1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * sun4 specific DDI implementation
29 */
30 #include <sys/cpuvar.h>
31 #include <sys/ddi_subrdefs.h>
32 #include <sys/machsystm.h>
33 #include <sys/sunndi.h>
34 #include <sys/sysmacros.h>
35 #include <sys/ontrap.h>
36 #include <vm/seg_kmem.h>
37 #include <sys/membar.h>
38 #include <sys/dditypes.h>
39 #include <sys/ndifm.h>
40 #include <sys/fm/io/ddi.h>
41 #include <sys/ivintr.h>
42 #include <sys/bootconf.h>
43 #include <sys/conf.h>
44 #include <sys/ethernet.h>
45 #include <sys/idprom.h>
46 #include <sys/promif.h>
47 #include <sys/prom_plat.h>
48 #include <sys/systeminfo.h>
49 #include <sys/fpu/fpusystm.h>
50 #include <sys/vm.h>
51 #include <sys/ddi_isa.h>
52 #include <sys/modctl.h>
53
54 dev_info_t *get_intr_parent(dev_info_t *, dev_info_t *,
55 ddi_intr_handle_impl_t *);
56 #pragma weak get_intr_parent
57
58 int process_intr_ops(dev_info_t *, dev_info_t *, ddi_intr_op_t,
59 ddi_intr_handle_impl_t *, void *);
60 #pragma weak process_intr_ops
61
62 void cells_1275_copy(prop_1275_cell_t *, prop_1275_cell_t *, int32_t);
63 prop_1275_cell_t *cells_1275_cmp(prop_1275_cell_t *, prop_1275_cell_t *,
64 int32_t len);
65 #pragma weak cells_1275_copy
66
67 /*
68 * Wrapper for ddi_prop_lookup_int_array().
69 * This is handy because it returns the prop length in
70 * bytes which is what most of the callers require.
71 */
72
73 static int
get_prop_int_array(dev_info_t * di,char * pname,int ** pval,uint_t * plen)74 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
75 {
76 int ret;
77
78 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
79 DDI_PROP_DONTPASS, pname, pval, plen)) == DDI_PROP_SUCCESS) {
80 *plen = (*plen) * (uint_t)sizeof (int);
81 }
82 return (ret);
83 }
84
85 /*
86 * SECTION: DDI Node Configuration
87 */
88
89 /*
90 * init_regspec_64:
91 *
92 * If the parent #size-cells is 2, convert the upa-style or
93 * safari-style reg property from 2-size cells to 1 size cell
94 * format, ignoring the size_hi, which must be zero for devices.
95 * (It won't be zero in the memory list properties in the memory
96 * nodes, but that doesn't matter here.)
97 */
98 struct ddi_parent_private_data *
init_regspec_64(dev_info_t * dip)99 init_regspec_64(dev_info_t *dip)
100 {
101 struct ddi_parent_private_data *pd;
102 dev_info_t *parent;
103 int size_cells;
104
105 /*
106 * If there are no "reg"s in the child node, return.
107 */
108 pd = ddi_get_parent_data(dip);
109 if ((pd == NULL) || (pd->par_nreg == 0)) {
110 return (pd);
111 }
112 parent = ddi_get_parent(dip);
113
114 size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
115 DDI_PROP_DONTPASS, "#size-cells", 1);
116
117 if (size_cells != 1) {
118
119 int n, j;
120 struct regspec *irp;
121 struct reg_64 {
122 uint_t addr_hi, addr_lo, size_hi, size_lo;
123 };
124 struct reg_64 *r64_rp;
125 struct regspec *rp;
126 uint_t len = 0;
127 int *reg_prop;
128
129 ASSERT(size_cells == 2);
130
131 /*
132 * We already looked the property up once before if
133 * pd is non-NULL.
134 */
135 (void) ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
136 DDI_PROP_DONTPASS, OBP_REG, ®_prop, &len);
137 ASSERT(len != 0);
138
139 n = sizeof (struct reg_64) / sizeof (int);
140 n = len / n;
141
142 /*
143 * We're allocating a buffer the size of the PROM's property,
144 * but we're only using a smaller portion when we assign it
145 * to a regspec. We do this so that in the
146 * impl_ddi_sunbus_removechild function, we will
147 * always free the right amount of memory.
148 */
149 irp = rp = (struct regspec *)reg_prop;
150 r64_rp = (struct reg_64 *)pd->par_reg;
151
152 for (j = 0; j < n; ++j, ++rp, ++r64_rp) {
153 ASSERT(r64_rp->size_hi == 0);
154 rp->regspec_bustype = r64_rp->addr_hi;
155 rp->regspec_addr = r64_rp->addr_lo;
156 rp->regspec_size = r64_rp->size_lo;
157 }
158
159 ddi_prop_free((void *)pd->par_reg);
160 pd->par_nreg = n;
161 pd->par_reg = irp;
162 }
163 return (pd);
164 }
165
166 /*
167 * Create a ddi_parent_private_data structure from the ddi properties of
168 * the dev_info node.
169 *
170 * The "reg" is required if the driver wishes to create mappings on behalf
171 * of the device. The "reg" property is assumed to be a list of at least
172 * one triplet
173 *
174 * <bustype, address, size>*1
175 *
176 * The "interrupt" property is no longer part of parent private data on
177 * sun4u. The interrupt parent is may not be the device tree parent.
178 *
179 * The "ranges" property describes the mapping of child addresses to parent
180 * addresses.
181 *
182 * N.B. struct rangespec is defined for the following default values:
183 * parent child
184 * #address-cells 2 2
185 * #size-cells 1 1
186 * This function doesn't deal with non-default cells and will not create
187 * ranges in such cases.
188 */
189 void
make_ddi_ppd(dev_info_t * child,struct ddi_parent_private_data ** ppd)190 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
191 {
192 struct ddi_parent_private_data *pdptr;
193 int *reg_prop, *rng_prop;
194 uint_t reg_len = 0, rng_len = 0;
195 dev_info_t *parent;
196 int parent_addr_cells, parent_size_cells;
197 int child_addr_cells, child_size_cells;
198
199 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
200
201 /*
202 * root node has no parent private data, so *ppd should
203 * be initialized for naming to work properly.
204 */
205 if ((parent = ddi_get_parent(child)) == NULL)
206 return;
207
208 /*
209 * Set reg field of parent data from "reg" property
210 */
211 if ((get_prop_int_array(child, OBP_REG, ®_prop, ®_len)
212 == DDI_PROP_SUCCESS) && (reg_len != 0)) {
213 pdptr->par_nreg = (int)(reg_len / sizeof (struct regspec));
214 pdptr->par_reg = (struct regspec *)reg_prop;
215 }
216
217 /*
218 * "ranges" property ...
219 *
220 * This function does not handle cases where #address-cells != 2
221 * and * min(parent, child) #size-cells != 1 (see bugid 4211124).
222 *
223 * Nexus drivers with such exceptions (e.g. pci ranges)
224 * should either create a separate function for handling
225 * ranges or not use parent private data to store ranges.
226 */
227
228 /* root node has no ranges */
229 if ((parent = ddi_get_parent(child)) == NULL)
230 return;
231
232 child_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
233 DDI_PROP_DONTPASS, "#address-cells", 2);
234 child_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, child,
235 DDI_PROP_DONTPASS, "#size-cells", 1);
236 parent_addr_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
237 DDI_PROP_DONTPASS, "#address-cells", 2);
238 parent_size_cells = ddi_prop_get_int(DDI_DEV_T_ANY, parent,
239 DDI_PROP_DONTPASS, "#size-cells", 1);
240 if (child_addr_cells != 2 || parent_addr_cells != 2 ||
241 (child_size_cells != 1 && parent_size_cells != 1)) {
242 NDI_CONFIG_DEBUG((CE_NOTE, "!ranges not made in parent data; "
243 "#address-cells or #size-cells have non-default value"));
244 return;
245 }
246
247 if (get_prop_int_array(child, OBP_RANGES, &rng_prop, &rng_len)
248 == DDI_PROP_SUCCESS) {
249 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
250 pdptr->par_rng = (struct rangespec *)rng_prop;
251 }
252 }
253
254 /*
255 * Free ddi_parent_private_data structure
256 */
257 void
impl_free_ddi_ppd(dev_info_t * dip)258 impl_free_ddi_ppd(dev_info_t *dip)
259 {
260 struct ddi_parent_private_data *pdptr = ddi_get_parent_data(dip);
261
262 if (pdptr == NULL)
263 return;
264
265 if (pdptr->par_nrng != 0)
266 ddi_prop_free((void *)pdptr->par_rng);
267
268 if (pdptr->par_nreg != 0)
269 ddi_prop_free((void *)pdptr->par_reg);
270
271 kmem_free(pdptr, sizeof (*pdptr));
272 ddi_set_parent_data(dip, NULL);
273 }
274
275 /*
276 * Name a child of sun busses based on the reg spec.
277 * Handles the following properties:
278 *
279 * Property value
280 * Name type
281 *
282 * reg register spec
283 * interrupts new (bus-oriented) interrupt spec
284 * ranges range spec
285 *
286 * This may be called multiple times, independent of
287 * initchild calls.
288 */
289 static int
impl_sunbus_name_child(dev_info_t * child,char * name,int namelen)290 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
291 {
292 struct ddi_parent_private_data *pdptr;
293 struct regspec *rp;
294
295 /*
296 * Fill in parent-private data and this function returns to us
297 * an indication if it used "registers" to fill in the data.
298 */
299 if (ddi_get_parent_data(child) == NULL) {
300 make_ddi_ppd(child, &pdptr);
301 ddi_set_parent_data(child, pdptr);
302 }
303
304 /*
305 * No reg property, return null string as address
306 * (e.g. root node)
307 */
308 name[0] = '\0';
309 if (sparc_pd_getnreg(child) == 0) {
310 return (DDI_SUCCESS);
311 }
312
313 rp = sparc_pd_getreg(child, 0);
314 (void) snprintf(name, namelen, "%x,%x",
315 rp->regspec_bustype, rp->regspec_addr);
316 return (DDI_SUCCESS);
317 }
318
319
320 /*
321 * Called from the bus_ctl op of some drivers.
322 * to implement the DDI_CTLOPS_INITCHILD operation.
323 *
324 * NEW drivers should NOT use this function, but should declare
325 * there own initchild/uninitchild handlers. (This function assumes
326 * the layout of the parent private data and the format of "reg",
327 * "ranges", "interrupts" properties and that #address-cells and
328 * #size-cells of the parent bus are defined to be default values.)
329 */
330 int
impl_ddi_sunbus_initchild(dev_info_t * child)331 impl_ddi_sunbus_initchild(dev_info_t *child)
332 {
333 char name[MAXNAMELEN];
334
335 (void) impl_sunbus_name_child(child, name, MAXNAMELEN);
336 ddi_set_name_addr(child, name);
337
338 /*
339 * Try to merge .conf node. If successful, return failure to
340 * remove this child.
341 */
342 if ((ndi_dev_is_persistent_node(child) == 0) &&
343 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
344 impl_ddi_sunbus_removechild(child);
345 return (DDI_FAILURE);
346 }
347 return (DDI_SUCCESS);
348 }
349
350 /*
351 * A better name for this function would be impl_ddi_sunbus_uninitchild()
352 * It does not remove the child, it uninitializes it, reclaiming the
353 * resources taken by impl_ddi_sunbus_initchild.
354 */
355 void
impl_ddi_sunbus_removechild(dev_info_t * dip)356 impl_ddi_sunbus_removechild(dev_info_t *dip)
357 {
358 impl_free_ddi_ppd(dip);
359 ddi_set_name_addr(dip, NULL);
360 /*
361 * Strip the node to properly convert it back to prototype form
362 */
363 impl_rem_dev_props(dip);
364 }
365
366 /*
367 * SECTION: DDI Interrupt
368 */
369
370 void
cells_1275_copy(prop_1275_cell_t * from,prop_1275_cell_t * to,int32_t len)371 cells_1275_copy(prop_1275_cell_t *from, prop_1275_cell_t *to, int32_t len)
372 {
373 int i;
374 for (i = 0; i < len; i++)
375 *to = *from;
376 }
377
378 prop_1275_cell_t *
cells_1275_cmp(prop_1275_cell_t * cell1,prop_1275_cell_t * cell2,int32_t len)379 cells_1275_cmp(prop_1275_cell_t *cell1, prop_1275_cell_t *cell2, int32_t len)
380 {
381 prop_1275_cell_t *match_cell = 0;
382 int32_t i;
383
384 for (i = 0; i < len; i++)
385 if (cell1[i] != cell2[i]) {
386 match_cell = &cell1[i];
387 break;
388 }
389
390 return (match_cell);
391 }
392
393 /*
394 * get_intr_parent() is a generic routine that process a 1275 interrupt
395 * map (imap) property. This function returns a dev_info_t structure
396 * which claims ownership of the interrupt domain.
397 * It also returns the new interrupt translation within this new domain.
398 * If an interrupt-parent or interrupt-map property are not found,
399 * then we fallback to using the device tree's parent.
400 *
401 * imap entry format:
402 * <reg>,<interrupt>,<phandle>,<translated interrupt>
403 * reg - The register specification in the interrupts domain
404 * interrupt - The interrupt specification
405 * phandle - PROM handle of the device that owns the xlated interrupt domain
406 * translated interrupt - interrupt specifier in the parents domain
407 * note: <reg>,<interrupt> - The reg and interrupt can be combined to create
408 * a unique entry called a unit interrupt specifier.
409 *
410 * Here's the processing steps:
411 * step1 - If the interrupt-parent property exists, create the ispec and
412 * return the dip of the interrupt parent.
413 * step2 - Extract the interrupt-map property and the interrupt-map-mask
414 * If these don't exist, just return the device tree parent.
415 * step3 - build up the unit interrupt specifier to match against the
416 * interrupt map property
417 * step4 - Scan the interrupt-map property until a match is found
418 * step4a - Extract the interrupt parent
419 * step4b - Compare the unit interrupt specifier
420 */
421 dev_info_t *
get_intr_parent(dev_info_t * pdip,dev_info_t * dip,ddi_intr_handle_impl_t * hdlp)422 get_intr_parent(dev_info_t *pdip, dev_info_t *dip, ddi_intr_handle_impl_t *hdlp)
423 {
424 prop_1275_cell_t *imap, *imap_mask, *scan, *reg_p, *match_req;
425 int32_t imap_sz, imap_cells, imap_scan_cells, imap_mask_sz,
426 addr_cells, intr_cells, reg_len, i, j;
427 int32_t match_found = 0;
428 dev_info_t *intr_parent_dip = NULL;
429 uint32_t *intr = &hdlp->ih_vector;
430 uint32_t nodeid;
431 #ifdef DEBUG
432 static int debug = 0;
433 #endif
434
435 /*
436 * step1
437 * If we have an interrupt-parent property, this property represents
438 * the nodeid of our interrupt parent.
439 */
440 if ((nodeid = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
441 "interrupt-parent", -1)) != -1) {
442 intr_parent_dip = e_ddi_nodeid_to_dip(nodeid);
443 ASSERT(intr_parent_dip);
444
445 /*
446 * Attach the interrupt parent.
447 *
448 * N.B. e_ddi_nodeid_to_dip() isn't safe under DR.
449 * Also, interrupt parent isn't held. This needs
450 * to be revisited if DR-capable platforms implement
451 * interrupt redirection.
452 */
453 if (i_ddi_attach_node_hierarchy(intr_parent_dip)
454 != DDI_SUCCESS) {
455 ndi_rele_devi(intr_parent_dip);
456 return (NULL);
457 }
458
459 return (intr_parent_dip);
460 }
461
462 /*
463 * step2
464 * Get interrupt map structure from PROM property
465 */
466 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
467 "interrupt-map", (caddr_t)&imap, &imap_sz)
468 != DDI_PROP_SUCCESS) {
469 /*
470 * If we don't have an imap property, default to using the
471 * device tree.
472 */
473
474 ndi_hold_devi(pdip);
475 return (pdip);
476 }
477
478 /* Get the interrupt mask property */
479 if (ddi_getlongprop(DDI_DEV_T_ANY, pdip, DDI_PROP_DONTPASS,
480 "interrupt-map-mask", (caddr_t)&imap_mask, &imap_mask_sz)
481 != DDI_PROP_SUCCESS) {
482 /*
483 * If we don't find this property, we have to fail the request
484 * because the 1275 imap property wasn't defined correctly.
485 */
486 ASSERT(intr_parent_dip == NULL);
487 goto exit2;
488 }
489
490 /* Get the address cell size */
491 addr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
492 "#address-cells", 2);
493
494 /* Get the interrupts cell size */
495 intr_cells = ddi_getprop(DDI_DEV_T_ANY, pdip, 0,
496 "#interrupt-cells", 1);
497
498 /*
499 * step3
500 * Now lets build up the unit interrupt specifier e.g. reg,intr
501 * and apply the imap mask. match_req will hold this when we're
502 * through.
503 */
504 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "reg",
505 (caddr_t)®_p, ®_len) != DDI_SUCCESS) {
506 ASSERT(intr_parent_dip == NULL);
507 goto exit3;
508 }
509
510 match_req = kmem_alloc(CELLS_1275_TO_BYTES(addr_cells) +
511 CELLS_1275_TO_BYTES(intr_cells), KM_SLEEP);
512
513 for (i = 0; i < addr_cells; i++)
514 match_req[i] = (reg_p[i] & imap_mask[i]);
515
516 for (j = 0; j < intr_cells; i++, j++)
517 match_req[i] = (intr[j] & imap_mask[i]);
518
519 /* Calculate the imap size in cells */
520 imap_cells = BYTES_TO_1275_CELLS(imap_sz);
521
522 #ifdef DEBUG
523 if (debug)
524 prom_printf("reg cell size 0x%x, intr cell size 0x%x, "
525 "match_request 0x%p, imap 0x%p\n", addr_cells, intr_cells,
526 (void *)match_req, (void *)imap);
527 #endif
528
529 /*
530 * Scan the imap property looking for a match of the interrupt unit
531 * specifier. This loop is rather complex since the data within the
532 * imap property may vary in size.
533 */
534 for (scan = imap, imap_scan_cells = i = 0;
535 imap_scan_cells < imap_cells; scan += i, imap_scan_cells += i) {
536 int new_intr_cells;
537
538 /* Set the index to the nodeid field */
539 i = addr_cells + intr_cells;
540
541 /*
542 * step4a
543 * Translate the nodeid field to a dip
544 */
545 ASSERT(intr_parent_dip == NULL);
546 intr_parent_dip = e_ddi_nodeid_to_dip((uint_t)scan[i++]);
547
548 ASSERT(intr_parent_dip != 0);
549 #ifdef DEBUG
550 if (debug)
551 prom_printf("scan 0x%p\n", (void *)scan);
552 #endif
553 /*
554 * The tmp_dip describes the new domain, get it's interrupt
555 * cell size
556 */
557 new_intr_cells = ddi_getprop(DDI_DEV_T_ANY, intr_parent_dip, 0,
558 "#interrupts-cells", 1);
559
560 /*
561 * step4b
562 * See if we have a match on the interrupt unit specifier
563 */
564 if (cells_1275_cmp(match_req, scan, addr_cells + intr_cells)
565 == 0) {
566 uint32_t *intr;
567
568 match_found = 1;
569
570 /*
571 * If we have an imap parent whose not in our device
572 * tree path, we need to hold and install that driver.
573 */
574 if (i_ddi_attach_node_hierarchy(intr_parent_dip)
575 != DDI_SUCCESS) {
576 ndi_rele_devi(intr_parent_dip);
577 intr_parent_dip = (dev_info_t *)NULL;
578 goto exit4;
579 }
580
581 /*
582 * We need to handcraft an ispec along with a bus
583 * interrupt value, so we can dup it into our
584 * standard ispec structure.
585 */
586 /* Extract the translated interrupt information */
587 intr = kmem_alloc(
588 CELLS_1275_TO_BYTES(new_intr_cells), KM_SLEEP);
589
590 for (j = 0; j < new_intr_cells; j++, i++)
591 intr[j] = scan[i];
592
593 cells_1275_copy(intr, &hdlp->ih_vector, new_intr_cells);
594
595 kmem_free(intr, CELLS_1275_TO_BYTES(new_intr_cells));
596
597 #ifdef DEBUG
598 if (debug)
599 prom_printf("dip 0x%p\n",
600 (void *)intr_parent_dip);
601 #endif
602 break;
603 } else {
604 #ifdef DEBUG
605 if (debug)
606 prom_printf("dip 0x%p\n",
607 (void *)intr_parent_dip);
608 #endif
609 ndi_rele_devi(intr_parent_dip);
610 intr_parent_dip = NULL;
611 i += new_intr_cells;
612 }
613 }
614
615 /*
616 * If we haven't found our interrupt parent at this point, fallback
617 * to using the device tree.
618 */
619 if (!match_found) {
620 ndi_hold_devi(pdip);
621 ASSERT(intr_parent_dip == NULL);
622 intr_parent_dip = pdip;
623 }
624
625 ASSERT(intr_parent_dip != NULL);
626
627 exit4:
628 kmem_free(reg_p, reg_len);
629 kmem_free(match_req, CELLS_1275_TO_BYTES(addr_cells) +
630 CELLS_1275_TO_BYTES(intr_cells));
631
632 exit3:
633 kmem_free(imap_mask, imap_mask_sz);
634
635 exit2:
636 kmem_free(imap, imap_sz);
637
638 return (intr_parent_dip);
639 }
640
641 /*
642 * process_intr_ops:
643 *
644 * Process the interrupt op via the interrupt parent.
645 */
646 int
process_intr_ops(dev_info_t * pdip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)647 process_intr_ops(dev_info_t *pdip, dev_info_t *rdip, ddi_intr_op_t op,
648 ddi_intr_handle_impl_t *hdlp, void *result)
649 {
650 int ret = DDI_FAILURE;
651
652 if (NEXUS_HAS_INTR_OP(pdip)) {
653 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->
654 bus_intr_op)) (pdip, rdip, op, hdlp, result);
655 } else {
656 cmn_err(CE_WARN, "Failed to process interrupt "
657 "for %s%d due to down-rev nexus driver %s%d",
658 ddi_get_name(rdip), ddi_get_instance(rdip),
659 ddi_get_name(pdip), ddi_get_instance(pdip));
660 }
661
662 return (ret);
663 }
664
665 /*ARGSUSED*/
666 uint_t
softlevel1(caddr_t arg)667 softlevel1(caddr_t arg)
668 {
669 softint();
670 return (1);
671 }
672
673 /*
674 * indirection table, to save us some large switch statements
675 * NOTE: This must agree with "INTLEVEL_foo" constants in
676 * <sys/avintr.h>
677 */
678 struct autovec *const vectorlist[] = { 0 };
679
680 /*
681 * This value is exported here for the functions in avintr.c
682 */
683 const uint_t maxautovec = (sizeof (vectorlist) / sizeof (vectorlist[0]));
684
685 /*
686 * Check for machine specific interrupt levels which cannot be reassigned by
687 * settrap(), sun4u version.
688 *
689 * sun4u does not support V8 SPARC "fast trap" handlers.
690 */
691 /*ARGSUSED*/
692 int
exclude_settrap(int lvl)693 exclude_settrap(int lvl)
694 {
695 return (1);
696 }
697
698 /*
699 * Check for machine specific interrupt levels which cannot have interrupt
700 * handlers added. We allow levels 1 through 15; level 0 is nonsense.
701 */
702 /*ARGSUSED*/
703 int
exclude_level(int lvl)704 exclude_level(int lvl)
705 {
706 return ((lvl < 1) || (lvl > 15));
707 }
708
709 /*
710 * Wrapper functions used by New DDI interrupt framework.
711 */
712
713 /*
714 * i_ddi_intr_ops:
715 */
716 int
i_ddi_intr_ops(dev_info_t * dip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)717 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
718 ddi_intr_handle_impl_t *hdlp, void *result)
719 {
720 dev_info_t *pdip = ddi_get_parent(dip);
721 int ret = DDI_FAILURE;
722
723 /*
724 * The following check is required to address
725 * one of the test case of ADDI test suite.
726 */
727 if (pdip == NULL)
728 return (DDI_FAILURE);
729
730 if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
731 return (process_intr_ops(pdip, rdip, op, hdlp, result));
732
733 if (hdlp->ih_vector == 0)
734 hdlp->ih_vector = i_ddi_get_inum(rdip, hdlp->ih_inum);
735
736 if (hdlp->ih_pri == 0)
737 hdlp->ih_pri = i_ddi_get_intr_pri(rdip, hdlp->ih_inum);
738
739 switch (op) {
740 case DDI_INTROP_ADDISR:
741 case DDI_INTROP_REMISR:
742 case DDI_INTROP_GETTARGET:
743 case DDI_INTROP_SETTARGET:
744 case DDI_INTROP_ENABLE:
745 case DDI_INTROP_DISABLE:
746 case DDI_INTROP_BLOCKENABLE:
747 case DDI_INTROP_BLOCKDISABLE:
748 /*
749 * Try and determine our parent and possibly an interrupt
750 * translation. intr parent dip returned held
751 */
752 if ((pdip = get_intr_parent(pdip, dip, hdlp)) == NULL)
753 goto done;
754 }
755
756 ret = process_intr_ops(pdip, rdip, op, hdlp, result);
757
758 done:
759 switch (op) {
760 case DDI_INTROP_ADDISR:
761 case DDI_INTROP_REMISR:
762 case DDI_INTROP_ENABLE:
763 case DDI_INTROP_DISABLE:
764 case DDI_INTROP_BLOCKENABLE:
765 case DDI_INTROP_BLOCKDISABLE:
766 /* Release hold acquired in get_intr_parent() */
767 if (pdip)
768 ndi_rele_devi(pdip);
769 }
770
771 hdlp->ih_vector = 0;
772
773 return (ret);
774 }
775
776 /*
777 * i_ddi_add_ivintr:
778 */
779 /*ARGSUSED*/
780 int
i_ddi_add_ivintr(ddi_intr_handle_impl_t * hdlp)781 i_ddi_add_ivintr(ddi_intr_handle_impl_t *hdlp)
782 {
783 /*
784 * If the PIL was set and is valid use it, otherwise
785 * default it to 1
786 */
787 if ((hdlp->ih_pri < 1) || (hdlp->ih_pri > PIL_MAX))
788 hdlp->ih_pri = 1;
789
790 VERIFY(add_ivintr(hdlp->ih_vector, hdlp->ih_pri,
791 (intrfunc)hdlp->ih_cb_func, hdlp->ih_cb_arg1,
792 hdlp->ih_cb_arg2, NULL) == 0);
793
794 return (DDI_SUCCESS);
795 }
796
797 /*
798 * i_ddi_rem_ivintr:
799 */
800 /*ARGSUSED*/
801 void
i_ddi_rem_ivintr(ddi_intr_handle_impl_t * hdlp)802 i_ddi_rem_ivintr(ddi_intr_handle_impl_t *hdlp)
803 {
804 VERIFY(rem_ivintr(hdlp->ih_vector, hdlp->ih_pri) == 0);
805 }
806
807 /*
808 * i_ddi_get_inum - Get the interrupt number property from the
809 * specified device. Note that this function is called only for
810 * the FIXED interrupt type.
811 */
812 uint32_t
i_ddi_get_inum(dev_info_t * dip,uint_t inumber)813 i_ddi_get_inum(dev_info_t *dip, uint_t inumber)
814 {
815 int32_t intrlen, intr_cells, max_intrs;
816 prop_1275_cell_t *ip, intr_sz;
817 uint32_t intr = 0;
818
819 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
820 DDI_PROP_CANSLEEP,
821 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
822
823 intr_cells = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
824 "#interrupt-cells", 1);
825
826 /* adjust for number of bytes */
827 intr_sz = CELLS_1275_TO_BYTES(intr_cells);
828
829 /* Calculate the number of interrupts */
830 max_intrs = intrlen / intr_sz;
831
832 if (inumber < max_intrs) {
833 prop_1275_cell_t *intrp = ip;
834
835 /* Index into interrupt property */
836 intrp += (inumber * intr_cells);
837
838 cells_1275_copy(intrp, &intr, intr_cells);
839 }
840
841 kmem_free(ip, intrlen);
842 }
843
844 return (intr);
845 }
846
847 /*
848 * i_ddi_get_intr_pri - Get the interrupt-priorities property from
849 * the specified device. Note that this function is called only for
850 * the FIXED interrupt type.
851 */
852 uint32_t
i_ddi_get_intr_pri(dev_info_t * dip,uint_t inumber)853 i_ddi_get_intr_pri(dev_info_t *dip, uint_t inumber)
854 {
855 uint32_t *intr_prio_p;
856 uint32_t pri = 0;
857 int32_t i;
858
859 /*
860 * Use the "interrupt-priorities" property to determine the
861 * the pil/ipl for the interrupt handler.
862 */
863 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
864 "interrupt-priorities", (caddr_t)&intr_prio_p,
865 &i) == DDI_SUCCESS) {
866 if (inumber < (i / sizeof (int32_t)))
867 pri = intr_prio_p[inumber];
868 kmem_free(intr_prio_p, i);
869 }
870
871 return (pri);
872 }
873
874 int
i_ddi_get_intx_nintrs(dev_info_t * dip)875 i_ddi_get_intx_nintrs(dev_info_t *dip)
876 {
877 int32_t intrlen;
878 prop_1275_cell_t intr_sz;
879 prop_1275_cell_t *ip;
880 int32_t ret = 0;
881
882 if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS |
883 DDI_PROP_CANSLEEP,
884 "interrupts", (caddr_t)&ip, &intrlen) == DDI_SUCCESS) {
885
886 intr_sz = ddi_getprop(DDI_DEV_T_ANY, dip, 0,
887 "#interrupt-cells", 1);
888 /* adjust for number of bytes */
889 intr_sz = CELLS_1275_TO_BYTES(intr_sz);
890
891 ret = intrlen / intr_sz;
892
893 kmem_free(ip, intrlen);
894 }
895
896 return (ret);
897 }
898
899 /*
900 * i_ddi_add_softint - allocate and add a software interrupt.
901 *
902 * NOTE: All software interrupts that are registered through DDI
903 * should be triggered only on a single target or CPU.
904 */
905 int
i_ddi_add_softint(ddi_softint_hdl_impl_t * hdlp)906 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
907 {
908 if ((hdlp->ih_private = (void *)add_softintr(hdlp->ih_pri,
909 hdlp->ih_cb_func, hdlp->ih_cb_arg1, SOFTINT_ST)) == NULL)
910 return (DDI_FAILURE);
911
912 return (DDI_SUCCESS);
913 }
914
915 /*
916 * i_ddi_remove_softint - remove and free a software interrupt.
917 */
918 void
i_ddi_remove_softint(ddi_softint_hdl_impl_t * hdlp)919 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
920 {
921 ASSERT(hdlp->ih_private != NULL);
922
923 if (rem_softintr((uint64_t)hdlp->ih_private) == 0)
924 hdlp->ih_private = NULL;
925 }
926
927 /*
928 * i_ddi_trigger_softint - trigger a software interrupt.
929 */
930 int
i_ddi_trigger_softint(ddi_softint_hdl_impl_t * hdlp,void * arg2)931 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
932 {
933 int ret;
934
935 ASSERT(hdlp->ih_private != NULL);
936
937 /* Update the second argument for the software interrupt */
938 if ((ret = update_softint_arg2((uint64_t)hdlp->ih_private, arg2)) == 0)
939 setsoftint((uint64_t)hdlp->ih_private);
940
941 return (ret ? DDI_EPENDING : DDI_SUCCESS);
942 }
943
944 /*
945 * i_ddi_set_softint_pri - change software interrupt priority.
946 */
947 /* ARGSUSED */
948 int
i_ddi_set_softint_pri(ddi_softint_hdl_impl_t * hdlp,uint_t old_pri)949 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
950 {
951 int ret;
952
953 ASSERT(hdlp->ih_private != NULL);
954
955 /* Update the interrupt priority for the software interrupt */
956 ret = update_softint_pri((uint64_t)hdlp->ih_private, hdlp->ih_pri);
957
958 return (ret ? DDI_FAILURE : DDI_SUCCESS);
959 }
960
961 /*ARGSUSED*/
962 void
i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t * hdlp)963 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
964 {
965 }
966
967 /*ARGSUSED*/
968 void
i_ddi_free_intr_phdl(ddi_intr_handle_impl_t * hdlp)969 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
970 {
971 }
972
973 /*
974 * SECTION: DDI Memory/DMA
975 */
976
977 /* set HAT endianess attributes from ddi_device_acc_attr */
978 void
i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t * devaccp,uint_t * hataccp)979 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
980 {
981 if (devaccp != NULL) {
982 if (devaccp->devacc_attr_endian_flags == DDI_STRUCTURE_LE_ACC) {
983 *hataccp &= ~HAT_ENDIAN_MASK;
984 *hataccp |= HAT_STRUCTURE_LE;
985 }
986 }
987 }
988
989 /*
990 * Check if the specified cache attribute is supported on the platform.
991 * This function must be called before i_ddi_cacheattr_to_hatacc().
992 */
993 boolean_t
i_ddi_check_cache_attr(uint_t flags)994 i_ddi_check_cache_attr(uint_t flags)
995 {
996 /*
997 * The cache attributes are mutually exclusive. Any combination of
998 * the attributes leads to a failure.
999 */
1000 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1001 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1002 return (B_FALSE);
1003
1004 /*
1005 * On the sparc architecture, only IOMEM_DATA_CACHED is meaningful,
1006 * but others lead to a failure.
1007 */
1008 if (cache_attr & IOMEM_DATA_CACHED)
1009 return (B_TRUE);
1010 else
1011 return (B_FALSE);
1012 }
1013
1014 /* set HAT cache attributes from the cache attributes */
1015 void
i_ddi_cacheattr_to_hatacc(uint_t flags,uint_t * hataccp)1016 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1017 {
1018 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1019 static char *fname = "i_ddi_cacheattr_to_hatacc";
1020 #if defined(lint)
1021 *hataccp = *hataccp;
1022 #endif
1023 /*
1024 * set HAT attrs according to the cache attrs.
1025 */
1026 switch (cache_attr) {
1027 /*
1028 * The cache coherency is always maintained on SPARC, and
1029 * nothing is required.
1030 */
1031 case IOMEM_DATA_CACHED:
1032 break;
1033 /*
1034 * Both IOMEM_DATA_UC_WRITE_COMBINED and IOMEM_DATA_UNCACHED are
1035 * not supported on SPARC -- this case must not occur because the
1036 * cache attribute is scrutinized before this function is called.
1037 */
1038 case IOMEM_DATA_UNCACHED:
1039 case IOMEM_DATA_UC_WR_COMBINE:
1040 default:
1041 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1042 fname, cache_attr);
1043 }
1044 }
1045
1046 static vmem_t *little_endian_arena;
1047 static vmem_t *big_endian_arena;
1048
1049 static void *
segkmem_alloc_le(vmem_t * vmp,size_t size,int flag)1050 segkmem_alloc_le(vmem_t *vmp, size_t size, int flag)
1051 {
1052 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_LE,
1053 segkmem_page_create, NULL));
1054 }
1055
1056 static void *
segkmem_alloc_be(vmem_t * vmp,size_t size,int flag)1057 segkmem_alloc_be(vmem_t *vmp, size_t size, int flag)
1058 {
1059 return (segkmem_xalloc(vmp, NULL, size, flag, HAT_STRUCTURE_BE,
1060 segkmem_page_create, NULL));
1061 }
1062
1063 void
ka_init(void)1064 ka_init(void)
1065 {
1066 little_endian_arena = vmem_create("little_endian", NULL, 0, 1,
1067 segkmem_alloc_le, segkmem_free, heap_arena, 0, VM_SLEEP);
1068 big_endian_arena = vmem_create("big_endian", NULL, 0, 1,
1069 segkmem_alloc_be, segkmem_free, heap_arena, 0, VM_SLEEP);
1070 }
1071
1072 /*
1073 * Allocate from the system, aligned on a specific boundary.
1074 * The alignment, if non-zero, must be a power of 2.
1075 */
1076 static void *
kalloca(size_t size,size_t align,int cansleep,uint_t endian_flags)1077 kalloca(size_t size, size_t align, int cansleep, uint_t endian_flags)
1078 {
1079 size_t *addr, *raddr, rsize;
1080 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */
1081
1082 align = MAX(align, hdrsize);
1083 ASSERT((align & (align - 1)) == 0);
1084
1085 /*
1086 * We need to allocate
1087 * rsize = size + hdrsize + align - MIN(hdrsize, buffer_alignment)
1088 * bytes to be sure we have enough freedom to satisfy the request.
1089 * Since the buffer alignment depends on the request size, this is
1090 * not straightforward to use directly.
1091 *
1092 * kmem guarantees that any allocation of a 64-byte multiple will be
1093 * 64-byte aligned. Since rounding up the request could add more
1094 * than we save, we compute the size with and without alignment, and
1095 * use the smaller of the two.
1096 */
1097 rsize = size + hdrsize + align;
1098
1099 if (endian_flags == DDI_STRUCTURE_LE_ACC) {
1100 raddr = vmem_alloc(little_endian_arena, rsize,
1101 cansleep ? VM_SLEEP : VM_NOSLEEP);
1102 } else {
1103 raddr = vmem_alloc(big_endian_arena, rsize,
1104 cansleep ? VM_SLEEP : VM_NOSLEEP);
1105 }
1106
1107 if (raddr == NULL)
1108 return (NULL);
1109
1110 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1111 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1112
1113 addr[-3] = (size_t)endian_flags;
1114 addr[-2] = (size_t)raddr;
1115 addr[-1] = rsize;
1116
1117 return (addr);
1118 }
1119
1120 static void
kfreea(void * addr)1121 kfreea(void *addr)
1122 {
1123 size_t *saddr = addr;
1124
1125 if (saddr[-3] == DDI_STRUCTURE_LE_ACC)
1126 vmem_free(little_endian_arena, (void *)saddr[-2], saddr[-1]);
1127 else
1128 vmem_free(big_endian_arena, (void *)saddr[-2], saddr[-1]);
1129 }
1130
1131 int
i_ddi_mem_alloc(dev_info_t * dip,ddi_dma_attr_t * attr,size_t length,int cansleep,int flags,ddi_device_acc_attr_t * accattrp,caddr_t * kaddrp,size_t * real_length,ddi_acc_hdl_t * handlep)1132 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1133 size_t length, int cansleep, int flags,
1134 ddi_device_acc_attr_t *accattrp,
1135 caddr_t *kaddrp, size_t *real_length, ddi_acc_hdl_t *handlep)
1136 {
1137 caddr_t a;
1138 int iomin, align, streaming;
1139 uint_t endian_flags = DDI_NEVERSWAP_ACC;
1140
1141 #if defined(lint)
1142 *handlep = *handlep;
1143 #endif
1144
1145 /*
1146 * Check legality of arguments
1147 */
1148 if (length == 0 || kaddrp == NULL || attr == NULL) {
1149 return (DDI_FAILURE);
1150 }
1151
1152 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1153 (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1154 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1155 return (DDI_FAILURE);
1156 }
1157
1158 /*
1159 * check if a streaming sequential xfer is requested.
1160 */
1161 streaming = (flags & DDI_DMA_STREAMING) ? 1 : 0;
1162
1163 /*
1164 * Drivers for 64-bit capable SBus devices will encode
1165 * the burtsizes for 64-bit xfers in the upper 16-bits.
1166 * For DMA alignment, we use the most restrictive
1167 * alignment of 32-bit and 64-bit xfers.
1168 */
1169 iomin = (attr->dma_attr_burstsizes & 0xffff) |
1170 ((attr->dma_attr_burstsizes >> 16) & 0xffff);
1171 /*
1172 * If a driver set burtsizes to 0, we give him byte alignment.
1173 * Otherwise align at the burtsizes boundary.
1174 */
1175 if (iomin == 0)
1176 iomin = 1;
1177 else
1178 iomin = 1 << (ddi_fls(iomin) - 1);
1179 iomin = maxbit(iomin, attr->dma_attr_minxfer);
1180 iomin = maxbit(iomin, attr->dma_attr_align);
1181 iomin = ddi_iomin(dip, iomin, streaming);
1182 if (iomin == 0)
1183 return (DDI_FAILURE);
1184
1185 ASSERT((iomin & (iomin - 1)) == 0);
1186 ASSERT(iomin >= attr->dma_attr_minxfer);
1187 ASSERT(iomin >= attr->dma_attr_align);
1188
1189 length = P2ROUNDUP(length, iomin);
1190 align = iomin;
1191
1192 if (accattrp != NULL)
1193 endian_flags = accattrp->devacc_attr_endian_flags;
1194
1195 a = kalloca(length, align, cansleep, endian_flags);
1196 if ((*kaddrp = a) == 0) {
1197 return (DDI_FAILURE);
1198 } else {
1199 if (real_length) {
1200 *real_length = length;
1201 }
1202 if (handlep) {
1203 /*
1204 * assign handle information
1205 */
1206 impl_acc_hdl_init(handlep);
1207 }
1208 return (DDI_SUCCESS);
1209 }
1210 }
1211
1212 /*
1213 * covert old DMA limits structure to DMA attribute structure
1214 * and continue
1215 */
1216 int
i_ddi_mem_alloc_lim(dev_info_t * dip,ddi_dma_lim_t * limits,size_t length,int cansleep,int streaming,ddi_device_acc_attr_t * accattrp,caddr_t * kaddrp,uint_t * real_length,ddi_acc_hdl_t * ap)1217 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1218 size_t length, int cansleep, int streaming,
1219 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1220 uint_t *real_length, ddi_acc_hdl_t *ap)
1221 {
1222 ddi_dma_attr_t dma_attr, *attrp;
1223 size_t rlen;
1224 int ret;
1225
1226 ASSERT(limits);
1227 attrp = &dma_attr;
1228 attrp->dma_attr_version = DMA_ATTR_V0;
1229 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1230 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1231 attrp->dma_attr_count_max = (uint64_t)-1;
1232 attrp->dma_attr_align = 1;
1233 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1234 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1235 attrp->dma_attr_maxxfer = (uint64_t)-1;
1236 attrp->dma_attr_seg = (uint64_t)limits->dlim_cntr_max;
1237 attrp->dma_attr_sgllen = 1;
1238 attrp->dma_attr_granular = 1;
1239 attrp->dma_attr_flags = 0;
1240
1241 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1242 accattrp, kaddrp, &rlen, ap);
1243 if (ret == DDI_SUCCESS) {
1244 if (real_length)
1245 *real_length = (uint_t)rlen;
1246 }
1247 return (ret);
1248 }
1249
1250 /* ARGSUSED */
1251 void
i_ddi_mem_free(caddr_t kaddr,ddi_acc_hdl_t * ap)1252 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1253 {
1254 kfreea(kaddr);
1255 }
1256
1257 /*
1258 * SECTION: DDI Data Access
1259 */
1260
1261 static uintptr_t impl_acc_hdl_id = 0;
1262
1263 /*
1264 * access handle allocator
1265 */
1266 ddi_acc_hdl_t *
impl_acc_hdl_get(ddi_acc_handle_t hdl)1267 impl_acc_hdl_get(ddi_acc_handle_t hdl)
1268 {
1269 /*
1270 * Extract the access handle address from the DDI implemented
1271 * access handle
1272 */
1273 return (&((ddi_acc_impl_t *)hdl)->ahi_common);
1274 }
1275
1276 ddi_acc_handle_t
impl_acc_hdl_alloc(int (* waitfp)(caddr_t),caddr_t arg)1277 impl_acc_hdl_alloc(int (*waitfp)(caddr_t), caddr_t arg)
1278 {
1279 ddi_acc_impl_t *hp;
1280 on_trap_data_t *otp;
1281 int sleepflag;
1282
1283 sleepflag = ((waitfp == (int (*)())KM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
1284
1285 /*
1286 * Allocate and initialize the data access handle and error status.
1287 */
1288 if ((hp = kmem_zalloc(sizeof (ddi_acc_impl_t), sleepflag)) == NULL)
1289 goto fail;
1290 if ((hp->ahi_err = (ndi_err_t *)kmem_zalloc(
1291 sizeof (ndi_err_t), sleepflag)) == NULL) {
1292 kmem_free(hp, sizeof (ddi_acc_impl_t));
1293 goto fail;
1294 }
1295 if ((otp = (on_trap_data_t *)kmem_zalloc(
1296 sizeof (on_trap_data_t), sleepflag)) == NULL) {
1297 kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1298 kmem_free(hp, sizeof (ddi_acc_impl_t));
1299 goto fail;
1300 }
1301 hp->ahi_err->err_ontrap = otp;
1302 hp->ahi_common.ah_platform_private = (void *)hp;
1303
1304 return ((ddi_acc_handle_t)hp);
1305 fail:
1306 if ((waitfp != (int (*)())KM_SLEEP) &&
1307 (waitfp != (int (*)())KM_NOSLEEP))
1308 ddi_set_callback(waitfp, arg, &impl_acc_hdl_id);
1309 return (NULL);
1310 }
1311
1312 void
impl_acc_hdl_free(ddi_acc_handle_t handle)1313 impl_acc_hdl_free(ddi_acc_handle_t handle)
1314 {
1315 ddi_acc_impl_t *hp;
1316
1317 /*
1318 * The supplied (ddi_acc_handle_t) is actually a (ddi_acc_impl_t *),
1319 * because that's what we allocated in impl_acc_hdl_alloc() above.
1320 */
1321 hp = (ddi_acc_impl_t *)handle;
1322 if (hp) {
1323 kmem_free(hp->ahi_err->err_ontrap, sizeof (on_trap_data_t));
1324 kmem_free(hp->ahi_err, sizeof (ndi_err_t));
1325 kmem_free(hp, sizeof (ddi_acc_impl_t));
1326 if (impl_acc_hdl_id)
1327 ddi_run_callback(&impl_acc_hdl_id);
1328 }
1329 }
1330
1331 #define PCI_GET_MP_PFN(mp, page_no) ((mp)->dmai_ndvmapages == 1 ? \
1332 (pfn_t)(mp)->dmai_iopte:(((pfn_t *)(mp)->dmai_iopte)[page_no]))
1333
1334 /*
1335 * Function called after a dma fault occurred to find out whether the
1336 * fault address is associated with a driver that is able to handle faults
1337 * and recover from faults.
1338 */
1339 /* ARGSUSED */
1340 int
impl_dma_check(dev_info_t * dip,const void * handle,const void * addr,const void * not_used)1341 impl_dma_check(dev_info_t *dip, const void *handle, const void *addr,
1342 const void *not_used)
1343 {
1344 ddi_dma_impl_t *mp = (ddi_dma_impl_t *)handle;
1345 pfn_t fault_pfn = mmu_btop(*(uint64_t *)addr);
1346 pfn_t comp_pfn;
1347
1348 /*
1349 * The driver has to set DDI_DMA_FLAGERR to recover from dma faults.
1350 */
1351 int page;
1352
1353 ASSERT(mp);
1354 for (page = 0; page < mp->dmai_ndvmapages; page++) {
1355 comp_pfn = PCI_GET_MP_PFN(mp, page);
1356 if (fault_pfn == comp_pfn)
1357 return (DDI_FM_NONFATAL);
1358 }
1359 return (DDI_FM_UNKNOWN);
1360 }
1361
1362 /*
1363 * Function used to check if a given access handle owns the failing address.
1364 * Called by ndi_fmc_error, when we detect a PIO error.
1365 */
1366 /* ARGSUSED */
1367 static int
impl_acc_check(dev_info_t * dip,const void * handle,const void * addr,const void * not_used)1368 impl_acc_check(dev_info_t *dip, const void *handle, const void *addr,
1369 const void *not_used)
1370 {
1371 pfn_t pfn, fault_pfn;
1372 ddi_acc_hdl_t *hp;
1373
1374 hp = impl_acc_hdl_get((ddi_acc_handle_t)handle);
1375
1376 ASSERT(hp);
1377
1378 if (addr != NULL) {
1379 pfn = hp->ah_pfn;
1380 fault_pfn = mmu_btop(*(uint64_t *)addr);
1381 if (fault_pfn >= pfn && fault_pfn < (pfn + hp->ah_pnum))
1382 return (DDI_FM_NONFATAL);
1383 }
1384 return (DDI_FM_UNKNOWN);
1385 }
1386
1387 void
impl_acc_err_init(ddi_acc_hdl_t * handlep)1388 impl_acc_err_init(ddi_acc_hdl_t *handlep)
1389 {
1390 int fmcap;
1391 ndi_err_t *errp;
1392 on_trap_data_t *otp;
1393 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handlep;
1394
1395 fmcap = ddi_fm_capable(handlep->ah_dip);
1396
1397 if (handlep->ah_acc.devacc_attr_version < DDI_DEVICE_ATTR_V1 ||
1398 !DDI_FM_ACC_ERR_CAP(fmcap)) {
1399 handlep->ah_acc.devacc_attr_access = DDI_DEFAULT_ACC;
1400 } else if (DDI_FM_ACC_ERR_CAP(fmcap)) {
1401 if (handlep->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
1402 if (handlep->ah_xfermodes)
1403 return;
1404 i_ddi_drv_ereport_post(handlep->ah_dip, DVR_EFMCAP,
1405 NULL, DDI_NOSLEEP);
1406 } else {
1407 errp = hp->ahi_err;
1408 otp = (on_trap_data_t *)errp->err_ontrap;
1409 otp->ot_handle = (void *)(hp);
1410 otp->ot_prot = OT_DATA_ACCESS;
1411 if (handlep->ah_acc.devacc_attr_access ==
1412 DDI_CAUTIOUS_ACC)
1413 otp->ot_trampoline =
1414 (uintptr_t)&i_ddi_caut_trampoline;
1415 else
1416 otp->ot_trampoline =
1417 (uintptr_t)&i_ddi_prot_trampoline;
1418 errp->err_status = DDI_FM_OK;
1419 errp->err_expected = DDI_FM_ERR_UNEXPECTED;
1420 errp->err_cf = impl_acc_check;
1421 }
1422 }
1423 }
1424
1425 void
impl_acc_hdl_init(ddi_acc_hdl_t * handlep)1426 impl_acc_hdl_init(ddi_acc_hdl_t *handlep)
1427 {
1428 ddi_acc_impl_t *hp;
1429
1430 ASSERT(handlep);
1431
1432 hp = (ddi_acc_impl_t *)handlep;
1433
1434 /*
1435 * check for SW byte-swapping
1436 */
1437 hp->ahi_get8 = i_ddi_get8;
1438 hp->ahi_put8 = i_ddi_put8;
1439 hp->ahi_rep_get8 = i_ddi_rep_get8;
1440 hp->ahi_rep_put8 = i_ddi_rep_put8;
1441 if (handlep->ah_acc.devacc_attr_endian_flags & DDI_STRUCTURE_LE_ACC) {
1442 hp->ahi_get16 = i_ddi_swap_get16;
1443 hp->ahi_get32 = i_ddi_swap_get32;
1444 hp->ahi_get64 = i_ddi_swap_get64;
1445 hp->ahi_put16 = i_ddi_swap_put16;
1446 hp->ahi_put32 = i_ddi_swap_put32;
1447 hp->ahi_put64 = i_ddi_swap_put64;
1448 hp->ahi_rep_get16 = i_ddi_swap_rep_get16;
1449 hp->ahi_rep_get32 = i_ddi_swap_rep_get32;
1450 hp->ahi_rep_get64 = i_ddi_swap_rep_get64;
1451 hp->ahi_rep_put16 = i_ddi_swap_rep_put16;
1452 hp->ahi_rep_put32 = i_ddi_swap_rep_put32;
1453 hp->ahi_rep_put64 = i_ddi_swap_rep_put64;
1454 } else {
1455 hp->ahi_get16 = i_ddi_get16;
1456 hp->ahi_get32 = i_ddi_get32;
1457 hp->ahi_get64 = i_ddi_get64;
1458 hp->ahi_put16 = i_ddi_put16;
1459 hp->ahi_put32 = i_ddi_put32;
1460 hp->ahi_put64 = i_ddi_put64;
1461 hp->ahi_rep_get16 = i_ddi_rep_get16;
1462 hp->ahi_rep_get32 = i_ddi_rep_get32;
1463 hp->ahi_rep_get64 = i_ddi_rep_get64;
1464 hp->ahi_rep_put16 = i_ddi_rep_put16;
1465 hp->ahi_rep_put32 = i_ddi_rep_put32;
1466 hp->ahi_rep_put64 = i_ddi_rep_put64;
1467 }
1468
1469 /* Legacy fault flags and support */
1470 hp->ahi_fault_check = i_ddi_acc_fault_check;
1471 hp->ahi_fault_notify = i_ddi_acc_fault_notify;
1472 hp->ahi_fault = 0;
1473 impl_acc_err_init(handlep);
1474 }
1475
1476 void
i_ddi_acc_set_fault(ddi_acc_handle_t handle)1477 i_ddi_acc_set_fault(ddi_acc_handle_t handle)
1478 {
1479 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1480
1481 if (!hp->ahi_fault) {
1482 hp->ahi_fault = 1;
1483 (*hp->ahi_fault_notify)(hp);
1484 }
1485 }
1486
1487 void
i_ddi_acc_clr_fault(ddi_acc_handle_t handle)1488 i_ddi_acc_clr_fault(ddi_acc_handle_t handle)
1489 {
1490 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)handle;
1491
1492 if (hp->ahi_fault) {
1493 hp->ahi_fault = 0;
1494 (*hp->ahi_fault_notify)(hp);
1495 }
1496 }
1497
1498 /* ARGSUSED */
1499 void
i_ddi_acc_fault_notify(ddi_acc_impl_t * hp)1500 i_ddi_acc_fault_notify(ddi_acc_impl_t *hp)
1501 {
1502 /* Default version, does nothing */
1503 }
1504
1505 /*
1506 * SECTION: Misc functions
1507 */
1508
1509 /*
1510 * instance wrappers
1511 */
1512 /*ARGSUSED*/
1513 uint_t
impl_assign_instance(dev_info_t * dip)1514 impl_assign_instance(dev_info_t *dip)
1515 {
1516 return ((uint_t)-1);
1517 }
1518
1519 /*ARGSUSED*/
1520 int
impl_keep_instance(dev_info_t * dip)1521 impl_keep_instance(dev_info_t *dip)
1522 {
1523 return (DDI_FAILURE);
1524 }
1525
1526 /*ARGSUSED*/
1527 int
impl_free_instance(dev_info_t * dip)1528 impl_free_instance(dev_info_t *dip)
1529 {
1530 return (DDI_FAILURE);
1531 }
1532
1533 /*ARGSUSED*/
1534 int
impl_check_cpu(dev_info_t * devi)1535 impl_check_cpu(dev_info_t *devi)
1536 {
1537 return (DDI_SUCCESS);
1538 }
1539
1540
1541 static const char *nocopydevs[] = {
1542 "SUNW,ffb",
1543 "SUNW,afb",
1544 NULL
1545 };
1546
1547 /*
1548 * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
1549 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
1550 */
1551 /*ARGSUSED*/
1552 int
e_ddi_copyfromdev(dev_info_t * devi,off_t off,const void * devaddr,void * kaddr,size_t len)1553 e_ddi_copyfromdev(dev_info_t *devi,
1554 off_t off, const void *devaddr, void *kaddr, size_t len)
1555 {
1556 const char **argv;
1557
1558 for (argv = nocopydevs; *argv; argv++)
1559 if (strcmp(ddi_binding_name(devi), *argv) == 0) {
1560 bzero(kaddr, len);
1561 return (0);
1562 }
1563
1564 bcopy(devaddr, kaddr, len);
1565 return (0);
1566 }
1567
1568 /*
1569 * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
1570 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
1571 */
1572 /*ARGSUSED*/
1573 int
e_ddi_copytodev(dev_info_t * devi,off_t off,const void * kaddr,void * devaddr,size_t len)1574 e_ddi_copytodev(dev_info_t *devi,
1575 off_t off, const void *kaddr, void *devaddr, size_t len)
1576 {
1577 const char **argv;
1578
1579 for (argv = nocopydevs; *argv; argv++)
1580 if (strcmp(ddi_binding_name(devi), *argv) == 0)
1581 return (1);
1582
1583 bcopy(kaddr, devaddr, len);
1584 return (0);
1585 }
1586
1587 /*
1588 * Boot Configuration
1589 */
1590 idprom_t idprom;
1591
1592 /*
1593 * Configure the hardware on the system.
1594 * Called before the rootfs is mounted
1595 */
1596 void
configure(void)1597 configure(void)
1598 {
1599 extern void i_ddi_init_root();
1600
1601 /* We better have released boot by this time! */
1602 ASSERT(!bootops);
1603
1604 /*
1605 * Determine whether or not to use the fpu, V9 SPARC cpus
1606 * always have one. Could check for existence of a fp queue,
1607 * Ultra I, II and IIa do not have a fp queue.
1608 */
1609 if (fpu_exists)
1610 fpu_probe();
1611 else
1612 cmn_err(CE_CONT, "FPU not in use\n");
1613
1614 #if 0 /* XXXQ - not necessary for sun4u */
1615 /*
1616 * This following line fixes bugid 1041296; we need to do a
1617 * prom_nextnode(0) because this call ALSO patches the DMA+
1618 * bug in Campus-B and Phoenix. The prom uncaches the traptable
1619 * page as a side-effect of devr_next(0) (which prom_nextnode calls),
1620 * so this *must* be executed early on. (XXX This is untrue for sun4u)
1621 */
1622 (void) prom_nextnode((pnode_t)0);
1623 #endif
1624
1625 /*
1626 * Initialize devices on the machine.
1627 * Uses configuration tree built by the PROMs to determine what
1628 * is present, and builds a tree of prototype dev_info nodes
1629 * corresponding to the hardware which identified itself.
1630 */
1631 i_ddi_init_root();
1632
1633 #ifdef DDI_PROP_DEBUG
1634 (void) ddi_prop_debug(1); /* Enable property debugging */
1635 #endif /* DDI_PROP_DEBUG */
1636 }
1637
1638 /*
1639 * The "status" property indicates the operational status of a device.
1640 * If this property is present, the value is a string indicating the
1641 * status of the device as follows:
1642 *
1643 * "okay" operational.
1644 * "disabled" not operational, but might become operational.
1645 * "fail" not operational because a fault has been detected,
1646 * and it is unlikely that the device will become
1647 * operational without repair. no additional details
1648 * are available.
1649 * "fail-xxx" not operational because a fault has been detected,
1650 * and it is unlikely that the device will become
1651 * operational without repair. "xxx" is additional
1652 * human-readable information about the particular
1653 * fault condition that was detected.
1654 *
1655 * The absence of this property means that the operational status is
1656 * unknown or okay.
1657 *
1658 * This routine checks the status property of the specified device node
1659 * and returns 0 if the operational status indicates failure, and 1 otherwise.
1660 *
1661 * The property may exist on plug-in cards the existed before IEEE 1275-1994.
1662 * And, in that case, the property may not even be a string. So we carefully
1663 * check for the value "fail", in the beginning of the string, noting
1664 * the property length.
1665 */
1666 int
status_okay(int id,char * buf,int buflen)1667 status_okay(int id, char *buf, int buflen)
1668 {
1669 char status_buf[OBP_MAXPROPNAME];
1670 char *bufp = buf;
1671 int len = buflen;
1672 int proplen;
1673 static const char *status = "status";
1674 static const char *fail = "fail";
1675 size_t fail_len = strlen(fail);
1676
1677 /*
1678 * Get the proplen ... if it's smaller than "fail",
1679 * or doesn't exist ... then we don't care, since
1680 * the value can't begin with the char string "fail".
1681 *
1682 * NB: proplen, if it's a string, includes the NULL in the
1683 * the size of the property, and fail_len does not.
1684 */
1685 proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
1686 if (proplen <= fail_len) /* nonexistent or uninteresting len */
1687 return (1);
1688
1689 /*
1690 * if a buffer was provided, use it
1691 */
1692 if ((buf == (char *)NULL) || (buflen <= 0)) {
1693 bufp = status_buf;
1694 len = sizeof (status_buf);
1695 }
1696 *bufp = (char)0;
1697
1698 /*
1699 * Get the property into the buffer, to the extent of the buffer,
1700 * and in case the buffer is smaller than the property size,
1701 * NULL terminate the buffer. (This handles the case where
1702 * a buffer was passed in and the caller wants to print the
1703 * value, but the buffer was too small).
1704 */
1705 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
1706 (caddr_t)bufp, len);
1707 *(bufp + len - 1) = (char)0;
1708
1709 /*
1710 * If the value begins with the char string "fail",
1711 * then it means the node is failed. We don't care
1712 * about any other values. We assume the node is ok
1713 * although it might be 'disabled'.
1714 */
1715 if (strncmp(bufp, fail, fail_len) == 0)
1716 return (0);
1717
1718 return (1);
1719 }
1720
1721
1722 /*
1723 * We set the cpu type from the idprom, if we can.
1724 * Note that we just read out the contents of it, for the most part.
1725 */
1726 void
setcputype(void)1727 setcputype(void)
1728 {
1729 /*
1730 * We cache the idprom info early on so that we don't
1731 * rummage through the NVRAM unnecessarily later.
1732 */
1733 (void) prom_getidprom((caddr_t)&idprom, sizeof (idprom));
1734 }
1735
1736 /*
1737 * Here is where we actually infer meanings to the members of idprom_t
1738 */
1739 void
parse_idprom(void)1740 parse_idprom(void)
1741 {
1742 if (idprom.id_format == IDFORM_1) {
1743 (void) localetheraddr((struct ether_addr *)idprom.id_ether,
1744 (struct ether_addr *)NULL);
1745 (void) snprintf(hw_serial, HW_HOSTID_LEN, "%u",
1746 (idprom.id_machine << 24) + idprom.id_serial);
1747 } else
1748 prom_printf("Invalid format code in IDprom.\n");
1749 }
1750
1751 /*
1752 * Allow for implementation specific correction of PROM property values.
1753 */
1754 /*ARGSUSED*/
1755 void
impl_fix_props(dev_info_t * dip,dev_info_t * ch_dip,char * name,int len,caddr_t buffer)1756 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
1757 caddr_t buffer)
1758 {
1759 /*
1760 * There are no adjustments needed in this implementation.
1761 */
1762 }
1763
1764 /*
1765 * The following functions ready a cautious request to go up to the nexus
1766 * driver. It is up to the nexus driver to decide how to process the request.
1767 * It may choose to call i_ddi_do_caut_get/put in this file, or do it
1768 * differently.
1769 */
1770
1771 static void
i_ddi_caut_getput_ctlops(ddi_acc_impl_t * hp,uint64_t host_addr,uint64_t dev_addr,size_t size,size_t repcount,uint_t flags,ddi_ctl_enum_t cmd)1772 i_ddi_caut_getput_ctlops(
1773 ddi_acc_impl_t *hp, uint64_t host_addr, uint64_t dev_addr, size_t size,
1774 size_t repcount, uint_t flags, ddi_ctl_enum_t cmd)
1775 {
1776 peekpoke_ctlops_t cautacc_ctlops_arg;
1777
1778 cautacc_ctlops_arg.size = size;
1779 cautacc_ctlops_arg.dev_addr = dev_addr;
1780 cautacc_ctlops_arg.host_addr = host_addr;
1781 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
1782 cautacc_ctlops_arg.repcount = repcount;
1783 cautacc_ctlops_arg.flags = flags;
1784
1785 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
1786 &cautacc_ctlops_arg, NULL);
1787 }
1788
1789 uint8_t
i_ddi_caut_get8(ddi_acc_impl_t * hp,uint8_t * addr)1790 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
1791 {
1792 uint8_t value;
1793 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1794 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
1795
1796 return (value);
1797 }
1798
1799 uint16_t
i_ddi_caut_get16(ddi_acc_impl_t * hp,uint16_t * addr)1800 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
1801 {
1802 uint16_t value;
1803 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1804 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
1805
1806 return (value);
1807 }
1808
1809 uint32_t
i_ddi_caut_get32(ddi_acc_impl_t * hp,uint32_t * addr)1810 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
1811 {
1812 uint32_t value;
1813 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1814 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
1815
1816 return (value);
1817 }
1818
1819 uint64_t
i_ddi_caut_get64(ddi_acc_impl_t * hp,uint64_t * addr)1820 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
1821 {
1822 uint64_t value;
1823 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1824 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
1825
1826 return (value);
1827 }
1828
1829 void
i_ddi_caut_put8(ddi_acc_impl_t * hp,uint8_t * addr,uint8_t value)1830 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
1831 {
1832 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1833 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
1834 }
1835
1836 void
i_ddi_caut_put16(ddi_acc_impl_t * hp,uint16_t * addr,uint16_t value)1837 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
1838 {
1839 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1840 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
1841 }
1842
1843 void
i_ddi_caut_put32(ddi_acc_impl_t * hp,uint32_t * addr,uint32_t value)1844 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
1845 {
1846 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1847 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
1848 }
1849
1850 void
i_ddi_caut_put64(ddi_acc_impl_t * hp,uint64_t * addr,uint64_t value)1851 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
1852 {
1853 i_ddi_caut_getput_ctlops(hp, (uint64_t)&value, (uint64_t)addr,
1854 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
1855 }
1856
1857 void
i_ddi_caut_rep_get8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1858 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1859 size_t repcount, uint_t flags)
1860 {
1861 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1862 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
1863 }
1864
1865 void
i_ddi_caut_rep_get16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1866 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1867 uint16_t *dev_addr, size_t repcount, uint_t flags)
1868 {
1869 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1870 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
1871 }
1872
1873 void
i_ddi_caut_rep_get32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)1874 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1875 uint32_t *dev_addr, size_t repcount, uint_t flags)
1876 {
1877 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1878 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
1879 }
1880
1881 void
i_ddi_caut_rep_get64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)1882 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1883 uint64_t *dev_addr, size_t repcount, uint_t flags)
1884 {
1885 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1886 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
1887 }
1888
1889 void
i_ddi_caut_rep_put8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)1890 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
1891 size_t repcount, uint_t flags)
1892 {
1893 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1894 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
1895 }
1896
1897 void
i_ddi_caut_rep_put16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)1898 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
1899 uint16_t *dev_addr, size_t repcount, uint_t flags)
1900 {
1901 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1902 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
1903 }
1904
1905 void
i_ddi_caut_rep_put32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)1906 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
1907 uint32_t *dev_addr, size_t repcount, uint_t flags)
1908 {
1909 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1910 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
1911 }
1912
1913 void
i_ddi_caut_rep_put64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)1914 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
1915 uint64_t *dev_addr, size_t repcount, uint_t flags)
1916 {
1917 i_ddi_caut_getput_ctlops(hp, (uint64_t)host_addr, (uint64_t)dev_addr,
1918 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
1919 }
1920
1921 /*
1922 * This is called only to process peek/poke when the DIP is NULL.
1923 * Assume that this is for memory, as nexi take care of device safe accesses.
1924 */
1925 int
peekpoke_mem(ddi_ctl_enum_t cmd,peekpoke_ctlops_t * in_args)1926 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
1927 {
1928 int err = DDI_SUCCESS;
1929 on_trap_data_t otd;
1930
1931 /* Set up protected environment. */
1932 if (!on_trap(&otd, OT_DATA_ACCESS)) {
1933 uintptr_t tramp = otd.ot_trampoline;
1934
1935 if (cmd == DDI_CTLOPS_POKE) {
1936 otd.ot_trampoline = (uintptr_t)&poke_fault;
1937 err = do_poke(in_args->size, (void *)in_args->dev_addr,
1938 (void *)in_args->host_addr);
1939 } else {
1940 otd.ot_trampoline = (uintptr_t)&peek_fault;
1941 err = do_peek(in_args->size, (void *)in_args->dev_addr,
1942 (void *)in_args->host_addr);
1943 }
1944 otd.ot_trampoline = tramp;
1945 } else
1946 err = DDI_FAILURE;
1947
1948 /* Take down protected environment. */
1949 no_trap();
1950
1951 return (err);
1952 }
1953