1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Big Theory Statement for the virtual memory allocator.
28 *
29 * For a more complete description of the main ideas, see:
30 *
31 * Jeff Bonwick and Jonathan Adams,
32 *
33 * Magazines and vmem: Extending the Slab Allocator to Many CPUs and
34 * Arbitrary Resources.
35 *
36 * Proceedings of the 2001 Usenix Conference.
37 * Available as http://www.usenix.org/event/usenix01/bonwick.html
38 *
39 *
40 * 1. General Concepts
41 * -------------------
42 *
43 * 1.1 Overview
44 * ------------
45 * We divide the kernel address space into a number of logically distinct
46 * pieces, or *arenas*: text, data, heap, stack, and so on. Within these
47 * arenas we often subdivide further; for example, we use heap addresses
48 * not only for the kernel heap (kmem_alloc() space), but also for DVMA,
49 * bp_mapin(), /dev/kmem, and even some device mappings like the TOD chip.
50 * The kernel address space, therefore, is most accurately described as
51 * a tree of arenas in which each node of the tree *imports* some subset
52 * of its parent. The virtual memory allocator manages these arenas and
53 * supports their natural hierarchical structure.
54 *
55 * 1.2 Arenas
56 * ----------
57 * An arena is nothing more than a set of integers. These integers most
58 * commonly represent virtual addresses, but in fact they can represent
59 * anything at all. For example, we could use an arena containing the
60 * integers minpid through maxpid to allocate process IDs. vmem_create()
61 * and vmem_destroy() create and destroy vmem arenas. In order to
62 * differentiate between arenas used for adresses and arenas used for
63 * identifiers, the VMC_IDENTIFIER flag is passed to vmem_create(). This
64 * prevents identifier exhaustion from being diagnosed as general memory
65 * failure.
66 *
67 * 1.3 Spans
68 * ---------
69 * We represent the integers in an arena as a collection of *spans*, or
70 * contiguous ranges of integers. For example, the kernel heap consists
71 * of just one span: [kernelheap, ekernelheap). Spans can be added to an
72 * arena in two ways: explicitly, by vmem_add(), or implicitly, by
73 * importing, as described in Section 1.5 below.
74 *
75 * 1.4 Segments
76 * ------------
77 * Spans are subdivided into *segments*, each of which is either allocated
78 * or free. A segment, like a span, is a contiguous range of integers.
79 * Each allocated segment [addr, addr + size) represents exactly one
80 * vmem_alloc(size) that returned addr. Free segments represent the space
81 * between allocated segments. If two free segments are adjacent, we
82 * coalesce them into one larger segment; that is, if segments [a, b) and
83 * [b, c) are both free, we merge them into a single segment [a, c).
84 * The segments within a span are linked together in increasing-address order
85 * so we can easily determine whether coalescing is possible.
86 *
87 * Segments never cross span boundaries. When all segments within
88 * an imported span become free, we return the span to its source.
89 *
90 * 1.5 Imported Memory
91 * -------------------
92 * As mentioned in the overview, some arenas are logical subsets of
93 * other arenas. For example, kmem_va_arena (a virtual address cache
94 * that satisfies most kmem_slab_create() requests) is just a subset
95 * of heap_arena (the kernel heap) that provides caching for the most
96 * common slab sizes. When kmem_va_arena runs out of virtual memory,
97 * it *imports* more from the heap; we say that heap_arena is the
98 * *vmem source* for kmem_va_arena. vmem_create() allows you to
99 * specify any existing vmem arena as the source for your new arena.
100 * Topologically, since every arena is a child of at most one source,
101 * the set of all arenas forms a collection of trees.
102 *
103 * 1.6 Constrained Allocations
104 * ---------------------------
105 * Some vmem clients are quite picky about the kind of address they want.
106 * For example, the DVMA code may need an address that is at a particular
107 * phase with respect to some alignment (to get good cache coloring), or
108 * that lies within certain limits (the addressable range of a device),
109 * or that doesn't cross some boundary (a DMA counter restriction) --
110 * or all of the above. vmem_xalloc() allows the client to specify any
111 * or all of these constraints.
112 *
113 * 1.7 The Vmem Quantum
114 * --------------------
115 * Every arena has a notion of 'quantum', specified at vmem_create() time,
116 * that defines the arena's minimum unit of currency. Most commonly the
117 * quantum is either 1 or PAGESIZE, but any power of 2 is legal.
118 * All vmem allocations are guaranteed to be quantum-aligned.
119 *
120 * 1.8 Quantum Caching
121 * -------------------
122 * A vmem arena may be so hot (frequently used) that the scalability of vmem
123 * allocation is a significant concern. We address this by allowing the most
124 * common allocation sizes to be serviced by the kernel memory allocator,
125 * which provides low-latency per-cpu caching. The qcache_max argument to
126 * vmem_create() specifies the largest allocation size to cache.
127 *
128 * 1.9 Relationship to Kernel Memory Allocator
129 * -------------------------------------------
130 * Every kmem cache has a vmem arena as its slab supplier. The kernel memory
131 * allocator uses vmem_alloc() and vmem_free() to create and destroy slabs.
132 *
133 *
134 * 2. Implementation
135 * -----------------
136 *
137 * 2.1 Segment lists and markers
138 * -----------------------------
139 * The segment structure (vmem_seg_t) contains two doubly-linked lists.
140 *
141 * The arena list (vs_anext/vs_aprev) links all segments in the arena.
142 * In addition to the allocated and free segments, the arena contains
143 * special marker segments at span boundaries. Span markers simplify
144 * coalescing and importing logic by making it easy to tell both when
145 * we're at a span boundary (so we don't coalesce across it), and when
146 * a span is completely free (its neighbors will both be span markers).
147 *
148 * Imported spans will have vs_import set.
149 *
150 * The next-of-kin list (vs_knext/vs_kprev) links segments of the same type:
151 * (1) for allocated segments, vs_knext is the hash chain linkage;
152 * (2) for free segments, vs_knext is the freelist linkage;
153 * (3) for span marker segments, vs_knext is the next span marker.
154 *
155 * 2.2 Allocation hashing
156 * ----------------------
157 * We maintain a hash table of all allocated segments, hashed by address.
158 * This allows vmem_free() to discover the target segment in constant time.
159 * vmem_update() periodically resizes hash tables to keep hash chains short.
160 *
161 * 2.3 Freelist management
162 * -----------------------
163 * We maintain power-of-2 freelists for free segments, i.e. free segments
164 * of size >= 2^n reside in vmp->vm_freelist[n]. To ensure constant-time
165 * allocation, vmem_xalloc() looks not in the first freelist that *might*
166 * satisfy the allocation, but in the first freelist that *definitely*
167 * satisfies the allocation (unless VM_BESTFIT is specified, or all larger
168 * freelists are empty). For example, a 1000-byte allocation will be
169 * satisfied not from the 512..1023-byte freelist, whose members *might*
170 * contains a 1000-byte segment, but from a 1024-byte or larger freelist,
171 * the first member of which will *definitely* satisfy the allocation.
172 * This ensures that vmem_xalloc() works in constant time.
173 *
174 * We maintain a bit map to determine quickly which freelists are non-empty.
175 * vmp->vm_freemap & (1 << n) is non-zero iff vmp->vm_freelist[n] is non-empty.
176 *
177 * The different freelists are linked together into one large freelist,
178 * with the freelist heads serving as markers. Freelist markers simplify
179 * the maintenance of vm_freemap by making it easy to tell when we're taking
180 * the last member of a freelist (both of its neighbors will be markers).
181 *
182 * 2.4 Vmem Locking
183 * ----------------
184 * For simplicity, all arena state is protected by a per-arena lock.
185 * For very hot arenas, use quantum caching for scalability.
186 *
187 * 2.5 Vmem Population
188 * -------------------
189 * Any internal vmem routine that might need to allocate new segment
190 * structures must prepare in advance by calling vmem_populate(), which
191 * will preallocate enough vmem_seg_t's to get is through the entire
192 * operation without dropping the arena lock.
193 *
194 * 2.6 Auditing
195 * ------------
196 * If KMF_AUDIT is set in kmem_flags, we audit vmem allocations as well.
197 * Since virtual addresses cannot be scribbled on, there is no equivalent
198 * in vmem to redzone checking, deadbeef, or other kmem debugging features.
199 * Moreover, we do not audit frees because segment coalescing destroys the
200 * association between an address and its segment structure. Auditing is
201 * thus intended primarily to keep track of who's consuming the arena.
202 * Debugging support could certainly be extended in the future if it proves
203 * necessary, but we do so much live checking via the allocation hash table
204 * that even non-DEBUG systems get quite a bit of sanity checking already.
205 */
206
207 #include <sys/vmem_impl.h>
208 #include <sys/kmem.h>
209 #include <sys/kstat.h>
210 #include <sys/param.h>
211 #include <sys/systm.h>
212 #include <sys/atomic.h>
213 #include <sys/bitmap.h>
214 #include <sys/sysmacros.h>
215 #include <sys/cmn_err.h>
216 #include <sys/debug.h>
217 #include <sys/panic.h>
218
219 #define VMEM_INITIAL 10 /* early vmem arenas */
220 #define VMEM_SEG_INITIAL 200 /* early segments */
221
222 /*
223 * Adding a new span to an arena requires two segment structures: one to
224 * represent the span, and one to represent the free segment it contains.
225 */
226 #define VMEM_SEGS_PER_SPAN_CREATE 2
227
228 /*
229 * Allocating a piece of an existing segment requires 0-2 segment structures
230 * depending on how much of the segment we're allocating.
231 *
232 * To allocate the entire segment, no new segment structures are needed; we
233 * simply move the existing segment structure from the freelist to the
234 * allocation hash table.
235 *
236 * To allocate a piece from the left or right end of the segment, we must
237 * split the segment into two pieces (allocated part and remainder), so we
238 * need one new segment structure to represent the remainder.
239 *
240 * To allocate from the middle of a segment, we need two new segment strucures
241 * to represent the remainders on either side of the allocated part.
242 */
243 #define VMEM_SEGS_PER_EXACT_ALLOC 0
244 #define VMEM_SEGS_PER_LEFT_ALLOC 1
245 #define VMEM_SEGS_PER_RIGHT_ALLOC 1
246 #define VMEM_SEGS_PER_MIDDLE_ALLOC 2
247
248 /*
249 * vmem_populate() preallocates segment structures for vmem to do its work.
250 * It must preallocate enough for the worst case, which is when we must import
251 * a new span and then allocate from the middle of it.
252 */
253 #define VMEM_SEGS_PER_ALLOC_MAX \
254 (VMEM_SEGS_PER_SPAN_CREATE + VMEM_SEGS_PER_MIDDLE_ALLOC)
255
256 /*
257 * The segment structures themselves are allocated from vmem_seg_arena, so
258 * we have a recursion problem when vmem_seg_arena needs to populate itself.
259 * We address this by working out the maximum number of segment structures
260 * this act will require, and multiplying by the maximum number of threads
261 * that we'll allow to do it simultaneously.
262 *
263 * The worst-case segment consumption to populate vmem_seg_arena is as
264 * follows (depicted as a stack trace to indicate why events are occurring):
265 *
266 * (In order to lower the fragmentation in the heap_arena, we specify a
267 * minimum import size for the vmem_metadata_arena which is the same size
268 * as the kmem_va quantum cache allocations. This causes the worst-case
269 * allocation from the vmem_metadata_arena to be 3 segments.)
270 *
271 * vmem_alloc(vmem_seg_arena) -> 2 segs (span create + exact alloc)
272 * segkmem_alloc(vmem_metadata_arena)
273 * vmem_alloc(vmem_metadata_arena) -> 3 segs (span create + left alloc)
274 * vmem_alloc(heap_arena) -> 1 seg (left alloc)
275 * page_create()
276 * hat_memload()
277 * kmem_cache_alloc()
278 * kmem_slab_create()
279 * vmem_alloc(hat_memload_arena) -> 2 segs (span create + exact alloc)
280 * segkmem_alloc(heap_arena)
281 * vmem_alloc(heap_arena) -> 1 seg (left alloc)
282 * page_create()
283 * hat_memload() -> (hat layer won't recurse further)
284 *
285 * The worst-case consumption for each arena is 3 segment structures.
286 * Of course, a 3-seg reserve could easily be blown by multiple threads.
287 * Therefore, we serialize all allocations from vmem_seg_arena (which is OK
288 * because they're rare). We cannot allow a non-blocking allocation to get
289 * tied up behind a blocking allocation, however, so we use separate locks
290 * for VM_SLEEP and VM_NOSLEEP allocations. Similarly, VM_PUSHPAGE allocations
291 * must not block behind ordinary VM_SLEEPs. In addition, if the system is
292 * panicking then we must keep enough resources for panic_thread to do its
293 * work. Thus we have at most four threads trying to allocate from
294 * vmem_seg_arena, and each thread consumes at most three segment structures,
295 * so we must maintain a 12-seg reserve.
296 */
297 #define VMEM_POPULATE_RESERVE 12
298
299 /*
300 * vmem_populate() ensures that each arena has VMEM_MINFREE seg structures
301 * so that it can satisfy the worst-case allocation *and* participate in
302 * worst-case allocation from vmem_seg_arena.
303 */
304 #define VMEM_MINFREE (VMEM_POPULATE_RESERVE + VMEM_SEGS_PER_ALLOC_MAX)
305
306 static vmem_t vmem0[VMEM_INITIAL];
307 static vmem_t *vmem_populator[VMEM_INITIAL];
308 static uint32_t vmem_id;
309 static uint32_t vmem_populators;
310 static vmem_seg_t vmem_seg0[VMEM_SEG_INITIAL];
311 static vmem_seg_t *vmem_segfree;
312 static kmutex_t vmem_list_lock;
313 static kmutex_t vmem_segfree_lock;
314 static kmutex_t vmem_sleep_lock;
315 static kmutex_t vmem_nosleep_lock;
316 static kmutex_t vmem_pushpage_lock;
317 static kmutex_t vmem_panic_lock;
318 static vmem_t *vmem_list;
319 static vmem_t *vmem_metadata_arena;
320 static vmem_t *vmem_seg_arena;
321 static vmem_t *vmem_hash_arena;
322 static vmem_t *vmem_vmem_arena;
323 static long vmem_update_interval = 15; /* vmem_update() every 15 seconds */
324 uint32_t vmem_mtbf; /* mean time between failures [default: off] */
325 size_t vmem_seg_size = sizeof (vmem_seg_t);
326
327 static vmem_kstat_t vmem_kstat_template = {
328 { "mem_inuse", KSTAT_DATA_UINT64 },
329 { "mem_import", KSTAT_DATA_UINT64 },
330 { "mem_total", KSTAT_DATA_UINT64 },
331 { "vmem_source", KSTAT_DATA_UINT32 },
332 { "alloc", KSTAT_DATA_UINT64 },
333 { "free", KSTAT_DATA_UINT64 },
334 { "wait", KSTAT_DATA_UINT64 },
335 { "fail", KSTAT_DATA_UINT64 },
336 { "lookup", KSTAT_DATA_UINT64 },
337 { "search", KSTAT_DATA_UINT64 },
338 { "populate_wait", KSTAT_DATA_UINT64 },
339 { "populate_fail", KSTAT_DATA_UINT64 },
340 { "contains", KSTAT_DATA_UINT64 },
341 { "contains_search", KSTAT_DATA_UINT64 },
342 };
343
344 /*
345 * Insert/delete from arena list (type 'a') or next-of-kin list (type 'k').
346 */
347 #define VMEM_INSERT(vprev, vsp, type) \
348 { \
349 vmem_seg_t *vnext = (vprev)->vs_##type##next; \
350 (vsp)->vs_##type##next = (vnext); \
351 (vsp)->vs_##type##prev = (vprev); \
352 (vprev)->vs_##type##next = (vsp); \
353 (vnext)->vs_##type##prev = (vsp); \
354 }
355
356 #define VMEM_DELETE(vsp, type) \
357 { \
358 vmem_seg_t *vprev = (vsp)->vs_##type##prev; \
359 vmem_seg_t *vnext = (vsp)->vs_##type##next; \
360 (vprev)->vs_##type##next = (vnext); \
361 (vnext)->vs_##type##prev = (vprev); \
362 }
363
364 /*
365 * Get a vmem_seg_t from the global segfree list.
366 */
367 static vmem_seg_t *
vmem_getseg_global(void)368 vmem_getseg_global(void)
369 {
370 vmem_seg_t *vsp;
371
372 mutex_enter(&vmem_segfree_lock);
373 if ((vsp = vmem_segfree) != NULL)
374 vmem_segfree = vsp->vs_knext;
375 mutex_exit(&vmem_segfree_lock);
376
377 return (vsp);
378 }
379
380 /*
381 * Put a vmem_seg_t on the global segfree list.
382 */
383 static void
vmem_putseg_global(vmem_seg_t * vsp)384 vmem_putseg_global(vmem_seg_t *vsp)
385 {
386 mutex_enter(&vmem_segfree_lock);
387 vsp->vs_knext = vmem_segfree;
388 vmem_segfree = vsp;
389 mutex_exit(&vmem_segfree_lock);
390 }
391
392 /*
393 * Get a vmem_seg_t from vmp's segfree list.
394 */
395 static vmem_seg_t *
vmem_getseg(vmem_t * vmp)396 vmem_getseg(vmem_t *vmp)
397 {
398 vmem_seg_t *vsp;
399
400 ASSERT(vmp->vm_nsegfree > 0);
401
402 vsp = vmp->vm_segfree;
403 vmp->vm_segfree = vsp->vs_knext;
404 vmp->vm_nsegfree--;
405
406 return (vsp);
407 }
408
409 /*
410 * Put a vmem_seg_t on vmp's segfree list.
411 */
412 static void
vmem_putseg(vmem_t * vmp,vmem_seg_t * vsp)413 vmem_putseg(vmem_t *vmp, vmem_seg_t *vsp)
414 {
415 vsp->vs_knext = vmp->vm_segfree;
416 vmp->vm_segfree = vsp;
417 vmp->vm_nsegfree++;
418 }
419
420 /*
421 * Add vsp to the appropriate freelist.
422 */
423 static void
vmem_freelist_insert(vmem_t * vmp,vmem_seg_t * vsp)424 vmem_freelist_insert(vmem_t *vmp, vmem_seg_t *vsp)
425 {
426 vmem_seg_t *vprev;
427
428 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
429
430 vprev = (vmem_seg_t *)&vmp->vm_freelist[highbit(VS_SIZE(vsp)) - 1];
431 vsp->vs_type = VMEM_FREE;
432 vmp->vm_freemap |= VS_SIZE(vprev);
433 VMEM_INSERT(vprev, vsp, k);
434
435 cv_broadcast(&vmp->vm_cv);
436 }
437
438 /*
439 * Take vsp from the freelist.
440 */
441 static void
vmem_freelist_delete(vmem_t * vmp,vmem_seg_t * vsp)442 vmem_freelist_delete(vmem_t *vmp, vmem_seg_t *vsp)
443 {
444 ASSERT(*VMEM_HASH(vmp, vsp->vs_start) != vsp);
445 ASSERT(vsp->vs_type == VMEM_FREE);
446
447 if (vsp->vs_knext->vs_start == 0 && vsp->vs_kprev->vs_start == 0) {
448 /*
449 * The segments on both sides of 'vsp' are freelist heads,
450 * so taking vsp leaves the freelist at vsp->vs_kprev empty.
451 */
452 ASSERT(vmp->vm_freemap & VS_SIZE(vsp->vs_kprev));
453 vmp->vm_freemap ^= VS_SIZE(vsp->vs_kprev);
454 }
455 VMEM_DELETE(vsp, k);
456 }
457
458 /*
459 * Add vsp to the allocated-segment hash table and update kstats.
460 */
461 static void
vmem_hash_insert(vmem_t * vmp,vmem_seg_t * vsp)462 vmem_hash_insert(vmem_t *vmp, vmem_seg_t *vsp)
463 {
464 vmem_seg_t **bucket;
465
466 vsp->vs_type = VMEM_ALLOC;
467 bucket = VMEM_HASH(vmp, vsp->vs_start);
468 vsp->vs_knext = *bucket;
469 *bucket = vsp;
470
471 if (vmem_seg_size == sizeof (vmem_seg_t)) {
472 vsp->vs_depth = (uint8_t)getpcstack(vsp->vs_stack,
473 VMEM_STACK_DEPTH);
474 vsp->vs_thread = curthread;
475 vsp->vs_timestamp = gethrtime();
476 } else {
477 vsp->vs_depth = 0;
478 }
479
480 vmp->vm_kstat.vk_alloc.value.ui64++;
481 vmp->vm_kstat.vk_mem_inuse.value.ui64 += VS_SIZE(vsp);
482 }
483
484 /*
485 * Remove vsp from the allocated-segment hash table and update kstats.
486 */
487 static vmem_seg_t *
vmem_hash_delete(vmem_t * vmp,uintptr_t addr,size_t size)488 vmem_hash_delete(vmem_t *vmp, uintptr_t addr, size_t size)
489 {
490 vmem_seg_t *vsp, **prev_vspp;
491
492 prev_vspp = VMEM_HASH(vmp, addr);
493 while ((vsp = *prev_vspp) != NULL) {
494 if (vsp->vs_start == addr) {
495 *prev_vspp = vsp->vs_knext;
496 break;
497 }
498 vmp->vm_kstat.vk_lookup.value.ui64++;
499 prev_vspp = &vsp->vs_knext;
500 }
501
502 if (vsp == NULL)
503 panic("vmem_hash_delete(%p, %lx, %lu): bad free",
504 (void *)vmp, addr, size);
505 if (VS_SIZE(vsp) != size)
506 panic("vmem_hash_delete(%p, %lx, %lu): wrong size (expect %lu)",
507 (void *)vmp, addr, size, VS_SIZE(vsp));
508
509 vmp->vm_kstat.vk_free.value.ui64++;
510 vmp->vm_kstat.vk_mem_inuse.value.ui64 -= size;
511
512 return (vsp);
513 }
514
515 /*
516 * Create a segment spanning the range [start, end) and add it to the arena.
517 */
518 static vmem_seg_t *
vmem_seg_create(vmem_t * vmp,vmem_seg_t * vprev,uintptr_t start,uintptr_t end)519 vmem_seg_create(vmem_t *vmp, vmem_seg_t *vprev, uintptr_t start, uintptr_t end)
520 {
521 vmem_seg_t *newseg = vmem_getseg(vmp);
522
523 newseg->vs_start = start;
524 newseg->vs_end = end;
525 newseg->vs_type = 0;
526 newseg->vs_import = 0;
527
528 VMEM_INSERT(vprev, newseg, a);
529
530 return (newseg);
531 }
532
533 /*
534 * Remove segment vsp from the arena.
535 */
536 static void
vmem_seg_destroy(vmem_t * vmp,vmem_seg_t * vsp)537 vmem_seg_destroy(vmem_t *vmp, vmem_seg_t *vsp)
538 {
539 ASSERT(vsp->vs_type != VMEM_ROTOR);
540 VMEM_DELETE(vsp, a);
541
542 vmem_putseg(vmp, vsp);
543 }
544
545 /*
546 * Add the span [vaddr, vaddr + size) to vmp and update kstats.
547 */
548 static vmem_seg_t *
vmem_span_create(vmem_t * vmp,void * vaddr,size_t size,uint8_t import)549 vmem_span_create(vmem_t *vmp, void *vaddr, size_t size, uint8_t import)
550 {
551 vmem_seg_t *newseg, *span;
552 uintptr_t start = (uintptr_t)vaddr;
553 uintptr_t end = start + size;
554
555 ASSERT(MUTEX_HELD(&vmp->vm_lock));
556
557 if ((start | end) & (vmp->vm_quantum - 1))
558 panic("vmem_span_create(%p, %p, %lu): misaligned",
559 (void *)vmp, vaddr, size);
560
561 span = vmem_seg_create(vmp, vmp->vm_seg0.vs_aprev, start, end);
562 span->vs_type = VMEM_SPAN;
563 span->vs_import = import;
564 VMEM_INSERT(vmp->vm_seg0.vs_kprev, span, k);
565
566 newseg = vmem_seg_create(vmp, span, start, end);
567 vmem_freelist_insert(vmp, newseg);
568
569 if (import)
570 vmp->vm_kstat.vk_mem_import.value.ui64 += size;
571 vmp->vm_kstat.vk_mem_total.value.ui64 += size;
572
573 return (newseg);
574 }
575
576 /*
577 * Remove span vsp from vmp and update kstats.
578 */
579 static void
vmem_span_destroy(vmem_t * vmp,vmem_seg_t * vsp)580 vmem_span_destroy(vmem_t *vmp, vmem_seg_t *vsp)
581 {
582 vmem_seg_t *span = vsp->vs_aprev;
583 size_t size = VS_SIZE(vsp);
584
585 ASSERT(MUTEX_HELD(&vmp->vm_lock));
586 ASSERT(span->vs_type == VMEM_SPAN);
587
588 if (span->vs_import)
589 vmp->vm_kstat.vk_mem_import.value.ui64 -= size;
590 vmp->vm_kstat.vk_mem_total.value.ui64 -= size;
591
592 VMEM_DELETE(span, k);
593
594 vmem_seg_destroy(vmp, vsp);
595 vmem_seg_destroy(vmp, span);
596 }
597
598 /*
599 * Allocate the subrange [addr, addr + size) from segment vsp.
600 * If there are leftovers on either side, place them on the freelist.
601 * Returns a pointer to the segment representing [addr, addr + size).
602 */
603 static vmem_seg_t *
vmem_seg_alloc(vmem_t * vmp,vmem_seg_t * vsp,uintptr_t addr,size_t size)604 vmem_seg_alloc(vmem_t *vmp, vmem_seg_t *vsp, uintptr_t addr, size_t size)
605 {
606 uintptr_t vs_start = vsp->vs_start;
607 uintptr_t vs_end = vsp->vs_end;
608 size_t vs_size = vs_end - vs_start;
609 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
610 uintptr_t addr_end = addr + realsize;
611
612 ASSERT(P2PHASE(vs_start, vmp->vm_quantum) == 0);
613 ASSERT(P2PHASE(addr, vmp->vm_quantum) == 0);
614 ASSERT(vsp->vs_type == VMEM_FREE);
615 ASSERT(addr >= vs_start && addr_end - 1 <= vs_end - 1);
616 ASSERT(addr - 1 <= addr_end - 1);
617
618 /*
619 * If we're allocating from the start of the segment, and the
620 * remainder will be on the same freelist, we can save quite
621 * a bit of work.
622 */
623 if (P2SAMEHIGHBIT(vs_size, vs_size - realsize) && addr == vs_start) {
624 ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
625 vsp->vs_start = addr_end;
626 vsp = vmem_seg_create(vmp, vsp->vs_aprev, addr, addr + size);
627 vmem_hash_insert(vmp, vsp);
628 return (vsp);
629 }
630
631 vmem_freelist_delete(vmp, vsp);
632
633 if (vs_end != addr_end)
634 vmem_freelist_insert(vmp,
635 vmem_seg_create(vmp, vsp, addr_end, vs_end));
636
637 if (vs_start != addr)
638 vmem_freelist_insert(vmp,
639 vmem_seg_create(vmp, vsp->vs_aprev, vs_start, addr));
640
641 vsp->vs_start = addr;
642 vsp->vs_end = addr + size;
643
644 vmem_hash_insert(vmp, vsp);
645 return (vsp);
646 }
647
648 /*
649 * Returns 1 if we are populating, 0 otherwise.
650 * Call it if we want to prevent recursion from HAT.
651 */
652 int
vmem_is_populator()653 vmem_is_populator()
654 {
655 return (mutex_owner(&vmem_sleep_lock) == curthread ||
656 mutex_owner(&vmem_nosleep_lock) == curthread ||
657 mutex_owner(&vmem_pushpage_lock) == curthread ||
658 mutex_owner(&vmem_panic_lock) == curthread);
659 }
660
661 /*
662 * Populate vmp's segfree list with VMEM_MINFREE vmem_seg_t structures.
663 */
664 static int
vmem_populate(vmem_t * vmp,int vmflag)665 vmem_populate(vmem_t *vmp, int vmflag)
666 {
667 char *p;
668 vmem_seg_t *vsp;
669 ssize_t nseg;
670 size_t size;
671 kmutex_t *lp;
672 int i;
673
674 while (vmp->vm_nsegfree < VMEM_MINFREE &&
675 (vsp = vmem_getseg_global()) != NULL)
676 vmem_putseg(vmp, vsp);
677
678 if (vmp->vm_nsegfree >= VMEM_MINFREE)
679 return (1);
680
681 /*
682 * If we're already populating, tap the reserve.
683 */
684 if (vmem_is_populator()) {
685 ASSERT(vmp->vm_cflags & VMC_POPULATOR);
686 return (1);
687 }
688
689 mutex_exit(&vmp->vm_lock);
690
691 if (panic_thread == curthread)
692 lp = &vmem_panic_lock;
693 else if (vmflag & VM_NOSLEEP)
694 lp = &vmem_nosleep_lock;
695 else if (vmflag & VM_PUSHPAGE)
696 lp = &vmem_pushpage_lock;
697 else
698 lp = &vmem_sleep_lock;
699
700 mutex_enter(lp);
701
702 nseg = VMEM_MINFREE + vmem_populators * VMEM_POPULATE_RESERVE;
703 size = P2ROUNDUP(nseg * vmem_seg_size, vmem_seg_arena->vm_quantum);
704 nseg = size / vmem_seg_size;
705
706 /*
707 * The following vmem_alloc() may need to populate vmem_seg_arena
708 * and all the things it imports from. When doing so, it will tap
709 * each arena's reserve to prevent recursion (see the block comment
710 * above the definition of VMEM_POPULATE_RESERVE).
711 */
712 p = vmem_alloc(vmem_seg_arena, size, vmflag & VM_KMFLAGS);
713 if (p == NULL) {
714 mutex_exit(lp);
715 mutex_enter(&vmp->vm_lock);
716 vmp->vm_kstat.vk_populate_fail.value.ui64++;
717 return (0);
718 }
719
720 /*
721 * Restock the arenas that may have been depleted during population.
722 */
723 for (i = 0; i < vmem_populators; i++) {
724 mutex_enter(&vmem_populator[i]->vm_lock);
725 while (vmem_populator[i]->vm_nsegfree < VMEM_POPULATE_RESERVE)
726 vmem_putseg(vmem_populator[i],
727 (vmem_seg_t *)(p + --nseg * vmem_seg_size));
728 mutex_exit(&vmem_populator[i]->vm_lock);
729 }
730
731 mutex_exit(lp);
732 mutex_enter(&vmp->vm_lock);
733
734 /*
735 * Now take our own segments.
736 */
737 ASSERT(nseg >= VMEM_MINFREE);
738 while (vmp->vm_nsegfree < VMEM_MINFREE)
739 vmem_putseg(vmp, (vmem_seg_t *)(p + --nseg * vmem_seg_size));
740
741 /*
742 * Give the remainder to charity.
743 */
744 while (nseg > 0)
745 vmem_putseg_global((vmem_seg_t *)(p + --nseg * vmem_seg_size));
746
747 return (1);
748 }
749
750 /*
751 * Advance a walker from its previous position to 'afterme'.
752 * Note: may drop and reacquire vmp->vm_lock.
753 */
754 static void
vmem_advance(vmem_t * vmp,vmem_seg_t * walker,vmem_seg_t * afterme)755 vmem_advance(vmem_t *vmp, vmem_seg_t *walker, vmem_seg_t *afterme)
756 {
757 vmem_seg_t *vprev = walker->vs_aprev;
758 vmem_seg_t *vnext = walker->vs_anext;
759 vmem_seg_t *vsp = NULL;
760
761 VMEM_DELETE(walker, a);
762
763 if (afterme != NULL)
764 VMEM_INSERT(afterme, walker, a);
765
766 /*
767 * The walker segment's presence may have prevented its neighbors
768 * from coalescing. If so, coalesce them now.
769 */
770 if (vprev->vs_type == VMEM_FREE) {
771 if (vnext->vs_type == VMEM_FREE) {
772 ASSERT(vprev->vs_end == vnext->vs_start);
773 vmem_freelist_delete(vmp, vnext);
774 vmem_freelist_delete(vmp, vprev);
775 vprev->vs_end = vnext->vs_end;
776 vmem_freelist_insert(vmp, vprev);
777 vmem_seg_destroy(vmp, vnext);
778 }
779 vsp = vprev;
780 } else if (vnext->vs_type == VMEM_FREE) {
781 vsp = vnext;
782 }
783
784 /*
785 * vsp could represent a complete imported span,
786 * in which case we must return it to the source.
787 */
788 if (vsp != NULL && vsp->vs_aprev->vs_import &&
789 vmp->vm_source_free != NULL &&
790 vsp->vs_aprev->vs_type == VMEM_SPAN &&
791 vsp->vs_anext->vs_type == VMEM_SPAN) {
792 void *vaddr = (void *)vsp->vs_start;
793 size_t size = VS_SIZE(vsp);
794 ASSERT(size == VS_SIZE(vsp->vs_aprev));
795 vmem_freelist_delete(vmp, vsp);
796 vmem_span_destroy(vmp, vsp);
797 mutex_exit(&vmp->vm_lock);
798 vmp->vm_source_free(vmp->vm_source, vaddr, size);
799 mutex_enter(&vmp->vm_lock);
800 }
801 }
802
803 /*
804 * VM_NEXTFIT allocations deliberately cycle through all virtual addresses
805 * in an arena, so that we avoid reusing addresses for as long as possible.
806 * This helps to catch used-after-freed bugs. It's also the perfect policy
807 * for allocating things like process IDs, where we want to cycle through
808 * all values in order.
809 */
810 static void *
vmem_nextfit_alloc(vmem_t * vmp,size_t size,int vmflag)811 vmem_nextfit_alloc(vmem_t *vmp, size_t size, int vmflag)
812 {
813 vmem_seg_t *vsp, *rotor;
814 uintptr_t addr;
815 size_t realsize = P2ROUNDUP(size, vmp->vm_quantum);
816 size_t vs_size;
817
818 mutex_enter(&vmp->vm_lock);
819
820 if (vmp->vm_nsegfree < VMEM_MINFREE && !vmem_populate(vmp, vmflag)) {
821 mutex_exit(&vmp->vm_lock);
822 return (NULL);
823 }
824
825 /*
826 * The common case is that the segment right after the rotor is free,
827 * and large enough that extracting 'size' bytes won't change which
828 * freelist it's on. In this case we can avoid a *lot* of work.
829 * Instead of the normal vmem_seg_alloc(), we just advance the start
830 * address of the victim segment. Instead of moving the rotor, we
831 * create the new segment structure *behind the rotor*, which has
832 * the same effect. And finally, we know we don't have to coalesce
833 * the rotor's neighbors because the new segment lies between them.
834 */
835 rotor = &vmp->vm_rotor;
836 vsp = rotor->vs_anext;
837 if (vsp->vs_type == VMEM_FREE && (vs_size = VS_SIZE(vsp)) > realsize &&
838 P2SAMEHIGHBIT(vs_size, vs_size - realsize)) {
839 ASSERT(highbit(vs_size) == highbit(vs_size - realsize));
840 addr = vsp->vs_start;
841 vsp->vs_start = addr + realsize;
842 vmem_hash_insert(vmp,
843 vmem_seg_create(vmp, rotor->vs_aprev, addr, addr + size));
844 mutex_exit(&vmp->vm_lock);
845 return ((void *)addr);
846 }
847
848 /*
849 * Starting at the rotor, look for a segment large enough to
850 * satisfy the allocation.
851 */
852 for (;;) {
853 vmp->vm_kstat.vk_search.value.ui64++;
854 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
855 break;
856 vsp = vsp->vs_anext;
857 if (vsp == rotor) {
858 /*
859 * We've come full circle. One possibility is that the
860 * there's actually enough space, but the rotor itself
861 * is preventing the allocation from succeeding because
862 * it's sitting between two free segments. Therefore,
863 * we advance the rotor and see if that liberates a
864 * suitable segment.
865 */
866 vmem_advance(vmp, rotor, rotor->vs_anext);
867 vsp = rotor->vs_aprev;
868 if (vsp->vs_type == VMEM_FREE && VS_SIZE(vsp) >= size)
869 break;
870 /*
871 * If there's a lower arena we can import from, or it's
872 * a VM_NOSLEEP allocation, let vmem_xalloc() handle it.
873 * Otherwise, wait until another thread frees something.
874 */
875 if (vmp->vm_source_alloc != NULL ||
876 (vmflag & VM_NOSLEEP)) {
877 mutex_exit(&vmp->vm_lock);
878 return (vmem_xalloc(vmp, size, vmp->vm_quantum,
879 0, 0, NULL, NULL, vmflag & VM_KMFLAGS));
880 }
881 vmp->vm_kstat.vk_wait.value.ui64++;
882 cv_wait(&vmp->vm_cv, &vmp->vm_lock);
883 vsp = rotor->vs_anext;
884 }
885 }
886
887 /*
888 * We found a segment. Extract enough space to satisfy the allocation.
889 */
890 addr = vsp->vs_start;
891 vsp = vmem_seg_alloc(vmp, vsp, addr, size);
892 ASSERT(vsp->vs_type == VMEM_ALLOC &&
893 vsp->vs_start == addr && vsp->vs_end == addr + size);
894
895 /*
896 * Advance the rotor to right after the newly-allocated segment.
897 * That's where the next VM_NEXTFIT allocation will begin searching.
898 */
899 vmem_advance(vmp, rotor, vsp);
900 mutex_exit(&vmp->vm_lock);
901 return ((void *)addr);
902 }
903
904 /*
905 * Checks if vmp is guaranteed to have a size-byte buffer somewhere on its
906 * freelist. If size is not a power-of-2, it can return a false-negative.
907 *
908 * Used to decide if a newly imported span is superfluous after re-acquiring
909 * the arena lock.
910 */
911 static int
vmem_canalloc(vmem_t * vmp,size_t size)912 vmem_canalloc(vmem_t *vmp, size_t size)
913 {
914 int hb;
915 int flist = 0;
916 ASSERT(MUTEX_HELD(&vmp->vm_lock));
917
918 if ((size & (size - 1)) == 0)
919 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
920 else if ((hb = highbit(size)) < VMEM_FREELISTS)
921 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
922
923 return (flist);
924 }
925
926 /*
927 * Allocate size bytes at offset phase from an align boundary such that the
928 * resulting segment [addr, addr + size) is a subset of [minaddr, maxaddr)
929 * that does not straddle a nocross-aligned boundary.
930 */
931 void *
vmem_xalloc(vmem_t * vmp,size_t size,size_t align_arg,size_t phase,size_t nocross,void * minaddr,void * maxaddr,int vmflag)932 vmem_xalloc(vmem_t *vmp, size_t size, size_t align_arg, size_t phase,
933 size_t nocross, void *minaddr, void *maxaddr, int vmflag)
934 {
935 vmem_seg_t *vsp;
936 vmem_seg_t *vbest = NULL;
937 uintptr_t addr, taddr, start, end;
938 uintptr_t align = (align_arg != 0) ? align_arg : vmp->vm_quantum;
939 void *vaddr, *xvaddr = NULL;
940 size_t xsize;
941 int hb, flist, resv;
942 uint32_t mtbf;
943
944 if ((align | phase | nocross) & (vmp->vm_quantum - 1))
945 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
946 "parameters not vm_quantum aligned",
947 (void *)vmp, size, align_arg, phase, nocross,
948 minaddr, maxaddr, vmflag);
949
950 if (nocross != 0 &&
951 (align > nocross || P2ROUNDUP(phase + size, align) > nocross))
952 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
953 "overconstrained allocation",
954 (void *)vmp, size, align_arg, phase, nocross,
955 minaddr, maxaddr, vmflag);
956
957 if (phase >= align || (align & (align - 1)) != 0 ||
958 (nocross & (nocross - 1)) != 0)
959 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
960 "parameters inconsistent or invalid",
961 (void *)vmp, size, align_arg, phase, nocross,
962 minaddr, maxaddr, vmflag);
963
964 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
965 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
966 return (NULL);
967
968 mutex_enter(&vmp->vm_lock);
969 for (;;) {
970 if (vmp->vm_nsegfree < VMEM_MINFREE &&
971 !vmem_populate(vmp, vmflag))
972 break;
973 do_alloc:
974 /*
975 * highbit() returns the highest bit + 1, which is exactly
976 * what we want: we want to search the first freelist whose
977 * members are *definitely* large enough to satisfy our
978 * allocation. However, there are certain cases in which we
979 * want to look at the next-smallest freelist (which *might*
980 * be able to satisfy the allocation):
981 *
982 * (1) The size is exactly a power of 2, in which case
983 * the smaller freelist is always big enough;
984 *
985 * (2) All other freelists are empty;
986 *
987 * (3) We're in the highest possible freelist, which is
988 * always empty (e.g. the 4GB freelist on 32-bit systems);
989 *
990 * (4) We're doing a best-fit or first-fit allocation.
991 */
992 if ((size & (size - 1)) == 0) {
993 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
994 } else {
995 hb = highbit(size);
996 if ((vmp->vm_freemap >> hb) == 0 ||
997 hb == VMEM_FREELISTS ||
998 (vmflag & (VM_BESTFIT | VM_FIRSTFIT)))
999 hb--;
1000 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1001 }
1002
1003 for (vbest = NULL, vsp = (flist == 0) ? NULL :
1004 vmp->vm_freelist[flist - 1].vs_knext;
1005 vsp != NULL; vsp = vsp->vs_knext) {
1006 vmp->vm_kstat.vk_search.value.ui64++;
1007 if (vsp->vs_start == 0) {
1008 /*
1009 * We're moving up to a larger freelist,
1010 * so if we've already found a candidate,
1011 * the fit can't possibly get any better.
1012 */
1013 if (vbest != NULL)
1014 break;
1015 /*
1016 * Find the next non-empty freelist.
1017 */
1018 flist = lowbit(P2ALIGN(vmp->vm_freemap,
1019 VS_SIZE(vsp)));
1020 if (flist-- == 0)
1021 break;
1022 vsp = (vmem_seg_t *)&vmp->vm_freelist[flist];
1023 ASSERT(vsp->vs_knext->vs_type == VMEM_FREE);
1024 continue;
1025 }
1026 if (vsp->vs_end - 1 < (uintptr_t)minaddr)
1027 continue;
1028 if (vsp->vs_start > (uintptr_t)maxaddr - 1)
1029 continue;
1030 start = MAX(vsp->vs_start, (uintptr_t)minaddr);
1031 end = MIN(vsp->vs_end - 1, (uintptr_t)maxaddr - 1) + 1;
1032 taddr = P2PHASEUP(start, align, phase);
1033 if (P2BOUNDARY(taddr, size, nocross))
1034 taddr +=
1035 P2ROUNDUP(P2NPHASE(taddr, nocross), align);
1036 if ((taddr - start) + size > end - start ||
1037 (vbest != NULL && VS_SIZE(vsp) >= VS_SIZE(vbest)))
1038 continue;
1039 vbest = vsp;
1040 addr = taddr;
1041 if (!(vmflag & VM_BESTFIT) || VS_SIZE(vbest) == size)
1042 break;
1043 }
1044 if (vbest != NULL)
1045 break;
1046 ASSERT(xvaddr == NULL);
1047 if (size == 0)
1048 panic("vmem_xalloc(): size == 0");
1049 if (vmp->vm_source_alloc != NULL && nocross == 0 &&
1050 minaddr == NULL && maxaddr == NULL) {
1051 size_t aneeded, asize;
1052 size_t aquantum = MAX(vmp->vm_quantum,
1053 vmp->vm_source->vm_quantum);
1054 size_t aphase = phase;
1055 if ((align > aquantum) &&
1056 !(vmp->vm_cflags & VMC_XALIGN)) {
1057 aphase = (P2PHASE(phase, aquantum) != 0) ?
1058 align - vmp->vm_quantum : align - aquantum;
1059 ASSERT(aphase >= phase);
1060 }
1061 aneeded = MAX(size + aphase, vmp->vm_min_import);
1062 asize = P2ROUNDUP(aneeded, aquantum);
1063
1064 /*
1065 * Determine how many segment structures we'll consume.
1066 * The calculation must be precise because if we're
1067 * here on behalf of vmem_populate(), we are taking
1068 * segments from a very limited reserve.
1069 */
1070 if (size == asize && !(vmp->vm_cflags & VMC_XALLOC))
1071 resv = VMEM_SEGS_PER_SPAN_CREATE +
1072 VMEM_SEGS_PER_EXACT_ALLOC;
1073 else if (phase == 0 &&
1074 align <= vmp->vm_source->vm_quantum)
1075 resv = VMEM_SEGS_PER_SPAN_CREATE +
1076 VMEM_SEGS_PER_LEFT_ALLOC;
1077 else
1078 resv = VMEM_SEGS_PER_ALLOC_MAX;
1079
1080 ASSERT(vmp->vm_nsegfree >= resv);
1081 vmp->vm_nsegfree -= resv; /* reserve our segs */
1082 mutex_exit(&vmp->vm_lock);
1083 if (vmp->vm_cflags & VMC_XALLOC) {
1084 size_t oasize = asize;
1085 vaddr = ((vmem_ximport_t *)
1086 vmp->vm_source_alloc)(vmp->vm_source,
1087 &asize, align, vmflag & VM_KMFLAGS);
1088 ASSERT(asize >= oasize);
1089 ASSERT(P2PHASE(asize,
1090 vmp->vm_source->vm_quantum) == 0);
1091 ASSERT(!(vmp->vm_cflags & VMC_XALIGN) ||
1092 IS_P2ALIGNED(vaddr, align));
1093 } else {
1094 vaddr = vmp->vm_source_alloc(vmp->vm_source,
1095 asize, vmflag & VM_KMFLAGS);
1096 }
1097 mutex_enter(&vmp->vm_lock);
1098 vmp->vm_nsegfree += resv; /* claim reservation */
1099 aneeded = size + align - vmp->vm_quantum;
1100 aneeded = P2ROUNDUP(aneeded, vmp->vm_quantum);
1101 if (vaddr != NULL) {
1102 /*
1103 * Since we dropped the vmem lock while
1104 * calling the import function, other
1105 * threads could have imported space
1106 * and made our import unnecessary. In
1107 * order to save space, we return
1108 * excess imports immediately.
1109 */
1110 if (asize > aneeded &&
1111 vmp->vm_source_free != NULL &&
1112 vmem_canalloc(vmp, aneeded)) {
1113 ASSERT(resv >=
1114 VMEM_SEGS_PER_MIDDLE_ALLOC);
1115 xvaddr = vaddr;
1116 xsize = asize;
1117 goto do_alloc;
1118 }
1119 vbest = vmem_span_create(vmp, vaddr, asize, 1);
1120 addr = P2PHASEUP(vbest->vs_start, align, phase);
1121 break;
1122 } else if (vmem_canalloc(vmp, aneeded)) {
1123 /*
1124 * Our import failed, but another thread
1125 * added sufficient free memory to the arena
1126 * to satisfy our request. Go back and
1127 * grab it.
1128 */
1129 ASSERT(resv >= VMEM_SEGS_PER_MIDDLE_ALLOC);
1130 goto do_alloc;
1131 }
1132 }
1133
1134 /*
1135 * If the requestor chooses to fail the allocation attempt
1136 * rather than reap wait and retry - get out of the loop.
1137 */
1138 if (vmflag & VM_ABORT)
1139 break;
1140 mutex_exit(&vmp->vm_lock);
1141 if (vmp->vm_cflags & VMC_IDENTIFIER)
1142 kmem_reap_idspace();
1143 else
1144 kmem_reap();
1145 mutex_enter(&vmp->vm_lock);
1146 if (vmflag & VM_NOSLEEP)
1147 break;
1148 vmp->vm_kstat.vk_wait.value.ui64++;
1149 cv_wait(&vmp->vm_cv, &vmp->vm_lock);
1150 }
1151 if (vbest != NULL) {
1152 ASSERT(vbest->vs_type == VMEM_FREE);
1153 ASSERT(vbest->vs_knext != vbest);
1154 /* re-position to end of buffer */
1155 if (vmflag & VM_ENDALLOC) {
1156 addr += ((vbest->vs_end - (addr + size)) / align) *
1157 align;
1158 }
1159 (void) vmem_seg_alloc(vmp, vbest, addr, size);
1160 mutex_exit(&vmp->vm_lock);
1161 if (xvaddr)
1162 vmp->vm_source_free(vmp->vm_source, xvaddr, xsize);
1163 ASSERT(P2PHASE(addr, align) == phase);
1164 ASSERT(!P2BOUNDARY(addr, size, nocross));
1165 ASSERT(addr >= (uintptr_t)minaddr);
1166 ASSERT(addr + size - 1 <= (uintptr_t)maxaddr - 1);
1167 return ((void *)addr);
1168 }
1169 vmp->vm_kstat.vk_fail.value.ui64++;
1170 mutex_exit(&vmp->vm_lock);
1171 if (vmflag & VM_PANIC)
1172 panic("vmem_xalloc(%p, %lu, %lu, %lu, %lu, %p, %p, %x): "
1173 "cannot satisfy mandatory allocation",
1174 (void *)vmp, size, align_arg, phase, nocross,
1175 minaddr, maxaddr, vmflag);
1176 ASSERT(xvaddr == NULL);
1177 return (NULL);
1178 }
1179
1180 /*
1181 * Free the segment [vaddr, vaddr + size), where vaddr was a constrained
1182 * allocation. vmem_xalloc() and vmem_xfree() must always be paired because
1183 * both routines bypass the quantum caches.
1184 */
1185 void
vmem_xfree(vmem_t * vmp,void * vaddr,size_t size)1186 vmem_xfree(vmem_t *vmp, void *vaddr, size_t size)
1187 {
1188 vmem_seg_t *vsp, *vnext, *vprev;
1189
1190 mutex_enter(&vmp->vm_lock);
1191
1192 vsp = vmem_hash_delete(vmp, (uintptr_t)vaddr, size);
1193 vsp->vs_end = P2ROUNDUP(vsp->vs_end, vmp->vm_quantum);
1194
1195 /*
1196 * Attempt to coalesce with the next segment.
1197 */
1198 vnext = vsp->vs_anext;
1199 if (vnext->vs_type == VMEM_FREE) {
1200 ASSERT(vsp->vs_end == vnext->vs_start);
1201 vmem_freelist_delete(vmp, vnext);
1202 vsp->vs_end = vnext->vs_end;
1203 vmem_seg_destroy(vmp, vnext);
1204 }
1205
1206 /*
1207 * Attempt to coalesce with the previous segment.
1208 */
1209 vprev = vsp->vs_aprev;
1210 if (vprev->vs_type == VMEM_FREE) {
1211 ASSERT(vprev->vs_end == vsp->vs_start);
1212 vmem_freelist_delete(vmp, vprev);
1213 vprev->vs_end = vsp->vs_end;
1214 vmem_seg_destroy(vmp, vsp);
1215 vsp = vprev;
1216 }
1217
1218 /*
1219 * If the entire span is free, return it to the source.
1220 */
1221 if (vsp->vs_aprev->vs_import && vmp->vm_source_free != NULL &&
1222 vsp->vs_aprev->vs_type == VMEM_SPAN &&
1223 vsp->vs_anext->vs_type == VMEM_SPAN) {
1224 vaddr = (void *)vsp->vs_start;
1225 size = VS_SIZE(vsp);
1226 ASSERT(size == VS_SIZE(vsp->vs_aprev));
1227 vmem_span_destroy(vmp, vsp);
1228 mutex_exit(&vmp->vm_lock);
1229 vmp->vm_source_free(vmp->vm_source, vaddr, size);
1230 } else {
1231 vmem_freelist_insert(vmp, vsp);
1232 mutex_exit(&vmp->vm_lock);
1233 }
1234 }
1235
1236 /*
1237 * Allocate size bytes from arena vmp. Returns the allocated address
1238 * on success, NULL on failure. vmflag specifies VM_SLEEP or VM_NOSLEEP,
1239 * and may also specify best-fit, first-fit, or next-fit allocation policy
1240 * instead of the default instant-fit policy. VM_SLEEP allocations are
1241 * guaranteed to succeed.
1242 */
1243 void *
vmem_alloc(vmem_t * vmp,size_t size,int vmflag)1244 vmem_alloc(vmem_t *vmp, size_t size, int vmflag)
1245 {
1246 vmem_seg_t *vsp;
1247 uintptr_t addr;
1248 int hb;
1249 int flist = 0;
1250 uint32_t mtbf;
1251
1252 if (size - 1 < vmp->vm_qcache_max)
1253 return (kmem_cache_alloc(vmp->vm_qcache[(size - 1) >>
1254 vmp->vm_qshift], vmflag & VM_KMFLAGS));
1255
1256 if ((mtbf = vmem_mtbf | vmp->vm_mtbf) != 0 && gethrtime() % mtbf == 0 &&
1257 (vmflag & (VM_NOSLEEP | VM_PANIC)) == VM_NOSLEEP)
1258 return (NULL);
1259
1260 if (vmflag & VM_NEXTFIT)
1261 return (vmem_nextfit_alloc(vmp, size, vmflag));
1262
1263 if (vmflag & (VM_BESTFIT | VM_FIRSTFIT))
1264 return (vmem_xalloc(vmp, size, vmp->vm_quantum, 0, 0,
1265 NULL, NULL, vmflag));
1266
1267 /*
1268 * Unconstrained instant-fit allocation from the segment list.
1269 */
1270 mutex_enter(&vmp->vm_lock);
1271
1272 if (vmp->vm_nsegfree >= VMEM_MINFREE || vmem_populate(vmp, vmflag)) {
1273 if ((size & (size - 1)) == 0)
1274 flist = lowbit(P2ALIGN(vmp->vm_freemap, size));
1275 else if ((hb = highbit(size)) < VMEM_FREELISTS)
1276 flist = lowbit(P2ALIGN(vmp->vm_freemap, 1UL << hb));
1277 }
1278
1279 if (flist-- == 0) {
1280 mutex_exit(&vmp->vm_lock);
1281 return (vmem_xalloc(vmp, size, vmp->vm_quantum,
1282 0, 0, NULL, NULL, vmflag));
1283 }
1284
1285 ASSERT(size <= (1UL << flist));
1286 vsp = vmp->vm_freelist[flist].vs_knext;
1287 addr = vsp->vs_start;
1288 if (vmflag & VM_ENDALLOC) {
1289 addr += vsp->vs_end - (addr + size);
1290 }
1291 (void) vmem_seg_alloc(vmp, vsp, addr, size);
1292 mutex_exit(&vmp->vm_lock);
1293 return ((void *)addr);
1294 }
1295
1296 /*
1297 * Free the segment [vaddr, vaddr + size).
1298 */
1299 void
vmem_free(vmem_t * vmp,void * vaddr,size_t size)1300 vmem_free(vmem_t *vmp, void *vaddr, size_t size)
1301 {
1302 if (size - 1 < vmp->vm_qcache_max)
1303 kmem_cache_free(vmp->vm_qcache[(size - 1) >> vmp->vm_qshift],
1304 vaddr);
1305 else
1306 vmem_xfree(vmp, vaddr, size);
1307 }
1308
1309 /*
1310 * Determine whether arena vmp contains the segment [vaddr, vaddr + size).
1311 */
1312 int
vmem_contains(vmem_t * vmp,void * vaddr,size_t size)1313 vmem_contains(vmem_t *vmp, void *vaddr, size_t size)
1314 {
1315 uintptr_t start = (uintptr_t)vaddr;
1316 uintptr_t end = start + size;
1317 vmem_seg_t *vsp;
1318 vmem_seg_t *seg0 = &vmp->vm_seg0;
1319
1320 mutex_enter(&vmp->vm_lock);
1321 vmp->vm_kstat.vk_contains.value.ui64++;
1322 for (vsp = seg0->vs_knext; vsp != seg0; vsp = vsp->vs_knext) {
1323 vmp->vm_kstat.vk_contains_search.value.ui64++;
1324 ASSERT(vsp->vs_type == VMEM_SPAN);
1325 if (start >= vsp->vs_start && end - 1 <= vsp->vs_end - 1)
1326 break;
1327 }
1328 mutex_exit(&vmp->vm_lock);
1329 return (vsp != seg0);
1330 }
1331
1332 /*
1333 * Add the span [vaddr, vaddr + size) to arena vmp.
1334 */
1335 void *
vmem_add(vmem_t * vmp,void * vaddr,size_t size,int vmflag)1336 vmem_add(vmem_t *vmp, void *vaddr, size_t size, int vmflag)
1337 {
1338 if (vaddr == NULL || size == 0)
1339 panic("vmem_add(%p, %p, %lu): bad arguments",
1340 (void *)vmp, vaddr, size);
1341
1342 ASSERT(!vmem_contains(vmp, vaddr, size));
1343
1344 mutex_enter(&vmp->vm_lock);
1345 if (vmem_populate(vmp, vmflag))
1346 (void) vmem_span_create(vmp, vaddr, size, 0);
1347 else
1348 vaddr = NULL;
1349 mutex_exit(&vmp->vm_lock);
1350 return (vaddr);
1351 }
1352
1353 /*
1354 * Walk the vmp arena, applying func to each segment matching typemask.
1355 * If VMEM_REENTRANT is specified, the arena lock is dropped across each
1356 * call to func(); otherwise, it is held for the duration of vmem_walk()
1357 * to ensure a consistent snapshot. Note that VMEM_REENTRANT callbacks
1358 * are *not* necessarily consistent, so they may only be used when a hint
1359 * is adequate.
1360 */
1361 void
vmem_walk(vmem_t * vmp,int typemask,void (* func)(void *,void *,size_t),void * arg)1362 vmem_walk(vmem_t *vmp, int typemask,
1363 void (*func)(void *, void *, size_t), void *arg)
1364 {
1365 vmem_seg_t *vsp;
1366 vmem_seg_t *seg0 = &vmp->vm_seg0;
1367 vmem_seg_t walker;
1368
1369 if (typemask & VMEM_WALKER)
1370 return;
1371
1372 bzero(&walker, sizeof (walker));
1373 walker.vs_type = VMEM_WALKER;
1374
1375 mutex_enter(&vmp->vm_lock);
1376 VMEM_INSERT(seg0, &walker, a);
1377 for (vsp = seg0->vs_anext; vsp != seg0; vsp = vsp->vs_anext) {
1378 if (vsp->vs_type & typemask) {
1379 void *start = (void *)vsp->vs_start;
1380 size_t size = VS_SIZE(vsp);
1381 if (typemask & VMEM_REENTRANT) {
1382 vmem_advance(vmp, &walker, vsp);
1383 mutex_exit(&vmp->vm_lock);
1384 func(arg, start, size);
1385 mutex_enter(&vmp->vm_lock);
1386 vsp = &walker;
1387 } else {
1388 func(arg, start, size);
1389 }
1390 }
1391 }
1392 vmem_advance(vmp, &walker, NULL);
1393 mutex_exit(&vmp->vm_lock);
1394 }
1395
1396 /*
1397 * Return the total amount of memory whose type matches typemask. Thus:
1398 *
1399 * typemask VMEM_ALLOC yields total memory allocated (in use).
1400 * typemask VMEM_FREE yields total memory free (available).
1401 * typemask (VMEM_ALLOC | VMEM_FREE) yields total arena size.
1402 */
1403 size_t
vmem_size(vmem_t * vmp,int typemask)1404 vmem_size(vmem_t *vmp, int typemask)
1405 {
1406 uint64_t size = 0;
1407
1408 if (typemask & VMEM_ALLOC)
1409 size += vmp->vm_kstat.vk_mem_inuse.value.ui64;
1410 if (typemask & VMEM_FREE)
1411 size += vmp->vm_kstat.vk_mem_total.value.ui64 -
1412 vmp->vm_kstat.vk_mem_inuse.value.ui64;
1413 return ((size_t)size);
1414 }
1415
1416 /*
1417 * Create an arena called name whose initial span is [base, base + size).
1418 * The arena's natural unit of currency is quantum, so vmem_alloc()
1419 * guarantees quantum-aligned results. The arena may import new spans
1420 * by invoking afunc() on source, and may return those spans by invoking
1421 * ffunc() on source. To make small allocations fast and scalable,
1422 * the arena offers high-performance caching for each integer multiple
1423 * of quantum up to qcache_max.
1424 */
1425 static vmem_t *
vmem_create_common(const char * name,void * base,size_t size,size_t quantum,void * (* afunc)(vmem_t *,size_t,int),void (* ffunc)(vmem_t *,void *,size_t),vmem_t * source,size_t qcache_max,int vmflag)1426 vmem_create_common(const char *name, void *base, size_t size, size_t quantum,
1427 void *(*afunc)(vmem_t *, size_t, int),
1428 void (*ffunc)(vmem_t *, void *, size_t),
1429 vmem_t *source, size_t qcache_max, int vmflag)
1430 {
1431 int i;
1432 size_t nqcache;
1433 vmem_t *vmp, *cur, **vmpp;
1434 vmem_seg_t *vsp;
1435 vmem_freelist_t *vfp;
1436 uint32_t id = atomic_add_32_nv(&vmem_id, 1);
1437
1438 if (vmem_vmem_arena != NULL) {
1439 vmp = vmem_alloc(vmem_vmem_arena, sizeof (vmem_t),
1440 vmflag & VM_KMFLAGS);
1441 } else {
1442 ASSERT(id <= VMEM_INITIAL);
1443 vmp = &vmem0[id - 1];
1444 }
1445
1446 /* An identifier arena must inherit from another identifier arena */
1447 ASSERT(source == NULL || ((source->vm_cflags & VMC_IDENTIFIER) ==
1448 (vmflag & VMC_IDENTIFIER)));
1449
1450 if (vmp == NULL)
1451 return (NULL);
1452 bzero(vmp, sizeof (vmem_t));
1453
1454 (void) snprintf(vmp->vm_name, VMEM_NAMELEN, "%s", name);
1455 mutex_init(&vmp->vm_lock, NULL, MUTEX_DEFAULT, NULL);
1456 cv_init(&vmp->vm_cv, NULL, CV_DEFAULT, NULL);
1457 vmp->vm_cflags = vmflag;
1458 vmflag &= VM_KMFLAGS;
1459
1460 vmp->vm_quantum = quantum;
1461 vmp->vm_qshift = highbit(quantum) - 1;
1462 nqcache = MIN(qcache_max >> vmp->vm_qshift, VMEM_NQCACHE_MAX);
1463
1464 for (i = 0; i <= VMEM_FREELISTS; i++) {
1465 vfp = &vmp->vm_freelist[i];
1466 vfp->vs_end = 1UL << i;
1467 vfp->vs_knext = (vmem_seg_t *)(vfp + 1);
1468 vfp->vs_kprev = (vmem_seg_t *)(vfp - 1);
1469 }
1470
1471 vmp->vm_freelist[0].vs_kprev = NULL;
1472 vmp->vm_freelist[VMEM_FREELISTS].vs_knext = NULL;
1473 vmp->vm_freelist[VMEM_FREELISTS].vs_end = 0;
1474 vmp->vm_hash_table = vmp->vm_hash0;
1475 vmp->vm_hash_mask = VMEM_HASH_INITIAL - 1;
1476 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1477
1478 vsp = &vmp->vm_seg0;
1479 vsp->vs_anext = vsp;
1480 vsp->vs_aprev = vsp;
1481 vsp->vs_knext = vsp;
1482 vsp->vs_kprev = vsp;
1483 vsp->vs_type = VMEM_SPAN;
1484
1485 vsp = &vmp->vm_rotor;
1486 vsp->vs_type = VMEM_ROTOR;
1487 VMEM_INSERT(&vmp->vm_seg0, vsp, a);
1488
1489 bcopy(&vmem_kstat_template, &vmp->vm_kstat, sizeof (vmem_kstat_t));
1490
1491 vmp->vm_id = id;
1492 if (source != NULL)
1493 vmp->vm_kstat.vk_source_id.value.ui32 = source->vm_id;
1494 vmp->vm_source = source;
1495 vmp->vm_source_alloc = afunc;
1496 vmp->vm_source_free = ffunc;
1497
1498 /*
1499 * Some arenas (like vmem_metadata and kmem_metadata) cannot
1500 * use quantum caching to lower fragmentation. Instead, we
1501 * increase their imports, giving a similar effect.
1502 */
1503 if (vmp->vm_cflags & VMC_NO_QCACHE) {
1504 vmp->vm_min_import =
1505 VMEM_QCACHE_SLABSIZE(nqcache << vmp->vm_qshift);
1506 nqcache = 0;
1507 }
1508
1509 if (nqcache != 0) {
1510 ASSERT(!(vmflag & VM_NOSLEEP));
1511 vmp->vm_qcache_max = nqcache << vmp->vm_qshift;
1512 for (i = 0; i < nqcache; i++) {
1513 char buf[VMEM_NAMELEN + 21];
1514 (void) sprintf(buf, "%s_%lu", vmp->vm_name,
1515 (i + 1) * quantum);
1516 vmp->vm_qcache[i] = kmem_cache_create(buf,
1517 (i + 1) * quantum, quantum, NULL, NULL, NULL,
1518 NULL, vmp, KMC_QCACHE | KMC_NOTOUCH);
1519 }
1520 }
1521
1522 if ((vmp->vm_ksp = kstat_create("vmem", vmp->vm_id, vmp->vm_name,
1523 "vmem", KSTAT_TYPE_NAMED, sizeof (vmem_kstat_t) /
1524 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL)) != NULL) {
1525 vmp->vm_ksp->ks_data = &vmp->vm_kstat;
1526 kstat_install(vmp->vm_ksp);
1527 }
1528
1529 mutex_enter(&vmem_list_lock);
1530 vmpp = &vmem_list;
1531 while ((cur = *vmpp) != NULL)
1532 vmpp = &cur->vm_next;
1533 *vmpp = vmp;
1534 mutex_exit(&vmem_list_lock);
1535
1536 if (vmp->vm_cflags & VMC_POPULATOR) {
1537 ASSERT(vmem_populators < VMEM_INITIAL);
1538 vmem_populator[atomic_add_32_nv(&vmem_populators, 1) - 1] = vmp;
1539 mutex_enter(&vmp->vm_lock);
1540 (void) vmem_populate(vmp, vmflag | VM_PANIC);
1541 mutex_exit(&vmp->vm_lock);
1542 }
1543
1544 if ((base || size) && vmem_add(vmp, base, size, vmflag) == NULL) {
1545 vmem_destroy(vmp);
1546 return (NULL);
1547 }
1548
1549 return (vmp);
1550 }
1551
1552 vmem_t *
vmem_xcreate(const char * name,void * base,size_t size,size_t quantum,vmem_ximport_t * afunc,vmem_free_t * ffunc,vmem_t * source,size_t qcache_max,int vmflag)1553 vmem_xcreate(const char *name, void *base, size_t size, size_t quantum,
1554 vmem_ximport_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1555 size_t qcache_max, int vmflag)
1556 {
1557 ASSERT(!(vmflag & (VMC_POPULATOR | VMC_XALLOC)));
1558 vmflag &= ~(VMC_POPULATOR | VMC_XALLOC);
1559
1560 return (vmem_create_common(name, base, size, quantum,
1561 (vmem_alloc_t *)afunc, ffunc, source, qcache_max,
1562 vmflag | VMC_XALLOC));
1563 }
1564
1565 vmem_t *
vmem_create(const char * name,void * base,size_t size,size_t quantum,vmem_alloc_t * afunc,vmem_free_t * ffunc,vmem_t * source,size_t qcache_max,int vmflag)1566 vmem_create(const char *name, void *base, size_t size, size_t quantum,
1567 vmem_alloc_t *afunc, vmem_free_t *ffunc, vmem_t *source,
1568 size_t qcache_max, int vmflag)
1569 {
1570 ASSERT(!(vmflag & (VMC_XALLOC | VMC_XALIGN)));
1571 vmflag &= ~(VMC_XALLOC | VMC_XALIGN);
1572
1573 return (vmem_create_common(name, base, size, quantum,
1574 afunc, ffunc, source, qcache_max, vmflag));
1575 }
1576
1577 /*
1578 * Destroy arena vmp.
1579 */
1580 void
vmem_destroy(vmem_t * vmp)1581 vmem_destroy(vmem_t *vmp)
1582 {
1583 vmem_t *cur, **vmpp;
1584 vmem_seg_t *seg0 = &vmp->vm_seg0;
1585 vmem_seg_t *vsp, *anext;
1586 size_t leaked;
1587 int i;
1588
1589 mutex_enter(&vmem_list_lock);
1590 vmpp = &vmem_list;
1591 while ((cur = *vmpp) != vmp)
1592 vmpp = &cur->vm_next;
1593 *vmpp = vmp->vm_next;
1594 mutex_exit(&vmem_list_lock);
1595
1596 for (i = 0; i < VMEM_NQCACHE_MAX; i++)
1597 if (vmp->vm_qcache[i])
1598 kmem_cache_destroy(vmp->vm_qcache[i]);
1599
1600 leaked = vmem_size(vmp, VMEM_ALLOC);
1601 if (leaked != 0)
1602 cmn_err(CE_WARN, "vmem_destroy('%s'): leaked %lu %s",
1603 vmp->vm_name, leaked, (vmp->vm_cflags & VMC_IDENTIFIER) ?
1604 "identifiers" : "bytes");
1605
1606 if (vmp->vm_hash_table != vmp->vm_hash0)
1607 vmem_free(vmem_hash_arena, vmp->vm_hash_table,
1608 (vmp->vm_hash_mask + 1) * sizeof (void *));
1609
1610 /*
1611 * Give back the segment structures for anything that's left in the
1612 * arena, e.g. the primary spans and their free segments.
1613 */
1614 VMEM_DELETE(&vmp->vm_rotor, a);
1615 for (vsp = seg0->vs_anext; vsp != seg0; vsp = anext) {
1616 anext = vsp->vs_anext;
1617 vmem_putseg_global(vsp);
1618 }
1619
1620 while (vmp->vm_nsegfree > 0)
1621 vmem_putseg_global(vmem_getseg(vmp));
1622
1623 kstat_delete(vmp->vm_ksp);
1624
1625 mutex_destroy(&vmp->vm_lock);
1626 cv_destroy(&vmp->vm_cv);
1627 vmem_free(vmem_vmem_arena, vmp, sizeof (vmem_t));
1628 }
1629
1630 /*
1631 * Resize vmp's hash table to keep the average lookup depth near 1.0.
1632 */
1633 static void
vmem_hash_rescale(vmem_t * vmp)1634 vmem_hash_rescale(vmem_t *vmp)
1635 {
1636 vmem_seg_t **old_table, **new_table, *vsp;
1637 size_t old_size, new_size, h, nseg;
1638
1639 nseg = (size_t)(vmp->vm_kstat.vk_alloc.value.ui64 -
1640 vmp->vm_kstat.vk_free.value.ui64);
1641
1642 new_size = MAX(VMEM_HASH_INITIAL, 1 << (highbit(3 * nseg + 4) - 2));
1643 old_size = vmp->vm_hash_mask + 1;
1644
1645 if ((old_size >> 1) <= new_size && new_size <= (old_size << 1))
1646 return;
1647
1648 new_table = vmem_alloc(vmem_hash_arena, new_size * sizeof (void *),
1649 VM_NOSLEEP);
1650 if (new_table == NULL)
1651 return;
1652 bzero(new_table, new_size * sizeof (void *));
1653
1654 mutex_enter(&vmp->vm_lock);
1655
1656 old_size = vmp->vm_hash_mask + 1;
1657 old_table = vmp->vm_hash_table;
1658
1659 vmp->vm_hash_mask = new_size - 1;
1660 vmp->vm_hash_table = new_table;
1661 vmp->vm_hash_shift = highbit(vmp->vm_hash_mask);
1662
1663 for (h = 0; h < old_size; h++) {
1664 vsp = old_table[h];
1665 while (vsp != NULL) {
1666 uintptr_t addr = vsp->vs_start;
1667 vmem_seg_t *next_vsp = vsp->vs_knext;
1668 vmem_seg_t **hash_bucket = VMEM_HASH(vmp, addr);
1669 vsp->vs_knext = *hash_bucket;
1670 *hash_bucket = vsp;
1671 vsp = next_vsp;
1672 }
1673 }
1674
1675 mutex_exit(&vmp->vm_lock);
1676
1677 if (old_table != vmp->vm_hash0)
1678 vmem_free(vmem_hash_arena, old_table,
1679 old_size * sizeof (void *));
1680 }
1681
1682 /*
1683 * Perform periodic maintenance on all vmem arenas.
1684 */
1685 void
vmem_update(void * dummy)1686 vmem_update(void *dummy)
1687 {
1688 vmem_t *vmp;
1689
1690 mutex_enter(&vmem_list_lock);
1691 for (vmp = vmem_list; vmp != NULL; vmp = vmp->vm_next) {
1692 /*
1693 * If threads are waiting for resources, wake them up
1694 * periodically so they can issue another kmem_reap()
1695 * to reclaim resources cached by the slab allocator.
1696 */
1697 cv_broadcast(&vmp->vm_cv);
1698
1699 /*
1700 * Rescale the hash table to keep the hash chains short.
1701 */
1702 vmem_hash_rescale(vmp);
1703 }
1704 mutex_exit(&vmem_list_lock);
1705
1706 (void) timeout(vmem_update, dummy, vmem_update_interval * hz);
1707 }
1708
1709 /*
1710 * Prepare vmem for use.
1711 */
1712 vmem_t *
vmem_init(const char * heap_name,void * heap_start,size_t heap_size,size_t heap_quantum,void * (* heap_alloc)(vmem_t *,size_t,int),void (* heap_free)(vmem_t *,void *,size_t))1713 vmem_init(const char *heap_name,
1714 void *heap_start, size_t heap_size, size_t heap_quantum,
1715 void *(*heap_alloc)(vmem_t *, size_t, int),
1716 void (*heap_free)(vmem_t *, void *, size_t))
1717 {
1718 uint32_t id;
1719 int nseg = VMEM_SEG_INITIAL;
1720 vmem_t *heap;
1721
1722 while (--nseg >= 0)
1723 vmem_putseg_global(&vmem_seg0[nseg]);
1724
1725 heap = vmem_create(heap_name,
1726 heap_start, heap_size, heap_quantum,
1727 NULL, NULL, NULL, 0,
1728 VM_SLEEP | VMC_POPULATOR);
1729
1730 vmem_metadata_arena = vmem_create("vmem_metadata",
1731 NULL, 0, heap_quantum,
1732 vmem_alloc, vmem_free, heap, 8 * heap_quantum,
1733 VM_SLEEP | VMC_POPULATOR | VMC_NO_QCACHE);
1734
1735 vmem_seg_arena = vmem_create("vmem_seg",
1736 NULL, 0, heap_quantum,
1737 heap_alloc, heap_free, vmem_metadata_arena, 0,
1738 VM_SLEEP | VMC_POPULATOR);
1739
1740 vmem_hash_arena = vmem_create("vmem_hash",
1741 NULL, 0, 8,
1742 heap_alloc, heap_free, vmem_metadata_arena, 0,
1743 VM_SLEEP);
1744
1745 vmem_vmem_arena = vmem_create("vmem_vmem",
1746 vmem0, sizeof (vmem0), 1,
1747 heap_alloc, heap_free, vmem_metadata_arena, 0,
1748 VM_SLEEP);
1749
1750 for (id = 0; id < vmem_id; id++)
1751 (void) vmem_xalloc(vmem_vmem_arena, sizeof (vmem_t),
1752 1, 0, 0, &vmem0[id], &vmem0[id + 1],
1753 VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
1754
1755 return (heap);
1756 }
1757