xref: /openbsd-src/sys/arch/sparc64/fpu/fpu_implode.c (revision 4b64ca3ec48c786968cbb21e835d04b75f1b53c9)
1 /*	$OpenBSD: fpu_implode.c,v 1.11 2024/03/29 21:08:10 miod Exp $	*/
2 /*	$NetBSD: fpu_implode.c,v 1.7 2000/08/03 18:32:08 eeh Exp $ */
3 
4 /*
5  * Copyright (c) 1992, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * This software was developed by the Computer Systems Engineering group
9  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
10  * contributed to Berkeley.
11  *
12  * All advertising materials mentioning features or use of this software
13  * must display the following acknowledgement:
14  *	This product includes software developed by the University of
15  *	California, Lawrence Berkeley Laboratory.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)fpu_implode.c	8.1 (Berkeley) 6/11/93
42  */
43 
44 /*
45  * FPU subroutines: `implode' internal format numbers into the machine's
46  * `packed binary' format.
47  */
48 
49 #include <sys/types.h>
50 #include <sys/systm.h>
51 
52 #include <machine/fsr.h>
53 #include <machine/ieee.h>
54 #include <machine/instr.h>
55 #include <machine/reg.h>
56 
57 #include <sparc64/fpu/fpu_arith.h>
58 #include <sparc64/fpu/fpu_emu.h>
59 #include <sparc64/fpu/fpu_extern.h>
60 
61 static int fpu_round(struct fpemu *, struct fpn *);
62 static int toinf(struct fpemu *, int);
63 
64 /*
65  * Round a number (algorithm from Motorola MC68882 manual, modified for
66  * our internal format).  Set inexact exception if rounding is required.
67  * Return true iff we rounded up.
68  *
69  * After rounding, we discard the guard and round bits by shifting right
70  * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
71  * This saves effort later.
72  *
73  * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
74  * responsibility to fix this if necessary.
75  */
76 static int
fpu_round(struct fpemu * fe,struct fpn * fp)77 fpu_round(struct fpemu *fe, struct fpn *fp)
78 {
79 	u_int m0, m1, m2, m3;
80 	int gr, s;
81 
82 	m0 = fp->fp_mant[0];
83 	m1 = fp->fp_mant[1];
84 	m2 = fp->fp_mant[2];
85 	m3 = fp->fp_mant[3];
86 	gr = m3 & 3;
87 	s = fp->fp_sticky;
88 
89 	/* mant >>= FP_NG */
90 	m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
91 	m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
92 	m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
93 	m0 >>= FP_NG;
94 
95 	if ((gr | s) == 0)	/* result is exact: no rounding needed */
96 		goto rounddown;
97 
98 	fe->fe_cx |= FSR_NX;	/* inexact */
99 
100 	/* Go to rounddown to round down; break to round up. */
101 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
102 
103 	case FSR_RD_RN:
104 	default:
105 		/*
106 		 * Round only if guard is set (gr & 2).  If guard is set,
107 		 * but round & sticky both clear, then we want to round
108 		 * but have a tie, so round to even, i.e., add 1 iff odd.
109 		 */
110 		if ((gr & 2) == 0)
111 			goto rounddown;
112 		if ((gr & 1) || fp->fp_sticky || (m3 & 1))
113 			break;
114 		goto rounddown;
115 
116 	case FSR_RD_RZ:
117 		/* Round towards zero, i.e., down. */
118 		goto rounddown;
119 
120 	case FSR_RD_RM:
121 		/* Round towards -Inf: up if negative, down if positive. */
122 		if (fp->fp_sign)
123 			break;
124 		goto rounddown;
125 
126 	case FSR_RD_RP:
127 		/* Round towards +Inf: up if positive, down otherwise. */
128 		if (!fp->fp_sign)
129 			break;
130 		goto rounddown;
131 	}
132 
133 	/* Bump low bit of mantissa, with carry. */
134 	FPU_ADDS(m3, m3, 1);
135 	FPU_ADDCS(m2, m2, 0);
136 	FPU_ADDCS(m1, m1, 0);
137 	FPU_ADDC(m0, m0, 0);
138 	fp->fp_mant[0] = m0;
139 	fp->fp_mant[1] = m1;
140 	fp->fp_mant[2] = m2;
141 	fp->fp_mant[3] = m3;
142 	return (1);
143 
144 rounddown:
145 	fp->fp_mant[0] = m0;
146 	fp->fp_mant[1] = m1;
147 	fp->fp_mant[2] = m2;
148 	fp->fp_mant[3] = m3;
149 	return (0);
150 }
151 
152 /*
153  * For overflow: return true if overflow is to go to +/-Inf, according
154  * to the sign of the overflowing result.  If false, overflow is to go
155  * to the largest magnitude value instead.
156  */
157 static int
toinf(struct fpemu * fe,int sign)158 toinf(struct fpemu *fe, int sign)
159 {
160 	int inf;
161 
162 	/* look at rounding direction */
163 	switch ((fe->fe_fsr >> FSR_RD_SHIFT) & FSR_RD_MASK) {
164 
165 	default:
166 	case FSR_RD_RN:		/* the nearest value is always Inf */
167 		inf = 1;
168 		break;
169 
170 	case FSR_RD_RZ:		/* toward 0 => never towards Inf */
171 		inf = 0;
172 		break;
173 
174 	case FSR_RD_RP:		/* toward +Inf iff positive */
175 		inf = sign == 0;
176 		break;
177 
178 	case FSR_RD_RM:		/* toward -Inf iff negative */
179 		inf = sign;
180 		break;
181 	}
182 	return (inf);
183 }
184 
185 /*
186  * fpn -> int (int value returned as return value).
187  *
188  * N.B.: this conversion always rounds towards zero (this is a peculiarity
189  * of the SPARC instruction set).
190  */
191 u_int
fpu_ftoi(struct fpemu * fe,struct fpn * fp)192 fpu_ftoi(struct fpemu *fe, struct fpn *fp)
193 {
194 	u_int i;
195 	int sign, exp;
196 
197 	sign = fp->fp_sign;
198 	switch (fp->fp_class) {
199 
200 	case FPC_ZERO:
201 		return (0);
202 
203 	case FPC_NUM:
204 		/*
205 		 * If exp >= 2^32, overflow.  Otherwise shift value right
206 		 * into last mantissa word (this will not exceed 0xffffffff),
207 		 * shifting any guard and round bits out into the sticky
208 		 * bit.  Then ``round'' towards zero, i.e., just set an
209 		 * inexact exception if sticky is set (see fpu_round()).
210 		 * If the result is > 0x80000000, or is positive and equals
211 		 * 0x80000000, overflow; otherwise the last fraction word
212 		 * is the result.
213 		 */
214 		if ((exp = fp->fp_exp) >= 32)
215 			break;
216 		/* NB: the following includes exp < 0 cases */
217 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
218 			fe->fe_cx |= FSR_NX;
219 		i = fp->fp_mant[3];
220 		if (i >= ((u_int)0x80000000 + sign))
221 			break;
222 		return (sign ? -i : i);
223 
224 	default:		/* Inf, qNaN, sNaN */
225 		break;
226 	}
227 	/* overflow: replace any inexact exception with invalid */
228 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
229 	return (0x7fffffff + sign);
230 }
231 
232 /*
233  * fpn -> extended int (high bits of int value returned as return value).
234  *
235  * N.B.: this conversion always rounds towards zero (this is a peculiarity
236  * of the SPARC instruction set).
237  */
238 u_int
fpu_ftox(struct fpemu * fe,struct fpn * fp,u_int * res)239 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
240 {
241 	u_int64_t i;
242 	int sign, exp;
243 
244 	sign = fp->fp_sign;
245 	switch (fp->fp_class) {
246 
247 	case FPC_ZERO:
248 		i = 0;
249 		goto out;
250 
251 	case FPC_NUM:
252 		/*
253 		 * If exp >= 2^64, overflow.  Otherwise shift value right
254 		 * into last mantissa word (this will not exceed 0xffffffffffffffff),
255 		 * shifting any guard and round bits out into the sticky
256 		 * bit.  Then ``round'' towards zero, i.e., just set an
257 		 * inexact exception if sticky is set (see fpu_round()).
258 		 * If the result is > 0x8000000000000000, or is positive and equals
259 		 * 0x8000000000000000, overflow; otherwise the last fraction word
260 		 * is the result.
261 		 */
262 		if ((exp = fp->fp_exp) >= 64)
263 			break;
264 		/* NB: the following includes exp < 0 cases */
265 		if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
266 			fe->fe_cx |= FSR_NX;
267 		i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
268 		if (i >= ((u_int64_t)0x8000000000000000LL + sign))
269 			break;
270 		if (sign)
271 			i = -i;
272 		goto out;
273 
274 	default:		/* Inf, qNaN, sNaN */
275 		break;
276 	}
277 	/* overflow: replace any inexact exception with invalid */
278 	fe->fe_cx = (fe->fe_cx & ~FSR_NX) | FSR_NV;
279 	i = 0x7fffffffffffffffLL + sign;
280 out:
281 	res[1] = i & 0xffffffff;
282 	return (i >> 32);
283 }
284 
285 /*
286  * fpn -> single (32 bit single returned as return value).
287  * We assume <= 29 bits in a single-precision fraction (1.f part).
288  */
289 u_int
fpu_ftos(struct fpemu * fe,struct fpn * fp)290 fpu_ftos(struct fpemu *fe, struct fpn *fp)
291 {
292 	u_int sign = fp->fp_sign << 31;
293 	int exp;
294 
295 #define	SNG_EXP(e)	((e) << SNG_FRACBITS)	/* makes e an exponent */
296 #define	SNG_MASK	(SNG_EXP(1) - 1)	/* mask for fraction */
297 
298 	/* Take care of non-numbers first. */
299 	if (ISNAN(fp)) {
300 		/*
301 		 * Preserve upper bits of NaN, per SPARC V8 appendix N.
302 		 * Note that fp->fp_mant[0] has the quiet bit set,
303 		 * even if it is classified as a signalling NaN.
304 		 */
305 		(void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
306 		exp = SNG_EXP_INFNAN;
307 		goto done;
308 	}
309 	if (ISINF(fp))
310 		return (sign | SNG_EXP(SNG_EXP_INFNAN));
311 	if (ISZERO(fp))
312 		return (sign);
313 
314 	/*
315 	 * Normals (including subnormals).  Drop all the fraction bits
316 	 * (including the explicit ``implied'' 1 bit) down into the
317 	 * single-precision range.  If the number is subnormal, move
318 	 * the ``implied'' 1 into the explicit range as well, and shift
319 	 * right to introduce leading zeroes.  Rounding then acts
320 	 * differently for normals and subnormals: the largest subnormal
321 	 * may round to the smallest normal (1.0 x 2^minexp), or may
322 	 * remain subnormal.  In the latter case, signal an underflow
323 	 * if the result was inexact or if underflow traps are enabled.
324 	 *
325 	 * Rounding a normal, on the other hand, always produces another
326 	 * normal (although either way the result might be too big for
327 	 * single precision, and cause an overflow).  If rounding a
328 	 * normal produces 2.0 in the fraction, we need not adjust that
329 	 * fraction at all, since both 1.0 and 2.0 are zero under the
330 	 * fraction mask.
331 	 *
332 	 * Note that the guard and round bits vanish from the number after
333 	 * rounding.
334 	 */
335 	if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {	/* subnormal */
336 		/* -NG for g,r; -SNG_FRACBITS-exp for fraction */
337 		(void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
338 		if (fpu_round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
339 			return (sign | SNG_EXP(1) | 0);
340 		if ((fe->fe_cx & FSR_NX) ||
341 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
342 			fe->fe_cx |= FSR_UF;
343 		return (sign | SNG_EXP(0) | fp->fp_mant[3]);
344 	}
345 	/* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
346 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
347 #ifdef DIAGNOSTIC
348 	if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
349 		panic("fpu_ftos");
350 #endif
351 	if (fpu_round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
352 		exp++;
353 	if (exp >= SNG_EXP_INFNAN) {
354 		/* overflow to inf or to max single */
355 		fe->fe_cx |= FSR_OF | FSR_NX;
356 		if (toinf(fe, sign))
357 			return (sign | SNG_EXP(SNG_EXP_INFNAN));
358 		return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
359 	}
360 done:
361 	/* phew, made it */
362 	return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
363 }
364 
365 /*
366  * fpn -> double (32 bit high-order result returned; 32-bit low order result
367  * left in res[1]).  Assumes <= 61 bits in double precision fraction.
368  *
369  * This code mimics fpu_ftos; see it for comments.
370  */
371 u_int
fpu_ftod(struct fpemu * fe,struct fpn * fp,u_int * res)372 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
373 {
374 	u_int sign = fp->fp_sign << 31;
375 	int exp;
376 
377 #define	DBL_EXP(e)	((e) << (DBL_FRACBITS & 31))
378 #define	DBL_MASK	(DBL_EXP(1) - 1)
379 
380 	if (ISNAN(fp)) {
381 		(void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
382 		exp = DBL_EXP_INFNAN;
383 		goto done;
384 	}
385 	if (ISINF(fp)) {
386 		sign |= DBL_EXP(DBL_EXP_INFNAN);
387 		goto zero;
388 	}
389 	if (ISZERO(fp)) {
390 zero:		res[1] = 0;
391 		return (sign);
392 	}
393 
394 	if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
395 		(void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
396 		if (fpu_round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
397 			res[1] = 0;
398 			return (sign | DBL_EXP(1) | 0);
399 		}
400 		if ((fe->fe_cx & FSR_NX) ||
401 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
402 			fe->fe_cx |= FSR_UF;
403 		exp = 0;
404 		goto done;
405 	}
406 	(void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
407 	if (fpu_round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
408 		exp++;
409 	if (exp >= DBL_EXP_INFNAN) {
410 		fe->fe_cx |= FSR_OF | FSR_NX;
411 		if (toinf(fe, sign)) {
412 			res[1] = 0;
413 			return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
414 		}
415 		res[1] = ~0;
416 		return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
417 	}
418 done:
419 	res[1] = fp->fp_mant[3];
420 	return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
421 }
422 
423 /*
424  * fpn -> extended (32 bit high-order result returned; low-order fraction
425  * words left in res[1]..res[3]).  Like ftod, which is like ftos ... but
426  * our internal format *is* extended precision, plus 2 bits for guard/round,
427  * so we can avoid a small bit of work.
428  */
429 u_int
fpu_ftoq(struct fpemu * fe,struct fpn * fp,u_int * res)430 fpu_ftoq(struct fpemu *fe, struct fpn *fp, u_int *res)
431 {
432 	u_int sign = fp->fp_sign << 31;
433 	int exp;
434 
435 #define	EXT_EXP(e)	((e) << (EXT_FRACBITS & 31))
436 #define	EXT_MASK	(EXT_EXP(1) - 1)
437 
438 	if (ISNAN(fp)) {
439 		(void) fpu_shr(fp, 2);	/* since we are not rounding */
440 		exp = EXT_EXP_INFNAN;
441 		goto done;
442 	}
443 	if (ISINF(fp)) {
444 		sign |= EXT_EXP(EXT_EXP_INFNAN);
445 		goto zero;
446 	}
447 	if (ISZERO(fp)) {
448 zero:		res[1] = res[2] = res[3] = 0;
449 		return (sign);
450 	}
451 
452 	if ((exp = fp->fp_exp + EXT_EXP_BIAS) <= 0) {
453 		(void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
454 		if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXP(1)) {
455 			res[1] = res[2] = res[3] = 0;
456 			return (sign | EXT_EXP(1) | 0);
457 		}
458 		if ((fe->fe_cx & FSR_NX) ||
459 		    (fe->fe_fsr & (FSR_UF << FSR_TEM_SHIFT)))
460 			fe->fe_cx |= FSR_UF;
461 		exp = 0;
462 		goto done;
463 	}
464 	/* Since internal == extended, no need to shift here. */
465 	if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXP(2))
466 		exp++;
467 	if (exp >= EXT_EXP_INFNAN) {
468 		fe->fe_cx |= FSR_OF | FSR_NX;
469 		if (toinf(fe, sign)) {
470 			res[1] = res[2] = res[3] = 0;
471 			return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
472 		}
473 		res[1] = res[2] = res[3] = ~0;
474 		return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
475 	}
476 done:
477 	res[1] = fp->fp_mant[1];
478 	res[2] = fp->fp_mant[2];
479 	res[3] = fp->fp_mant[3];
480 	return (sign | EXT_EXP(exp) | (fp->fp_mant[0] & EXT_MASK));
481 }
482 
483 /*
484  * Implode an fpn, writing the result into the given space.
485  */
486 void
fpu_implode(struct fpemu * fe,struct fpn * fp,int type,u_int * space)487 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
488 {
489 	DPRINTF(FPE_INSN, ("fpu_implode: "));
490 	switch (type) {
491 
492 	case FTYPE_LNG:
493 		space[0] = fpu_ftox(fe, fp, space);
494 		DPRINTF(FPE_INSN, ("LNG %x %x\n", space[0], space[1]));
495 		break;
496 
497 	case FTYPE_INT:
498 		space[0] = fpu_ftoi(fe, fp);
499 		DPRINTF(FPE_INSN, ("INT %x\n", space[0]));
500 		break;
501 
502 	case FTYPE_SNG:
503 		space[0] = fpu_ftos(fe, fp);
504 		DPRINTF(FPE_INSN, ("SNG %x\n", space[0]));
505 		break;
506 
507 	case FTYPE_DBL:
508 		space[0] = fpu_ftod(fe, fp, space);
509 		DPRINTF(FPE_INSN, ("DBL %x %x\n", space[0], space[1]));
510 		break;
511 
512 	case FTYPE_EXT:
513 		/* funky rounding precision options ?? */
514 		space[0] = fpu_ftoq(fe, fp, space);
515 		DPRINTF(FPE_INSN, ("EXT %x %x %x %x\n", space[0], space[1],
516 		    space[2], space[3]));
517 		break;
518 
519 	default:
520 		panic("fpu_implode");
521 	}
522 }
523