1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/systm.h>
27 #include <sys/platform_module.h>
28 #include <sys/sysmacros.h>
29 #include <sys/atomic.h>
30 #include <sys/memlist.h>
31 #include <sys/memnode.h>
32 #include <vm/vm_dep.h>
33
34 int max_mem_nodes = 1; /* max memory nodes on this system */
35
36 struct mem_node_conf mem_node_config[MAX_MEM_NODES];
37 int mem_node_pfn_shift;
38 /*
39 * num_memnodes should be updated atomically and always >=
40 * the number of bits in memnodes_mask or the algorithm may fail.
41 */
42 uint16_t num_memnodes;
43 mnodeset_t memnodes_mask; /* assumes 8*(sizeof(mnodeset_t)) >= MAX_MEM_NODES */
44
45 /*
46 * If set, mem_node_physalign should be a power of two, and
47 * should reflect the minimum address alignment of each node.
48 */
49 uint64_t mem_node_physalign;
50
51 /*
52 * Platform hooks we will need.
53 */
54
55 #pragma weak plat_build_mem_nodes
56 #pragma weak plat_slice_add
57 #pragma weak plat_slice_del
58
59 /*
60 * Adjust the memnode config after a DR operation.
61 *
62 * It is rather tricky to do these updates since we can't
63 * protect the memnode structures with locks, so we must
64 * be mindful of the order in which updates and reads to
65 * these values can occur.
66 */
67 void
mem_node_add_slice(pfn_t start,pfn_t end)68 mem_node_add_slice(pfn_t start, pfn_t end)
69 {
70 int mnode;
71 mnodeset_t newmask, oldmask;
72
73 /*
74 * DR will pass us the first pfn that is allocatable.
75 * We need to round down to get the real start of
76 * the slice.
77 */
78 if (mem_node_physalign) {
79 start &= ~(btop(mem_node_physalign) - 1);
80 end = roundup(end, btop(mem_node_physalign)) - 1;
81 }
82
83 mnode = PFN_2_MEM_NODE(start);
84 ASSERT(mnode < max_mem_nodes);
85
86 if (cas32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) {
87 /*
88 * Add slice to existing node.
89 */
90 if (start < mem_node_config[mnode].physbase)
91 mem_node_config[mnode].physbase = start;
92 if (end > mem_node_config[mnode].physmax)
93 mem_node_config[mnode].physmax = end;
94 } else {
95 mem_node_config[mnode].physbase = start;
96 mem_node_config[mnode].physmax = end;
97 atomic_add_16(&num_memnodes, 1);
98 do {
99 oldmask = memnodes_mask;
100 newmask = memnodes_mask | (1ull << mnode);
101 } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask);
102 }
103 /*
104 * Let the common lgrp framework know about the new memory
105 */
106 lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode));
107 }
108
109 /*
110 * Remove a PFN range from a memnode. On some platforms,
111 * the memnode will be created with physbase at the first
112 * allocatable PFN, but later deleted with the MC slice
113 * base address converted to a PFN, in which case we need
114 * to assume physbase and up.
115 */
116 void
mem_node_del_slice(pfn_t start,pfn_t end)117 mem_node_del_slice(pfn_t start, pfn_t end)
118 {
119 int mnode;
120 pgcnt_t delta_pgcnt, node_size;
121 mnodeset_t omask, nmask;
122
123 if (mem_node_physalign) {
124 start &= ~(btop(mem_node_physalign) - 1);
125 end = roundup(end, btop(mem_node_physalign)) - 1;
126 }
127 mnode = PFN_2_MEM_NODE(start);
128
129 ASSERT(mnode < max_mem_nodes);
130 ASSERT(mem_node_config[mnode].exists == 1);
131
132 delta_pgcnt = end - start;
133 node_size = mem_node_config[mnode].physmax -
134 mem_node_config[mnode].physbase;
135
136 if (node_size > delta_pgcnt) {
137 /*
138 * Subtract the slice from the memnode.
139 */
140 if (start <= mem_node_config[mnode].physbase)
141 mem_node_config[mnode].physbase = end + 1;
142 ASSERT(end <= mem_node_config[mnode].physmax);
143 if (end == mem_node_config[mnode].physmax)
144 mem_node_config[mnode].physmax = start - 1;
145 } else {
146
147 /*
148 * Let the common lgrp framework know the mnode is
149 * leaving
150 */
151 lgrp_config(LGRP_CONFIG_MEM_DEL, mnode,
152 MEM_NODE_2_LGRPHAND(mnode));
153
154 /*
155 * Delete the whole node.
156 */
157 ASSERT(MNODE_PGCNT(mnode) == 0);
158 do {
159 omask = memnodes_mask;
160 nmask = omask & ~(1ull << mnode);
161 } while (cas64(&memnodes_mask, omask, nmask) != omask);
162 atomic_add_16(&num_memnodes, -1);
163 mem_node_config[mnode].exists = 0;
164 }
165 }
166
167 void
mem_node_add_range(pfn_t start,pfn_t end)168 mem_node_add_range(pfn_t start, pfn_t end)
169 {
170 if (&plat_slice_add != NULL)
171 plat_slice_add(start, end);
172 else
173 mem_node_add_slice(start, end);
174 }
175
176 void
mem_node_del_range(pfn_t start,pfn_t end)177 mem_node_del_range(pfn_t start, pfn_t end)
178 {
179 if (&plat_slice_del != NULL)
180 plat_slice_del(start, end);
181 else
182 mem_node_del_slice(start, end);
183 }
184
185 void
startup_build_mem_nodes(prom_memlist_t * list,size_t nelems)186 startup_build_mem_nodes(prom_memlist_t *list, size_t nelems)
187 {
188 size_t elem;
189 pfn_t basepfn;
190 pgcnt_t npgs;
191
192 /* LINTED: ASSERT will always true or false */
193 ASSERT(NBBY * sizeof (mnodeset_t) >= max_mem_nodes);
194
195 if (&plat_build_mem_nodes != NULL) {
196 plat_build_mem_nodes(list, nelems);
197 } else {
198 /*
199 * Boot install lists are arranged <addr, len>, ...
200 */
201 for (elem = 0; elem < nelems; list++, elem++) {
202 basepfn = btop(list->addr);
203 npgs = btop(list->size);
204 mem_node_add_range(basepfn, basepfn + npgs - 1);
205 }
206 }
207 }
208
209 /*
210 * Allocate an unassigned memnode.
211 */
212 int
mem_node_alloc()213 mem_node_alloc()
214 {
215 int mnode;
216 mnodeset_t newmask, oldmask;
217
218 /*
219 * Find an unused memnode. Update it atomically to prevent
220 * a first time memnode creation race.
221 */
222 for (mnode = 0; mnode < max_mem_nodes; mnode++)
223 if (cas32((uint32_t *)&mem_node_config[mnode].exists,
224 0, 1) == 0)
225 break;
226
227 if (mnode >= max_mem_nodes)
228 panic("Out of free memnodes\n");
229
230 mem_node_config[mnode].physbase = (uint64_t)-1;
231 mem_node_config[mnode].physmax = 0;
232 atomic_add_16(&num_memnodes, 1);
233 do {
234 oldmask = memnodes_mask;
235 newmask = memnodes_mask | (1ull << mnode);
236 } while (cas64(&memnodes_mask, oldmask, newmask) != oldmask);
237
238 return (mnode);
239 }
240
241 /*
242 * Find the intersection between a memnode and a memlist
243 * and returns the number of pages that overlap.
244 *
245 * Grab the memlist lock to protect the list from DR operations.
246 */
247 pgcnt_t
mem_node_memlist_pages(int mnode,struct memlist * mlist)248 mem_node_memlist_pages(int mnode, struct memlist *mlist)
249 {
250 pfn_t base, end;
251 pfn_t cur_base, cur_end;
252 pgcnt_t npgs = 0;
253 pgcnt_t pages;
254 struct memlist *pmem;
255
256 if (&plat_mem_node_intersect_range != NULL) {
257 memlist_read_lock();
258
259 for (pmem = mlist; pmem; pmem = pmem->ml_next) {
260 plat_mem_node_intersect_range(btop(pmem->ml_address),
261 btop(pmem->ml_size), mnode, &pages);
262 npgs += pages;
263 }
264
265 memlist_read_unlock();
266 return (npgs);
267 }
268
269 base = mem_node_config[mnode].physbase;
270 end = mem_node_config[mnode].physmax;
271
272 memlist_read_lock();
273
274 for (pmem = mlist; pmem; pmem = pmem->ml_next) {
275 cur_base = btop(pmem->ml_address);
276 cur_end = cur_base + btop(pmem->ml_size) - 1;
277 if (end < cur_base || base > cur_end)
278 continue;
279 npgs = npgs + (MIN(cur_end, end) -
280 MAX(cur_base, base)) + 1;
281 }
282
283 memlist_read_unlock();
284
285 return (npgs);
286 }
287
288 /*
289 * Find MIN(physbase) and MAX(physmax) over all mnodes
290 *
291 * Called during startup and DR to find hpm_counters limits when
292 * interleaved_mnodes is set.
293 * NOTE: there is a race condition with DR if it tries to change more than
294 * one mnode in parallel. Sizing shared hpm_counters depends on finding the
295 * min(physbase) and max(physmax) across all mnodes. Therefore, the caller of
296 * page_ctrs_adjust must ensure that mem_node_config does not change while it
297 * is running.
298 */
299 void
mem_node_max_range(pfn_t * basep,pfn_t * maxp)300 mem_node_max_range(pfn_t *basep, pfn_t *maxp)
301 {
302 int mnode;
303 pfn_t max = 0;
304 pfn_t base = (pfn_t)-1;
305
306 for (mnode = 0; mnode < max_mem_nodes; mnode++) {
307 if (mem_node_config[mnode].exists == 0)
308 continue;
309 if (max < mem_node_config[mnode].physmax)
310 max = mem_node_config[mnode].physmax;
311 if (base > mem_node_config[mnode].physbase)
312 base = mem_node_config[mnode].physbase;
313 }
314 ASSERT(base != (pfn_t)-1 && max != 0);
315 *basep = base;
316 *maxp = max;
317 }
318