1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/sysmacros.h>
27 #include <sys/stack.h>
28 #include <sys/cpuvar.h>
29 #include <sys/ivintr.h>
30 #include <sys/intreg.h>
31 #include <sys/membar.h>
32 #include <sys/kmem.h>
33 #include <sys/intr.h>
34 #include <sys/sunddi.h>
35 #include <sys/sunndi.h>
36 #include <sys/cmn_err.h>
37 #include <sys/privregs.h>
38 #include <sys/systm.h>
39 #include <sys/archsystm.h>
40 #include <sys/machsystm.h>
41 #include <sys/x_call.h>
42 #include <vm/seg_kp.h>
43 #include <sys/debug.h>
44 #include <sys/cyclic.h>
45 #include <sys/kdi_impl.h>
46 #include <sys/ddi_timer.h>
47
48 #include <sys/cpu_sgnblk_defs.h>
49
50 /* Global locks which protect the interrupt distribution lists */
51 static kmutex_t intr_dist_lock;
52 static kmutex_t intr_dist_cpu_lock;
53
54 /* Head of the interrupt distribution lists */
55 static struct intr_dist *intr_dist_head = NULL;
56 static struct intr_dist *intr_dist_whead = NULL;
57
58 static uint64_t siron_inum[DDI_IPL_10]; /* software interrupt numbers */
59 uint64_t *siron_cpu_inum = NULL;
60 uint64_t siron_poke_cpu_inum;
61 static int siron_cpu_setup(cpu_setup_t, int, void *);
62 extern uint_t softlevel1();
63
64 static uint64_t siron1_inum; /* backward compatibility */
65 uint64_t poke_cpu_inum;
66 uint_t poke_cpu_intr(caddr_t arg1, caddr_t arg2);
67 uint_t siron_poke_cpu_intr(caddr_t arg1, caddr_t arg2);
68
69 /*
70 * Variable to enable/disable printing a message when an invalid vecintr
71 * is received.
72 */
73 uint_t ignore_invalid_vecintr = 0;
74
75 /*
76 * Note:-
77 * siron_pending was originally created to prevent a resource over consumption
78 * bug in setsoftint(exhaustion of interrupt pool free list).
79 * It's original intention is obsolete with the use of iv_pending in
80 * setsoftint. However, siron_pending stayed around, acting as a second
81 * gatekeeper preventing soft interrupts from being queued. In this capacity,
82 * it can lead to hangs on MP systems, where due to global visibility issues
83 * it can end up set while iv_pending is reset, preventing soft interrupts from
84 * ever being processed. In addition to its gatekeeper role, init_intr also
85 * uses it to flag the situation where siron() was called before siron_inum has
86 * been defined.
87 *
88 * siron() does not need an extra gatekeeper; any cpu that wishes should be
89 * allowed to queue a soft interrupt. It is softint()'s job to ensure
90 * correct handling of the queues. Therefore, siron_pending has been
91 * stripped of its gatekeeper task, retaining only its intr_init job, where
92 * it indicates that there is a pending need to call siron().
93 */
94 static int siron_pending[DDI_IPL_10]; /* software interrupt pending flags */
95 static int siron1_pending; /* backward compatibility */
96
97 int intr_policy = INTR_WEIGHTED_DIST; /* interrupt distribution policy */
98 int intr_dist_debug = 0;
99 int32_t intr_dist_weight_max = 1;
100 int32_t intr_dist_weight_maxmax = 1000;
101 int intr_dist_weight_maxfactor = 2;
102 #define INTR_DEBUG(args) if (intr_dist_debug) cmn_err args
103
104 /*
105 * intr_init() - Interrupt initialization
106 * Initialize the system's interrupt vector table.
107 */
108 void
intr_init(cpu_t * cp)109 intr_init(cpu_t *cp)
110 {
111 int i;
112 extern uint_t softlevel1();
113
114 init_ivintr();
115 REGISTER_BBUS_INTR();
116
117 /*
118 * Register these software interrupts for ddi timer.
119 * Software interrupts up to the level 10 are supported.
120 */
121 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
122 siron_inum[i-1] = add_softintr(i, (softintrfunc)timer_softintr,
123 (caddr_t)(uintptr_t)(i), SOFTINT_ST);
124 }
125
126 siron1_inum = add_softintr(PIL_1, softlevel1, 0, SOFTINT_ST);
127 poke_cpu_inum = add_softintr(PIL_13, poke_cpu_intr, 0, SOFTINT_MT);
128 siron_poke_cpu_inum = add_softintr(PIL_13,
129 siron_poke_cpu_intr, 0, SOFTINT_MT);
130 cp->cpu_m.poke_cpu_outstanding = B_FALSE;
131
132 mutex_init(&intr_dist_lock, NULL, MUTEX_DEFAULT, NULL);
133 mutex_init(&intr_dist_cpu_lock, NULL, MUTEX_DEFAULT, NULL);
134
135 /*
136 * A soft interrupt may have been requested prior to the initialization
137 * of soft interrupts. Soft interrupts can't be dispatched until after
138 * init_intr(), so we have to wait until now before we can dispatch the
139 * pending soft interrupt (if any).
140 */
141 for (i = DDI_IPL_1; i <= DDI_IPL_10; i++) {
142 if (siron_pending[i-1]) {
143 siron_pending[i-1] = 0;
144 sir_on(i);
145 }
146 }
147 if (siron1_pending) {
148 siron1_pending = 0;
149 siron();
150 }
151 }
152
153 /*
154 * poke_cpu_intr - fall through when poke_cpu calls
155 */
156 /* ARGSUSED */
157 uint_t
poke_cpu_intr(caddr_t arg1,caddr_t arg2)158 poke_cpu_intr(caddr_t arg1, caddr_t arg2)
159 {
160 CPU->cpu_m.poke_cpu_outstanding = B_FALSE;
161 membar_stld_stst();
162 return (1);
163 }
164
165 /*
166 * Trigger software interrupts dedicated to ddi timer.
167 */
168 void
sir_on(int level)169 sir_on(int level)
170 {
171 ASSERT(level >= DDI_IPL_1 && level <= DDI_IPL_10);
172 if (siron_inum[level-1])
173 setsoftint(siron_inum[level-1]);
174 else
175 siron_pending[level-1] = 1;
176 }
177
178 /*
179 * kmdb uses siron (and thus setsoftint) while the world is stopped in order to
180 * inform its driver component that there's work to be done. We need to keep
181 * DTrace from instrumenting kmdb's siron and setsoftint. We duplicate siron,
182 * giving kmdb's version a kdi_ prefix to keep DTrace at bay. The
183 * implementation of setsoftint is complicated enough that we don't want to
184 * duplicate it, but at the same time we don't want to preclude tracing either.
185 * The meat of setsoftint() therefore goes into kdi_setsoftint, with
186 * setsoftint() implemented as a wrapper. This allows tracing, while still
187 * providing a way for kmdb to sneak in unmolested.
188 */
189 void
kdi_siron(void)190 kdi_siron(void)
191 {
192 if (siron1_inum != 0)
193 kdi_setsoftint(siron1_inum);
194 else
195 siron1_pending = 1;
196 }
197
198 void
setsoftint(uint64_t inum)199 setsoftint(uint64_t inum)
200 {
201 kdi_setsoftint(inum);
202 }
203
204 /*
205 * Generates softlevel1 interrupt on current CPU if it
206 * is not pending already.
207 */
208 void
siron(void)209 siron(void)
210 {
211 uint64_t inum;
212
213 if (siron1_inum != 0) {
214 /*
215 * Once siron_cpu_inum has been allocated, we can
216 * use per-CPU siron inum.
217 */
218 if (siron_cpu_inum && siron_cpu_inum[CPU->cpu_id] != 0)
219 inum = siron_cpu_inum[CPU->cpu_id];
220 else
221 inum = siron1_inum;
222
223 setsoftint(inum);
224 } else
225 siron1_pending = 1;
226 }
227
228
229 static void
siron_init(void)230 siron_init(void)
231 {
232 /*
233 * We just allocate memory for per-cpu siron right now. Rest of
234 * the work is done when CPU is configured.
235 */
236 siron_cpu_inum = kmem_zalloc(sizeof (uint64_t) * NCPU, KM_SLEEP);
237 }
238
239 /*
240 * This routine creates per-CPU siron inum for CPUs which are
241 * configured during boot.
242 */
243 void
siron_mp_init()244 siron_mp_init()
245 {
246 cpu_t *c;
247
248 /*
249 * Get the memory for per-CPU siron inums
250 */
251 siron_init();
252
253 mutex_enter(&cpu_lock);
254 c = cpu_list;
255 do {
256 (void) siron_cpu_setup(CPU_CONFIG, c->cpu_id, NULL);
257 } while ((c = c->cpu_next) != cpu_list);
258
259 register_cpu_setup_func(siron_cpu_setup, NULL);
260 mutex_exit(&cpu_lock);
261 }
262
263 /*
264 * siron_poke_cpu_intr - cross-call handler.
265 */
266 /* ARGSUSED */
267 uint_t
siron_poke_cpu_intr(caddr_t arg1,caddr_t arg2)268 siron_poke_cpu_intr(caddr_t arg1, caddr_t arg2)
269 {
270 /* generate level1 softint */
271 siron();
272 return (1);
273 }
274
275 /*
276 * This routine generates a cross-call on target CPU(s).
277 */
278 void
siron_poke_cpu(cpuset_t poke)279 siron_poke_cpu(cpuset_t poke)
280 {
281 int cpuid = CPU->cpu_id;
282
283 if (CPU_IN_SET(poke, cpuid)) {
284 siron();
285 CPUSET_DEL(poke, cpuid);
286 if (CPUSET_ISNULL(poke))
287 return;
288 }
289
290 xt_some(poke, setsoftint_tl1, siron_poke_cpu_inum, 0);
291 }
292
293 /*
294 * This callback function allows us to create per-CPU siron inum.
295 */
296 /* ARGSUSED */
297 static int
siron_cpu_setup(cpu_setup_t what,int id,void * arg)298 siron_cpu_setup(cpu_setup_t what, int id, void *arg)
299 {
300 cpu_t *cp = cpu[id];
301
302 ASSERT(MUTEX_HELD(&cpu_lock));
303 ASSERT(cp != NULL);
304
305 switch (what) {
306 case CPU_CONFIG:
307 siron_cpu_inum[cp->cpu_id] = add_softintr(PIL_1,
308 (softintrfunc)softlevel1, 0, SOFTINT_ST);
309 break;
310 case CPU_UNCONFIG:
311 (void) rem_softintr(siron_cpu_inum[cp->cpu_id]);
312 siron_cpu_inum[cp->cpu_id] = 0;
313 break;
314 default:
315 break;
316 }
317
318 return (0);
319 }
320
321 /*
322 * no_ivintr()
323 * called by setvecint_tl1() through sys_trap()
324 * vector interrupt received but not valid or not
325 * registered in intr_vec_table
326 * considered as a spurious mondo interrupt
327 */
328 /* ARGSUSED */
329 void
no_ivintr(struct regs * rp,int inum,int pil)330 no_ivintr(struct regs *rp, int inum, int pil)
331 {
332 if (!ignore_invalid_vecintr)
333 cmn_err(CE_WARN, "invalid vector intr: number 0x%x, pil 0x%x",
334 inum, pil);
335
336 #ifdef DEBUG_VEC_INTR
337 prom_enter_mon();
338 #endif /* DEBUG_VEC_INTR */
339 }
340
341 void
intr_dequeue_req(uint_t pil,uint64_t inum)342 intr_dequeue_req(uint_t pil, uint64_t inum)
343 {
344 intr_vec_t *iv, *next, *prev;
345 struct machcpu *mcpu;
346 uint32_t clr;
347 processorid_t cpu_id;
348 extern uint_t getpstate(void);
349
350 ASSERT((getpstate() & PSTATE_IE) == 0);
351
352 mcpu = &CPU->cpu_m;
353 cpu_id = CPU->cpu_id;
354
355 iv = (intr_vec_t *)inum;
356 prev = NULL;
357 next = mcpu->intr_head[pil];
358
359 /* Find a matching entry in the list */
360 while (next != NULL) {
361 if (next == iv)
362 break;
363 prev = next;
364 next = IV_GET_PIL_NEXT(next, cpu_id);
365 }
366
367 if (next != NULL) {
368 intr_vec_t *next_iv = IV_GET_PIL_NEXT(next, cpu_id);
369
370 /* Remove entry from list */
371 if (prev != NULL)
372 IV_SET_PIL_NEXT(prev, cpu_id, next_iv); /* non-head */
373 else
374 mcpu->intr_head[pil] = next_iv; /* head */
375
376 if (next_iv == NULL)
377 mcpu->intr_tail[pil] = prev; /* tail */
378 }
379
380 /* Clear pending interrupts at this level if the list is empty */
381 if (mcpu->intr_head[pil] == NULL) {
382 clr = 1 << pil;
383 if (pil == PIL_14)
384 clr |= (TICK_INT_MASK | STICK_INT_MASK);
385 wr_clr_softint(clr);
386 }
387 }
388
389
390 /*
391 * Send a directed interrupt of specified interrupt number id to a cpu.
392 */
393 void
send_dirint(int cpuix,int intr_id)394 send_dirint(
395 int cpuix, /* cpu to be interrupted */
396 int intr_id) /* interrupt number id */
397 {
398 xt_one(cpuix, setsoftint_tl1, intr_id, 0);
399 }
400
401 /*
402 * Take the specified CPU out of participation in interrupts.
403 * Called by p_online(2) when a processor is being taken off-line.
404 * This allows interrupt threads being handled on the processor to
405 * complete before the processor is idled.
406 */
407 int
cpu_disable_intr(struct cpu * cp)408 cpu_disable_intr(struct cpu *cp)
409 {
410 ASSERT(MUTEX_HELD(&cpu_lock));
411
412 /*
413 * Turn off the CPU_ENABLE flag before calling the redistribution
414 * function, since it checks for this in the cpu flags.
415 */
416 cp->cpu_flags &= ~CPU_ENABLE;
417
418 intr_redist_all_cpus();
419
420 return (0);
421 }
422
423 /*
424 * Allow the specified CPU to participate in interrupts.
425 * Called by p_online(2) if a processor could not be taken off-line
426 * because of bound threads, in order to resume processing interrupts.
427 * Also called after starting a processor.
428 */
429 void
cpu_enable_intr(struct cpu * cp)430 cpu_enable_intr(struct cpu *cp)
431 {
432 ASSERT(MUTEX_HELD(&cpu_lock));
433
434 cp->cpu_flags |= CPU_ENABLE;
435
436 intr_redist_all_cpus();
437 }
438
439 /*
440 * Add function to callback list for intr_redist_all_cpus. We keep two lists,
441 * one for weighted callbacks and one for normal callbacks. Weighted callbacks
442 * are issued to redirect interrupts of a specified weight, from heavy to
443 * light. This allows all the interrupts of a given weight to be redistributed
444 * for all weighted nexus drivers prior to those of less weight.
445 */
446 static void
intr_dist_add_list(struct intr_dist ** phead,void (* func)(void *),void * arg)447 intr_dist_add_list(struct intr_dist **phead, void (*func)(void *), void *arg)
448 {
449 struct intr_dist *new = kmem_alloc(sizeof (*new), KM_SLEEP);
450 struct intr_dist *iptr;
451 struct intr_dist **pptr;
452
453 ASSERT(func);
454 new->func = func;
455 new->arg = arg;
456 new->next = NULL;
457
458 /* Add to tail so that redistribution occurs in original order. */
459 mutex_enter(&intr_dist_lock);
460 for (iptr = *phead, pptr = phead; iptr != NULL;
461 pptr = &iptr->next, iptr = iptr->next) {
462 /* check for problems as we locate the tail */
463 if ((iptr->func == func) && (iptr->arg == arg)) {
464 cmn_err(CE_PANIC, "intr_dist_add_list(): duplicate");
465 /*NOTREACHED*/
466 }
467 }
468 *pptr = new;
469
470 mutex_exit(&intr_dist_lock);
471 }
472
473 void
intr_dist_add(void (* func)(void *),void * arg)474 intr_dist_add(void (*func)(void *), void *arg)
475 {
476 intr_dist_add_list(&intr_dist_head, (void (*)(void *))func, arg);
477 }
478
479 void
intr_dist_add_weighted(void (* func)(void *,int32_t,int32_t),void * arg)480 intr_dist_add_weighted(void (*func)(void *, int32_t, int32_t), void *arg)
481 {
482 intr_dist_add_list(&intr_dist_whead, (void (*)(void *))func, arg);
483 }
484
485 /*
486 * Search for the interrupt distribution structure with the specified
487 * mondo vec reg in the interrupt distribution list. If a match is found,
488 * then delete the entry from the list. The caller is responsible for
489 * modifying the mondo vector registers.
490 */
491 static void
intr_dist_rem_list(struct intr_dist ** headp,void (* func)(void *),void * arg)492 intr_dist_rem_list(struct intr_dist **headp, void (*func)(void *), void *arg)
493 {
494 struct intr_dist *iptr;
495 struct intr_dist **vect;
496
497 mutex_enter(&intr_dist_lock);
498 for (iptr = *headp, vect = headp;
499 iptr != NULL; vect = &iptr->next, iptr = iptr->next) {
500 if ((iptr->func == func) && (iptr->arg == arg)) {
501 *vect = iptr->next;
502 kmem_free(iptr, sizeof (struct intr_dist));
503 mutex_exit(&intr_dist_lock);
504 return;
505 }
506 }
507
508 if (!panicstr)
509 cmn_err(CE_PANIC, "intr_dist_rem_list: not found");
510 mutex_exit(&intr_dist_lock);
511 }
512
513 void
intr_dist_rem(void (* func)(void *),void * arg)514 intr_dist_rem(void (*func)(void *), void *arg)
515 {
516 intr_dist_rem_list(&intr_dist_head, (void (*)(void *))func, arg);
517 }
518
519 void
intr_dist_rem_weighted(void (* func)(void *,int32_t,int32_t),void * arg)520 intr_dist_rem_weighted(void (*func)(void *, int32_t, int32_t), void *arg)
521 {
522 intr_dist_rem_list(&intr_dist_whead, (void (*)(void *))func, arg);
523 }
524
525 /*
526 * Initiate interrupt redistribution. Redistribution improves the isolation
527 * associated with interrupt weights by ordering operations from heavy weight
528 * to light weight. When a CPUs orientation changes relative to interrupts,
529 * there is *always* a redistribution to accommodate this change (call to
530 * intr_redist_all_cpus()). As devices (not CPUs) attach/detach it is possible
531 * that a redistribution could improve the quality of an initialization. For
532 * example, if you are not using a NIC it may not be attached with s10 (devfs).
533 * If you then configure the NIC (ifconfig), this may cause the NIC to attach
534 * and plumb interrupts. The CPU assignment for the NIC's interrupts is
535 * occurring late, so optimal "isolation" relative to weight is not occurring.
536 * The same applies to detach, although in this case doing the redistribution
537 * might improve "spread" for medium weight devices since the "isolation" of
538 * a higher weight device may no longer be present.
539 *
540 * NB: We should provide a utility to trigger redistribution (ala "intradm -r").
541 *
542 * NB: There is risk associated with automatically triggering execution of the
543 * redistribution code at arbitrary times. The risk comes from the fact that
544 * there is a lot of low-level hardware interaction associated with a
545 * redistribution. At some point we may want this code to perform automatic
546 * redistribution (redistribution thread; trigger timeout when add/remove
547 * weight delta is large enough, and call cv_signal from timeout - causing
548 * thead to call i_ddi_intr_redist_all_cpus()) but this is considered too
549 * risky at this time.
550 */
551 void
i_ddi_intr_redist_all_cpus()552 i_ddi_intr_redist_all_cpus()
553 {
554 mutex_enter(&cpu_lock);
555 INTR_DEBUG((CE_CONT, "intr_dist: i_ddi_intr_redist_all_cpus\n"));
556 intr_redist_all_cpus();
557 mutex_exit(&cpu_lock);
558 }
559
560 /*
561 * Redistribute all interrupts
562 *
563 * This function redistributes all interrupting devices, running the
564 * parent callback functions for each node.
565 */
566 void
intr_redist_all_cpus(void)567 intr_redist_all_cpus(void)
568 {
569 struct cpu *cp;
570 struct intr_dist *iptr;
571 int32_t weight, max_weight;
572
573 ASSERT(MUTEX_HELD(&cpu_lock));
574 mutex_enter(&intr_dist_lock);
575
576 /*
577 * zero cpu_intr_weight on all cpus - it is safe to traverse
578 * cpu_list since we hold cpu_lock.
579 */
580 cp = cpu_list;
581 do {
582 cp->cpu_intr_weight = 0;
583 } while ((cp = cp->cpu_next) != cpu_list);
584
585 /*
586 * Assume that this redistribution may encounter a device weight
587 * via driver.conf tuning of "ddi-intr-weight" that is at most
588 * intr_dist_weight_maxfactor times larger.
589 */
590 max_weight = intr_dist_weight_max * intr_dist_weight_maxfactor;
591 if (max_weight > intr_dist_weight_maxmax)
592 max_weight = intr_dist_weight_maxmax;
593 intr_dist_weight_max = 1;
594
595 INTR_DEBUG((CE_CONT, "intr_dist: "
596 "intr_redist_all_cpus: %d-0\n", max_weight));
597
598 /*
599 * Redistribute weighted, from heavy to light. The callback that
600 * specifies a weight equal to weight_max should redirect all
601 * interrupts of weight weight_max or greater [weight_max, inf.).
602 * Interrupts of lesser weight should be processed on the call with
603 * the matching weight. This allows all the heaver weight interrupts
604 * on all weighted busses (multiple pci busses) to be redirected prior
605 * to any lesser weight interrupts.
606 */
607 for (weight = max_weight; weight >= 0; weight--)
608 for (iptr = intr_dist_whead; iptr != NULL; iptr = iptr->next)
609 ((void (*)(void *, int32_t, int32_t))iptr->func)
610 (iptr->arg, max_weight, weight);
611
612 /* redistribute normal (non-weighted) interrupts */
613 for (iptr = intr_dist_head; iptr != NULL; iptr = iptr->next)
614 ((void (*)(void *))iptr->func)(iptr->arg);
615 mutex_exit(&intr_dist_lock);
616 }
617
618 void
intr_redist_all_cpus_shutdown(void)619 intr_redist_all_cpus_shutdown(void)
620 {
621 intr_policy = INTR_CURRENT_CPU;
622 intr_redist_all_cpus();
623 }
624
625 /*
626 * Determine what CPU to target, based on interrupt policy.
627 *
628 * INTR_FLAT_DIST: hold a current CPU pointer in a static variable and
629 * advance through interrupt enabled cpus (round-robin).
630 *
631 * INTR_WEIGHTED_DIST: search for an enabled CPU with the lowest
632 * cpu_intr_weight, round robin when all equal.
633 *
634 * Weighted interrupt distribution provides two things: "spread" of weight
635 * (associated with algorithm itself) and "isolation" (associated with a
636 * particular device weight). A redistribution is what provides optimal
637 * "isolation" of heavy weight interrupts, optimal "spread" of weight
638 * (relative to what came before) is always occurring.
639 *
640 * An interrupt weight is a subjective number that represents the
641 * percentage of a CPU required to service a device's interrupts: the
642 * default weight is 0% (however the algorithm still maintains
643 * round-robin), a network interface controller (NIC) may have a large
644 * weight (35%). Interrupt weight only has meaning relative to the
645 * interrupt weight of other devices: a CPU can be weighted more than
646 * 100%, and a single device might consume more than 100% of a CPU.
647 *
648 * A coarse interrupt weight can be defined by the parent nexus driver
649 * based on bus specific information, like pci class codes. A nexus
650 * driver that supports device interrupt weighting for its children
651 * should call intr_dist_cpuid_add/rem_device_weight(), which adds
652 * and removes the weight of a device from the CPU that an interrupt
653 * is directed at. The quality of initialization improves when the
654 * device interrupt weights more accuracy reflect actual run-time weights,
655 * and as the assignments are ordered from is heavy to light.
656 *
657 * The implementation also supports interrupt weight being specified in
658 * driver.conf files via the property "ddi-intr-weight", which takes
659 * precedence over the nexus supplied weight. This support is added to
660 * permit possible tweaking in the product in response to customer
661 * problems. This is not a formal or committed interface.
662 *
663 * While a weighted approach chooses the CPU providing the best spread
664 * given past weights, less than optimal isolation can result in cases
665 * where heavy weight devices show up last. The nexus driver's interrupt
666 * redistribution logic should use intr_dist_add/rem_weighted so that
667 * interrupts can be redistributed heavy first for optimal isolation.
668 */
669 uint32_t
intr_dist_cpuid(void)670 intr_dist_cpuid(void)
671 {
672 static struct cpu *curr_cpu;
673 struct cpu *start_cpu;
674 struct cpu *new_cpu;
675 struct cpu *cp;
676 int cpuid = -1;
677
678 /* Establish exclusion for curr_cpu and cpu_intr_weight manipulation */
679 mutex_enter(&intr_dist_cpu_lock);
680
681 switch (intr_policy) {
682 case INTR_CURRENT_CPU:
683 cpuid = CPU->cpu_id;
684 break;
685
686 case INTR_BOOT_CPU:
687 panic("INTR_BOOT_CPU no longer supported.");
688 /*NOTREACHED*/
689
690 case INTR_FLAT_DIST:
691 case INTR_WEIGHTED_DIST:
692 default:
693 /*
694 * Ensure that curr_cpu is valid - cpu_next will be NULL if
695 * the cpu has been deleted (cpu structs are never freed).
696 */
697 if (curr_cpu == NULL || curr_cpu->cpu_next == NULL)
698 curr_cpu = CPU;
699
700 /*
701 * Advance to online CPU after curr_cpu (round-robin). For
702 * INTR_WEIGHTED_DIST we choose the cpu with the lightest
703 * weight. For a nexus that does not support weight the
704 * default weight of zero is used. We degrade to round-robin
705 * behavior among equal weightes. The default weight is zero
706 * and round-robin behavior continues.
707 *
708 * Disable preemption while traversing cpu_next_onln to
709 * ensure the list does not change. This works because
710 * modifiers of this list and other lists in a struct cpu
711 * call pause_cpus() before making changes.
712 */
713 kpreempt_disable();
714 cp = start_cpu = curr_cpu->cpu_next_onln;
715 new_cpu = NULL;
716 do {
717 /* Skip CPUs with interrupts disabled */
718 if ((cp->cpu_flags & CPU_ENABLE) == 0)
719 continue;
720
721 if (intr_policy == INTR_FLAT_DIST) {
722 /* select CPU */
723 new_cpu = cp;
724 break;
725 } else if ((new_cpu == NULL) ||
726 (cp->cpu_intr_weight < new_cpu->cpu_intr_weight)) {
727 /* Choose if lighter weight */
728 new_cpu = cp;
729 }
730 } while ((cp = cp->cpu_next_onln) != start_cpu);
731 ASSERT(new_cpu);
732 cpuid = new_cpu->cpu_id;
733
734 INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: "
735 "targeted\n", cpuid, new_cpu->cpu_intr_weight));
736
737 /* update static pointer for next round-robin */
738 curr_cpu = new_cpu;
739 kpreempt_enable();
740 break;
741 }
742 mutex_exit(&intr_dist_cpu_lock);
743 return (cpuid);
744 }
745
746 /*
747 * Add or remove the the weight of a device from a CPUs interrupt weight.
748 *
749 * We expect nexus drivers to call intr_dist_cpuid_add/rem_device_weight for
750 * their children to improve the overall quality of interrupt initialization.
751 *
752 * If a nexues shares the CPU returned by a single intr_dist_cpuid() call
753 * among multiple devices (sharing ino) then the nexus should call
754 * intr_dist_cpuid_add/rem_device_weight for each device separately. Devices
755 * that share must specify the same cpuid.
756 *
757 * If a nexus driver is unable to determine the cpu at remove_intr time
758 * for some of its interrupts, then it should not call add_device_weight -
759 * intr_dist_cpuid will still provide round-robin.
760 *
761 * An established device weight (from dev_info node) takes precedence over
762 * the weight passed in. If a device weight is not already established
763 * then the passed in nexus weight is established.
764 */
765 void
intr_dist_cpuid_add_device_weight(uint32_t cpuid,dev_info_t * dip,int32_t nweight)766 intr_dist_cpuid_add_device_weight(uint32_t cpuid,
767 dev_info_t *dip, int32_t nweight)
768 {
769 int32_t eweight;
770
771 /*
772 * For non-weighted policy everything has weight of zero (and we get
773 * round-robin distribution from intr_dist_cpuid).
774 * NB: intr_policy is limited to this file. A weighted nexus driver is
775 * calls this rouitne even if intr_policy has been patched to
776 * INTR_FLAG_DIST.
777 */
778 ASSERT(dip);
779 if (intr_policy != INTR_WEIGHTED_DIST)
780 return;
781
782 eweight = i_ddi_get_intr_weight(dip);
783 INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: +%2d/%2d for "
784 "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight,
785 nweight, eweight, ddi_driver_name(ddi_get_parent(dip)),
786 ddi_get_instance(ddi_get_parent(dip)),
787 ddi_driver_name(dip), ddi_get_instance(dip)));
788
789 /* if no establish weight, establish nexus weight */
790 if (eweight < 0) {
791 if (nweight > 0)
792 (void) i_ddi_set_intr_weight(dip, nweight);
793 else
794 nweight = 0;
795 } else
796 nweight = eweight; /* use established weight */
797
798 /* Establish exclusion for cpu_intr_weight manipulation */
799 mutex_enter(&intr_dist_cpu_lock);
800 cpu[cpuid]->cpu_intr_weight += nweight;
801
802 /* update intr_dist_weight_max */
803 if (nweight > intr_dist_weight_max)
804 intr_dist_weight_max = nweight;
805 mutex_exit(&intr_dist_cpu_lock);
806 }
807
808 void
intr_dist_cpuid_rem_device_weight(uint32_t cpuid,dev_info_t * dip)809 intr_dist_cpuid_rem_device_weight(uint32_t cpuid, dev_info_t *dip)
810 {
811 struct cpu *cp;
812 int32_t weight;
813
814 ASSERT(dip);
815 if (intr_policy != INTR_WEIGHTED_DIST)
816 return;
817
818 /* remove weight of device from cpu */
819 weight = i_ddi_get_intr_weight(dip);
820 if (weight < 0)
821 weight = 0;
822 INTR_DEBUG((CE_CONT, "intr_dist: cpu %2d weight %3d: -%2d for "
823 "%s#%d/%s#%d\n", cpuid, cpu[cpuid]->cpu_intr_weight, weight,
824 ddi_driver_name(ddi_get_parent(dip)),
825 ddi_get_instance(ddi_get_parent(dip)),
826 ddi_driver_name(dip), ddi_get_instance(dip)));
827
828 /* Establish exclusion for cpu_intr_weight manipulation */
829 mutex_enter(&intr_dist_cpu_lock);
830 cp = cpu[cpuid];
831 cp->cpu_intr_weight -= weight;
832 if (cp->cpu_intr_weight < 0)
833 cp->cpu_intr_weight = 0; /* sanity */
834 mutex_exit(&intr_dist_cpu_lock);
835 }
836
837 ulong_t
create_softint(uint_t pil,uint_t (* func)(caddr_t,caddr_t),caddr_t arg1)838 create_softint(uint_t pil, uint_t (*func)(caddr_t, caddr_t), caddr_t arg1)
839 {
840 uint64_t inum;
841
842 inum = add_softintr(pil, func, arg1, SOFTINT_MT);
843 return ((ulong_t)inum);
844 }
845
846 void
invoke_softint(processorid_t cpuid,ulong_t hdl)847 invoke_softint(processorid_t cpuid, ulong_t hdl)
848 {
849 uint64_t inum = hdl;
850
851 if (cpuid == CPU->cpu_id)
852 setsoftint(inum);
853 else
854 xt_one(cpuid, setsoftint_tl1, inum, 0);
855 }
856
857 void
remove_softint(ulong_t hdl)858 remove_softint(ulong_t hdl)
859 {
860 uint64_t inum = hdl;
861
862 (void) rem_softintr(inum);
863 }
864
865 void
sync_softint(cpuset_t set)866 sync_softint(cpuset_t set)
867 {
868 xt_sync(set);
869 }
870