &sc->age_cdata.age_txdesc[cons];
1226 		/*
1227 		 * Clear Tx descriptors, it's not required but would
1228 		 * help debugging in case of Tx issues.
1229 		 */
1230 		txd->tx_desc->addr = 0;
1231 		txd->tx_desc->len = 0;
1232 		txd->tx_desc->flags = 0;
1233 
1234 		if (txd->tx_m == NULL)
1235 			continue;
1236 		/* Reclaim transmitted mbufs. */
1237 		bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1238 		    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1239 		bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1240 		m_freem(txd->tx_m);
1241 		txd->tx_m = NULL;
1242 	}
1243 
1244 	if (prog > 0) {
1245 		sc->age_cdata.age_tx_cons = cons;
1246 
1247 		/*
1248 		 * Unarm watchdog timer only when there are no pending
1249 		 * Tx descriptors in queue.
1250 		 */
1251 		if (sc->age_cdata.age_tx_cnt == 0)
1252 			ifp->if_timer = 0;
1253 
1254 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
1255 		    sc->age_cdata.age_tx_ring_map->dm_mapsize,
1256 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1257 	}
1258 }
1259 
1260 /* Receive a frame. */
1261 void
age_rxeof(struct age_softc * sc,struct rx_rdesc * rxrd)1262 age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
1263 {
1264 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1265 	struct age_rxdesc *rxd;
1266 	struct rx_desc *desc;
1267 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
1268 	struct mbuf *mp, *m;
1269 	uint32_t status, index;
1270 	int count, nsegs, pktlen;
1271 	int rx_cons;
1272 
1273 	status = letoh32(rxrd->flags);
1274 	index = letoh32(rxrd->index);
1275 	rx_cons = AGE_RX_CONS(index);
1276 	nsegs = AGE_RX_NSEGS(index);
1277 
1278 	sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len));
1279 	if ((status & AGE_RRD_ERROR) != 0 &&
1280 	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
1281 	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
1282 		/*
1283 		 * We want to pass the following frames to upper
1284 		 * layer regardless of error status of Rx return
1285 		 * ring.
1286 		 *
1287 		 *  o IP/TCP/UDP checksum is bad.
1288 		 *  o frame length and protocol specific length
1289 		 *     does not match.
1290 		 */
1291 		sc->age_cdata.age_rx_cons += nsegs;
1292 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1293 		return;
1294 	}
1295 
1296 	pktlen = 0;
1297 	for (count = 0; count < nsegs; count++,
1298 	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
1299 		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
1300 		mp = rxd->rx_m;
1301 		desc = rxd->rx_desc;
1302 		/* Add a new receive buffer to the ring. */
1303 		if (age_newbuf(sc, rxd) != 0) {
1304 			ifp->if_iqdrops++;
1305 			/* Reuse Rx buffers. */
1306 			if (sc->age_cdata.age_rxhead != NULL) {
1307 				m_freem(sc->age_cdata.age_rxhead);
1308 				AGE_RXCHAIN_RESET(sc);
1309 			}
1310 			break;
1311 		}
1312 
1313 		/* The length of the first mbuf is computed last. */
1314 		if (count != 0) {
1315 			mp->m_len = AGE_RX_BYTES(letoh32(desc->len));
1316 			pktlen += mp->m_len;
1317 		}
1318 
1319 		/* Chain received mbufs. */
1320 		if (sc->age_cdata.age_rxhead == NULL) {
1321 			sc->age_cdata.age_rxhead = mp;
1322 			sc->age_cdata.age_rxtail = mp;
1323 		} else {
1324 			mp->m_flags &= ~M_PKTHDR;
1325 			sc->age_cdata.age_rxprev_tail =
1326 			    sc->age_cdata.age_rxtail;
1327 			sc->age_cdata.age_rxtail->m_next = mp;
1328 			sc->age_cdata.age_rxtail = mp;
1329 		}
1330 
1331 		if (count == nsegs - 1) {
1332 			/*
1333 			 * It seems that L1 controller has no way
1334 			 * to tell hardware to strip CRC bytes.
1335 			 */
1336 			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
1337 			if (nsegs > 1) {
1338 				/* Remove the CRC bytes in chained mbufs. */
1339 				pktlen -= ETHER_CRC_LEN;
1340 				if (mp->m_len <= ETHER_CRC_LEN) {
1341 					sc->age_cdata.age_rxtail =
1342 					    sc->age_cdata.age_rxprev_tail;
1343 					sc->age_cdata.age_rxtail->m_len -=
1344 					    (ETHER_CRC_LEN - mp->m_len);
1345 					sc->age_cdata.age_rxtail->m_next = NULL;
1346 					m_freem(mp);
1347 				} else {
1348 					mp->m_len -= ETHER_CRC_LEN;
1349 				}
1350 			}
1351 
1352 			m = sc->age_cdata.age_rxhead;
1353 			m->m_flags |= M_PKTHDR;
1354 			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
1355 			/* Set the first mbuf length. */
1356 			m->m_len = sc->age_cdata.age_rxlen - pktlen;
1357 
1358 			/*
1359 			 * Set checksum information.
1360 			 * It seems that L1 controller can compute partial
1361 			 * checksum. The partial checksum value can be used
1362 			 * to accelerate checksum computation for fragmented
1363 			 * TCP/UDP packets. Upper network stack already
1364 			 * takes advantage of the partial checksum value in
1365 			 * IP reassembly stage. But I'm not sure the
1366 			 * correctness of the partial hardware checksum
1367 			 * assistance due to lack of data sheet. If it is
1368 			 * proven to work on L1 I'll enable it.
1369 			 */
1370 			if (status & AGE_RRD_IPV4) {
1371 				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
1372 					m->m_pkthdr.csum_flags |=
1373 					    M_IPV4_CSUM_IN_OK;
1374 				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
1375 				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
1376 					m->m_pkthdr.csum_flags |=
1377 					    M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK;
1378 				}
1379 				/*
1380 				 * Don't mark bad checksum for TCP/UDP frames
1381 				 * as fragmented frames may always have set
1382 				 * bad checksummed bit of descriptor status.
1383 				 */
1384 			}
1385 #if NVLAN > 0
1386 			/* Check for VLAN tagged frames. */
1387 			if (status & AGE_RRD_VLAN) {
1388 				u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags));
1389 				m->m_pkthdr.ether_vtag =
1390 				    AGE_RX_VLAN_TAG(vtag);
1391 				m->m_flags |= M_VLANTAG;
1392 			}
1393 #endif
1394 
1395 			ml_enqueue(&ml, m);
1396 
1397 			/* Reset mbuf chains. */
1398 			AGE_RXCHAIN_RESET(sc);
1399 		}
1400 	}
1401 
1402 	if_input(ifp, &ml);
1403 
1404 	if (count != nsegs) {
1405 		sc->age_cdata.age_rx_cons += nsegs;
1406 		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
1407 	} else
1408 		sc->age_cdata.age_rx_cons = rx_cons;
1409 }
1410 
1411 void
age_rxintr(struct age_softc * sc,int rr_prod)1412 age_rxintr(struct age_softc *sc, int rr_prod)
1413 {
1414 	struct rx_rdesc *rxrd;
1415 	int rr_cons, nsegs, pktlen, prog;
1416 
1417 	rr_cons = sc->age_cdata.age_rr_cons;
1418 	if (rr_cons == rr_prod)
1419 		return;
1420 
1421 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1422 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1423 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1424 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1425 	    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1426 	    BUS_DMASYNC_POSTWRITE);
1427 
1428 	for (prog = 0; rr_cons != rr_prod; prog++) {
1429 		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
1430 		nsegs = AGE_RX_NSEGS(letoh32(rxrd->index));
1431 		if (nsegs == 0)
1432 			break;
1433 		/*
1434 		 * Check number of segments against received bytes
1435 		 * Non-matching value would indicate that hardware
1436 		 * is still trying to update Rx return descriptors.
1437 		 * I'm not sure whether this check is really needed.
1438 		 */
1439 		pktlen = AGE_RX_BYTES(letoh32(rxrd->len));
1440 		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
1441 		    (MCLBYTES - ETHER_ALIGN)))
1442 			break;
1443 
1444 		/* Received a frame. */
1445 		age_rxeof(sc, rxrd);
1446 
1447 		/* Clear return ring. */
1448 		rxrd->index = 0;
1449 		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
1450 	}
1451 
1452 	if (prog > 0) {
1453 		/* Update the consumer index. */
1454 		sc->age_cdata.age_rr_cons = rr_cons;
1455 
1456 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
1457 		    sc->age_cdata.age_rx_ring_map->dm_mapsize,
1458 		    BUS_DMASYNC_PREWRITE);
1459 		/* Sync descriptors. */
1460 		bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
1461 		    sc->age_cdata.age_rr_ring_map->dm_mapsize,
1462 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1463 
1464 		/* Notify hardware availability of new Rx buffers. */
1465 		AGE_COMMIT_MBOX(sc);
1466 	}
1467 }
1468 
1469 void
age_tick(void * xsc)1470 age_tick(void *xsc)
1471 {
1472 	struct age_softc *sc = xsc;
1473 	struct mii_data *mii = &sc->sc_miibus;
1474 	int s;
1475 
1476 	s = splnet();
1477 	mii_tick(mii);
1478 	timeout_add_sec(&sc->age_tick_ch, 1);
1479 	splx(s);
1480 }
1481 
1482 void
age_reset(struct age_softc * sc)1483 age_reset(struct age_softc *sc)
1484 {
1485 	uint32_t reg;
1486 	int i;
1487 
1488 	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
1489 	CSR_READ_4(sc, AGE_MASTER_CFG);
1490 	DELAY(1000);
1491 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1492 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1493 			break;
1494 		DELAY(10);
1495 	}
1496 
1497 	if (i == 0)
1498 		printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname,
1499 		    reg);
1500 
1501 	/* Initialize PCIe module. From Linux. */
1502 	CSR_WRITE_4(sc, 0x12FC, 0x6500);
1503 	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1504 }
1505 
1506 int
age_init(struct ifnet * ifp)1507 age_init(struct ifnet *ifp)
1508 {
1509 	struct age_softc *sc = ifp->if_softc;
1510 	struct mii_data *mii = &sc->sc_miibus;
1511 	uint8_t eaddr[ETHER_ADDR_LEN];
1512 	bus_addr_t paddr;
1513 	uint32_t reg, fsize;
1514 	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
1515 	int error;
1516 
1517 	/*
1518 	 * Cancel any pending I/O.
1519 	 */
1520 	age_stop(sc);
1521 
1522 	/*
1523 	 * Reset the chip to a known state.
1524 	 */
1525 	age_reset(sc);
1526 
1527 	/* Initialize descriptors. */
1528 	error = age_init_rx_ring(sc);
1529         if (error != 0) {
1530 		printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname);
1531                 age_stop(sc);
1532 		return (error);
1533         }
1534 	age_init_rr_ring(sc);
1535 	age_init_tx_ring(sc);
1536 	age_init_cmb_block(sc);
1537 	age_init_smb_block(sc);
1538 
1539 	/* Reprogram the station address. */
1540 	bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN);
1541 	CSR_WRITE_4(sc, AGE_PAR0,
1542 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
1543 	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
1544 
1545 	/* Set descriptor base addresses. */
1546 	paddr = sc->age_rdata.age_tx_ring_paddr;
1547 	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
1548 	paddr = sc->age_rdata.age_rx_ring_paddr;
1549 	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
1550 	paddr = sc->age_rdata.age_rr_ring_paddr;
1551 	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
1552 	paddr = sc->age_rdata.age_tx_ring_paddr;
1553 	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
1554 	paddr = sc->age_rdata.age_cmb_block_paddr;
1555 	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
1556 	paddr = sc->age_rdata.age_smb_block_paddr;
1557 	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
1558 
1559 	/* Set Rx/Rx return descriptor counter. */
1560 	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
1561 	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
1562 	    DESC_RRD_CNT_MASK) |
1563 	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
1564 
1565 	/* Set Tx descriptor counter. */
1566 	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
1567 	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
1568 
1569 	/* Tell hardware that we're ready to load descriptors. */
1570 	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
1571 
1572         /*
1573 	 * Initialize mailbox register.
1574 	 * Updated producer/consumer index information is exchanged
1575 	 * through this mailbox register. However Tx producer and
1576 	 * Rx return consumer/Rx producer are all shared such that
1577 	 * it's hard to separate code path between Tx and Rx without
1578 	 * locking. If L1 hardware have a separate mail box register
1579 	 * for Tx and Rx consumer/producer management we could have
1580 	 * independent Tx/Rx handler which in turn Rx handler could have
1581 	 * been run without any locking.
1582 	*/
1583 	AGE_COMMIT_MBOX(sc);
1584 
1585 	/* Configure IPG/IFG parameters. */
1586 	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
1587 	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
1588 	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
1589 	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
1590 	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
1591 
1592 	/* Set parameters for half-duplex media. */
1593 	CSR_WRITE_4(sc, AGE_HDPX_CFG,
1594 	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
1595 	    HDPX_CFG_LCOL_MASK) |
1596 	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
1597 	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
1598 	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
1599 	    HDPX_CFG_ABEBT_MASK) |
1600 	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
1601 	     HDPX_CFG_JAMIPG_MASK));
1602 
1603 	/* Configure interrupt moderation timer. */
1604 	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
1605 	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
1606 	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
1607 	reg &= ~MASTER_MTIMER_ENB;
1608 	if (AGE_USECS(sc->age_int_mod) == 0)
1609 		reg &= ~MASTER_ITIMER_ENB;
1610 	else
1611 		reg |= MASTER_ITIMER_ENB;
1612 	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
1613 	if (agedebug)
1614 		printf("%s: interrupt moderation is %d us.\n",
1615 		    sc->sc_dev.dv_xname, sc->age_int_mod);
1616 	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
1617 
1618 	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
1619 	if (ifp->if_mtu < ETHERMTU)
1620 		sc->age_max_frame_size = ETHERMTU;
1621 	else
1622 		sc->age_max_frame_size = ifp->if_mtu;
1623 	sc->age_max_frame_size += ETHER_HDR_LEN +
1624 	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
1625 	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
1626 
1627 	/* Configure jumbo frame. */
1628 	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
1629 	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
1630 	    (((fsize / sizeof(uint64_t)) <<
1631 	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
1632 	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
1633 	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
1634 	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
1635 	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
1636 
1637 	/* Configure flow-control parameters. From Linux. */
1638 	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
1639 		/*
1640 		 * Magic workaround for old-L1.
1641 		 * Don't know which hw revision requires this magic.
1642 		 */
1643 		CSR_WRITE_4(sc, 0x12FC, 0x6500);
1644 		/*
1645 		 * Another magic workaround for flow-control mode
1646 		 * change. From Linux.
1647 		 */
1648 		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
1649 	}
1650 	/*
1651 	 * TODO
1652 	 *  Should understand pause parameter relationships between FIFO
1653 	 *  size and number of Rx descriptors and Rx return descriptors.
1654 	 *
1655 	 *  Magic parameters came from Linux.
1656 	 */
1657 	switch (sc->age_chip_rev) {
1658 	case 0x8001:
1659 	case 0x9001:
1660 	case 0x9002:
1661 	case 0x9003:
1662 		rxf_hi = AGE_RX_RING_CNT / 16;
1663 		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
1664 		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
1665 		rrd_lo = AGE_RR_RING_CNT / 16;
1666 		break;
1667 	default:
1668 		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
1669 		rxf_lo = reg / 16;
1670 		if (rxf_lo < 192)
1671 			rxf_lo = 192;
1672 		rxf_hi = (reg * 7) / 8;
1673 		if (rxf_hi < rxf_lo)
1674 			rxf_hi = rxf_lo + 16;
1675 		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
1676 		rrd_lo = reg / 8;
1677 		rrd_hi = (reg * 7) / 8;
1678 		if (rrd_lo < 2)
1679 			rrd_lo = 2;
1680 		if (rrd_hi < rrd_lo)
1681 			rrd_hi = rrd_lo + 3;
1682 		break;
1683 	}
1684 	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
1685 	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
1686 	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
1687 	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
1688 	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
1689 	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
1690 	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
1691 	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
1692 	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
1693 	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
1694 
1695 	/* Configure RxQ. */
1696 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1697 	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
1698 	    RXQ_CFG_RD_BURST_MASK) |
1699 	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
1700 	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
1701 	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
1702 	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
1703 	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
1704 
1705 	/* Configure TxQ. */
1706 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1707 	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
1708 	    TXQ_CFG_TPD_BURST_MASK) |
1709 	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
1710 	    TXQ_CFG_TX_FIFO_BURST_MASK) |
1711 	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
1712 	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
1713 	    TXQ_CFG_ENB);
1714 
1715 	/* Configure DMA parameters. */
1716 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1717 	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
1718 	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
1719 	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
1720 
1721 	/* Configure CMB DMA write threshold. */
1722 	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
1723 	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
1724 	    CMB_WR_THRESH_RRD_MASK) |
1725 	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
1726 	    CMB_WR_THRESH_TPD_MASK));
1727 
1728 	/* Set CMB/SMB timer and enable them. */
1729 	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
1730 	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
1731 	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
1732 
1733 	/* Request SMB updates for every seconds. */
1734 	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
1735 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
1736 
1737 	/*
1738 	 * Disable all WOL bits as WOL can interfere normal Rx
1739 	 * operation.
1740 	 */
1741 	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1742 
1743         /*
1744 	 * Configure Tx/Rx MACs.
1745 	 *  - Auto-padding for short frames.
1746 	 *  - Enable CRC generation.
1747 	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
1748 	 *  of MAC is followed after link establishment.
1749 	 */
1750 	CSR_WRITE_4(sc, AGE_MAC_CFG,
1751 	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
1752 	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
1753 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
1754 	    MAC_CFG_PREAMBLE_MASK));
1755 
1756 	/* Set up the receive filter. */
1757 	age_iff(sc);
1758 
1759 	age_rxvlan(sc);
1760 
1761 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1762 	reg |= MAC_CFG_RXCSUM_ENB;
1763 
1764 	/* Ack all pending interrupts and clear it. */
1765 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
1766 	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
1767 
1768 	/* Finally enable Tx/Rx MAC. */
1769 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
1770 
1771 	sc->age_flags &= ~AGE_FLAG_LINK;
1772 
1773 	/* Switch to the current media. */
1774 	mii_mediachg(mii);
1775 
1776 	timeout_add_sec(&sc->age_tick_ch, 1);
1777 
1778 	ifp->if_flags |= IFF_RUNNING;
1779 	ifq_clr_oactive(&ifp->if_snd);
1780 
1781 	return (0);
1782 }
1783 
1784 void
age_stop(struct age_softc * sc)1785 age_stop(struct age_softc *sc)
1786 {
1787 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1788 	struct age_txdesc *txd;
1789 	struct age_rxdesc *rxd;
1790 	uint32_t reg;
1791 	int i;
1792 
1793 	/*
1794 	 * Mark the interface down and cancel the watchdog timer.
1795 	 */
1796 	ifp->if_flags &= ~IFF_RUNNING;
1797 	ifq_clr_oactive(&ifp->if_snd);
1798 	ifp->if_timer = 0;
1799 
1800 	sc->age_flags &= ~AGE_FLAG_LINK;
1801 	timeout_del(&sc->age_tick_ch);
1802 
1803 	/*
1804 	 * Disable interrupts.
1805 	 */
1806 	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
1807 	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
1808 
1809 	/* Stop CMB/SMB updates. */
1810 	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
1811 
1812 	/* Stop Rx/Tx MAC. */
1813 	age_stop_rxmac(sc);
1814 	age_stop_txmac(sc);
1815 
1816 	/* Stop DMA. */
1817 	CSR_WRITE_4(sc, AGE_DMA_CFG,
1818 	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
1819 
1820 	/* Stop TxQ/RxQ. */
1821 	CSR_WRITE_4(sc, AGE_TXQ_CFG,
1822 	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
1823 	CSR_WRITE_4(sc, AGE_RXQ_CFG,
1824 	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
1825 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1826 		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
1827 			break;
1828 		DELAY(10);
1829 	}
1830 	if (i == 0)
1831 		printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
1832 		    sc->sc_dev.dv_xname, reg);
1833 
1834 	/* Reclaim Rx buffers that have been processed. */
1835 	if (sc->age_cdata.age_rxhead != NULL)
1836 		m_freem(sc->age_cdata.age_rxhead);
1837 	AGE_RXCHAIN_RESET(sc);
1838 
1839 	/*
1840 	 * Free RX and TX mbufs still in the queues.
1841 	 */
1842 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1843 		rxd = &sc->age_cdata.age_rxdesc[i];
1844 		if (rxd->rx_m != NULL) {
1845 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
1846 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1847 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
1848 			m_freem(rxd->rx_m);
1849 			rxd->rx_m = NULL;
1850 		}
1851 	}
1852 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1853 		txd = &sc->age_cdata.age_txdesc[i];
1854 		if (txd->tx_m != NULL) {
1855 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
1856 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1857 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
1858 			m_freem(txd->tx_m);
1859 			txd->tx_m = NULL;
1860 		}
1861 	}
1862 }
1863 
1864 void
age_stats_update(struct age_softc * sc)1865 age_stats_update(struct age_softc *sc)
1866 {
1867 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1868 	struct age_stats *stat;
1869 	struct smb *smb;
1870 
1871 	stat = &sc->age_stat;
1872 
1873 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1874 	    sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1875 
1876 	smb = sc->age_rdata.age_smb_block;
1877 	if (smb->updated == 0)
1878 		return;
1879 
1880 	/* Rx stats. */
1881 	stat->rx_frames += smb->rx_frames;
1882 	stat->rx_bcast_frames += smb->rx_bcast_frames;
1883 	stat->rx_mcast_frames += smb->rx_mcast_frames;
1884 	stat->rx_pause_frames += smb->rx_pause_frames;
1885 	stat->rx_control_frames += smb->rx_control_frames;
1886 	stat->rx_crcerrs += smb->rx_crcerrs;
1887 	stat->rx_lenerrs += smb->rx_lenerrs;
1888 	stat->rx_bytes += smb->rx_bytes;
1889 	stat->rx_runts += smb->rx_runts;
1890 	stat->rx_fragments += smb->rx_fragments;
1891 	stat->rx_pkts_64 += smb->rx_pkts_64;
1892 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
1893 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
1894 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
1895 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
1896 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
1897 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
1898 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
1899 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
1900 	stat->rx_desc_oflows += smb->rx_desc_oflows;
1901 	stat->rx_alignerrs += smb->rx_alignerrs;
1902 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
1903 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
1904 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
1905 
1906 	/* Tx stats. */
1907 	stat->tx_frames += smb->tx_frames;
1908 	stat->tx_bcast_frames += smb->tx_bcast_frames;
1909 	stat->tx_mcast_frames += smb->tx_mcast_frames;
1910 	stat->tx_pause_frames += smb->tx_pause_frames;
1911 	stat->tx_excess_defer += smb->tx_excess_defer;
1912 	stat->tx_control_frames += smb->tx_control_frames;
1913 	stat->tx_deferred += smb->tx_deferred;
1914 	stat->tx_bytes += smb->tx_bytes;
1915 	stat->tx_pkts_64 += smb->tx_pkts_64;
1916 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
1917 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
1918 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
1919 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
1920 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
1921 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
1922 	stat->tx_single_colls += smb->tx_single_colls;
1923 	stat->tx_multi_colls += smb->tx_multi_colls;
1924 	stat->tx_late_colls += smb->tx_late_colls;
1925 	stat->tx_excess_colls += smb->tx_excess_colls;
1926 	stat->tx_underrun += smb->tx_underrun;
1927 	stat->tx_desc_underrun += smb->tx_desc_underrun;
1928 	stat->tx_lenerrs += smb->tx_lenerrs;
1929 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
1930 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
1931 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
1932 
1933 	ifp->if_collisions += smb->tx_single_colls +
1934 	    smb->tx_multi_colls + smb->tx_late_colls +
1935 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
1936 
1937 	ifp->if_oerrors += smb->tx_excess_colls +
1938 	    smb->tx_late_colls + smb->tx_underrun +
1939 	    smb->tx_pkts_truncated;
1940 
1941 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
1942 	    smb->rx_runts + smb->rx_pkts_truncated +
1943 	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
1944 	    smb->rx_alignerrs;
1945 
1946 	/* Update done, clear. */
1947 	smb->updated = 0;
1948 
1949 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
1950 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
1951 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1952 }
1953 
1954 void
age_stop_txmac(struct age_softc * sc)1955 age_stop_txmac(struct age_softc *sc)
1956 {
1957 	uint32_t reg;
1958 	int i;
1959 
1960 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1961 	if ((reg & MAC_CFG_TX_ENB) != 0) {
1962 		reg &= ~MAC_CFG_TX_ENB;
1963 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1964 	}
1965 	/* Stop Tx DMA engine. */
1966 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1967 	if ((reg & DMA_CFG_RD_ENB) != 0) {
1968 		reg &= ~DMA_CFG_RD_ENB;
1969 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1970 	}
1971 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1972 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
1973 		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
1974 			break;
1975 		DELAY(10);
1976 	}
1977 	if (i == 0)
1978 		printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname);
1979 }
1980 
1981 void
age_stop_rxmac(struct age_softc * sc)1982 age_stop_rxmac(struct age_softc *sc)
1983 {
1984 	uint32_t reg;
1985 	int i;
1986 
1987 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1988 	if ((reg & MAC_CFG_RX_ENB) != 0) {
1989 		reg &= ~MAC_CFG_RX_ENB;
1990 		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1991 	}
1992 	/* Stop Rx DMA engine. */
1993 	reg = CSR_READ_4(sc, AGE_DMA_CFG);
1994 	if ((reg & DMA_CFG_WR_ENB) != 0) {
1995 		reg &= ~DMA_CFG_WR_ENB;
1996 		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
1997 	}
1998 	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
1999 		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2000 		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2001 			break;
2002 		DELAY(10);
2003 	}
2004 	if (i == 0)
2005 		printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname);
2006 }
2007 
2008 void
age_init_tx_ring(struct age_softc * sc)2009 age_init_tx_ring(struct age_softc *sc)
2010 {
2011 	struct age_ring_data *rd;
2012 	struct age_txdesc *txd;
2013 	int i;
2014 
2015 	sc->age_cdata.age_tx_prod = 0;
2016 	sc->age_cdata.age_tx_cons = 0;
2017 	sc->age_cdata.age_tx_cnt = 0;
2018 
2019 	rd = &sc->age_rdata;
2020 	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2021 	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2022 		txd = &sc->age_cdata.age_txdesc[i];
2023 		txd->tx_desc = &rd->age_tx_ring[i];
2024 		txd->tx_m = NULL;
2025 	}
2026 
2027 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
2028 	    sc->age_cdata.age_tx_ring_map->dm_mapsize,
2029 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2030 }
2031 
2032 int
age_init_rx_ring(struct age_softc * sc)2033 age_init_rx_ring(struct age_softc *sc)
2034 {
2035 	struct age_ring_data *rd;
2036 	struct age_rxdesc *rxd;
2037 	int i;
2038 
2039 	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2040 	rd = &sc->age_rdata;
2041 	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2042 	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2043 		rxd = &sc->age_cdata.age_rxdesc[i];
2044 		rxd->rx_m = NULL;
2045 		rxd->rx_desc = &rd->age_rx_ring[i];
2046 		if (age_newbuf(sc, rxd) != 0)
2047 			return (ENOBUFS);
2048 	}
2049 
2050 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
2051 	    sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
2052 
2053 	return (0);
2054 }
2055 
2056 void
age_init_rr_ring(struct age_softc * sc)2057 age_init_rr_ring(struct age_softc *sc)
2058 {
2059 	struct age_ring_data *rd;
2060 
2061 	sc->age_cdata.age_rr_cons = 0;
2062 	AGE_RXCHAIN_RESET(sc);
2063 
2064 	rd = &sc->age_rdata;
2065 	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
2066 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
2067 	    sc->age_cdata.age_rr_ring_map->dm_mapsize,
2068 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2069 }
2070 
2071 void
age_init_cmb_block(struct age_softc * sc)2072 age_init_cmb_block(struct age_softc *sc)
2073 {
2074 	struct age_ring_data *rd;
2075 
2076 	rd = &sc->age_rdata;
2077 	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
2078 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
2079 	    sc->age_cdata.age_cmb_block_map->dm_mapsize,
2080 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2081 }
2082 
2083 void
age_init_smb_block(struct age_softc * sc)2084 age_init_smb_block(struct age_softc *sc)
2085 {
2086 	struct age_ring_data *rd;
2087 
2088 	rd = &sc->age_rdata;
2089 	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
2090 	bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
2091 	    sc->age_cdata.age_smb_block_map->dm_mapsize,
2092 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2093 }
2094 
2095 int
age_newbuf(struct age_softc * sc,struct age_rxdesc * rxd)2096 age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
2097 {
2098 	struct rx_desc *desc;
2099 	struct mbuf *m;
2100 	bus_dmamap_t map;
2101 	int error;
2102 
2103 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2104 	if (m == NULL)
2105 		return (ENOBUFS);
2106 	MCLGET(m, M_DONTWAIT);
2107 	if (!(m->m_flags & M_EXT)) {
2108 		 m_freem(m);
2109 		 return (ENOBUFS);
2110 	}
2111 
2112 	m->m_len = m->m_pkthdr.len = MCLBYTES;
2113 	m_adj(m, ETHER_ALIGN);
2114 
2115 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2116 	    sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);
2117 
2118 	if (error != 0) {
2119 		m_freem(m);
2120 		printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname);
2121 		return (error);
2122 	}
2123 
2124 	if (rxd->rx_m != NULL) {
2125 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2126 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2127 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2128 	}
2129 	map = rxd->rx_dmamap;
2130 	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
2131 	sc->age_cdata.age_rx_sparemap = map;
2132 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2133 	    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2134 	rxd->rx_m = m;
2135 
2136 	desc = rxd->rx_desc;
2137 	desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2138 	desc->len =
2139 	    htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
2140 	    AGE_RD_LEN_SHIFT);
2141 
2142 	return (0);
2143 }
2144 
2145 void
age_rxvlan(struct age_softc * sc)2146 age_rxvlan(struct age_softc *sc)
2147 {
2148 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2149 	uint32_t reg;
2150 
2151 	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2152 	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
2153 	if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)
2154 		reg |= MAC_CFG_VLAN_TAG_STRIP;
2155 	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2156 }
2157 
2158 void
age_iff(struct age_softc * sc)2159 age_iff(struct age_softc *sc)
2160 {
2161 	struct arpcom *ac = &sc->sc_arpcom;
2162 	struct ifnet *ifp = &ac->ac_if;
2163 	struct ether_multi *enm;
2164 	struct ether_multistep step;
2165 	uint32_t crc;
2166 	uint32_t mchash[2];
2167 	uint32_t rxcfg;
2168 
2169 	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
2170 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
2171 	ifp->if_flags &= ~IFF_ALLMULTI;
2172 
2173 	/*
2174 	 * Always accept broadcast frames.
2175 	 */
2176 	rxcfg |= MAC_CFG_BCAST;
2177 
2178 	if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) {
2179 		ifp->if_flags |= IFF_ALLMULTI;
2180 		if (ifp->if_flags & IFF_PROMISC)
2181 			rxcfg |= MAC_CFG_PROMISC;
2182 		else
2183 			rxcfg |= MAC_CFG_ALLMULTI;
2184 		mchash[0] = mchash[1] = 0xFFFFFFFF;
2185 	} else {
2186 		/* Program new filter. */
2187 		bzero(mchash, sizeof(mchash));
2188 
2189 		ETHER_FIRST_MULTI(step, ac, enm);
2190 		while (enm != NULL) {
2191 			crc = ether_crc32_be(enm->enm_addrlo,
2192 			    ETHER_ADDR_LEN);
2193 
2194 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
2195 
2196 			ETHER_NEXT_MULTI(step, enm);
2197 		}
2198 	}
2199 
2200 	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
2201 	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
2202 	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
2203 }
2204