1 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the XCoreTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "XCoreISelLowering.h"
14 #include "XCore.h"
15 #include "XCoreMachineFunctionInfo.h"
16 #include "XCoreSubtarget.h"
17 #include "XCoreTargetMachine.h"
18 #include "XCoreTargetObjectFile.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/ValueTypes.h"
26 #include "llvm/IR/CallingConv.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/IntrinsicsXCore.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39
40 using namespace llvm;
41
42 #define DEBUG_TYPE "xcore-lower"
43
44 const char *XCoreTargetLowering::
getTargetNodeName(unsigned Opcode) const45 getTargetNodeName(unsigned Opcode) const
46 {
47 switch ((XCoreISD::NodeType)Opcode)
48 {
49 case XCoreISD::FIRST_NUMBER : break;
50 case XCoreISD::BL : return "XCoreISD::BL";
51 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper";
52 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper";
53 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper";
54 case XCoreISD::LDWSP : return "XCoreISD::LDWSP";
55 case XCoreISD::STWSP : return "XCoreISD::STWSP";
56 case XCoreISD::RETSP : return "XCoreISD::RETSP";
57 case XCoreISD::LADD : return "XCoreISD::LADD";
58 case XCoreISD::LSUB : return "XCoreISD::LSUB";
59 case XCoreISD::LMUL : return "XCoreISD::LMUL";
60 case XCoreISD::MACCU : return "XCoreISD::MACCU";
61 case XCoreISD::MACCS : return "XCoreISD::MACCS";
62 case XCoreISD::CRC8 : return "XCoreISD::CRC8";
63 case XCoreISD::BR_JT : return "XCoreISD::BR_JT";
64 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32";
65 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET";
66 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN";
67 }
68 return nullptr;
69 }
70
XCoreTargetLowering(const TargetMachine & TM,const XCoreSubtarget & Subtarget)71 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM,
72 const XCoreSubtarget &Subtarget)
73 : TargetLowering(TM), TM(TM), Subtarget(Subtarget) {
74
75 // Set up the register classes.
76 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass);
77
78 // Compute derived properties from the register classes
79 computeRegisterProperties(Subtarget.getRegisterInfo());
80
81 setStackPointerRegisterToSaveRestore(XCore::SP);
82
83 setSchedulingPreference(Sched::Source);
84
85 // Use i32 for setcc operations results (slt, sgt, ...).
86 setBooleanContents(ZeroOrOneBooleanContent);
87 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
88
89 // XCore does not have the NodeTypes below.
90 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
91 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
92
93 // 64bit
94 setOperationAction(ISD::ADD, MVT::i64, Custom);
95 setOperationAction(ISD::SUB, MVT::i64, Custom);
96 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom);
97 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom);
98 setOperationAction(ISD::MULHS, MVT::i32, Expand);
99 setOperationAction(ISD::MULHU, MVT::i32, Expand);
100 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
101 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
102 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
103
104 // Bit Manipulation
105 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
106 setOperationAction(ISD::ROTL , MVT::i32, Expand);
107 setOperationAction(ISD::ROTR , MVT::i32, Expand);
108 setOperationAction(ISD::BITREVERSE , MVT::i32, Legal);
109
110 setOperationAction(ISD::TRAP, MVT::Other, Legal);
111
112 // Jump tables.
113 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
114
115 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
116 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom);
117
118 // Conversion of i64 -> double produces constantpool nodes
119 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
120
121 // Loads
122 for (MVT VT : MVT::integer_valuetypes()) {
123 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
124 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
125 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
126
127 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
128 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Expand);
129 }
130
131 // Custom expand misaligned loads / stores.
132 setOperationAction(ISD::LOAD, MVT::i32, Custom);
133 setOperationAction(ISD::STORE, MVT::i32, Custom);
134
135 // Varargs
136 setOperationAction(ISD::VAEND, MVT::Other, Expand);
137 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
138 setOperationAction(ISD::VAARG, MVT::Other, Custom);
139 setOperationAction(ISD::VASTART, MVT::Other, Custom);
140
141 // Dynamic stack
142 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
143 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
145
146 // Exception handling
147 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
148 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
149
150 // Atomic operations
151 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic.
152 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP.
153 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
154 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
155 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
156
157 // TRAMPOLINE is custom lowered.
158 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
159 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
160
161 // We want to custom lower some of our intrinsics.
162 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
163
164 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4;
165 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize
166 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2;
167
168 // We have target-specific dag combine patterns for the following nodes:
169 setTargetDAGCombine(
170 {ISD::STORE, ISD::ADD, ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN});
171
172 setMinFunctionAlignment(Align(2));
173 setPrefFunctionAlignment(Align(4));
174 }
175
isZExtFree(SDValue Val,EVT VT2) const176 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
177 if (Val.getOpcode() != ISD::LOAD)
178 return false;
179
180 EVT VT1 = Val.getValueType();
181 if (!VT1.isSimple() || !VT1.isInteger() ||
182 !VT2.isSimple() || !VT2.isInteger())
183 return false;
184
185 switch (VT1.getSimpleVT().SimpleTy) {
186 default: break;
187 case MVT::i8:
188 return true;
189 }
190
191 return false;
192 }
193
194 SDValue XCoreTargetLowering::
LowerOperation(SDValue Op,SelectionDAG & DAG) const195 LowerOperation(SDValue Op, SelectionDAG &DAG) const {
196 switch (Op.getOpcode())
197 {
198 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
199 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
200 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
201 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
202 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
203 case ISD::LOAD: return LowerLOAD(Op, DAG);
204 case ISD::STORE: return LowerSTORE(Op, DAG);
205 case ISD::VAARG: return LowerVAARG(Op, DAG);
206 case ISD::VASTART: return LowerVASTART(Op, DAG);
207 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG);
208 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG);
209 // FIXME: Remove these when LegalizeDAGTypes lands.
210 case ISD::ADD:
211 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG);
212 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
213 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
214 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
215 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
216 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
217 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
218 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
219 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG);
220 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
221 default:
222 llvm_unreachable("unimplemented operand");
223 }
224 }
225
226 /// ReplaceNodeResults - Replace the results of node with an illegal result
227 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const228 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N,
229 SmallVectorImpl<SDValue>&Results,
230 SelectionDAG &DAG) const {
231 switch (N->getOpcode()) {
232 default:
233 llvm_unreachable("Don't know how to custom expand this!");
234 case ISD::ADD:
235 case ISD::SUB:
236 Results.push_back(ExpandADDSUB(N, DAG));
237 return;
238 }
239 }
240
241 //===----------------------------------------------------------------------===//
242 // Misc Lower Operation implementation
243 //===----------------------------------------------------------------------===//
244
getGlobalAddressWrapper(SDValue GA,const GlobalValue * GV,SelectionDAG & DAG) const245 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA,
246 const GlobalValue *GV,
247 SelectionDAG &DAG) const {
248 // FIXME there is no actual debug info here
249 SDLoc dl(GA);
250
251 if (GV->getValueType()->isFunctionTy())
252 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA);
253
254 const auto *GVar = dyn_cast<GlobalVariable>(GV);
255 if ((GV->hasSection() && GV->getSection().startswith(".cp.")) ||
256 (GVar && GVar->isConstant() && GV->hasLocalLinkage()))
257 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA);
258
259 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA);
260 }
261
IsSmallObject(const GlobalValue * GV,const XCoreTargetLowering & XTL)262 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) {
263 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small)
264 return true;
265
266 Type *ObjType = GV->getValueType();
267 if (!ObjType->isSized())
268 return false;
269
270 auto &DL = GV->getParent()->getDataLayout();
271 unsigned ObjSize = DL.getTypeAllocSize(ObjType);
272 return ObjSize < CodeModelLargeSize && ObjSize != 0;
273 }
274
275 SDValue XCoreTargetLowering::
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const276 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const
277 {
278 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op);
279 const GlobalValue *GV = GN->getGlobal();
280 SDLoc DL(GN);
281 int64_t Offset = GN->getOffset();
282 if (IsSmallObject(GV, *this)) {
283 // We can only fold positive offsets that are a multiple of the word size.
284 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0);
285 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset);
286 GA = getGlobalAddressWrapper(GA, GV, DAG);
287 // Handle the rest of the offset.
288 if (Offset != FoldedOffset) {
289 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, DL, MVT::i32);
290 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining);
291 }
292 return GA;
293 } else {
294 // Ideally we would not fold in offset with an index <= 11.
295 Type *Ty = Type::getInt8PtrTy(*DAG.getContext());
296 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty);
297 Ty = Type::getInt32Ty(*DAG.getContext());
298 Constant *Idx = ConstantInt::get(Ty, Offset);
299 Constant *GAI = ConstantExpr::getGetElementPtr(
300 Type::getInt8Ty(*DAG.getContext()), GA, Idx);
301 SDValue CP = DAG.getConstantPool(GAI, MVT::i32);
302 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL,
303 DAG.getEntryNode(), CP, MachinePointerInfo());
304 }
305 }
306
307 SDValue XCoreTargetLowering::
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const308 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const
309 {
310 SDLoc DL(Op);
311 auto PtrVT = getPointerTy(DAG.getDataLayout());
312 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
313 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
314
315 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, PtrVT, Result);
316 }
317
318 SDValue XCoreTargetLowering::
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const319 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
320 {
321 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
322 // FIXME there isn't really debug info here
323 SDLoc dl(CP);
324 EVT PtrVT = Op.getValueType();
325 SDValue Res;
326 if (CP->isMachineConstantPoolEntry()) {
327 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
328 CP->getAlign(), CP->getOffset());
329 } else {
330 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
331 CP->getOffset());
332 }
333 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res);
334 }
335
getJumpTableEncoding() const336 unsigned XCoreTargetLowering::getJumpTableEncoding() const {
337 return MachineJumpTableInfo::EK_Inline;
338 }
339
340 SDValue XCoreTargetLowering::
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const341 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
342 {
343 SDValue Chain = Op.getOperand(0);
344 SDValue Table = Op.getOperand(1);
345 SDValue Index = Op.getOperand(2);
346 SDLoc dl(Op);
347 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
348 unsigned JTI = JT->getIndex();
349 MachineFunction &MF = DAG.getMachineFunction();
350 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
351 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
352
353 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size();
354 if (NumEntries <= 32) {
355 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index);
356 }
357 assert((NumEntries >> 31) == 0);
358 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
359 DAG.getConstant(1, dl, MVT::i32));
360 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT,
361 ScaledIndex);
362 }
363
lowerLoadWordFromAlignedBasePlusOffset(const SDLoc & DL,SDValue Chain,SDValue Base,int64_t Offset,SelectionDAG & DAG) const364 SDValue XCoreTargetLowering::lowerLoadWordFromAlignedBasePlusOffset(
365 const SDLoc &DL, SDValue Chain, SDValue Base, int64_t Offset,
366 SelectionDAG &DAG) const {
367 auto PtrVT = getPointerTy(DAG.getDataLayout());
368 if ((Offset & 0x3) == 0) {
369 return DAG.getLoad(PtrVT, DL, Chain, Base, MachinePointerInfo());
370 }
371 // Lower to pair of consecutive word aligned loads plus some bit shifting.
372 int32_t HighOffset = alignTo(Offset, 4);
373 int32_t LowOffset = HighOffset - 4;
374 SDValue LowAddr, HighAddr;
375 if (GlobalAddressSDNode *GASD =
376 dyn_cast<GlobalAddressSDNode>(Base.getNode())) {
377 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
378 LowOffset);
379 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(),
380 HighOffset);
381 } else {
382 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
383 DAG.getConstant(LowOffset, DL, MVT::i32));
384 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base,
385 DAG.getConstant(HighOffset, DL, MVT::i32));
386 }
387 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, DL, MVT::i32);
388 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, DL, MVT::i32);
389
390 SDValue Low = DAG.getLoad(PtrVT, DL, Chain, LowAddr, MachinePointerInfo());
391 SDValue High = DAG.getLoad(PtrVT, DL, Chain, HighAddr, MachinePointerInfo());
392 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift);
393 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift);
394 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted);
395 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
396 High.getValue(1));
397 SDValue Ops[] = { Result, Chain };
398 return DAG.getMergeValues(Ops, DL);
399 }
400
isWordAligned(SDValue Value,SelectionDAG & DAG)401 static bool isWordAligned(SDValue Value, SelectionDAG &DAG)
402 {
403 KnownBits Known = DAG.computeKnownBits(Value);
404 return Known.countMinTrailingZeros() >= 2;
405 }
406
LowerLOAD(SDValue Op,SelectionDAG & DAG) const407 SDValue XCoreTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
408 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
409 LLVMContext &Context = *DAG.getContext();
410 LoadSDNode *LD = cast<LoadSDNode>(Op);
411 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
412 "Unexpected extension type");
413 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT");
414
415 if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
416 LD->getMemoryVT(), *LD->getMemOperand()))
417 return SDValue();
418
419 SDValue Chain = LD->getChain();
420 SDValue BasePtr = LD->getBasePtr();
421 SDLoc DL(Op);
422
423 if (!LD->isVolatile()) {
424 const GlobalValue *GV;
425 int64_t Offset = 0;
426 if (DAG.isBaseWithConstantOffset(BasePtr) &&
427 isWordAligned(BasePtr->getOperand(0), DAG)) {
428 SDValue NewBasePtr = BasePtr->getOperand(0);
429 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue();
430 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
431 Offset, DAG);
432 }
433 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) &&
434 GV->getPointerAlignment(DAG.getDataLayout()) >= 4) {
435 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL,
436 BasePtr->getValueType(0));
437 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr,
438 Offset, DAG);
439 }
440 }
441
442 if (LD->getAlign() == Align(2)) {
443 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, BasePtr,
444 LD->getPointerInfo(), MVT::i16, Align(2),
445 LD->getMemOperand()->getFlags());
446 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
447 DAG.getConstant(2, DL, MVT::i32));
448 SDValue High =
449 DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, HighAddr,
450 LD->getPointerInfo().getWithOffset(2), MVT::i16,
451 Align(2), LD->getMemOperand()->getFlags());
452 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High,
453 DAG.getConstant(16, DL, MVT::i32));
454 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted);
455 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1),
456 High.getValue(1));
457 SDValue Ops[] = { Result, Chain };
458 return DAG.getMergeValues(Ops, DL);
459 }
460
461 // Lower to a call to __misaligned_load(BasePtr).
462 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
463 TargetLowering::ArgListTy Args;
464 TargetLowering::ArgListEntry Entry;
465
466 Entry.Ty = IntPtrTy;
467 Entry.Node = BasePtr;
468 Args.push_back(Entry);
469
470 TargetLowering::CallLoweringInfo CLI(DAG);
471 CLI.setDebugLoc(DL).setChain(Chain).setLibCallee(
472 CallingConv::C, IntPtrTy,
473 DAG.getExternalSymbol("__misaligned_load",
474 getPointerTy(DAG.getDataLayout())),
475 std::move(Args));
476
477 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
478 SDValue Ops[] = { CallResult.first, CallResult.second };
479 return DAG.getMergeValues(Ops, DL);
480 }
481
LowerSTORE(SDValue Op,SelectionDAG & DAG) const482 SDValue XCoreTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
483 LLVMContext &Context = *DAG.getContext();
484 StoreSDNode *ST = cast<StoreSDNode>(Op);
485 assert(!ST->isTruncatingStore() && "Unexpected store type");
486 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT");
487
488 if (allowsMemoryAccessForAlignment(Context, DAG.getDataLayout(),
489 ST->getMemoryVT(), *ST->getMemOperand()))
490 return SDValue();
491
492 SDValue Chain = ST->getChain();
493 SDValue BasePtr = ST->getBasePtr();
494 SDValue Value = ST->getValue();
495 SDLoc dl(Op);
496
497 if (ST->getAlign() == Align(2)) {
498 SDValue Low = Value;
499 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value,
500 DAG.getConstant(16, dl, MVT::i32));
501 SDValue StoreLow =
502 DAG.getTruncStore(Chain, dl, Low, BasePtr, ST->getPointerInfo(),
503 MVT::i16, Align(2), ST->getMemOperand()->getFlags());
504 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr,
505 DAG.getConstant(2, dl, MVT::i32));
506 SDValue StoreHigh = DAG.getTruncStore(
507 Chain, dl, High, HighAddr, ST->getPointerInfo().getWithOffset(2),
508 MVT::i16, Align(2), ST->getMemOperand()->getFlags());
509 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh);
510 }
511
512 // Lower to a call to __misaligned_store(BasePtr, Value).
513 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(Context);
514 TargetLowering::ArgListTy Args;
515 TargetLowering::ArgListEntry Entry;
516
517 Entry.Ty = IntPtrTy;
518 Entry.Node = BasePtr;
519 Args.push_back(Entry);
520
521 Entry.Node = Value;
522 Args.push_back(Entry);
523
524 TargetLowering::CallLoweringInfo CLI(DAG);
525 CLI.setDebugLoc(dl).setChain(Chain).setCallee(
526 CallingConv::C, Type::getVoidTy(Context),
527 DAG.getExternalSymbol("__misaligned_store",
528 getPointerTy(DAG.getDataLayout())),
529 std::move(Args));
530
531 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
532 return CallResult.second;
533 }
534
535 SDValue XCoreTargetLowering::
LowerSMUL_LOHI(SDValue Op,SelectionDAG & DAG) const536 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
537 {
538 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI &&
539 "Unexpected operand to lower!");
540 SDLoc dl(Op);
541 SDValue LHS = Op.getOperand(0);
542 SDValue RHS = Op.getOperand(1);
543 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
544 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
545 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero,
546 LHS, RHS);
547 SDValue Lo(Hi.getNode(), 1);
548 SDValue Ops[] = { Lo, Hi };
549 return DAG.getMergeValues(Ops, dl);
550 }
551
552 SDValue XCoreTargetLowering::
LowerUMUL_LOHI(SDValue Op,SelectionDAG & DAG) const553 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const
554 {
555 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI &&
556 "Unexpected operand to lower!");
557 SDLoc dl(Op);
558 SDValue LHS = Op.getOperand(0);
559 SDValue RHS = Op.getOperand(1);
560 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
561 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
562 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS,
563 Zero, Zero);
564 SDValue Lo(Hi.getNode(), 1);
565 SDValue Ops[] = { Lo, Hi };
566 return DAG.getMergeValues(Ops, dl);
567 }
568
569 /// isADDADDMUL - Return whether Op is in a form that is equivalent to
570 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then
571 /// each intermediate result in the calculation must also have a single use.
572 /// If the Op is in the correct form the constituent parts are written to Mul0,
573 /// Mul1, Addend0 and Addend1.
574 static bool
isADDADDMUL(SDValue Op,SDValue & Mul0,SDValue & Mul1,SDValue & Addend0,SDValue & Addend1,bool requireIntermediatesHaveOneUse)575 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0,
576 SDValue &Addend1, bool requireIntermediatesHaveOneUse)
577 {
578 if (Op.getOpcode() != ISD::ADD)
579 return false;
580 SDValue N0 = Op.getOperand(0);
581 SDValue N1 = Op.getOperand(1);
582 SDValue AddOp;
583 SDValue OtherOp;
584 if (N0.getOpcode() == ISD::ADD) {
585 AddOp = N0;
586 OtherOp = N1;
587 } else if (N1.getOpcode() == ISD::ADD) {
588 AddOp = N1;
589 OtherOp = N0;
590 } else {
591 return false;
592 }
593 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse())
594 return false;
595 if (OtherOp.getOpcode() == ISD::MUL) {
596 // add(add(a,b),mul(x,y))
597 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse())
598 return false;
599 Mul0 = OtherOp.getOperand(0);
600 Mul1 = OtherOp.getOperand(1);
601 Addend0 = AddOp.getOperand(0);
602 Addend1 = AddOp.getOperand(1);
603 return true;
604 }
605 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) {
606 // add(add(mul(x,y),a),b)
607 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse())
608 return false;
609 Mul0 = AddOp.getOperand(0).getOperand(0);
610 Mul1 = AddOp.getOperand(0).getOperand(1);
611 Addend0 = AddOp.getOperand(1);
612 Addend1 = OtherOp;
613 return true;
614 }
615 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) {
616 // add(add(a,mul(x,y)),b)
617 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse())
618 return false;
619 Mul0 = AddOp.getOperand(1).getOperand(0);
620 Mul1 = AddOp.getOperand(1).getOperand(1);
621 Addend0 = AddOp.getOperand(0);
622 Addend1 = OtherOp;
623 return true;
624 }
625 return false;
626 }
627
628 SDValue XCoreTargetLowering::
TryExpandADDWithMul(SDNode * N,SelectionDAG & DAG) const629 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const
630 {
631 SDValue Mul;
632 SDValue Other;
633 if (N->getOperand(0).getOpcode() == ISD::MUL) {
634 Mul = N->getOperand(0);
635 Other = N->getOperand(1);
636 } else if (N->getOperand(1).getOpcode() == ISD::MUL) {
637 Mul = N->getOperand(1);
638 Other = N->getOperand(0);
639 } else {
640 return SDValue();
641 }
642 SDLoc dl(N);
643 SDValue LL, RL, AddendL, AddendH;
644 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
645 Mul.getOperand(0), DAG.getConstant(0, dl, MVT::i32));
646 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
647 Mul.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
648 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
649 Other, DAG.getConstant(0, dl, MVT::i32));
650 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
651 Other, DAG.getConstant(1, dl, MVT::i32));
652 APInt HighMask = APInt::getHighBitsSet(64, 32);
653 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0));
654 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1));
655 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) &&
656 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) {
657 // The inputs are both zero-extended.
658 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
659 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
660 AddendL, LL, RL);
661 SDValue Lo(Hi.getNode(), 1);
662 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
663 }
664 if (LHSSB > 32 && RHSSB > 32) {
665 // The inputs are both sign-extended.
666 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl,
667 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
668 AddendL, LL, RL);
669 SDValue Lo(Hi.getNode(), 1);
670 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
671 }
672 SDValue LH, RH;
673 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
674 Mul.getOperand(0), DAG.getConstant(1, dl, MVT::i32));
675 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
676 Mul.getOperand(1), DAG.getConstant(1, dl, MVT::i32));
677 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl,
678 DAG.getVTList(MVT::i32, MVT::i32), AddendH,
679 AddendL, LL, RL);
680 SDValue Lo(Hi.getNode(), 1);
681 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH);
682 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL);
683 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH);
684 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH);
685 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
686 }
687
688 SDValue XCoreTargetLowering::
ExpandADDSUB(SDNode * N,SelectionDAG & DAG) const689 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const
690 {
691 assert(N->getValueType(0) == MVT::i64 &&
692 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
693 "Unknown operand to lower!");
694
695 if (N->getOpcode() == ISD::ADD)
696 if (SDValue Result = TryExpandADDWithMul(N, DAG))
697 return Result;
698
699 SDLoc dl(N);
700
701 // Extract components
702 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
703 N->getOperand(0),
704 DAG.getConstant(0, dl, MVT::i32));
705 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
706 N->getOperand(0),
707 DAG.getConstant(1, dl, MVT::i32));
708 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
709 N->getOperand(1),
710 DAG.getConstant(0, dl, MVT::i32));
711 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
712 N->getOperand(1),
713 DAG.getConstant(1, dl, MVT::i32));
714
715 // Expand
716 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD :
717 XCoreISD::LSUB;
718 SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
719 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
720 LHSL, RHSL, Zero);
721 SDValue Carry(Lo.getNode(), 1);
722
723 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
724 LHSH, RHSH, Carry);
725 SDValue Ignored(Hi.getNode(), 1);
726 // Merge the pieces
727 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
728 }
729
730 SDValue XCoreTargetLowering::
LowerVAARG(SDValue Op,SelectionDAG & DAG) const731 LowerVAARG(SDValue Op, SelectionDAG &DAG) const
732 {
733 // Whist llvm does not support aggregate varargs we can ignore
734 // the possibility of the ValueType being an implicit byVal vararg.
735 SDNode *Node = Op.getNode();
736 EVT VT = Node->getValueType(0); // not an aggregate
737 SDValue InChain = Node->getOperand(0);
738 SDValue VAListPtr = Node->getOperand(1);
739 EVT PtrVT = VAListPtr.getValueType();
740 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
741 SDLoc dl(Node);
742 SDValue VAList =
743 DAG.getLoad(PtrVT, dl, InChain, VAListPtr, MachinePointerInfo(SV));
744 // Increment the pointer, VAList, to the next vararg
745 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList,
746 DAG.getIntPtrConstant(VT.getSizeInBits() / 8,
747 dl));
748 // Store the incremented VAList to the legalized pointer
749 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr,
750 MachinePointerInfo(SV));
751 // Load the actual argument out of the pointer VAList
752 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo());
753 }
754
755 SDValue XCoreTargetLowering::
LowerVASTART(SDValue Op,SelectionDAG & DAG) const756 LowerVASTART(SDValue Op, SelectionDAG &DAG) const
757 {
758 SDLoc dl(Op);
759 // vastart stores the address of the VarArgsFrameIndex slot into the
760 // memory location argument
761 MachineFunction &MF = DAG.getMachineFunction();
762 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
763 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32);
764 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1),
765 MachinePointerInfo());
766 }
767
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const768 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op,
769 SelectionDAG &DAG) const {
770 // This nodes represent llvm.frameaddress on the DAG.
771 // It takes one operand, the index of the frame address to return.
772 // An index of zero corresponds to the current function's frame address.
773 // An index of one to the parent's frame address, and so on.
774 // Depths > 0 not supported yet!
775 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
776 return SDValue();
777
778 MachineFunction &MF = DAG.getMachineFunction();
779 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
780 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op),
781 RegInfo->getFrameRegister(MF), MVT::i32);
782 }
783
784 SDValue XCoreTargetLowering::
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const785 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
786 // This nodes represent llvm.returnaddress on the DAG.
787 // It takes one operand, the index of the return address to return.
788 // An index of zero corresponds to the current function's return address.
789 // An index of one to the parent's return address, and so on.
790 // Depths > 0 not supported yet!
791 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0)
792 return SDValue();
793
794 MachineFunction &MF = DAG.getMachineFunction();
795 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
796 int FI = XFI->createLRSpillSlot(MF);
797 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
798 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
799 DAG.getEntryNode(), FIN,
800 MachinePointerInfo::getFixedStack(MF, FI));
801 }
802
803 SDValue XCoreTargetLowering::
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const804 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const {
805 // This node represents offset from frame pointer to first on-stack argument.
806 // This is needed for correct stack adjustment during unwind.
807 // However, we don't know the offset until after the frame has be finalised.
808 // This is done during the XCoreFTAOElim pass.
809 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32);
810 }
811
812 SDValue XCoreTargetLowering::
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const813 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
814 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER)
815 // This node represents 'eh_return' gcc dwarf builtin, which is used to
816 // return from exception. The general meaning is: adjust stack by OFFSET and
817 // pass execution to HANDLER.
818 MachineFunction &MF = DAG.getMachineFunction();
819 SDValue Chain = Op.getOperand(0);
820 SDValue Offset = Op.getOperand(1);
821 SDValue Handler = Op.getOperand(2);
822 SDLoc dl(Op);
823
824 // Absolute SP = (FP + FrameToArgs) + Offset
825 const TargetRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
826 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
827 RegInfo->getFrameRegister(MF), MVT::i32);
828 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl,
829 MVT::i32);
830 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs);
831 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset);
832
833 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister
834 // which leaves 2 caller saved registers, R2 & R3 for us to use.
835 unsigned StackReg = XCore::R2;
836 unsigned HandlerReg = XCore::R3;
837
838 SDValue OutChains[] = {
839 DAG.getCopyToReg(Chain, dl, StackReg, Stack),
840 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler)
841 };
842
843 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
844
845 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain,
846 DAG.getRegister(StackReg, MVT::i32),
847 DAG.getRegister(HandlerReg, MVT::i32));
848
849 }
850
851 SDValue XCoreTargetLowering::
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const852 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
853 return Op.getOperand(0);
854 }
855
856 SDValue XCoreTargetLowering::
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const857 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const {
858 SDValue Chain = Op.getOperand(0);
859 SDValue Trmp = Op.getOperand(1); // trampoline
860 SDValue FPtr = Op.getOperand(2); // nested function
861 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
862
863 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
864
865 // .align 4
866 // LDAPF_u10 r11, nest
867 // LDW_2rus r11, r11[0]
868 // STWSP_ru6 r11, sp[0]
869 // LDAPF_u10 r11, fptr
870 // LDW_2rus r11, r11[0]
871 // BAU_1r r11
872 // nest:
873 // .word nest
874 // fptr:
875 // .word fptr
876 SDValue OutChains[5];
877
878 SDValue Addr = Trmp;
879
880 SDLoc dl(Op);
881 OutChains[0] =
882 DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, dl, MVT::i32), Addr,
883 MachinePointerInfo(TrmpAddr));
884
885 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
886 DAG.getConstant(4, dl, MVT::i32));
887 OutChains[1] =
888 DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, dl, MVT::i32), Addr,
889 MachinePointerInfo(TrmpAddr, 4));
890
891 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
892 DAG.getConstant(8, dl, MVT::i32));
893 OutChains[2] =
894 DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, dl, MVT::i32), Addr,
895 MachinePointerInfo(TrmpAddr, 8));
896
897 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
898 DAG.getConstant(12, dl, MVT::i32));
899 OutChains[3] =
900 DAG.getStore(Chain, dl, Nest, Addr, MachinePointerInfo(TrmpAddr, 12));
901
902 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
903 DAG.getConstant(16, dl, MVT::i32));
904 OutChains[4] =
905 DAG.getStore(Chain, dl, FPtr, Addr, MachinePointerInfo(TrmpAddr, 16));
906
907 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
908 }
909
910 SDValue XCoreTargetLowering::
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const911 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
912 SDLoc DL(Op);
913 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
914 switch (IntNo) {
915 case Intrinsic::xcore_crc8:
916 EVT VT = Op.getValueType();
917 SDValue Data =
918 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT),
919 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3));
920 SDValue Crc(Data.getNode(), 1);
921 SDValue Results[] = { Crc, Data };
922 return DAG.getMergeValues(Results, DL);
923 }
924 return SDValue();
925 }
926
927 SDValue XCoreTargetLowering::
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const928 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const {
929 SDLoc DL(Op);
930 return DAG.getNode(ISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
931 }
932
933 SDValue XCoreTargetLowering::
LowerATOMIC_LOAD(SDValue Op,SelectionDAG & DAG) const934 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const {
935 AtomicSDNode *N = cast<AtomicSDNode>(Op);
936 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP");
937 assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
938 N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
939 "setInsertFencesForAtomic(true) expects unordered / monotonic");
940 if (N->getMemoryVT() == MVT::i32) {
941 if (N->getAlign() < Align(4))
942 report_fatal_error("atomic load must be aligned");
943 return DAG.getLoad(getPointerTy(DAG.getDataLayout()), SDLoc(Op),
944 N->getChain(), N->getBasePtr(), N->getPointerInfo(),
945 N->getAlign(), N->getMemOperand()->getFlags(),
946 N->getAAInfo(), N->getRanges());
947 }
948 if (N->getMemoryVT() == MVT::i16) {
949 if (N->getAlign() < Align(2))
950 report_fatal_error("atomic load must be aligned");
951 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
952 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
953 N->getAlign(), N->getMemOperand()->getFlags(),
954 N->getAAInfo());
955 }
956 if (N->getMemoryVT() == MVT::i8)
957 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(),
958 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
959 N->getAlign(), N->getMemOperand()->getFlags(),
960 N->getAAInfo());
961 return SDValue();
962 }
963
964 SDValue XCoreTargetLowering::
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG) const965 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const {
966 AtomicSDNode *N = cast<AtomicSDNode>(Op);
967 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP");
968 assert((N->getSuccessOrdering() == AtomicOrdering::Unordered ||
969 N->getSuccessOrdering() == AtomicOrdering::Monotonic) &&
970 "setInsertFencesForAtomic(true) expects unordered / monotonic");
971 if (N->getMemoryVT() == MVT::i32) {
972 if (N->getAlign() < Align(4))
973 report_fatal_error("atomic store must be aligned");
974 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), N->getBasePtr(),
975 N->getPointerInfo(), N->getAlign(),
976 N->getMemOperand()->getFlags(), N->getAAInfo());
977 }
978 if (N->getMemoryVT() == MVT::i16) {
979 if (N->getAlign() < Align(2))
980 report_fatal_error("atomic store must be aligned");
981 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
982 N->getBasePtr(), N->getPointerInfo(), MVT::i16,
983 N->getAlign(), N->getMemOperand()->getFlags(),
984 N->getAAInfo());
985 }
986 if (N->getMemoryVT() == MVT::i8)
987 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(),
988 N->getBasePtr(), N->getPointerInfo(), MVT::i8,
989 N->getAlign(), N->getMemOperand()->getFlags(),
990 N->getAAInfo());
991 return SDValue();
992 }
993
994 MachineMemOperand::Flags
getTargetMMOFlags(const Instruction & I) const995 XCoreTargetLowering::getTargetMMOFlags(const Instruction &I) const {
996 // Because of how we convert atomic_load and atomic_store to normal loads and
997 // stores in the DAG, we need to ensure that the MMOs are marked volatile
998 // since DAGCombine hasn't been updated to account for atomic, but non
999 // volatile loads. (See D57601)
1000 if (auto *SI = dyn_cast<StoreInst>(&I))
1001 if (SI->isAtomic())
1002 return MachineMemOperand::MOVolatile;
1003 if (auto *LI = dyn_cast<LoadInst>(&I))
1004 if (LI->isAtomic())
1005 return MachineMemOperand::MOVolatile;
1006 if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
1007 if (AI->isAtomic())
1008 return MachineMemOperand::MOVolatile;
1009 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
1010 if (AI->isAtomic())
1011 return MachineMemOperand::MOVolatile;
1012 return MachineMemOperand::MONone;
1013 }
1014
1015 //===----------------------------------------------------------------------===//
1016 // Calling Convention Implementation
1017 //===----------------------------------------------------------------------===//
1018
1019 #include "XCoreGenCallingConv.inc"
1020
1021 //===----------------------------------------------------------------------===//
1022 // Call Calling Convention Implementation
1023 //===----------------------------------------------------------------------===//
1024
1025 /// XCore call implementation
1026 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1027 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1028 SmallVectorImpl<SDValue> &InVals) const {
1029 SelectionDAG &DAG = CLI.DAG;
1030 SDLoc &dl = CLI.DL;
1031 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1032 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1033 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1034 SDValue Chain = CLI.Chain;
1035 SDValue Callee = CLI.Callee;
1036 bool &isTailCall = CLI.IsTailCall;
1037 CallingConv::ID CallConv = CLI.CallConv;
1038 bool isVarArg = CLI.IsVarArg;
1039
1040 // XCore target does not yet support tail call optimization.
1041 isTailCall = false;
1042
1043 // For now, only CallingConv::C implemented
1044 switch (CallConv)
1045 {
1046 default:
1047 report_fatal_error("Unsupported calling convention");
1048 case CallingConv::Fast:
1049 case CallingConv::C:
1050 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
1051 Outs, OutVals, Ins, dl, DAG, InVals);
1052 }
1053 }
1054
1055 /// LowerCallResult - Lower the result values of a call into the
1056 /// appropriate copies out of appropriate physical registers / memory locations.
LowerCallResult(SDValue Chain,SDValue InFlag,const SmallVectorImpl<CCValAssign> & RVLocs,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals)1057 static SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
1058 const SmallVectorImpl<CCValAssign> &RVLocs,
1059 const SDLoc &dl, SelectionDAG &DAG,
1060 SmallVectorImpl<SDValue> &InVals) {
1061 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs;
1062 // Copy results out of physical registers.
1063 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1064 const CCValAssign &VA = RVLocs[i];
1065 if (VA.isRegLoc()) {
1066 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(),
1067 InFlag).getValue(1);
1068 InFlag = Chain.getValue(2);
1069 InVals.push_back(Chain.getValue(0));
1070 } else {
1071 assert(VA.isMemLoc());
1072 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(),
1073 InVals.size()));
1074 // Reserve space for this result.
1075 InVals.push_back(SDValue());
1076 }
1077 }
1078
1079 // Copy results out of memory.
1080 SmallVector<SDValue, 4> MemOpChains;
1081 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) {
1082 int offset = ResultMemLocs[i].first;
1083 unsigned index = ResultMemLocs[i].second;
1084 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
1085 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, dl, MVT::i32) };
1086 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops);
1087 InVals[index] = load;
1088 MemOpChains.push_back(load.getValue(1));
1089 }
1090
1091 // Transform all loads nodes into one single node because
1092 // all load nodes are independent of each other.
1093 if (!MemOpChains.empty())
1094 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1095
1096 return Chain;
1097 }
1098
1099 /// LowerCCCCallTo - functions arguments are copied from virtual
1100 /// regs to (physical regs)/(stack frame), CALLSEQ_START and
1101 /// CALLSEQ_END are emitted.
1102 /// TODO: isTailCall, sret.
LowerCCCCallTo(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1103 SDValue XCoreTargetLowering::LowerCCCCallTo(
1104 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
1105 bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
1106 const SmallVectorImpl<SDValue> &OutVals,
1107 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1108 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1109
1110 // Analyze operands of the call, assigning locations to each operand.
1111 SmallVector<CCValAssign, 16> ArgLocs;
1112 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1113 *DAG.getContext());
1114
1115 // The ABI dictates there should be one stack slot available to the callee
1116 // on function entry (for saving lr).
1117 CCInfo.AllocateStack(4, Align(4));
1118
1119 CCInfo.AnalyzeCallOperands(Outs, CC_XCore);
1120
1121 SmallVector<CCValAssign, 16> RVLocs;
1122 // Analyze return values to determine the number of bytes of stack required.
1123 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1124 *DAG.getContext());
1125 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), Align(4));
1126 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore);
1127
1128 // Get a count of how many bytes are to be pushed on the stack.
1129 unsigned NumBytes = RetCCInfo.getNextStackOffset();
1130
1131 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
1132
1133 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
1134 SmallVector<SDValue, 12> MemOpChains;
1135
1136 // Walk the register/memloc assignments, inserting copies/loads.
1137 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1138 CCValAssign &VA = ArgLocs[i];
1139 SDValue Arg = OutVals[i];
1140
1141 // Promote the value if needed.
1142 switch (VA.getLocInfo()) {
1143 default: llvm_unreachable("Unknown loc info!");
1144 case CCValAssign::Full: break;
1145 case CCValAssign::SExt:
1146 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1147 break;
1148 case CCValAssign::ZExt:
1149 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1150 break;
1151 case CCValAssign::AExt:
1152 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1153 break;
1154 }
1155
1156 // Arguments that can be passed on register must be kept at
1157 // RegsToPass vector
1158 if (VA.isRegLoc()) {
1159 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1160 } else {
1161 assert(VA.isMemLoc());
1162
1163 int Offset = VA.getLocMemOffset();
1164
1165 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other,
1166 Chain, Arg,
1167 DAG.getConstant(Offset/4, dl,
1168 MVT::i32)));
1169 }
1170 }
1171
1172 // Transform all store nodes into one single node because
1173 // all store nodes are independent of each other.
1174 if (!MemOpChains.empty())
1175 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1176
1177 // Build a sequence of copy-to-reg nodes chained together with token
1178 // chain and flag operands which copy the outgoing args into registers.
1179 // The InFlag in necessary since all emitted instructions must be
1180 // stuck together.
1181 SDValue InFlag;
1182 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1183 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1184 RegsToPass[i].second, InFlag);
1185 InFlag = Chain.getValue(1);
1186 }
1187
1188 // If the callee is a GlobalAddress node (quite common, every direct call is)
1189 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1190 // Likewise ExternalSymbol -> TargetExternalSymbol.
1191 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1192 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
1193 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
1194 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
1195
1196 // XCoreBranchLink = #chain, #target_address, #opt_in_flags...
1197 // = Chain, Callee, Reg#1, Reg#2, ...
1198 //
1199 // Returns a chain & a flag for retval copy to use.
1200 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1201 SmallVector<SDValue, 8> Ops;
1202 Ops.push_back(Chain);
1203 Ops.push_back(Callee);
1204
1205 // Add argument registers to the end of the list so that they are
1206 // known live into the call.
1207 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1208 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1209 RegsToPass[i].second.getValueType()));
1210
1211 if (InFlag.getNode())
1212 Ops.push_back(InFlag);
1213
1214 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops);
1215 InFlag = Chain.getValue(1);
1216
1217 // Create the CALLSEQ_END node.
1218 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InFlag, dl);
1219 InFlag = Chain.getValue(1);
1220
1221 // Handle result values, copying them out of physregs into vregs that we
1222 // return.
1223 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals);
1224 }
1225
1226 //===----------------------------------------------------------------------===//
1227 // Formal Arguments Calling Convention Implementation
1228 //===----------------------------------------------------------------------===//
1229
1230 namespace {
1231 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; };
1232 }
1233
1234 /// XCore formal arguments implementation
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1235 SDValue XCoreTargetLowering::LowerFormalArguments(
1236 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1237 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1238 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1239 switch (CallConv)
1240 {
1241 default:
1242 report_fatal_error("Unsupported calling convention");
1243 case CallingConv::C:
1244 case CallingConv::Fast:
1245 return LowerCCCArguments(Chain, CallConv, isVarArg,
1246 Ins, dl, DAG, InVals);
1247 }
1248 }
1249
1250 /// LowerCCCArguments - transform physical registers into
1251 /// virtual registers and generate load operations for
1252 /// arguments places on the stack.
1253 /// TODO: sret
LowerCCCArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1254 SDValue XCoreTargetLowering::LowerCCCArguments(
1255 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1256 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1257 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1258 MachineFunction &MF = DAG.getMachineFunction();
1259 MachineFrameInfo &MFI = MF.getFrameInfo();
1260 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1261 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1262
1263 // Assign locations to all of the incoming arguments.
1264 SmallVector<CCValAssign, 16> ArgLocs;
1265 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1266 *DAG.getContext());
1267
1268 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore);
1269
1270 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize();
1271
1272 unsigned LRSaveSize = StackSlotSize;
1273
1274 if (!isVarArg)
1275 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize);
1276
1277 // All getCopyFromReg ops must precede any getMemcpys to prevent the
1278 // scheduler clobbering a register before it has been copied.
1279 // The stages are:
1280 // 1. CopyFromReg (and load) arg & vararg registers.
1281 // 2. Chain CopyFromReg nodes into a TokenFactor.
1282 // 3. Memcpy 'byVal' args & push final InVals.
1283 // 4. Chain mem ops nodes into a TokenFactor.
1284 SmallVector<SDValue, 4> CFRegNode;
1285 SmallVector<ArgDataPair, 4> ArgData;
1286 SmallVector<SDValue, 4> MemOps;
1287
1288 // 1a. CopyFromReg (and load) arg registers.
1289 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1290
1291 CCValAssign &VA = ArgLocs[i];
1292 SDValue ArgIn;
1293
1294 if (VA.isRegLoc()) {
1295 // Arguments passed in registers
1296 EVT RegVT = VA.getLocVT();
1297 switch (RegVT.getSimpleVT().SimpleTy) {
1298 default:
1299 {
1300 #ifndef NDEBUG
1301 errs() << "LowerFormalArguments Unhandled argument type: "
1302 << RegVT.getEVTString() << "\n";
1303 #endif
1304 llvm_unreachable(nullptr);
1305 }
1306 case MVT::i32:
1307 Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1308 RegInfo.addLiveIn(VA.getLocReg(), VReg);
1309 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
1310 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1));
1311 }
1312 } else {
1313 // Only arguments passed on the stack should make it here.
1314 assert(VA.isMemLoc());
1315 // Load the argument to a virtual register
1316 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
1317 if (ObjSize > StackSlotSize) {
1318 errs() << "LowerFormalArguments Unhandled argument type: "
1319 << EVT(VA.getLocVT()).getEVTString()
1320 << "\n";
1321 }
1322 // Create the frame index object for this incoming parameter...
1323 int FI = MFI.CreateFixedObject(ObjSize,
1324 LRSaveSize + VA.getLocMemOffset(),
1325 true);
1326
1327 // Create the SelectionDAG nodes corresponding to a load
1328 //from this parameter
1329 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1330 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
1331 MachinePointerInfo::getFixedStack(MF, FI));
1332 }
1333 const ArgDataPair ADP = { ArgIn, Ins[i].Flags };
1334 ArgData.push_back(ADP);
1335 }
1336
1337 // 1b. CopyFromReg vararg registers.
1338 if (isVarArg) {
1339 // Argument registers
1340 static const MCPhysReg ArgRegs[] = {
1341 XCore::R0, XCore::R1, XCore::R2, XCore::R3
1342 };
1343 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>();
1344 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs);
1345 if (FirstVAReg < std::size(ArgRegs)) {
1346 int offset = 0;
1347 // Save remaining registers, storing higher register numbers at a higher
1348 // address
1349 for (int i = std::size(ArgRegs) - 1; i >= (int)FirstVAReg; --i) {
1350 // Create a stack slot
1351 int FI = MFI.CreateFixedObject(4, offset, true);
1352 if (i == (int)FirstVAReg) {
1353 XFI->setVarArgsFrameIndex(FI);
1354 }
1355 offset -= StackSlotSize;
1356 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1357 // Move argument from phys reg -> virt reg
1358 Register VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass);
1359 RegInfo.addLiveIn(ArgRegs[i], VReg);
1360 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
1361 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1));
1362 // Move argument from virt reg -> stack
1363 SDValue Store =
1364 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
1365 MemOps.push_back(Store);
1366 }
1367 } else {
1368 // This will point to the next argument passed via stack.
1369 XFI->setVarArgsFrameIndex(
1370 MFI.CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(),
1371 true));
1372 }
1373 }
1374
1375 // 2. chain CopyFromReg nodes into a TokenFactor.
1376 if (!CFRegNode.empty())
1377 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode);
1378
1379 // 3. Memcpy 'byVal' args & push final InVals.
1380 // Aggregates passed "byVal" need to be copied by the callee.
1381 // The callee will use a pointer to this copy, rather than the original
1382 // pointer.
1383 for (const ArgDataPair &ArgDI : ArgData) {
1384 if (ArgDI.Flags.isByVal() && ArgDI.Flags.getByValSize()) {
1385 unsigned Size = ArgDI.Flags.getByValSize();
1386 Align Alignment =
1387 std::max(Align(StackSlotSize), ArgDI.Flags.getNonZeroByValAlign());
1388 // Create a new object on the stack and copy the pointee into it.
1389 int FI = MFI.CreateStackObject(Size, Alignment, false);
1390 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1391 InVals.push_back(FIN);
1392 MemOps.push_back(DAG.getMemcpy(
1393 Chain, dl, FIN, ArgDI.SDV, DAG.getConstant(Size, dl, MVT::i32),
1394 Alignment, false, false, false, MachinePointerInfo(),
1395 MachinePointerInfo()));
1396 } else {
1397 InVals.push_back(ArgDI.SDV);
1398 }
1399 }
1400
1401 // 4, chain mem ops nodes into a TokenFactor.
1402 if (!MemOps.empty()) {
1403 MemOps.push_back(Chain);
1404 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
1405 }
1406
1407 return Chain;
1408 }
1409
1410 //===----------------------------------------------------------------------===//
1411 // Return Value Calling Convention Implementation
1412 //===----------------------------------------------------------------------===//
1413
1414 bool XCoreTargetLowering::
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1415 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1416 bool isVarArg,
1417 const SmallVectorImpl<ISD::OutputArg> &Outs,
1418 LLVMContext &Context) const {
1419 SmallVector<CCValAssign, 16> RVLocs;
1420 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1421 if (!CCInfo.CheckReturn(Outs, RetCC_XCore))
1422 return false;
1423 if (CCInfo.getNextStackOffset() != 0 && isVarArg)
1424 return false;
1425 return true;
1426 }
1427
1428 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const1429 XCoreTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1430 bool isVarArg,
1431 const SmallVectorImpl<ISD::OutputArg> &Outs,
1432 const SmallVectorImpl<SDValue> &OutVals,
1433 const SDLoc &dl, SelectionDAG &DAG) const {
1434
1435 XCoreFunctionInfo *XFI =
1436 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>();
1437 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1438
1439 // CCValAssign - represent the assignment of
1440 // the return value to a location
1441 SmallVector<CCValAssign, 16> RVLocs;
1442
1443 // CCState - Info about the registers and stack slot.
1444 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1445 *DAG.getContext());
1446
1447 // Analyze return values.
1448 if (!isVarArg)
1449 CCInfo.AllocateStack(XFI->getReturnStackOffset(), Align(4));
1450
1451 CCInfo.AnalyzeReturn(Outs, RetCC_XCore);
1452
1453 SDValue Flag;
1454 SmallVector<SDValue, 4> RetOps(1, Chain);
1455
1456 // Return on XCore is always a "retsp 0"
1457 RetOps.push_back(DAG.getConstant(0, dl, MVT::i32));
1458
1459 SmallVector<SDValue, 4> MemOpChains;
1460 // Handle return values that must be copied to memory.
1461 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1462 CCValAssign &VA = RVLocs[i];
1463 if (VA.isRegLoc())
1464 continue;
1465 assert(VA.isMemLoc());
1466 if (isVarArg) {
1467 report_fatal_error("Can't return value from vararg function in memory");
1468 }
1469
1470 int Offset = VA.getLocMemOffset();
1471 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
1472 // Create the frame index object for the memory location.
1473 int FI = MFI.CreateFixedObject(ObjSize, Offset, false);
1474
1475 // Create a SelectionDAG node corresponding to a store
1476 // to this memory location.
1477 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1478 MemOpChains.push_back(DAG.getStore(
1479 Chain, dl, OutVals[i], FIN,
1480 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
1481 }
1482
1483 // Transform all store nodes into one single node because
1484 // all stores are independent of each other.
1485 if (!MemOpChains.empty())
1486 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1487
1488 // Now handle return values copied to registers.
1489 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1490 CCValAssign &VA = RVLocs[i];
1491 if (!VA.isRegLoc())
1492 continue;
1493 // Copy the result values into the output registers.
1494 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1495
1496 // guarantee that all emitted copies are
1497 // stuck together, avoiding something bad
1498 Flag = Chain.getValue(1);
1499 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1500 }
1501
1502 RetOps[0] = Chain; // Update chain.
1503
1504 // Add the flag if we have it.
1505 if (Flag.getNode())
1506 RetOps.push_back(Flag);
1507
1508 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps);
1509 }
1510
1511 //===----------------------------------------------------------------------===//
1512 // Other Lowering Code
1513 //===----------------------------------------------------------------------===//
1514
1515 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1516 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1517 MachineBasicBlock *BB) const {
1518 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1519 DebugLoc dl = MI.getDebugLoc();
1520 assert((MI.getOpcode() == XCore::SELECT_CC) &&
1521 "Unexpected instr type to insert");
1522
1523 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
1524 // control-flow pattern. The incoming instruction knows the destination vreg
1525 // to set, the condition code register to branch on, the true/false values to
1526 // select between, and a branch opcode to use.
1527 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1528 MachineFunction::iterator It = ++BB->getIterator();
1529
1530 // thisMBB:
1531 // ...
1532 // TrueVal = ...
1533 // cmpTY ccX, r1, r2
1534 // bCC copy1MBB
1535 // fallthrough --> copy0MBB
1536 MachineBasicBlock *thisMBB = BB;
1537 MachineFunction *F = BB->getParent();
1538 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
1539 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
1540 F->insert(It, copy0MBB);
1541 F->insert(It, sinkMBB);
1542
1543 // Transfer the remainder of BB and its successor edges to sinkMBB.
1544 sinkMBB->splice(sinkMBB->begin(), BB,
1545 std::next(MachineBasicBlock::iterator(MI)), BB->end());
1546 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
1547
1548 // Next, add the true and fallthrough blocks as its successors.
1549 BB->addSuccessor(copy0MBB);
1550 BB->addSuccessor(sinkMBB);
1551
1552 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6))
1553 .addReg(MI.getOperand(1).getReg())
1554 .addMBB(sinkMBB);
1555
1556 // copy0MBB:
1557 // %FalseValue = ...
1558 // # fallthrough to sinkMBB
1559 BB = copy0MBB;
1560
1561 // Update machine-CFG edges
1562 BB->addSuccessor(sinkMBB);
1563
1564 // sinkMBB:
1565 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
1566 // ...
1567 BB = sinkMBB;
1568 BuildMI(*BB, BB->begin(), dl, TII.get(XCore::PHI), MI.getOperand(0).getReg())
1569 .addReg(MI.getOperand(3).getReg())
1570 .addMBB(copy0MBB)
1571 .addReg(MI.getOperand(2).getReg())
1572 .addMBB(thisMBB);
1573
1574 MI.eraseFromParent(); // The pseudo instruction is gone now.
1575 return BB;
1576 }
1577
1578 //===----------------------------------------------------------------------===//
1579 // Target Optimization Hooks
1580 //===----------------------------------------------------------------------===//
1581
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1582 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
1583 DAGCombinerInfo &DCI) const {
1584 SelectionDAG &DAG = DCI.DAG;
1585 SDLoc dl(N);
1586 switch (N->getOpcode()) {
1587 default: break;
1588 case ISD::INTRINSIC_VOID:
1589 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
1590 case Intrinsic::xcore_outt:
1591 case Intrinsic::xcore_outct:
1592 case Intrinsic::xcore_chkct: {
1593 SDValue OutVal = N->getOperand(3);
1594 // These instructions ignore the high bits.
1595 if (OutVal.hasOneUse()) {
1596 unsigned BitWidth = OutVal.getValueSizeInBits();
1597 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
1598 KnownBits Known;
1599 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1600 !DCI.isBeforeLegalizeOps());
1601 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1602 if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) ||
1603 TLI.SimplifyDemandedBits(OutVal, DemandedMask, Known, TLO))
1604 DCI.CommitTargetLoweringOpt(TLO);
1605 }
1606 break;
1607 }
1608 case Intrinsic::xcore_setpt: {
1609 SDValue Time = N->getOperand(3);
1610 // This instruction ignores the high bits.
1611 if (Time.hasOneUse()) {
1612 unsigned BitWidth = Time.getValueSizeInBits();
1613 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
1614 KnownBits Known;
1615 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1616 !DCI.isBeforeLegalizeOps());
1617 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1618 if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) ||
1619 TLI.SimplifyDemandedBits(Time, DemandedMask, Known, TLO))
1620 DCI.CommitTargetLoweringOpt(TLO);
1621 }
1622 break;
1623 }
1624 }
1625 break;
1626 case XCoreISD::LADD: {
1627 SDValue N0 = N->getOperand(0);
1628 SDValue N1 = N->getOperand(1);
1629 SDValue N2 = N->getOperand(2);
1630 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1631 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1632 EVT VT = N0.getValueType();
1633
1634 // canonicalize constant to RHS
1635 if (N0C && !N1C)
1636 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2);
1637
1638 // fold (ladd 0, 0, x) -> 0, x & 1
1639 if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1640 SDValue Carry = DAG.getConstant(0, dl, VT);
1641 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2,
1642 DAG.getConstant(1, dl, VT));
1643 SDValue Ops[] = { Result, Carry };
1644 return DAG.getMergeValues(Ops, dl);
1645 }
1646
1647 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the
1648 // low bit set
1649 if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1650 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1651 VT.getSizeInBits() - 1);
1652 KnownBits Known = DAG.computeKnownBits(N2);
1653 if ((Known.Zero & Mask) == Mask) {
1654 SDValue Carry = DAG.getConstant(0, dl, VT);
1655 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2);
1656 SDValue Ops[] = { Result, Carry };
1657 return DAG.getMergeValues(Ops, dl);
1658 }
1659 }
1660 }
1661 break;
1662 case XCoreISD::LSUB: {
1663 SDValue N0 = N->getOperand(0);
1664 SDValue N1 = N->getOperand(1);
1665 SDValue N2 = N->getOperand(2);
1666 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1667 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1668 EVT VT = N0.getValueType();
1669
1670 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set
1671 if (N0C && N0C->isZero() && N1C && N1C->isZero()) {
1672 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1673 VT.getSizeInBits() - 1);
1674 KnownBits Known = DAG.computeKnownBits(N2);
1675 if ((Known.Zero & Mask) == Mask) {
1676 SDValue Borrow = N2;
1677 SDValue Result = DAG.getNode(ISD::SUB, dl, VT,
1678 DAG.getConstant(0, dl, VT), N2);
1679 SDValue Ops[] = { Result, Borrow };
1680 return DAG.getMergeValues(Ops, dl);
1681 }
1682 }
1683
1684 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the
1685 // low bit set
1686 if (N1C && N1C->isZero() && N->hasNUsesOfValue(0, 1)) {
1687 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
1688 VT.getSizeInBits() - 1);
1689 KnownBits Known = DAG.computeKnownBits(N2);
1690 if ((Known.Zero & Mask) == Mask) {
1691 SDValue Borrow = DAG.getConstant(0, dl, VT);
1692 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2);
1693 SDValue Ops[] = { Result, Borrow };
1694 return DAG.getMergeValues(Ops, dl);
1695 }
1696 }
1697 }
1698 break;
1699 case XCoreISD::LMUL: {
1700 SDValue N0 = N->getOperand(0);
1701 SDValue N1 = N->getOperand(1);
1702 SDValue N2 = N->getOperand(2);
1703 SDValue N3 = N->getOperand(3);
1704 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
1705 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
1706 EVT VT = N0.getValueType();
1707 // Canonicalize multiplicative constant to RHS. If both multiplicative
1708 // operands are constant canonicalize smallest to RHS.
1709 if ((N0C && !N1C) ||
1710 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue()))
1711 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT),
1712 N1, N0, N2, N3);
1713
1714 // lmul(x, 0, a, b)
1715 if (N1C && N1C->isZero()) {
1716 // If the high result is unused fold to add(a, b)
1717 if (N->hasNUsesOfValue(0, 0)) {
1718 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3);
1719 SDValue Ops[] = { Lo, Lo };
1720 return DAG.getMergeValues(Ops, dl);
1721 }
1722 // Otherwise fold to ladd(a, b, 0)
1723 SDValue Result =
1724 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1);
1725 SDValue Carry(Result.getNode(), 1);
1726 SDValue Ops[] = { Carry, Result };
1727 return DAG.getMergeValues(Ops, dl);
1728 }
1729 }
1730 break;
1731 case ISD::ADD: {
1732 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) ->
1733 // lmul(x, y, a, b). The high result of lmul will be ignored.
1734 // This is only profitable if the intermediate results are unused
1735 // elsewhere.
1736 SDValue Mul0, Mul1, Addend0, Addend1;
1737 if (N->getValueType(0) == MVT::i32 &&
1738 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) {
1739 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl,
1740 DAG.getVTList(MVT::i32, MVT::i32), Mul0,
1741 Mul1, Addend0, Addend1);
1742 SDValue Result(Ignored.getNode(), 1);
1743 return Result;
1744 }
1745 APInt HighMask = APInt::getHighBitsSet(64, 32);
1746 // Fold 64 bit expression such as add(add(mul(x,y),a),b) ->
1747 // lmul(x, y, a, b) if all operands are zero-extended. We do this
1748 // before type legalization as it is messy to match the operands after
1749 // that.
1750 if (N->getValueType(0) == MVT::i64 &&
1751 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) &&
1752 DAG.MaskedValueIsZero(Mul0, HighMask) &&
1753 DAG.MaskedValueIsZero(Mul1, HighMask) &&
1754 DAG.MaskedValueIsZero(Addend0, HighMask) &&
1755 DAG.MaskedValueIsZero(Addend1, HighMask)) {
1756 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1757 Mul0, DAG.getConstant(0, dl, MVT::i32));
1758 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1759 Mul1, DAG.getConstant(0, dl, MVT::i32));
1760 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1761 Addend0, DAG.getConstant(0, dl, MVT::i32));
1762 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
1763 Addend1, DAG.getConstant(0, dl, MVT::i32));
1764 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl,
1765 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L,
1766 Addend0L, Addend1L);
1767 SDValue Lo(Hi.getNode(), 1);
1768 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
1769 }
1770 }
1771 break;
1772 case ISD::STORE: {
1773 // Replace unaligned store of unaligned load with memmove.
1774 StoreSDNode *ST = cast<StoreSDNode>(N);
1775 if (!DCI.isBeforeLegalize() ||
1776 allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
1777 ST->getMemoryVT(),
1778 *ST->getMemOperand()) ||
1779 ST->isVolatile() || ST->isIndexed()) {
1780 break;
1781 }
1782 SDValue Chain = ST->getChain();
1783
1784 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits();
1785 assert((StoreBits % 8) == 0 &&
1786 "Store size in bits must be a multiple of 8");
1787 Align Alignment = ST->getAlign();
1788
1789 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) {
1790 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() &&
1791 LD->getAlign() == Alignment &&
1792 !LD->isVolatile() && !LD->isIndexed() &&
1793 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) {
1794 bool isTail = isInTailCallPosition(DAG, ST, Chain);
1795 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), LD->getBasePtr(),
1796 DAG.getConstant(StoreBits / 8, dl, MVT::i32),
1797 Alignment, false, isTail,
1798 ST->getPointerInfo(), LD->getPointerInfo());
1799 }
1800 }
1801 break;
1802 }
1803 }
1804 return SDValue();
1805 }
1806
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const1807 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1808 KnownBits &Known,
1809 const APInt &DemandedElts,
1810 const SelectionDAG &DAG,
1811 unsigned Depth) const {
1812 Known.resetAll();
1813 switch (Op.getOpcode()) {
1814 default: break;
1815 case XCoreISD::LADD:
1816 case XCoreISD::LSUB:
1817 if (Op.getResNo() == 1) {
1818 // Top bits of carry / borrow are clear.
1819 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1820 Known.getBitWidth() - 1);
1821 }
1822 break;
1823 case ISD::INTRINSIC_W_CHAIN:
1824 {
1825 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1826 switch (IntNo) {
1827 case Intrinsic::xcore_getts:
1828 // High bits are known to be zero.
1829 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1830 Known.getBitWidth() - 16);
1831 break;
1832 case Intrinsic::xcore_int:
1833 case Intrinsic::xcore_inct:
1834 // High bits are known to be zero.
1835 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1836 Known.getBitWidth() - 8);
1837 break;
1838 case Intrinsic::xcore_testct:
1839 // Result is either 0 or 1.
1840 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1841 Known.getBitWidth() - 1);
1842 break;
1843 case Intrinsic::xcore_testwct:
1844 // Result is in the range 0 - 4.
1845 Known.Zero = APInt::getHighBitsSet(Known.getBitWidth(),
1846 Known.getBitWidth() - 3);
1847 break;
1848 }
1849 }
1850 break;
1851 }
1852 }
1853
1854 //===----------------------------------------------------------------------===//
1855 // Addressing mode description hooks
1856 //===----------------------------------------------------------------------===//
1857
isImmUs(int64_t val)1858 static inline bool isImmUs(int64_t val)
1859 {
1860 return (val >= 0 && val <= 11);
1861 }
1862
isImmUs2(int64_t val)1863 static inline bool isImmUs2(int64_t val)
1864 {
1865 return (val%2 == 0 && isImmUs(val/2));
1866 }
1867
isImmUs4(int64_t val)1868 static inline bool isImmUs4(int64_t val)
1869 {
1870 return (val%4 == 0 && isImmUs(val/4));
1871 }
1872
1873 /// isLegalAddressingMode - Return true if the addressing mode represented
1874 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const1875 bool XCoreTargetLowering::isLegalAddressingMode(const DataLayout &DL,
1876 const AddrMode &AM, Type *Ty,
1877 unsigned AS,
1878 Instruction *I) const {
1879 if (Ty->getTypeID() == Type::VoidTyID)
1880 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs);
1881
1882 unsigned Size = DL.getTypeAllocSize(Ty);
1883 if (AM.BaseGV) {
1884 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 &&
1885 AM.BaseOffs%4 == 0;
1886 }
1887
1888 switch (Size) {
1889 case 1:
1890 // reg + imm
1891 if (AM.Scale == 0) {
1892 return isImmUs(AM.BaseOffs);
1893 }
1894 // reg + reg
1895 return AM.Scale == 1 && AM.BaseOffs == 0;
1896 case 2:
1897 case 3:
1898 // reg + imm
1899 if (AM.Scale == 0) {
1900 return isImmUs2(AM.BaseOffs);
1901 }
1902 // reg + reg<<1
1903 return AM.Scale == 2 && AM.BaseOffs == 0;
1904 default:
1905 // reg + imm
1906 if (AM.Scale == 0) {
1907 return isImmUs4(AM.BaseOffs);
1908 }
1909 // reg + reg<<2
1910 return AM.Scale == 4 && AM.BaseOffs == 0;
1911 }
1912 }
1913
1914 //===----------------------------------------------------------------------===//
1915 // XCore Inline Assembly Support
1916 //===----------------------------------------------------------------------===//
1917
1918 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const1919 XCoreTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1920 StringRef Constraint,
1921 MVT VT) const {
1922 if (Constraint.size() == 1) {
1923 switch (Constraint[0]) {
1924 default : break;
1925 case 'r':
1926 return std::make_pair(0U, &XCore::GRRegsRegClass);
1927 }
1928 }
1929 // Use the default implementation in TargetLowering to convert the register
1930 // constraint into a member of a register class.
1931 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1932 }
1933