1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
28 /* All Rights Reserved */
29
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/bitmap.h>
33 #include <sys/sysmacros.h>
34 #include <sys/systm.h>
35 #include <sys/cred.h>
36 #include <sys/user.h>
37 #include <sys/errno.h>
38 #include <sys/proc.h>
39 #include <sys/poll_impl.h> /* only needed for kludge in sigwaiting_send() */
40 #include <sys/signal.h>
41 #include <sys/siginfo.h>
42 #include <sys/fault.h>
43 #include <sys/ucontext.h>
44 #include <sys/procfs.h>
45 #include <sys/wait.h>
46 #include <sys/class.h>
47 #include <sys/mman.h>
48 #include <sys/procset.h>
49 #include <sys/kmem.h>
50 #include <sys/cpuvar.h>
51 #include <sys/prsystm.h>
52 #include <sys/debug.h>
53 #include <vm/as.h>
54 #include <sys/bitmap.h>
55 #include <c2/audit.h>
56 #include <sys/core.h>
57 #include <sys/schedctl.h>
58 #include <sys/contract/process_impl.h>
59 #include <sys/cyclic.h>
60 #include <sys/dtrace.h>
61 #include <sys/sdt.h>
62
63 const k_sigset_t nullsmask = {0, 0, 0};
64
65 const k_sigset_t fillset = /* MUST be contiguous */
66 {FILLSET0, FILLSET1, FILLSET2};
67
68 const k_sigset_t cantmask =
69 {CANTMASK0, CANTMASK1, CANTMASK2};
70
71 const k_sigset_t cantreset =
72 {(sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGPWR)), 0, 0};
73
74 const k_sigset_t ignoredefault =
75 {(sigmask(SIGCONT)|sigmask(SIGCLD)|sigmask(SIGPWR)
76 |sigmask(SIGWINCH)|sigmask(SIGURG)|sigmask(SIGWAITING)),
77 (sigmask(SIGLWP)|sigmask(SIGCANCEL)|sigmask(SIGFREEZE)
78 |sigmask(SIGTHAW)|sigmask(SIGXRES)|sigmask(SIGJVM1)
79 |sigmask(SIGJVM2)), 0};
80
81 const k_sigset_t stopdefault =
82 {(sigmask(SIGSTOP)|sigmask(SIGTSTP)|sigmask(SIGTTOU)|sigmask(SIGTTIN)),
83 0, 0};
84
85 const k_sigset_t coredefault =
86 {(sigmask(SIGQUIT)|sigmask(SIGILL)|sigmask(SIGTRAP)|sigmask(SIGIOT)
87 |sigmask(SIGEMT)|sigmask(SIGFPE)|sigmask(SIGBUS)|sigmask(SIGSEGV)
88 |sigmask(SIGSYS)|sigmask(SIGXCPU)|sigmask(SIGXFSZ)), 0, 0};
89
90 const k_sigset_t holdvfork =
91 {(sigmask(SIGTTOU)|sigmask(SIGTTIN)|sigmask(SIGTSTP)), 0, 0};
92
93 static int isjobstop(int);
94 static void post_sigcld(proc_t *, sigqueue_t *);
95
96 /*
97 * Internal variables for counting number of user thread stop requests posted.
98 * They may not be accurate at some special situation such as that a virtually
99 * stopped thread starts to run.
100 */
101 static int num_utstop;
102 /*
103 * Internal variables for broadcasting an event when all thread stop requests
104 * are processed.
105 */
106 static kcondvar_t utstop_cv;
107
108 static kmutex_t thread_stop_lock;
109 void del_one_utstop(void);
110
111 /*
112 * Send the specified signal to the specified process.
113 */
114 void
psignal(proc_t * p,int sig)115 psignal(proc_t *p, int sig)
116 {
117 mutex_enter(&p->p_lock);
118 sigtoproc(p, NULL, sig);
119 mutex_exit(&p->p_lock);
120 }
121
122 /*
123 * Send the specified signal to the specified thread.
124 */
125 void
tsignal(kthread_t * t,int sig)126 tsignal(kthread_t *t, int sig)
127 {
128 proc_t *p = ttoproc(t);
129
130 mutex_enter(&p->p_lock);
131 sigtoproc(p, t, sig);
132 mutex_exit(&p->p_lock);
133 }
134
135 int
signal_is_blocked(kthread_t * t,int sig)136 signal_is_blocked(kthread_t *t, int sig)
137 {
138 return (sigismember(&t->t_hold, sig) ||
139 (schedctl_sigblock(t) && !sigismember(&cantmask, sig)));
140 }
141
142 /*
143 * Return true if the signal can safely be discarded on generation.
144 * That is, if there is no need for the signal on the receiving end.
145 * The answer is true if the process is a zombie or
146 * if all of these conditions are true:
147 * the signal is being ignored
148 * the process is single-threaded
149 * the signal is not being traced by /proc
150 * the signal is not blocked by the process
151 * the signal is not being accepted via sigwait()
152 */
153 static int
sig_discardable(proc_t * p,int sig)154 sig_discardable(proc_t *p, int sig)
155 {
156 kthread_t *t = p->p_tlist;
157
158 return (t == NULL || /* if zombie or ... */
159 (sigismember(&p->p_ignore, sig) && /* signal is ignored */
160 t->t_forw == t && /* and single-threaded */
161 !tracing(p, sig) && /* and no /proc tracing */
162 !signal_is_blocked(t, sig) && /* and signal not blocked */
163 !sigismember(&t->t_sigwait, sig))); /* and not being accepted */
164 }
165
166 /*
167 * Return true if this thread is going to eat this signal soon.
168 * Note that, if the signal is SIGKILL, we force stopped threads to be
169 * set running (to make SIGKILL be a sure kill), but only if the process
170 * is not currently locked by /proc (the P_PR_LOCK flag). Code in /proc
171 * relies on the fact that a process will not change shape while P_PR_LOCK
172 * is set (it drops and reacquires p->p_lock while leaving P_PR_LOCK set).
173 * We wish that we could simply call prbarrier() below, in sigtoproc(), to
174 * ensure that the process is not locked by /proc, but prbarrier() drops
175 * and reacquires p->p_lock and dropping p->p_lock here would be damaging.
176 */
177 int
eat_signal(kthread_t * t,int sig)178 eat_signal(kthread_t *t, int sig)
179 {
180 int rval = 0;
181 ASSERT(THREAD_LOCK_HELD(t));
182
183 /*
184 * Do not do anything if the target thread has the signal blocked.
185 */
186 if (!signal_is_blocked(t, sig)) {
187 t->t_sig_check = 1; /* have thread do an issig */
188 if (ISWAKEABLE(t) || ISWAITING(t)) {
189 setrun_locked(t);
190 rval = 1;
191 } else if (t->t_state == TS_STOPPED && sig == SIGKILL &&
192 !(ttoproc(t)->p_proc_flag & P_PR_LOCK)) {
193 ttoproc(t)->p_stopsig = 0;
194 t->t_dtrace_stop = 0;
195 t->t_schedflag |= TS_XSTART | TS_PSTART;
196 setrun_locked(t);
197 } else if (t != curthread && t->t_state == TS_ONPROC) {
198 aston(t); /* make it do issig promptly */
199 if (t->t_cpu != CPU)
200 poke_cpu(t->t_cpu->cpu_id);
201 rval = 1;
202 } else if (t->t_state == TS_RUN) {
203 rval = 1;
204 }
205 }
206
207 return (rval);
208 }
209
210 /*
211 * Post a signal.
212 * If a non-null thread pointer is passed, then post the signal
213 * to the thread/lwp, otherwise post the signal to the process.
214 */
215 void
sigtoproc(proc_t * p,kthread_t * t,int sig)216 sigtoproc(proc_t *p, kthread_t *t, int sig)
217 {
218 kthread_t *tt;
219 int ext = !(curproc->p_flag & SSYS) &&
220 (curproc->p_ct_process != p->p_ct_process);
221
222 ASSERT(MUTEX_HELD(&p->p_lock));
223
224 /* System processes don't get signals */
225 if (sig <= 0 || sig >= NSIG || (p->p_flag & SSYS))
226 return;
227
228 /*
229 * Regardless of origin or directedness,
230 * SIGKILL kills all lwps in the process immediately
231 * and jobcontrol signals affect all lwps in the process.
232 */
233 if (sig == SIGKILL) {
234 p->p_flag |= SKILLED | (ext ? SEXTKILLED : 0);
235 t = NULL;
236 } else if (sig == SIGCONT) {
237 /*
238 * The SSCONT flag will remain set until a stopping
239 * signal comes in (below). This is harmless.
240 */
241 p->p_flag |= SSCONT;
242 sigdelq(p, NULL, SIGSTOP);
243 sigdelq(p, NULL, SIGTSTP);
244 sigdelq(p, NULL, SIGTTOU);
245 sigdelq(p, NULL, SIGTTIN);
246 sigdiffset(&p->p_sig, &stopdefault);
247 sigdiffset(&p->p_extsig, &stopdefault);
248 p->p_stopsig = 0;
249 if ((tt = p->p_tlist) != NULL) {
250 do {
251 sigdelq(p, tt, SIGSTOP);
252 sigdelq(p, tt, SIGTSTP);
253 sigdelq(p, tt, SIGTTOU);
254 sigdelq(p, tt, SIGTTIN);
255 sigdiffset(&tt->t_sig, &stopdefault);
256 sigdiffset(&tt->t_extsig, &stopdefault);
257 } while ((tt = tt->t_forw) != p->p_tlist);
258 }
259 if ((tt = p->p_tlist) != NULL) {
260 do {
261 thread_lock(tt);
262 if (tt->t_state == TS_STOPPED &&
263 tt->t_whystop == PR_JOBCONTROL) {
264 tt->t_schedflag |= TS_XSTART;
265 setrun_locked(tt);
266 }
267 thread_unlock(tt);
268 } while ((tt = tt->t_forw) != p->p_tlist);
269 }
270 } else if (sigismember(&stopdefault, sig)) {
271 /*
272 * This test has a race condition which we can't fix:
273 * By the time the stopping signal is received by
274 * the target process/thread, the signal handler
275 * and/or the detached state might have changed.
276 */
277 if (PTOU(p)->u_signal[sig-1] == SIG_DFL &&
278 (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned))
279 p->p_flag &= ~SSCONT;
280 sigdelq(p, NULL, SIGCONT);
281 sigdelset(&p->p_sig, SIGCONT);
282 sigdelset(&p->p_extsig, SIGCONT);
283 if ((tt = p->p_tlist) != NULL) {
284 do {
285 sigdelq(p, tt, SIGCONT);
286 sigdelset(&tt->t_sig, SIGCONT);
287 sigdelset(&tt->t_extsig, SIGCONT);
288 } while ((tt = tt->t_forw) != p->p_tlist);
289 }
290 }
291
292 if (sig_discardable(p, sig)) {
293 DTRACE_PROC3(signal__discard, kthread_t *, p->p_tlist,
294 proc_t *, p, int, sig);
295 return;
296 }
297
298 if (t != NULL) {
299 /*
300 * This is a directed signal, wake up the lwp.
301 */
302 sigaddset(&t->t_sig, sig);
303 if (ext)
304 sigaddset(&t->t_extsig, sig);
305 thread_lock(t);
306 (void) eat_signal(t, sig);
307 thread_unlock(t);
308 DTRACE_PROC2(signal__send, kthread_t *, t, int, sig);
309 } else if ((tt = p->p_tlist) != NULL) {
310 /*
311 * Make sure that some lwp that already exists
312 * in the process fields the signal soon.
313 * Wake up an interruptibly sleeping lwp if necessary.
314 * For SIGKILL make all of the lwps see the signal;
315 * This is needed to guarantee a sure kill for processes
316 * with a mix of realtime and non-realtime threads.
317 */
318 int su = 0;
319
320 sigaddset(&p->p_sig, sig);
321 if (ext)
322 sigaddset(&p->p_extsig, sig);
323 do {
324 thread_lock(tt);
325 if (eat_signal(tt, sig) && sig != SIGKILL) {
326 thread_unlock(tt);
327 break;
328 }
329 if (SUSPENDED(tt))
330 su++;
331 thread_unlock(tt);
332 } while ((tt = tt->t_forw) != p->p_tlist);
333 /*
334 * If the process is deadlocked, make somebody run and die.
335 */
336 if (sig == SIGKILL && p->p_stat != SIDL &&
337 p->p_lwprcnt == 0 && p->p_lwpcnt == su &&
338 !(p->p_proc_flag & P_PR_LOCK)) {
339 thread_lock(tt);
340 p->p_lwprcnt++;
341 tt->t_schedflag |= TS_CSTART;
342 setrun_locked(tt);
343 thread_unlock(tt);
344 }
345
346 DTRACE_PROC2(signal__send, kthread_t *, tt, int, sig);
347 }
348 }
349
350 static int
isjobstop(int sig)351 isjobstop(int sig)
352 {
353 proc_t *p = ttoproc(curthread);
354
355 ASSERT(MUTEX_HELD(&p->p_lock));
356
357 if (PTOU(curproc)->u_signal[sig-1] == SIG_DFL &&
358 sigismember(&stopdefault, sig)) {
359 /*
360 * If SIGCONT has been posted since we promoted this signal
361 * from pending to current, then don't do a jobcontrol stop.
362 */
363 if (!(p->p_flag & SSCONT) &&
364 (sig == SIGSTOP || !p->p_pgidp->pid_pgorphaned) &&
365 curthread != p->p_agenttp) {
366 sigqueue_t *sqp;
367
368 stop(PR_JOBCONTROL, sig);
369 mutex_exit(&p->p_lock);
370 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
371 mutex_enter(&pidlock);
372 /*
373 * Only the first lwp to continue notifies the parent.
374 */
375 if (p->p_pidflag & CLDCONT)
376 siginfofree(sqp);
377 else {
378 p->p_pidflag |= CLDCONT;
379 p->p_wcode = CLD_CONTINUED;
380 p->p_wdata = SIGCONT;
381 sigcld(p, sqp);
382 }
383 mutex_exit(&pidlock);
384 mutex_enter(&p->p_lock);
385 }
386 return (1);
387 }
388 return (0);
389 }
390
391 /*
392 * Returns true if the current process has a signal to process, and
393 * the signal is not held. The signal to process is put in p_cursig.
394 * This is asked at least once each time a process enters the system
395 * (though this can usually be done without actually calling issig by
396 * checking the pending signal masks). A signal does not do anything
397 * directly to a process; it sets a flag that asks the process to do
398 * something to itself.
399 *
400 * The "why" argument indicates the allowable side-effects of the call:
401 *
402 * FORREAL: Extract the next pending signal from p_sig into p_cursig;
403 * stop the process if a stop has been requested or if a traced signal
404 * is pending.
405 *
406 * JUSTLOOKING: Don't stop the process, just indicate whether or not
407 * a signal might be pending (FORREAL is needed to tell for sure).
408 *
409 * XXX: Changes to the logic in these routines should be propagated
410 * to lm_sigispending(). See bug 1201594.
411 */
412
413 static int issig_forreal(void);
414 static int issig_justlooking(void);
415
416 int
issig(int why)417 issig(int why)
418 {
419 ASSERT(why == FORREAL || why == JUSTLOOKING);
420
421 return ((why == FORREAL)? issig_forreal() : issig_justlooking());
422 }
423
424
425 static int
issig_justlooking(void)426 issig_justlooking(void)
427 {
428 kthread_t *t = curthread;
429 klwp_t *lwp = ttolwp(t);
430 proc_t *p = ttoproc(t);
431 k_sigset_t set;
432
433 /*
434 * This function answers the question:
435 * "Is there any reason to call issig_forreal()?"
436 *
437 * We have to answer the question w/o grabbing any locks
438 * because we are (most likely) being called after we
439 * put ourselves on the sleep queue.
440 */
441
442 if (t->t_dtrace_stop | t->t_dtrace_sig)
443 return (1);
444
445 /*
446 * Another piece of complexity in this process. When single-stepping a
447 * process, we don't want an intervening signal or TP_PAUSE request to
448 * suspend the current thread. Otherwise, the controlling process will
449 * hang beacuse we will be stopped with TS_PSTART set in t_schedflag.
450 * We will trigger any remaining signals when we re-enter the kernel on
451 * the single step trap.
452 */
453 if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP)
454 return (0);
455
456 if ((lwp->lwp_asleep && MUSTRETURN(p, t)) ||
457 (p->p_flag & (SEXITLWPS|SKILLED)) ||
458 (lwp->lwp_nostop == 0 &&
459 (p->p_stopsig | (p->p_flag & (SHOLDFORK1|SHOLDWATCH)) |
460 (t->t_proc_flag &
461 (TP_PRSTOP|TP_HOLDLWP|TP_CHKPT|TP_PAUSE)))) ||
462 lwp->lwp_cursig)
463 return (1);
464
465 if (p->p_flag & SVFWAIT)
466 return (0);
467 set = p->p_sig;
468 sigorset(&set, &t->t_sig);
469 if (schedctl_sigblock(t)) /* all blockable signals blocked */
470 sigandset(&set, &cantmask);
471 else
472 sigdiffset(&set, &t->t_hold);
473 if (p->p_flag & SVFORK)
474 sigdiffset(&set, &holdvfork);
475
476 if (!sigisempty(&set)) {
477 int sig;
478
479 for (sig = 1; sig < NSIG; sig++) {
480 if (sigismember(&set, sig) &&
481 (tracing(p, sig) ||
482 sigismember(&t->t_sigwait, sig) ||
483 !sigismember(&p->p_ignore, sig))) {
484 /*
485 * Don't promote a signal that will stop
486 * the process when lwp_nostop is set.
487 */
488 if (!lwp->lwp_nostop ||
489 PTOU(p)->u_signal[sig-1] != SIG_DFL ||
490 !sigismember(&stopdefault, sig))
491 return (1);
492 }
493 }
494 }
495
496 return (0);
497 }
498
499 static int
issig_forreal(void)500 issig_forreal(void)
501 {
502 int sig = 0, ext = 0;
503 kthread_t *t = curthread;
504 klwp_t *lwp = ttolwp(t);
505 proc_t *p = ttoproc(t);
506 int toproc = 0;
507 int sigcld_found = 0;
508 int nostop_break = 0;
509
510 ASSERT(t->t_state == TS_ONPROC);
511
512 mutex_enter(&p->p_lock);
513 schedctl_finish_sigblock(t);
514
515 if (t->t_dtrace_stop | t->t_dtrace_sig) {
516 if (t->t_dtrace_stop) {
517 /*
518 * If DTrace's "stop" action has been invoked on us,
519 * set TP_PRSTOP.
520 */
521 t->t_proc_flag |= TP_PRSTOP;
522 }
523
524 if (t->t_dtrace_sig != 0) {
525 k_siginfo_t info;
526
527 /*
528 * Post the signal generated as the result of
529 * DTrace's "raise" action as a normal signal before
530 * the full-fledged signal checking begins.
531 */
532 bzero(&info, sizeof (info));
533 info.si_signo = t->t_dtrace_sig;
534 info.si_code = SI_DTRACE;
535
536 sigaddq(p, NULL, &info, KM_NOSLEEP);
537
538 t->t_dtrace_sig = 0;
539 }
540 }
541
542 for (;;) {
543 if (p->p_flag & (SEXITLWPS|SKILLED)) {
544 lwp->lwp_cursig = sig = SIGKILL;
545 lwp->lwp_extsig = ext = (p->p_flag & SEXTKILLED) != 0;
546 t->t_sig_check = 1;
547 break;
548 }
549
550 /*
551 * Another piece of complexity in this process. When
552 * single-stepping a process, we don't want an intervening
553 * signal or TP_PAUSE request to suspend the current thread.
554 * Otherwise, the controlling process will hang beacuse we will
555 * be stopped with TS_PSTART set in t_schedflag. We will
556 * trigger any remaining signals when we re-enter the kernel on
557 * the single step trap.
558 */
559 if (lwp->lwp_pcb.pcb_flags & NORMAL_STEP) {
560 sig = 0;
561 break;
562 }
563
564 /*
565 * Hold the lwp here for watchpoint manipulation.
566 */
567 if ((t->t_proc_flag & TP_PAUSE) && !lwp->lwp_nostop) {
568 stop(PR_SUSPENDED, SUSPEND_PAUSE);
569 continue;
570 }
571
572 if (lwp->lwp_asleep && MUSTRETURN(p, t)) {
573 if ((sig = lwp->lwp_cursig) != 0) {
574 /*
575 * Make sure we call ISSIG() in post_syscall()
576 * to re-validate this current signal.
577 */
578 t->t_sig_check = 1;
579 }
580 break;
581 }
582
583 /*
584 * If the request is PR_CHECKPOINT, ignore the rest of signals
585 * or requests. Honor other stop requests or signals later.
586 * Go back to top of loop here to check if an exit or hold
587 * event has occurred while stopped.
588 */
589 if ((t->t_proc_flag & TP_CHKPT) && !lwp->lwp_nostop) {
590 stop(PR_CHECKPOINT, 0);
591 continue;
592 }
593
594 /*
595 * Honor SHOLDFORK1, SHOLDWATCH, and TP_HOLDLWP before dealing
596 * with signals or /proc. Another lwp is executing fork1(),
597 * or is undergoing watchpoint activity (remapping a page),
598 * or is executing lwp_suspend() on this lwp.
599 * Again, go back to top of loop to check if an exit
600 * or hold event has occurred while stopped.
601 */
602 if (((p->p_flag & (SHOLDFORK1|SHOLDWATCH)) ||
603 (t->t_proc_flag & TP_HOLDLWP)) && !lwp->lwp_nostop) {
604 stop(PR_SUSPENDED, SUSPEND_NORMAL);
605 continue;
606 }
607
608 /*
609 * Honor requested stop before dealing with the
610 * current signal; a debugger may change it.
611 * Do not want to go back to loop here since this is a special
612 * stop that means: make incremental progress before the next
613 * stop. The danger is that returning to top of loop would most
614 * likely drop the thread right back here to stop soon after it
615 * was continued, violating the incremental progress request.
616 */
617 if ((t->t_proc_flag & TP_PRSTOP) && !lwp->lwp_nostop)
618 stop(PR_REQUESTED, 0);
619
620 /*
621 * If a debugger wants us to take a signal it will have
622 * left it in lwp->lwp_cursig. If lwp_cursig has been cleared
623 * or if it's being ignored, we continue on looking for another
624 * signal. Otherwise we return the specified signal, provided
625 * it's not a signal that causes a job control stop.
626 *
627 * When stopped on PR_JOBCONTROL, there is no current
628 * signal; we cancel lwp->lwp_cursig temporarily before
629 * calling isjobstop(). The current signal may be reset
630 * by a debugger while we are stopped in isjobstop().
631 *
632 * If the current thread is accepting the signal
633 * (via sigwait(), sigwaitinfo(), or sigtimedwait()),
634 * we allow the signal to be accepted, even if it is
635 * being ignored, and without causing a job control stop.
636 */
637 if ((sig = lwp->lwp_cursig) != 0) {
638 ext = lwp->lwp_extsig;
639 lwp->lwp_cursig = 0;
640 lwp->lwp_extsig = 0;
641 if (sigismember(&t->t_sigwait, sig) ||
642 (!sigismember(&p->p_ignore, sig) &&
643 !isjobstop(sig))) {
644 if (p->p_flag & (SEXITLWPS|SKILLED)) {
645 sig = SIGKILL;
646 ext = (p->p_flag & SEXTKILLED) != 0;
647 }
648 lwp->lwp_cursig = (uchar_t)sig;
649 lwp->lwp_extsig = (uchar_t)ext;
650 break;
651 }
652 /*
653 * The signal is being ignored or it caused a
654 * job-control stop. If another current signal
655 * has not been established, return the current
656 * siginfo, if any, to the memory manager.
657 */
658 if (lwp->lwp_cursig == 0 && lwp->lwp_curinfo != NULL) {
659 siginfofree(lwp->lwp_curinfo);
660 lwp->lwp_curinfo = NULL;
661 }
662 /*
663 * Loop around again in case we were stopped
664 * on a job control signal and a /proc stop
665 * request was posted or another current signal
666 * was established while we were stopped.
667 */
668 continue;
669 }
670
671 if (p->p_stopsig && !lwp->lwp_nostop &&
672 curthread != p->p_agenttp) {
673 /*
674 * Some lwp in the process has already stopped
675 * showing PR_JOBCONTROL. This is a stop in
676 * sympathy with the other lwp, even if this
677 * lwp is blocking the stopping signal.
678 */
679 stop(PR_JOBCONTROL, p->p_stopsig);
680 continue;
681 }
682
683 /*
684 * Loop on the pending signals until we find a
685 * non-held signal that is traced or not ignored.
686 * First check the signals pending for the lwp,
687 * then the signals pending for the process as a whole.
688 */
689 for (;;) {
690 if ((sig = fsig(&t->t_sig, t)) != 0) {
691 toproc = 0;
692 if (tracing(p, sig) ||
693 sigismember(&t->t_sigwait, sig) ||
694 !sigismember(&p->p_ignore, sig)) {
695 if (sigismember(&t->t_extsig, sig))
696 ext = 1;
697 break;
698 }
699 sigdelset(&t->t_sig, sig);
700 sigdelset(&t->t_extsig, sig);
701 sigdelq(p, t, sig);
702 } else if ((sig = fsig(&p->p_sig, t)) != 0) {
703 if (sig == SIGCLD)
704 sigcld_found = 1;
705 toproc = 1;
706 if (tracing(p, sig) ||
707 sigismember(&t->t_sigwait, sig) ||
708 !sigismember(&p->p_ignore, sig)) {
709 if (sigismember(&p->p_extsig, sig))
710 ext = 1;
711 break;
712 }
713 sigdelset(&p->p_sig, sig);
714 sigdelset(&p->p_extsig, sig);
715 sigdelq(p, NULL, sig);
716 } else {
717 /* no signal was found */
718 break;
719 }
720 }
721
722 if (sig == 0) { /* no signal was found */
723 if (p->p_flag & (SEXITLWPS|SKILLED)) {
724 lwp->lwp_cursig = SIGKILL;
725 sig = SIGKILL;
726 ext = (p->p_flag & SEXTKILLED) != 0;
727 }
728 break;
729 }
730
731 /*
732 * If we have been informed not to stop (i.e., we are being
733 * called from within a network operation), then don't promote
734 * the signal at this time, just return the signal number.
735 * We will call issig() again later when it is safe.
736 *
737 * fsig() does not return a jobcontrol stopping signal
738 * with a default action of stopping the process if
739 * lwp_nostop is set, so we won't be causing a bogus
740 * EINTR by this action. (Such a signal is eaten by
741 * isjobstop() when we loop around to do final checks.)
742 */
743 if (lwp->lwp_nostop) {
744 nostop_break = 1;
745 break;
746 }
747
748 /*
749 * Promote the signal from pending to current.
750 *
751 * Note that sigdeq() will set lwp->lwp_curinfo to NULL
752 * if no siginfo_t exists for this signal.
753 */
754 lwp->lwp_cursig = (uchar_t)sig;
755 lwp->lwp_extsig = (uchar_t)ext;
756 t->t_sig_check = 1; /* so post_syscall will see signal */
757 ASSERT(lwp->lwp_curinfo == NULL);
758 sigdeq(p, toproc ? NULL : t, sig, &lwp->lwp_curinfo);
759
760 if (tracing(p, sig))
761 stop(PR_SIGNALLED, sig);
762
763 /*
764 * Loop around to check for requested stop before
765 * performing the usual current-signal actions.
766 */
767 }
768
769 mutex_exit(&p->p_lock);
770
771 /*
772 * If SIGCLD was dequeued from the process's signal queue,
773 * search for other pending SIGCLD's from the list of children.
774 */
775 if (sigcld_found)
776 sigcld_repost();
777
778 if (sig != 0)
779 (void) undo_watch_step(NULL);
780
781 /*
782 * If we have been blocked since the p_lock was dropped off
783 * above, then this promoted signal might have been handled
784 * already when we were on the way back from sleep queue, so
785 * just ignore it.
786 * If we have been informed not to stop, just return the signal
787 * number. Also see comments above.
788 */
789 if (!nostop_break) {
790 sig = lwp->lwp_cursig;
791 }
792
793 return (sig != 0);
794 }
795
796 /*
797 * Return true if the process is currently stopped showing PR_JOBCONTROL.
798 * This is true only if all of the process's lwp's are so stopped.
799 * If this is asked by one of the lwps in the process, exclude that lwp.
800 */
801 int
jobstopped(proc_t * p)802 jobstopped(proc_t *p)
803 {
804 kthread_t *t;
805
806 ASSERT(MUTEX_HELD(&p->p_lock));
807
808 if ((t = p->p_tlist) == NULL)
809 return (0);
810
811 do {
812 thread_lock(t);
813 /* ignore current, zombie and suspended lwps in the test */
814 if (!(t == curthread || t->t_state == TS_ZOMB ||
815 SUSPENDED(t)) &&
816 (t->t_state != TS_STOPPED ||
817 t->t_whystop != PR_JOBCONTROL)) {
818 thread_unlock(t);
819 return (0);
820 }
821 thread_unlock(t);
822 } while ((t = t->t_forw) != p->p_tlist);
823
824 return (1);
825 }
826
827 /*
828 * Put ourself (curthread) into the stopped state and notify tracers.
829 */
830 void
stop(int why,int what)831 stop(int why, int what)
832 {
833 kthread_t *t = curthread;
834 proc_t *p = ttoproc(t);
835 klwp_t *lwp = ttolwp(t);
836 kthread_t *tx;
837 lwpent_t *lep;
838 int procstop;
839 int flags = TS_ALLSTART;
840 hrtime_t stoptime;
841
842 /*
843 * Can't stop a system process.
844 */
845 if (p == NULL || lwp == NULL || (p->p_flag & SSYS) || p->p_as == &kas)
846 return;
847
848 ASSERT(MUTEX_HELD(&p->p_lock));
849
850 if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
851 /*
852 * Don't stop an lwp with SIGKILL pending.
853 * Don't stop if the process or lwp is exiting.
854 */
855 if (lwp->lwp_cursig == SIGKILL ||
856 sigismember(&t->t_sig, SIGKILL) ||
857 sigismember(&p->p_sig, SIGKILL) ||
858 (t->t_proc_flag & TP_LWPEXIT) ||
859 (p->p_flag & (SEXITLWPS|SKILLED))) {
860 p->p_stopsig = 0;
861 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
862 return;
863 }
864 }
865
866 /*
867 * Make sure we don't deadlock on a recursive call to prstop().
868 * prstop() sets the lwp_nostop flag.
869 */
870 if (lwp->lwp_nostop)
871 return;
872
873 /*
874 * Make sure the lwp is in an orderly state for inspection
875 * by a debugger through /proc or for dumping via core().
876 */
877 schedctl_finish_sigblock(t);
878 t->t_proc_flag |= TP_STOPPING; /* must set before dropping p_lock */
879 mutex_exit(&p->p_lock);
880 stoptime = gethrtime();
881 prstop(why, what);
882 (void) undo_watch_step(NULL);
883 mutex_enter(&p->p_lock);
884 ASSERT(t->t_state == TS_ONPROC);
885
886 switch (why) {
887 case PR_CHECKPOINT:
888 /*
889 * The situation may have changed since we dropped
890 * and reacquired p->p_lock. Double-check now
891 * whether we should stop or not.
892 */
893 if (!(t->t_proc_flag & TP_CHKPT)) {
894 t->t_proc_flag &= ~TP_STOPPING;
895 return;
896 }
897 t->t_proc_flag &= ~TP_CHKPT;
898 flags &= ~TS_RESUME;
899 break;
900
901 case PR_JOBCONTROL:
902 ASSERT(what == SIGSTOP || what == SIGTSTP ||
903 what == SIGTTIN || what == SIGTTOU);
904 flags &= ~TS_XSTART;
905 break;
906
907 case PR_SUSPENDED:
908 ASSERT(what == SUSPEND_NORMAL || what == SUSPEND_PAUSE);
909 /*
910 * The situation may have changed since we dropped
911 * and reacquired p->p_lock. Double-check now
912 * whether we should stop or not.
913 */
914 if (what == SUSPEND_PAUSE) {
915 if (!(t->t_proc_flag & TP_PAUSE)) {
916 t->t_proc_flag &= ~TP_STOPPING;
917 return;
918 }
919 flags &= ~TS_UNPAUSE;
920 } else {
921 if (!((t->t_proc_flag & TP_HOLDLWP) ||
922 (p->p_flag & (SHOLDFORK|SHOLDFORK1|SHOLDWATCH)))) {
923 t->t_proc_flag &= ~TP_STOPPING;
924 return;
925 }
926 /*
927 * If SHOLDFORK is in effect and we are stopping
928 * while asleep (not at the top of the stack),
929 * we return now to allow the hold to take effect
930 * when we reach the top of the kernel stack.
931 */
932 if (lwp->lwp_asleep && (p->p_flag & SHOLDFORK)) {
933 t->t_proc_flag &= ~TP_STOPPING;
934 return;
935 }
936 flags &= ~TS_CSTART;
937 }
938 break;
939
940 default: /* /proc stop */
941 flags &= ~TS_PSTART;
942 /*
943 * Do synchronous stop unless the async-stop flag is set.
944 * If why is PR_REQUESTED and t->t_dtrace_stop flag is set,
945 * then no debugger is present and we also do synchronous stop.
946 */
947 if ((why != PR_REQUESTED || t->t_dtrace_stop) &&
948 !(p->p_proc_flag & P_PR_ASYNC)) {
949 int notify;
950
951 for (tx = t->t_forw; tx != t; tx = tx->t_forw) {
952 notify = 0;
953 thread_lock(tx);
954 if (ISTOPPED(tx) ||
955 (tx->t_proc_flag & TP_PRSTOP)) {
956 thread_unlock(tx);
957 continue;
958 }
959 tx->t_proc_flag |= TP_PRSTOP;
960 tx->t_sig_check = 1;
961 if (tx->t_state == TS_SLEEP &&
962 (tx->t_flag & T_WAKEABLE)) {
963 /*
964 * Don't actually wake it up if it's
965 * in one of the lwp_*() syscalls.
966 * Mark it virtually stopped and
967 * notify /proc waiters (below).
968 */
969 if (tx->t_wchan0 == NULL)
970 setrun_locked(tx);
971 else {
972 tx->t_proc_flag |= TP_PRVSTOP;
973 tx->t_stoptime = stoptime;
974 notify = 1;
975 }
976 }
977
978 /* Move waiting thread to run queue */
979 if (ISWAITING(tx))
980 setrun_locked(tx);
981
982 /*
983 * force the thread into the kernel
984 * if it is not already there.
985 */
986 if (tx->t_state == TS_ONPROC &&
987 tx->t_cpu != CPU)
988 poke_cpu(tx->t_cpu->cpu_id);
989 thread_unlock(tx);
990 lep = p->p_lwpdir[tx->t_dslot].ld_entry;
991 if (notify && lep->le_trace)
992 prnotify(lep->le_trace);
993 }
994 /*
995 * We do this just in case one of the threads we asked
996 * to stop is in holdlwps() (called from cfork()) or
997 * lwp_suspend().
998 */
999 cv_broadcast(&p->p_holdlwps);
1000 }
1001 break;
1002 }
1003
1004 t->t_stoptime = stoptime;
1005
1006 if (why == PR_JOBCONTROL || (why == PR_SUSPENDED && p->p_stopsig)) {
1007 /*
1008 * Determine if the whole process is jobstopped.
1009 */
1010 if (jobstopped(p)) {
1011 sigqueue_t *sqp;
1012 int sig;
1013
1014 if ((sig = p->p_stopsig) == 0)
1015 p->p_stopsig = (uchar_t)(sig = what);
1016 mutex_exit(&p->p_lock);
1017 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1018 mutex_enter(&pidlock);
1019 /*
1020 * The last lwp to stop notifies the parent.
1021 * Turn off the CLDCONT flag now so the first
1022 * lwp to continue knows what to do.
1023 */
1024 p->p_pidflag &= ~CLDCONT;
1025 p->p_wcode = CLD_STOPPED;
1026 p->p_wdata = sig;
1027 sigcld(p, sqp);
1028 /*
1029 * Grab p->p_lock before releasing pidlock so the
1030 * parent and the child don't have a race condition.
1031 */
1032 mutex_enter(&p->p_lock);
1033 mutex_exit(&pidlock);
1034 p->p_stopsig = 0;
1035 } else if (why == PR_JOBCONTROL && p->p_stopsig == 0) {
1036 /*
1037 * Set p->p_stopsig and wake up sleeping lwps
1038 * so they will stop in sympathy with this lwp.
1039 */
1040 p->p_stopsig = (uchar_t)what;
1041 pokelwps(p);
1042 /*
1043 * We do this just in case one of the threads we asked
1044 * to stop is in holdlwps() (called from cfork()) or
1045 * lwp_suspend().
1046 */
1047 cv_broadcast(&p->p_holdlwps);
1048 }
1049 }
1050
1051 if (why != PR_JOBCONTROL && why != PR_CHECKPOINT) {
1052 /*
1053 * Do process-level notification when all lwps are
1054 * either stopped on events of interest to /proc
1055 * or are stopped showing PR_SUSPENDED or are zombies.
1056 */
1057 procstop = 1;
1058 for (tx = t->t_forw; procstop && tx != t; tx = tx->t_forw) {
1059 if (VSTOPPED(tx))
1060 continue;
1061 thread_lock(tx);
1062 switch (tx->t_state) {
1063 case TS_ZOMB:
1064 break;
1065 case TS_STOPPED:
1066 /* neither ISTOPPED nor SUSPENDED? */
1067 if ((tx->t_schedflag &
1068 (TS_CSTART | TS_UNPAUSE | TS_PSTART)) ==
1069 (TS_CSTART | TS_UNPAUSE | TS_PSTART))
1070 procstop = 0;
1071 break;
1072 case TS_SLEEP:
1073 /* not paused for watchpoints? */
1074 if (!(tx->t_flag & T_WAKEABLE) ||
1075 tx->t_wchan0 == NULL ||
1076 !(tx->t_proc_flag & TP_PAUSE))
1077 procstop = 0;
1078 break;
1079 default:
1080 procstop = 0;
1081 break;
1082 }
1083 thread_unlock(tx);
1084 }
1085 if (procstop) {
1086 /* there must not be any remapped watched pages now */
1087 ASSERT(p->p_mapcnt == 0);
1088 if (p->p_proc_flag & P_PR_PTRACE) {
1089 /* ptrace() compatibility */
1090 mutex_exit(&p->p_lock);
1091 mutex_enter(&pidlock);
1092 p->p_wcode = CLD_TRAPPED;
1093 p->p_wdata = (why == PR_SIGNALLED)?
1094 what : SIGTRAP;
1095 cv_broadcast(&p->p_parent->p_cv);
1096 /*
1097 * Grab p->p_lock before releasing pidlock so
1098 * parent and child don't have a race condition.
1099 */
1100 mutex_enter(&p->p_lock);
1101 mutex_exit(&pidlock);
1102 }
1103 if (p->p_trace) /* /proc */
1104 prnotify(p->p_trace);
1105 cv_broadcast(&pr_pid_cv[p->p_slot]); /* pauselwps() */
1106 cv_broadcast(&p->p_holdlwps); /* holdwatch() */
1107 }
1108 if (why != PR_SUSPENDED) {
1109 lep = p->p_lwpdir[t->t_dslot].ld_entry;
1110 if (lep->le_trace) /* /proc */
1111 prnotify(lep->le_trace);
1112 /*
1113 * Special notification for creation of the agent lwp.
1114 */
1115 if (t == p->p_agenttp &&
1116 (t->t_proc_flag & TP_PRSTOP) &&
1117 p->p_trace)
1118 prnotify(p->p_trace);
1119 /*
1120 * The situation may have changed since we dropped
1121 * and reacquired p->p_lock. Double-check now
1122 * whether we should stop or not.
1123 */
1124 if (!(t->t_proc_flag & TP_STOPPING)) {
1125 if (t->t_proc_flag & TP_PRSTOP)
1126 t->t_proc_flag |= TP_STOPPING;
1127 }
1128 t->t_proc_flag &= ~(TP_PRSTOP|TP_PRVSTOP);
1129 prnostep(lwp);
1130 }
1131 }
1132
1133 if (why == PR_SUSPENDED) {
1134
1135 /*
1136 * We always broadcast in the case of SUSPEND_PAUSE. This is
1137 * because checks for TP_PAUSE take precedence over checks for
1138 * SHOLDWATCH. If a thread is trying to stop because of
1139 * SUSPEND_PAUSE and tries to do a holdwatch(), it will be
1140 * waiting for the rest of the threads to enter a stopped state.
1141 * If we are stopping for a SUSPEND_PAUSE, we may be the last
1142 * lwp and not know it, so broadcast just in case.
1143 */
1144 if (what == SUSPEND_PAUSE ||
1145 --p->p_lwprcnt == 0 || (t->t_proc_flag & TP_HOLDLWP))
1146 cv_broadcast(&p->p_holdlwps);
1147
1148 }
1149
1150 /*
1151 * Need to do this here (rather than after the thread is officially
1152 * stopped) because we can't call mutex_enter from a stopped thread.
1153 */
1154 if (why == PR_CHECKPOINT)
1155 del_one_utstop();
1156
1157 thread_lock(t);
1158 ASSERT((t->t_schedflag & TS_ALLSTART) == 0);
1159 t->t_schedflag |= flags;
1160 t->t_whystop = (short)why;
1161 t->t_whatstop = (short)what;
1162 CL_STOP(t, why, what);
1163 (void) new_mstate(t, LMS_STOPPED);
1164 thread_stop(t); /* set stop state and drop lock */
1165
1166 if (why != PR_SUSPENDED && why != PR_CHECKPOINT) {
1167 /*
1168 * We may have gotten a SIGKILL or a SIGCONT when
1169 * we released p->p_lock; make one last check.
1170 * Also check for a /proc run-on-last-close.
1171 */
1172 if (sigismember(&t->t_sig, SIGKILL) ||
1173 sigismember(&p->p_sig, SIGKILL) ||
1174 (t->t_proc_flag & TP_LWPEXIT) ||
1175 (p->p_flag & (SEXITLWPS|SKILLED))) {
1176 p->p_stopsig = 0;
1177 thread_lock(t);
1178 t->t_schedflag |= TS_XSTART | TS_PSTART;
1179 setrun_locked(t);
1180 thread_unlock_nopreempt(t);
1181 } else if (why == PR_JOBCONTROL) {
1182 if (p->p_flag & SSCONT) {
1183 /*
1184 * This resulted from a SIGCONT posted
1185 * while we were not holding p->p_lock.
1186 */
1187 p->p_stopsig = 0;
1188 thread_lock(t);
1189 t->t_schedflag |= TS_XSTART;
1190 setrun_locked(t);
1191 thread_unlock_nopreempt(t);
1192 }
1193 } else if (!(t->t_proc_flag & TP_STOPPING)) {
1194 /*
1195 * This resulted from a /proc run-on-last-close.
1196 */
1197 thread_lock(t);
1198 t->t_schedflag |= TS_PSTART;
1199 setrun_locked(t);
1200 thread_unlock_nopreempt(t);
1201 }
1202 }
1203
1204 t->t_proc_flag &= ~TP_STOPPING;
1205 mutex_exit(&p->p_lock);
1206
1207 swtch();
1208 setallwatch(); /* reestablish any watchpoints set while stopped */
1209 mutex_enter(&p->p_lock);
1210 prbarrier(p); /* barrier against /proc locking */
1211 }
1212
1213 /* Interface for resetting user thread stop count. */
1214 void
utstop_init(void)1215 utstop_init(void)
1216 {
1217 mutex_enter(&thread_stop_lock);
1218 num_utstop = 0;
1219 mutex_exit(&thread_stop_lock);
1220 }
1221
1222 /* Interface for registering a user thread stop request. */
1223 void
add_one_utstop(void)1224 add_one_utstop(void)
1225 {
1226 mutex_enter(&thread_stop_lock);
1227 num_utstop++;
1228 mutex_exit(&thread_stop_lock);
1229 }
1230
1231 /* Interface for cancelling a user thread stop request */
1232 void
del_one_utstop(void)1233 del_one_utstop(void)
1234 {
1235 mutex_enter(&thread_stop_lock);
1236 num_utstop--;
1237 if (num_utstop == 0)
1238 cv_broadcast(&utstop_cv);
1239 mutex_exit(&thread_stop_lock);
1240 }
1241
1242 /* Interface to wait for all user threads to be stopped */
1243 void
utstop_timedwait(clock_t ticks)1244 utstop_timedwait(clock_t ticks)
1245 {
1246 mutex_enter(&thread_stop_lock);
1247 if (num_utstop > 0)
1248 (void) cv_reltimedwait(&utstop_cv, &thread_stop_lock, ticks,
1249 TR_CLOCK_TICK);
1250 mutex_exit(&thread_stop_lock);
1251 }
1252
1253 /*
1254 * Perform the action specified by the current signal.
1255 * The usual sequence is:
1256 * if (issig())
1257 * psig();
1258 * The signal bit has already been cleared by issig(),
1259 * the current signal number has been stored in lwp_cursig,
1260 * and the current siginfo is now referenced by lwp_curinfo.
1261 */
1262 void
psig(void)1263 psig(void)
1264 {
1265 kthread_t *t = curthread;
1266 proc_t *p = ttoproc(t);
1267 klwp_t *lwp = ttolwp(t);
1268 void (*func)();
1269 int sig, rc, code, ext;
1270 pid_t pid = -1;
1271 id_t ctid = 0;
1272 zoneid_t zoneid = -1;
1273 sigqueue_t *sqp = NULL;
1274 uint32_t auditing = AU_AUDITING();
1275
1276 mutex_enter(&p->p_lock);
1277 schedctl_finish_sigblock(t);
1278 code = CLD_KILLED;
1279
1280 if (p->p_flag & SEXITLWPS) {
1281 lwp_exit();
1282 return; /* not reached */
1283 }
1284 sig = lwp->lwp_cursig;
1285 ext = lwp->lwp_extsig;
1286
1287 ASSERT(sig < NSIG);
1288
1289 /*
1290 * Re-check lwp_cursig after we acquire p_lock. Since p_lock was
1291 * dropped between issig() and psig(), a debugger may have cleared
1292 * lwp_cursig via /proc in the intervening window.
1293 */
1294 if (sig == 0) {
1295 if (lwp->lwp_curinfo) {
1296 siginfofree(lwp->lwp_curinfo);
1297 lwp->lwp_curinfo = NULL;
1298 }
1299 if (t->t_flag & T_TOMASK) { /* sigsuspend or pollsys */
1300 t->t_flag &= ~T_TOMASK;
1301 t->t_hold = lwp->lwp_sigoldmask;
1302 }
1303 mutex_exit(&p->p_lock);
1304 return;
1305 }
1306 func = PTOU(curproc)->u_signal[sig-1];
1307
1308 /*
1309 * The signal disposition could have changed since we promoted
1310 * this signal from pending to current (we dropped p->p_lock).
1311 * This can happen only in a multi-threaded process.
1312 */
1313 if (sigismember(&p->p_ignore, sig) ||
1314 (func == SIG_DFL && sigismember(&stopdefault, sig))) {
1315 lwp->lwp_cursig = 0;
1316 lwp->lwp_extsig = 0;
1317 if (lwp->lwp_curinfo) {
1318 siginfofree(lwp->lwp_curinfo);
1319 lwp->lwp_curinfo = NULL;
1320 }
1321 if (t->t_flag & T_TOMASK) { /* sigsuspend or pollsys */
1322 t->t_flag &= ~T_TOMASK;
1323 t->t_hold = lwp->lwp_sigoldmask;
1324 }
1325 mutex_exit(&p->p_lock);
1326 return;
1327 }
1328
1329 /*
1330 * We check lwp_curinfo first since pr_setsig can actually
1331 * stuff a sigqueue_t there for SIGKILL.
1332 */
1333 if (lwp->lwp_curinfo) {
1334 sqp = lwp->lwp_curinfo;
1335 } else if (sig == SIGKILL && p->p_killsqp) {
1336 sqp = p->p_killsqp;
1337 }
1338
1339 if (sqp != NULL) {
1340 if (SI_FROMUSER(&sqp->sq_info)) {
1341 pid = sqp->sq_info.si_pid;
1342 ctid = sqp->sq_info.si_ctid;
1343 zoneid = sqp->sq_info.si_zoneid;
1344 }
1345 /*
1346 * If we have a sigqueue_t, its sq_external value
1347 * trumps the lwp_extsig value. It is theoretically
1348 * possible to make lwp_extsig reflect reality, but it
1349 * would unnecessarily complicate things elsewhere.
1350 */
1351 ext = sqp->sq_external;
1352 }
1353
1354 if (func == SIG_DFL) {
1355 mutex_exit(&p->p_lock);
1356 DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1357 NULL, void (*)(void), func);
1358 } else {
1359 k_siginfo_t *sip = NULL;
1360
1361 /*
1362 * If DTrace user-land tracing is active, give DTrace a
1363 * chance to defer the signal until after tracing is
1364 * complete.
1365 */
1366 if (t->t_dtrace_on && dtrace_safe_defer_signal()) {
1367 mutex_exit(&p->p_lock);
1368 return;
1369 }
1370
1371 /*
1372 * save siginfo pointer here, in case the
1373 * the signal's reset bit is on
1374 *
1375 * The presence of a current signal prevents paging
1376 * from succeeding over a network. We copy the current
1377 * signal information to the side and cancel the current
1378 * signal so that sendsig() will succeed.
1379 */
1380 if (sigismember(&p->p_siginfo, sig)) {
1381 sip = &lwp->lwp_siginfo;
1382 if (sqp) {
1383 bcopy(&sqp->sq_info, sip, sizeof (*sip));
1384 /*
1385 * If we were interrupted out of a system call
1386 * due to pthread_cancel(), inform libc.
1387 */
1388 if (sig == SIGCANCEL &&
1389 sip->si_code == SI_LWP &&
1390 t->t_sysnum != 0)
1391 schedctl_cancel_eintr();
1392 } else if (sig == SIGPROF && sip->si_signo == SIGPROF &&
1393 t->t_rprof != NULL && t->t_rprof->rp_anystate) {
1394 /* EMPTY */;
1395 } else {
1396 bzero(sip, sizeof (*sip));
1397 sip->si_signo = sig;
1398 sip->si_code = SI_NOINFO;
1399 }
1400 }
1401
1402 if (t->t_flag & T_TOMASK)
1403 t->t_flag &= ~T_TOMASK;
1404 else
1405 lwp->lwp_sigoldmask = t->t_hold;
1406 sigorset(&t->t_hold, &PTOU(curproc)->u_sigmask[sig-1]);
1407 if (!sigismember(&PTOU(curproc)->u_signodefer, sig))
1408 sigaddset(&t->t_hold, sig);
1409 if (sigismember(&PTOU(curproc)->u_sigresethand, sig))
1410 setsigact(sig, SIG_DFL, &nullsmask, 0);
1411
1412 DTRACE_PROC3(signal__handle, int, sig, k_siginfo_t *,
1413 sip, void (*)(void), func);
1414
1415 lwp->lwp_cursig = 0;
1416 lwp->lwp_extsig = 0;
1417 if (lwp->lwp_curinfo) {
1418 /* p->p_killsqp is freed by freeproc */
1419 siginfofree(lwp->lwp_curinfo);
1420 lwp->lwp_curinfo = NULL;
1421 }
1422 mutex_exit(&p->p_lock);
1423 lwp->lwp_ru.nsignals++;
1424
1425 if (p->p_model == DATAMODEL_NATIVE)
1426 rc = sendsig(sig, sip, func);
1427 #ifdef _SYSCALL32_IMPL
1428 else
1429 rc = sendsig32(sig, sip, func);
1430 #endif /* _SYSCALL32_IMPL */
1431 if (rc)
1432 return;
1433 sig = lwp->lwp_cursig = SIGSEGV;
1434 ext = 0; /* lwp_extsig was set above */
1435 pid = -1;
1436 ctid = 0;
1437 }
1438
1439 if (sigismember(&coredefault, sig)) {
1440 /*
1441 * Terminate all LWPs but don't discard them.
1442 * If another lwp beat us to the punch by calling exit(),
1443 * evaporate now.
1444 */
1445 proc_is_exiting(p);
1446 if (exitlwps(1) != 0) {
1447 mutex_enter(&p->p_lock);
1448 lwp_exit();
1449 }
1450 /* if we got a SIGKILL from anywhere, no core dump */
1451 if (p->p_flag & SKILLED) {
1452 sig = SIGKILL;
1453 ext = (p->p_flag & SEXTKILLED) != 0;
1454 } else {
1455 if (auditing) /* audit core dump */
1456 audit_core_start(sig);
1457 if (core(sig, ext) == 0)
1458 code = CLD_DUMPED;
1459 if (auditing) /* audit core dump */
1460 audit_core_finish(code);
1461 }
1462 }
1463
1464 /*
1465 * Generate a contract event once if the process is killed
1466 * by a signal.
1467 */
1468 if (ext) {
1469 proc_is_exiting(p);
1470 if (exitlwps(0) != 0) {
1471 mutex_enter(&p->p_lock);
1472 lwp_exit();
1473 }
1474 contract_process_sig(p->p_ct_process, p, sig, pid, ctid,
1475 zoneid);
1476 }
1477
1478 exit(code, sig);
1479 }
1480
1481 /*
1482 * Find next unheld signal in ssp for thread t.
1483 */
1484 int
fsig(k_sigset_t * ssp,kthread_t * t)1485 fsig(k_sigset_t *ssp, kthread_t *t)
1486 {
1487 proc_t *p = ttoproc(t);
1488 user_t *up = PTOU(p);
1489 int i;
1490 k_sigset_t temp;
1491
1492 ASSERT(MUTEX_HELD(&p->p_lock));
1493
1494 /*
1495 * Don't promote any signals for the parent of a vfork()d
1496 * child that hasn't yet released the parent's memory.
1497 */
1498 if (p->p_flag & SVFWAIT)
1499 return (0);
1500
1501 temp = *ssp;
1502 sigdiffset(&temp, &t->t_hold);
1503
1504 /*
1505 * Don't promote stopping signals (except SIGSTOP) for a child
1506 * of vfork() that hasn't yet released the parent's memory.
1507 */
1508 if (p->p_flag & SVFORK)
1509 sigdiffset(&temp, &holdvfork);
1510
1511 /*
1512 * Don't promote a signal that will stop
1513 * the process when lwp_nostop is set.
1514 */
1515 if (ttolwp(t)->lwp_nostop) {
1516 sigdelset(&temp, SIGSTOP);
1517 if (!p->p_pgidp->pid_pgorphaned) {
1518 if (up->u_signal[SIGTSTP-1] == SIG_DFL)
1519 sigdelset(&temp, SIGTSTP);
1520 if (up->u_signal[SIGTTIN-1] == SIG_DFL)
1521 sigdelset(&temp, SIGTTIN);
1522 if (up->u_signal[SIGTTOU-1] == SIG_DFL)
1523 sigdelset(&temp, SIGTTOU);
1524 }
1525 }
1526
1527 /*
1528 * Choose SIGKILL and SIGPROF before all other pending signals.
1529 * The rest are promoted in signal number order.
1530 */
1531 if (sigismember(&temp, SIGKILL))
1532 return (SIGKILL);
1533 if (sigismember(&temp, SIGPROF))
1534 return (SIGPROF);
1535
1536 for (i = 0; i < sizeof (temp) / sizeof (temp.__sigbits[0]); i++) {
1537 if (temp.__sigbits[i])
1538 return ((i * NBBY * sizeof (temp.__sigbits[0])) +
1539 lowbit(temp.__sigbits[i]));
1540 }
1541
1542 return (0);
1543 }
1544
1545 void
setsigact(int sig,void (* disp)(),const k_sigset_t * mask,int flags)1546 setsigact(int sig, void (*disp)(), const k_sigset_t *mask, int flags)
1547 {
1548 proc_t *p = ttoproc(curthread);
1549 kthread_t *t;
1550
1551 ASSERT(MUTEX_HELD(&p->p_lock));
1552
1553 PTOU(curproc)->u_signal[sig - 1] = disp;
1554
1555 /*
1556 * Honor the SA_SIGINFO flag if the signal is being caught.
1557 * Force the SA_SIGINFO flag if the signal is not being caught.
1558 * This is necessary to make sigqueue() and sigwaitinfo() work
1559 * properly together when the signal is set to default or is
1560 * being temporarily ignored.
1561 */
1562 if ((flags & SA_SIGINFO) || disp == SIG_DFL || disp == SIG_IGN)
1563 sigaddset(&p->p_siginfo, sig);
1564 else
1565 sigdelset(&p->p_siginfo, sig);
1566
1567 if (disp != SIG_DFL && disp != SIG_IGN) {
1568 sigdelset(&p->p_ignore, sig);
1569 PTOU(curproc)->u_sigmask[sig - 1] = *mask;
1570 if (!sigismember(&cantreset, sig)) {
1571 if (flags & SA_RESETHAND)
1572 sigaddset(&PTOU(curproc)->u_sigresethand, sig);
1573 else
1574 sigdelset(&PTOU(curproc)->u_sigresethand, sig);
1575 }
1576 if (flags & SA_NODEFER)
1577 sigaddset(&PTOU(curproc)->u_signodefer, sig);
1578 else
1579 sigdelset(&PTOU(curproc)->u_signodefer, sig);
1580 if (flags & SA_RESTART)
1581 sigaddset(&PTOU(curproc)->u_sigrestart, sig);
1582 else
1583 sigdelset(&PTOU(curproc)->u_sigrestart, sig);
1584 if (flags & SA_ONSTACK)
1585 sigaddset(&PTOU(curproc)->u_sigonstack, sig);
1586 else
1587 sigdelset(&PTOU(curproc)->u_sigonstack, sig);
1588 } else if (disp == SIG_IGN ||
1589 (disp == SIG_DFL && sigismember(&ignoredefault, sig))) {
1590 /*
1591 * Setting the signal action to SIG_IGN results in the
1592 * discarding of all pending signals of that signal number.
1593 * Setting the signal action to SIG_DFL does the same *only*
1594 * if the signal's default behavior is to be ignored.
1595 */
1596 sigaddset(&p->p_ignore, sig);
1597 sigdelset(&p->p_sig, sig);
1598 sigdelset(&p->p_extsig, sig);
1599 sigdelq(p, NULL, sig);
1600 t = p->p_tlist;
1601 do {
1602 sigdelset(&t->t_sig, sig);
1603 sigdelset(&t->t_extsig, sig);
1604 sigdelq(p, t, sig);
1605 } while ((t = t->t_forw) != p->p_tlist);
1606 } else {
1607 /*
1608 * The signal action is being set to SIG_DFL and the default
1609 * behavior is to do something: make sure it is not ignored.
1610 */
1611 sigdelset(&p->p_ignore, sig);
1612 }
1613
1614 if (sig == SIGCLD) {
1615 if (flags & SA_NOCLDWAIT)
1616 p->p_flag |= SNOWAIT;
1617 else
1618 p->p_flag &= ~SNOWAIT;
1619
1620 if (flags & SA_NOCLDSTOP)
1621 p->p_flag &= ~SJCTL;
1622 else
1623 p->p_flag |= SJCTL;
1624
1625 if ((p->p_flag & SNOWAIT) || disp == SIG_IGN) {
1626 proc_t *cp, *tp;
1627
1628 mutex_exit(&p->p_lock);
1629 mutex_enter(&pidlock);
1630 for (cp = p->p_child; cp != NULL; cp = tp) {
1631 tp = cp->p_sibling;
1632 if (cp->p_stat == SZOMB &&
1633 !(cp->p_pidflag & CLDWAITPID))
1634 freeproc(cp);
1635 }
1636 mutex_exit(&pidlock);
1637 mutex_enter(&p->p_lock);
1638 }
1639 }
1640 }
1641
1642 /*
1643 * Set all signal actions not already set to SIG_DFL or SIG_IGN to SIG_DFL.
1644 * Called from exec_common() for a process undergoing execve()
1645 * and from cfork() for a newly-created child of vfork().
1646 * In the vfork() case, 'p' is not the current process.
1647 * In both cases, there is only one thread in the process.
1648 */
1649 void
sigdefault(proc_t * p)1650 sigdefault(proc_t *p)
1651 {
1652 kthread_t *t = p->p_tlist;
1653 struct user *up = PTOU(p);
1654 int sig;
1655
1656 ASSERT(MUTEX_HELD(&p->p_lock));
1657
1658 for (sig = 1; sig < NSIG; sig++) {
1659 if (up->u_signal[sig - 1] != SIG_DFL &&
1660 up->u_signal[sig - 1] != SIG_IGN) {
1661 up->u_signal[sig - 1] = SIG_DFL;
1662 sigemptyset(&up->u_sigmask[sig - 1]);
1663 if (sigismember(&ignoredefault, sig)) {
1664 sigdelq(p, NULL, sig);
1665 sigdelq(p, t, sig);
1666 }
1667 if (sig == SIGCLD)
1668 p->p_flag &= ~(SNOWAIT|SJCTL);
1669 }
1670 }
1671 sigorset(&p->p_ignore, &ignoredefault);
1672 sigfillset(&p->p_siginfo);
1673 sigdiffset(&p->p_siginfo, &cantmask);
1674 sigdiffset(&p->p_sig, &ignoredefault);
1675 sigdiffset(&p->p_extsig, &ignoredefault);
1676 sigdiffset(&t->t_sig, &ignoredefault);
1677 sigdiffset(&t->t_extsig, &ignoredefault);
1678 }
1679
1680 void
sigcld(proc_t * cp,sigqueue_t * sqp)1681 sigcld(proc_t *cp, sigqueue_t *sqp)
1682 {
1683 proc_t *pp = cp->p_parent;
1684
1685 ASSERT(MUTEX_HELD(&pidlock));
1686
1687 switch (cp->p_wcode) {
1688 case CLD_EXITED:
1689 case CLD_DUMPED:
1690 case CLD_KILLED:
1691 ASSERT(cp->p_stat == SZOMB);
1692 /*
1693 * The broadcast on p_srwchan_cv is a kludge to
1694 * wakeup a possible thread in uadmin(A_SHUTDOWN).
1695 */
1696 cv_broadcast(&cp->p_srwchan_cv);
1697
1698 /*
1699 * Add to newstate list of the parent
1700 */
1701 add_ns(pp, cp);
1702
1703 cv_broadcast(&pp->p_cv);
1704 if ((pp->p_flag & SNOWAIT) ||
1705 PTOU(pp)->u_signal[SIGCLD - 1] == SIG_IGN) {
1706 if (!(cp->p_pidflag & CLDWAITPID))
1707 freeproc(cp);
1708 } else if (!(cp->p_pidflag & CLDNOSIGCHLD)) {
1709 post_sigcld(cp, sqp);
1710 sqp = NULL;
1711 }
1712 break;
1713
1714 case CLD_STOPPED:
1715 case CLD_CONTINUED:
1716 cv_broadcast(&pp->p_cv);
1717 if (pp->p_flag & SJCTL) {
1718 post_sigcld(cp, sqp);
1719 sqp = NULL;
1720 }
1721 break;
1722 }
1723
1724 if (sqp)
1725 siginfofree(sqp);
1726 }
1727
1728 /*
1729 * Common code called from sigcld() and from
1730 * waitid() and issig_forreal() via sigcld_repost().
1731 * Give the parent process a SIGCLD if it does not have one pending,
1732 * else mark the child process so a SIGCLD can be posted later.
1733 */
1734 static void
post_sigcld(proc_t * cp,sigqueue_t * sqp)1735 post_sigcld(proc_t *cp, sigqueue_t *sqp)
1736 {
1737 proc_t *pp = cp->p_parent;
1738 k_siginfo_t info;
1739
1740 ASSERT(MUTEX_HELD(&pidlock));
1741 mutex_enter(&pp->p_lock);
1742
1743 /*
1744 * If a SIGCLD is pending, then just mark the child process
1745 * so that its SIGCLD will be posted later, when the first
1746 * SIGCLD is taken off the queue or when the parent is ready
1747 * to receive it or accept it, if ever.
1748 */
1749 if (sigismember(&pp->p_sig, SIGCLD)) {
1750 cp->p_pidflag |= CLDPEND;
1751 } else {
1752 cp->p_pidflag &= ~CLDPEND;
1753 if (sqp == NULL) {
1754 /*
1755 * This can only happen when the parent is init.
1756 * (See call to sigcld(q, NULL) in exit().)
1757 * Use KM_NOSLEEP to avoid deadlock.
1758 */
1759 ASSERT(pp == proc_init);
1760 winfo(cp, &info, 0);
1761 sigaddq(pp, NULL, &info, KM_NOSLEEP);
1762 } else {
1763 winfo(cp, &sqp->sq_info, 0);
1764 sigaddqa(pp, NULL, sqp);
1765 sqp = NULL;
1766 }
1767 }
1768
1769 mutex_exit(&pp->p_lock);
1770
1771 if (sqp)
1772 siginfofree(sqp);
1773 }
1774
1775 /*
1776 * Search for a child that has a pending SIGCLD for us, the parent.
1777 * The queue of SIGCLD signals is implied by the list of children.
1778 * We post the SIGCLD signals one at a time so they don't get lost.
1779 * When one is dequeued, another is enqueued, until there are no more.
1780 */
1781 void
sigcld_repost()1782 sigcld_repost()
1783 {
1784 proc_t *pp = curproc;
1785 proc_t *cp;
1786 sigqueue_t *sqp;
1787
1788 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
1789 mutex_enter(&pidlock);
1790 for (cp = pp->p_child; cp; cp = cp->p_sibling) {
1791 if (cp->p_pidflag & CLDPEND) {
1792 post_sigcld(cp, sqp);
1793 mutex_exit(&pidlock);
1794 return;
1795 }
1796 }
1797 mutex_exit(&pidlock);
1798 kmem_free(sqp, sizeof (sigqueue_t));
1799 }
1800
1801 /*
1802 * count number of sigqueue send by sigaddqa()
1803 */
1804 void
sigqsend(int cmd,proc_t * p,kthread_t * t,sigqueue_t * sigqp)1805 sigqsend(int cmd, proc_t *p, kthread_t *t, sigqueue_t *sigqp)
1806 {
1807 sigqhdr_t *sqh;
1808
1809 sqh = (sigqhdr_t *)sigqp->sq_backptr;
1810 ASSERT(sqh);
1811
1812 mutex_enter(&sqh->sqb_lock);
1813 sqh->sqb_sent++;
1814 mutex_exit(&sqh->sqb_lock);
1815
1816 if (cmd == SN_SEND)
1817 sigaddqa(p, t, sigqp);
1818 else
1819 siginfofree(sigqp);
1820 }
1821
1822 int
sigsendproc(proc_t * p,sigsend_t * pv)1823 sigsendproc(proc_t *p, sigsend_t *pv)
1824 {
1825 struct cred *cr;
1826 proc_t *myprocp = curproc;
1827
1828 ASSERT(MUTEX_HELD(&pidlock));
1829
1830 if (p->p_pid == 1 && pv->sig && sigismember(&cantmask, pv->sig))
1831 return (EPERM);
1832
1833 cr = CRED();
1834
1835 if (pv->checkperm == 0 ||
1836 (pv->sig == SIGCONT && p->p_sessp == myprocp->p_sessp) ||
1837 prochasprocperm(p, myprocp, cr)) {
1838 pv->perm++;
1839 if (pv->sig) {
1840 /* Make sure we should be setting si_pid and friends */
1841 ASSERT(pv->sicode <= 0);
1842 if (SI_CANQUEUE(pv->sicode)) {
1843 sigqueue_t *sqp;
1844
1845 mutex_enter(&myprocp->p_lock);
1846 sqp = sigqalloc(myprocp->p_sigqhdr);
1847 mutex_exit(&myprocp->p_lock);
1848 if (sqp == NULL)
1849 return (EAGAIN);
1850 sqp->sq_info.si_signo = pv->sig;
1851 sqp->sq_info.si_code = pv->sicode;
1852 sqp->sq_info.si_pid = myprocp->p_pid;
1853 sqp->sq_info.si_ctid = PRCTID(myprocp);
1854 sqp->sq_info.si_zoneid = getzoneid();
1855 sqp->sq_info.si_uid = crgetruid(cr);
1856 sqp->sq_info.si_value = pv->value;
1857 mutex_enter(&p->p_lock);
1858 sigqsend(SN_SEND, p, NULL, sqp);
1859 mutex_exit(&p->p_lock);
1860 } else {
1861 k_siginfo_t info;
1862 bzero(&info, sizeof (info));
1863 info.si_signo = pv->sig;
1864 info.si_code = pv->sicode;
1865 info.si_pid = myprocp->p_pid;
1866 info.si_ctid = PRCTID(myprocp);
1867 info.si_zoneid = getzoneid();
1868 info.si_uid = crgetruid(cr);
1869 mutex_enter(&p->p_lock);
1870 /*
1871 * XXX: Should be KM_SLEEP but
1872 * we have to avoid deadlock.
1873 */
1874 sigaddq(p, NULL, &info, KM_NOSLEEP);
1875 mutex_exit(&p->p_lock);
1876 }
1877 }
1878 }
1879
1880 return (0);
1881 }
1882
1883 int
sigsendset(procset_t * psp,sigsend_t * pv)1884 sigsendset(procset_t *psp, sigsend_t *pv)
1885 {
1886 int error;
1887
1888 error = dotoprocs(psp, sigsendproc, (char *)pv);
1889 if (error == 0 && pv->perm == 0)
1890 return (EPERM);
1891
1892 return (error);
1893 }
1894
1895 /*
1896 * Dequeue a queued siginfo structure.
1897 * If a non-null thread pointer is passed then dequeue from
1898 * the thread queue, otherwise dequeue from the process queue.
1899 */
1900 void
sigdeq(proc_t * p,kthread_t * t,int sig,sigqueue_t ** qpp)1901 sigdeq(proc_t *p, kthread_t *t, int sig, sigqueue_t **qpp)
1902 {
1903 sigqueue_t **psqp, *sqp;
1904
1905 ASSERT(MUTEX_HELD(&p->p_lock));
1906
1907 *qpp = NULL;
1908
1909 if (t != NULL) {
1910 sigdelset(&t->t_sig, sig);
1911 sigdelset(&t->t_extsig, sig);
1912 psqp = &t->t_sigqueue;
1913 } else {
1914 sigdelset(&p->p_sig, sig);
1915 sigdelset(&p->p_extsig, sig);
1916 psqp = &p->p_sigqueue;
1917 }
1918
1919 for (;;) {
1920 if ((sqp = *psqp) == NULL)
1921 return;
1922 if (sqp->sq_info.si_signo == sig)
1923 break;
1924 else
1925 psqp = &sqp->sq_next;
1926 }
1927 *qpp = sqp;
1928 *psqp = sqp->sq_next;
1929 for (sqp = *psqp; sqp; sqp = sqp->sq_next) {
1930 if (sqp->sq_info.si_signo == sig) {
1931 if (t != (kthread_t *)NULL) {
1932 sigaddset(&t->t_sig, sig);
1933 t->t_sig_check = 1;
1934 } else {
1935 sigaddset(&p->p_sig, sig);
1936 set_proc_ast(p);
1937 }
1938 break;
1939 }
1940 }
1941 }
1942
1943 /*
1944 * Delete a queued SIGCLD siginfo structure matching the k_siginfo_t argument.
1945 */
1946 void
sigcld_delete(k_siginfo_t * ip)1947 sigcld_delete(k_siginfo_t *ip)
1948 {
1949 proc_t *p = curproc;
1950 int another_sigcld = 0;
1951 sigqueue_t **psqp, *sqp;
1952
1953 ASSERT(ip->si_signo == SIGCLD);
1954
1955 mutex_enter(&p->p_lock);
1956
1957 if (!sigismember(&p->p_sig, SIGCLD)) {
1958 mutex_exit(&p->p_lock);
1959 return;
1960 }
1961
1962 psqp = &p->p_sigqueue;
1963 for (;;) {
1964 if ((sqp = *psqp) == NULL) {
1965 mutex_exit(&p->p_lock);
1966 return;
1967 }
1968 if (sqp->sq_info.si_signo == SIGCLD) {
1969 if (sqp->sq_info.si_pid == ip->si_pid &&
1970 sqp->sq_info.si_code == ip->si_code &&
1971 sqp->sq_info.si_status == ip->si_status)
1972 break;
1973 another_sigcld = 1;
1974 }
1975 psqp = &sqp->sq_next;
1976 }
1977 *psqp = sqp->sq_next;
1978
1979 siginfofree(sqp);
1980
1981 for (sqp = *psqp; !another_sigcld && sqp; sqp = sqp->sq_next) {
1982 if (sqp->sq_info.si_signo == SIGCLD)
1983 another_sigcld = 1;
1984 }
1985
1986 if (!another_sigcld) {
1987 sigdelset(&p->p_sig, SIGCLD);
1988 sigdelset(&p->p_extsig, SIGCLD);
1989 }
1990
1991 mutex_exit(&p->p_lock);
1992 }
1993
1994 /*
1995 * Delete queued siginfo structures.
1996 * If a non-null thread pointer is passed then delete from
1997 * the thread queue, otherwise delete from the process queue.
1998 */
1999 void
sigdelq(proc_t * p,kthread_t * t,int sig)2000 sigdelq(proc_t *p, kthread_t *t, int sig)
2001 {
2002 sigqueue_t **psqp, *sqp;
2003
2004 /*
2005 * We must be holding p->p_lock unless the process is
2006 * being reaped or has failed to get started on fork.
2007 */
2008 ASSERT(MUTEX_HELD(&p->p_lock) ||
2009 p->p_stat == SIDL || p->p_stat == SZOMB);
2010
2011 if (t != (kthread_t *)NULL)
2012 psqp = &t->t_sigqueue;
2013 else
2014 psqp = &p->p_sigqueue;
2015
2016 while (*psqp) {
2017 sqp = *psqp;
2018 if (sig == 0 || sqp->sq_info.si_signo == sig) {
2019 *psqp = sqp->sq_next;
2020 siginfofree(sqp);
2021 } else
2022 psqp = &sqp->sq_next;
2023 }
2024 }
2025
2026 /*
2027 * Insert a siginfo structure into a queue.
2028 * If a non-null thread pointer is passed then add to the thread queue,
2029 * otherwise add to the process queue.
2030 *
2031 * The function sigaddqins() is called with sigqueue already allocated.
2032 * It is called from sigaddqa() and sigaddq() below.
2033 *
2034 * The value of si_code implicitly indicates whether sigp is to be
2035 * explicitly queued, or to be queued to depth one.
2036 */
2037 static void
sigaddqins(proc_t * p,kthread_t * t,sigqueue_t * sigqp)2038 sigaddqins(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2039 {
2040 sigqueue_t **psqp;
2041 int sig = sigqp->sq_info.si_signo;
2042
2043 sigqp->sq_external = (curproc != &p0) &&
2044 (curproc->p_ct_process != p->p_ct_process);
2045
2046 /*
2047 * issig_forreal() doesn't bother dequeueing signals if SKILLED
2048 * is set, and even if it did, we would want to avoid situation
2049 * (which would be unique to SIGKILL) where one thread dequeued
2050 * the sigqueue_t and another executed psig(). So we create a
2051 * separate stash for SIGKILL's sigqueue_t. Because a second
2052 * SIGKILL can set SEXTKILLED, we overwrite the existing entry
2053 * if (and only if) it was non-extracontractual.
2054 */
2055 if (sig == SIGKILL) {
2056 if (p->p_killsqp == NULL || !p->p_killsqp->sq_external) {
2057 if (p->p_killsqp != NULL)
2058 siginfofree(p->p_killsqp);
2059 p->p_killsqp = sigqp;
2060 sigqp->sq_next = NULL;
2061 } else {
2062 siginfofree(sigqp);
2063 }
2064 return;
2065 }
2066
2067 ASSERT(sig >= 1 && sig < NSIG);
2068 if (t != NULL) /* directed to a thread */
2069 psqp = &t->t_sigqueue;
2070 else /* directed to a process */
2071 psqp = &p->p_sigqueue;
2072 if (SI_CANQUEUE(sigqp->sq_info.si_code) &&
2073 sigismember(&p->p_siginfo, sig)) {
2074 for (; *psqp != NULL; psqp = &(*psqp)->sq_next)
2075 ;
2076 } else {
2077 for (; *psqp != NULL; psqp = &(*psqp)->sq_next) {
2078 if ((*psqp)->sq_info.si_signo == sig) {
2079 siginfofree(sigqp);
2080 return;
2081 }
2082 }
2083 }
2084 *psqp = sigqp;
2085 sigqp->sq_next = NULL;
2086 }
2087
2088 /*
2089 * The function sigaddqa() is called with sigqueue already allocated.
2090 * If signal is ignored, discard but guarantee KILL and generation semantics.
2091 * It is called from sigqueue() and other places.
2092 */
2093 void
sigaddqa(proc_t * p,kthread_t * t,sigqueue_t * sigqp)2094 sigaddqa(proc_t *p, kthread_t *t, sigqueue_t *sigqp)
2095 {
2096 int sig = sigqp->sq_info.si_signo;
2097
2098 ASSERT(MUTEX_HELD(&p->p_lock));
2099 ASSERT(sig >= 1 && sig < NSIG);
2100
2101 if (sig_discardable(p, sig))
2102 siginfofree(sigqp);
2103 else
2104 sigaddqins(p, t, sigqp);
2105
2106 sigtoproc(p, t, sig);
2107 }
2108
2109 /*
2110 * Allocate the sigqueue_t structure and call sigaddqins().
2111 */
2112 void
sigaddq(proc_t * p,kthread_t * t,k_siginfo_t * infop,int km_flags)2113 sigaddq(proc_t *p, kthread_t *t, k_siginfo_t *infop, int km_flags)
2114 {
2115 sigqueue_t *sqp;
2116 int sig = infop->si_signo;
2117
2118 ASSERT(MUTEX_HELD(&p->p_lock));
2119 ASSERT(sig >= 1 && sig < NSIG);
2120
2121 /*
2122 * If the signal will be discarded by sigtoproc() or
2123 * if the process isn't requesting siginfo and it isn't
2124 * blocking the signal (it *could* change it's mind while
2125 * the signal is pending) then don't bother creating one.
2126 */
2127 if (!sig_discardable(p, sig) &&
2128 (sigismember(&p->p_siginfo, sig) ||
2129 (curproc->p_ct_process != p->p_ct_process) ||
2130 (sig == SIGCLD && SI_FROMKERNEL(infop))) &&
2131 ((sqp = kmem_alloc(sizeof (sigqueue_t), km_flags)) != NULL)) {
2132 bcopy(infop, &sqp->sq_info, sizeof (k_siginfo_t));
2133 sqp->sq_func = NULL;
2134 sqp->sq_next = NULL;
2135 sigaddqins(p, t, sqp);
2136 }
2137 sigtoproc(p, t, sig);
2138 }
2139
2140 /*
2141 * Handle stop-on-fault processing for the debugger. Returns 0
2142 * if the fault is cleared during the stop, nonzero if it isn't.
2143 */
2144 int
stop_on_fault(uint_t fault,k_siginfo_t * sip)2145 stop_on_fault(uint_t fault, k_siginfo_t *sip)
2146 {
2147 proc_t *p = ttoproc(curthread);
2148 klwp_t *lwp = ttolwp(curthread);
2149
2150 ASSERT(prismember(&p->p_fltmask, fault));
2151
2152 /*
2153 * Record current fault and siginfo structure so debugger can
2154 * find it.
2155 */
2156 mutex_enter(&p->p_lock);
2157 lwp->lwp_curflt = (uchar_t)fault;
2158 lwp->lwp_siginfo = *sip;
2159
2160 stop(PR_FAULTED, fault);
2161
2162 fault = lwp->lwp_curflt;
2163 lwp->lwp_curflt = 0;
2164 mutex_exit(&p->p_lock);
2165 return (fault);
2166 }
2167
2168 void
sigorset(k_sigset_t * s1,const k_sigset_t * s2)2169 sigorset(k_sigset_t *s1, const k_sigset_t *s2)
2170 {
2171 s1->__sigbits[0] |= s2->__sigbits[0];
2172 s1->__sigbits[1] |= s2->__sigbits[1];
2173 s1->__sigbits[2] |= s2->__sigbits[2];
2174 }
2175
2176 void
sigandset(k_sigset_t * s1,const k_sigset_t * s2)2177 sigandset(k_sigset_t *s1, const k_sigset_t *s2)
2178 {
2179 s1->__sigbits[0] &= s2->__sigbits[0];
2180 s1->__sigbits[1] &= s2->__sigbits[1];
2181 s1->__sigbits[2] &= s2->__sigbits[2];
2182 }
2183
2184 void
sigdiffset(k_sigset_t * s1,const k_sigset_t * s2)2185 sigdiffset(k_sigset_t *s1, const k_sigset_t *s2)
2186 {
2187 s1->__sigbits[0] &= ~(s2->__sigbits[0]);
2188 s1->__sigbits[1] &= ~(s2->__sigbits[1]);
2189 s1->__sigbits[2] &= ~(s2->__sigbits[2]);
2190 }
2191
2192 /*
2193 * Return non-zero if curthread->t_sig_check should be set to 1, that is,
2194 * if there are any signals the thread might take on return from the kernel.
2195 * If ksigset_t's were a single word, we would do:
2196 * return (((p->p_sig | t->t_sig) & ~t->t_hold) & fillset);
2197 */
2198 int
sigcheck(proc_t * p,kthread_t * t)2199 sigcheck(proc_t *p, kthread_t *t)
2200 {
2201 sc_shared_t *tdp = t->t_schedctl;
2202
2203 /*
2204 * If signals are blocked via the schedctl interface
2205 * then we only check for the unmaskable signals.
2206 * The unmaskable signal numbers should all be contained
2207 * in __sigbits[0] and we assume this for speed.
2208 */
2209 #if (CANTMASK1 == 0 && CANTMASK2 == 0)
2210 if (tdp != NULL && tdp->sc_sigblock)
2211 return ((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2212 CANTMASK0);
2213 #else
2214 #error "fix me: CANTMASK1 and CANTMASK2 are not zero"
2215 #endif
2216
2217 /* see uts/common/sys/signal.h for why this must be true */
2218 #if ((MAXSIG > (2 * 32)) && (MAXSIG <= (3 * 32)))
2219 return (((p->p_sig.__sigbits[0] | t->t_sig.__sigbits[0]) &
2220 ~t->t_hold.__sigbits[0]) |
2221 ((p->p_sig.__sigbits[1] | t->t_sig.__sigbits[1]) &
2222 ~t->t_hold.__sigbits[1]) |
2223 (((p->p_sig.__sigbits[2] | t->t_sig.__sigbits[2]) &
2224 ~t->t_hold.__sigbits[2]) & FILLSET2));
2225 #else
2226 #error "fix me: MAXSIG out of bounds"
2227 #endif
2228 }
2229
2230 /* ONC_PLUS EXTRACT START */
2231 void
sigintr(k_sigset_t * smask,int intable)2232 sigintr(k_sigset_t *smask, int intable)
2233 {
2234 proc_t *p;
2235 int owned;
2236 k_sigset_t lmask; /* local copy of cantmask */
2237 klwp_t *lwp = ttolwp(curthread);
2238
2239 /*
2240 * Mask out all signals except SIGHUP, SIGINT, SIGQUIT
2241 * and SIGTERM. (Preserving the existing masks).
2242 * This function supports the -intr nfs and ufs mount option.
2243 */
2244
2245 /*
2246 * don't do kernel threads
2247 */
2248 if (lwp == NULL)
2249 return;
2250
2251 /*
2252 * get access to signal mask
2253 */
2254 p = ttoproc(curthread);
2255 owned = mutex_owned(&p->p_lock); /* this is filthy */
2256 if (!owned)
2257 mutex_enter(&p->p_lock);
2258
2259 /*
2260 * remember the current mask
2261 */
2262 schedctl_finish_sigblock(curthread);
2263 *smask = curthread->t_hold;
2264
2265 /*
2266 * mask out all signals
2267 */
2268 sigfillset(&curthread->t_hold);
2269
2270 /*
2271 * Unmask the non-maskable signals (e.g., KILL), as long as
2272 * they aren't already masked (which could happen at exit).
2273 * The first sigdiffset sets lmask to (cantmask & ~curhold). The
2274 * second sets the current hold mask to (~0 & ~lmask), which reduces
2275 * to (~cantmask | curhold).
2276 */
2277 lmask = cantmask;
2278 sigdiffset(&lmask, smask);
2279 sigdiffset(&curthread->t_hold, &lmask);
2280
2281 /*
2282 * Re-enable HUP, QUIT, and TERM iff they were originally enabled
2283 * Re-enable INT if it's originally enabled and the NFS mount option
2284 * nointr is not set.
2285 */
2286 if (!sigismember(smask, SIGHUP))
2287 sigdelset(&curthread->t_hold, SIGHUP);
2288 if (!sigismember(smask, SIGINT) && intable)
2289 sigdelset(&curthread->t_hold, SIGINT);
2290 if (!sigismember(smask, SIGQUIT))
2291 sigdelset(&curthread->t_hold, SIGQUIT);
2292 if (!sigismember(smask, SIGTERM))
2293 sigdelset(&curthread->t_hold, SIGTERM);
2294
2295 /*
2296 * release access to signal mask
2297 */
2298 if (!owned)
2299 mutex_exit(&p->p_lock);
2300
2301 /*
2302 * Indicate that this lwp is not to be stopped.
2303 */
2304 lwp->lwp_nostop++;
2305
2306 }
2307 /* ONC_PLUS EXTRACT END */
2308
2309 void
sigunintr(k_sigset_t * smask)2310 sigunintr(k_sigset_t *smask)
2311 {
2312 proc_t *p;
2313 int owned;
2314 klwp_t *lwp = ttolwp(curthread);
2315
2316 /*
2317 * Reset previous mask (See sigintr() above)
2318 */
2319 if (lwp != NULL) {
2320 lwp->lwp_nostop--; /* restore lwp stoppability */
2321 p = ttoproc(curthread);
2322 owned = mutex_owned(&p->p_lock); /* this is filthy */
2323 if (!owned)
2324 mutex_enter(&p->p_lock);
2325 curthread->t_hold = *smask;
2326 /* so unmasked signals will be seen */
2327 curthread->t_sig_check = 1;
2328 if (!owned)
2329 mutex_exit(&p->p_lock);
2330 }
2331 }
2332
2333 void
sigreplace(k_sigset_t * newmask,k_sigset_t * oldmask)2334 sigreplace(k_sigset_t *newmask, k_sigset_t *oldmask)
2335 {
2336 proc_t *p;
2337 int owned;
2338 /*
2339 * Save current signal mask in oldmask, then
2340 * set it to newmask.
2341 */
2342 if (ttolwp(curthread) != NULL) {
2343 p = ttoproc(curthread);
2344 owned = mutex_owned(&p->p_lock); /* this is filthy */
2345 if (!owned)
2346 mutex_enter(&p->p_lock);
2347 schedctl_finish_sigblock(curthread);
2348 if (oldmask != NULL)
2349 *oldmask = curthread->t_hold;
2350 curthread->t_hold = *newmask;
2351 curthread->t_sig_check = 1;
2352 if (!owned)
2353 mutex_exit(&p->p_lock);
2354 }
2355 }
2356
2357 /*
2358 * Return true if the signal number is in range
2359 * and the signal code specifies signal queueing.
2360 */
2361 int
sigwillqueue(int sig,int code)2362 sigwillqueue(int sig, int code)
2363 {
2364 if (sig >= 0 && sig < NSIG) {
2365 switch (code) {
2366 case SI_QUEUE:
2367 case SI_TIMER:
2368 case SI_ASYNCIO:
2369 case SI_MESGQ:
2370 return (1);
2371 }
2372 }
2373 return (0);
2374 }
2375
2376 #ifndef UCHAR_MAX
2377 #define UCHAR_MAX 255
2378 #endif
2379
2380 /*
2381 * The entire pool (with maxcount entries) is pre-allocated at
2382 * the first sigqueue/signotify call.
2383 */
2384 sigqhdr_t *
sigqhdralloc(size_t size,uint_t maxcount)2385 sigqhdralloc(size_t size, uint_t maxcount)
2386 {
2387 size_t i;
2388 sigqueue_t *sq, *next;
2389 sigqhdr_t *sqh;
2390
2391 i = (maxcount * size) + sizeof (sigqhdr_t);
2392 ASSERT(maxcount <= UCHAR_MAX && i <= USHRT_MAX);
2393 sqh = kmem_alloc(i, KM_SLEEP);
2394 sqh->sqb_count = (uchar_t)maxcount;
2395 sqh->sqb_maxcount = (uchar_t)maxcount;
2396 sqh->sqb_size = (ushort_t)i;
2397 sqh->sqb_pexited = 0;
2398 sqh->sqb_sent = 0;
2399 sqh->sqb_free = sq = (sigqueue_t *)(sqh + 1);
2400 for (i = maxcount - 1; i != 0; i--) {
2401 next = (sigqueue_t *)((uintptr_t)sq + size);
2402 sq->sq_next = next;
2403 sq = next;
2404 }
2405 sq->sq_next = NULL;
2406 cv_init(&sqh->sqb_cv, NULL, CV_DEFAULT, NULL);
2407 mutex_init(&sqh->sqb_lock, NULL, MUTEX_DEFAULT, NULL);
2408 return (sqh);
2409 }
2410
2411 static void sigqrel(sigqueue_t *);
2412
2413 /*
2414 * allocate a sigqueue/signotify structure from the per process
2415 * pre-allocated pool.
2416 */
2417 sigqueue_t *
sigqalloc(sigqhdr_t * sqh)2418 sigqalloc(sigqhdr_t *sqh)
2419 {
2420 sigqueue_t *sq = NULL;
2421
2422 ASSERT(MUTEX_HELD(&curproc->p_lock));
2423
2424 if (sqh != NULL) {
2425 mutex_enter(&sqh->sqb_lock);
2426 if (sqh->sqb_count > 0) {
2427 sqh->sqb_count--;
2428 sq = sqh->sqb_free;
2429 sqh->sqb_free = sq->sq_next;
2430 mutex_exit(&sqh->sqb_lock);
2431 bzero(&sq->sq_info, sizeof (k_siginfo_t));
2432 sq->sq_backptr = sqh;
2433 sq->sq_func = sigqrel;
2434 sq->sq_next = NULL;
2435 sq->sq_external = 0;
2436 } else {
2437 mutex_exit(&sqh->sqb_lock);
2438 }
2439 }
2440 return (sq);
2441 }
2442
2443 /*
2444 * Return a sigqueue structure back to the pre-allocated pool.
2445 */
2446 static void
sigqrel(sigqueue_t * sq)2447 sigqrel(sigqueue_t *sq)
2448 {
2449 sigqhdr_t *sqh;
2450
2451 /* make sure that p_lock of the affected process is held */
2452
2453 sqh = (sigqhdr_t *)sq->sq_backptr;
2454 mutex_enter(&sqh->sqb_lock);
2455 if (sqh->sqb_pexited && sqh->sqb_sent == 1) {
2456 mutex_exit(&sqh->sqb_lock);
2457 cv_destroy(&sqh->sqb_cv);
2458 mutex_destroy(&sqh->sqb_lock);
2459 kmem_free(sqh, sqh->sqb_size);
2460 } else {
2461 sqh->sqb_count++;
2462 sqh->sqb_sent--;
2463 sq->sq_next = sqh->sqb_free;
2464 sq->sq_backptr = NULL;
2465 sqh->sqb_free = sq;
2466 cv_signal(&sqh->sqb_cv);
2467 mutex_exit(&sqh->sqb_lock);
2468 }
2469 }
2470
2471 /*
2472 * Free up the pre-allocated sigqueue headers of sigqueue pool
2473 * and signotify pool, if possible.
2474 * Called only by the owning process during exec() and exit().
2475 */
2476 void
sigqfree(proc_t * p)2477 sigqfree(proc_t *p)
2478 {
2479 ASSERT(MUTEX_HELD(&p->p_lock));
2480
2481 if (p->p_sigqhdr != NULL) { /* sigqueue pool */
2482 sigqhdrfree(p->p_sigqhdr);
2483 p->p_sigqhdr = NULL;
2484 }
2485 if (p->p_signhdr != NULL) { /* signotify pool */
2486 sigqhdrfree(p->p_signhdr);
2487 p->p_signhdr = NULL;
2488 }
2489 }
2490
2491 /*
2492 * Free up the pre-allocated header and sigq pool if possible.
2493 */
2494 void
sigqhdrfree(sigqhdr_t * sqh)2495 sigqhdrfree(sigqhdr_t *sqh)
2496 {
2497 mutex_enter(&sqh->sqb_lock);
2498 if (sqh->sqb_sent == 0) {
2499 mutex_exit(&sqh->sqb_lock);
2500 cv_destroy(&sqh->sqb_cv);
2501 mutex_destroy(&sqh->sqb_lock);
2502 kmem_free(sqh, sqh->sqb_size);
2503 } else {
2504 sqh->sqb_pexited = 1;
2505 mutex_exit(&sqh->sqb_lock);
2506 }
2507 }
2508
2509 /*
2510 * Free up a single sigqueue structure.
2511 * No other code should free a sigqueue directly.
2512 */
2513 void
siginfofree(sigqueue_t * sqp)2514 siginfofree(sigqueue_t *sqp)
2515 {
2516 if (sqp != NULL) {
2517 if (sqp->sq_func != NULL)
2518 (sqp->sq_func)(sqp);
2519 else
2520 kmem_free(sqp, sizeof (sigqueue_t));
2521 }
2522 }
2523
2524 /*
2525 * Generate a synchronous signal caused by a hardware
2526 * condition encountered by an lwp. Called from trap().
2527 */
2528 void
trapsig(k_siginfo_t * ip,int restartable)2529 trapsig(k_siginfo_t *ip, int restartable)
2530 {
2531 proc_t *p = ttoproc(curthread);
2532 int sig = ip->si_signo;
2533 sigqueue_t *sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
2534
2535 ASSERT(sig > 0 && sig < NSIG);
2536
2537 if (curthread->t_dtrace_on)
2538 dtrace_safe_synchronous_signal();
2539
2540 mutex_enter(&p->p_lock);
2541 schedctl_finish_sigblock(curthread);
2542 /*
2543 * Avoid a possible infinite loop if the lwp is holding the
2544 * signal generated by a trap of a restartable instruction or
2545 * if the signal so generated is being ignored by the process.
2546 */
2547 if (restartable &&
2548 (sigismember(&curthread->t_hold, sig) ||
2549 p->p_user.u_signal[sig-1] == SIG_IGN)) {
2550 sigdelset(&curthread->t_hold, sig);
2551 p->p_user.u_signal[sig-1] = SIG_DFL;
2552 sigdelset(&p->p_ignore, sig);
2553 }
2554 bcopy(ip, &sqp->sq_info, sizeof (k_siginfo_t));
2555 sigaddqa(p, curthread, sqp);
2556 mutex_exit(&p->p_lock);
2557 }
2558
2559 /*
2560 * Dispatch the real time profiling signal in the traditional way,
2561 * honoring all of the /proc tracing mechanism built into issig().
2562 */
2563 static void
realsigprof_slow(int sysnum,int nsysarg,int error)2564 realsigprof_slow(int sysnum, int nsysarg, int error)
2565 {
2566 kthread_t *t = curthread;
2567 proc_t *p = ttoproc(t);
2568 klwp_t *lwp = ttolwp(t);
2569 k_siginfo_t *sip = &lwp->lwp_siginfo;
2570 void (*func)();
2571
2572 mutex_enter(&p->p_lock);
2573 func = PTOU(p)->u_signal[SIGPROF - 1];
2574 if (p->p_rprof_cyclic == CYCLIC_NONE ||
2575 func == SIG_DFL || func == SIG_IGN) {
2576 bzero(t->t_rprof, sizeof (*t->t_rprof));
2577 mutex_exit(&p->p_lock);
2578 return;
2579 }
2580 if (sigismember(&t->t_hold, SIGPROF)) {
2581 mutex_exit(&p->p_lock);
2582 return;
2583 }
2584 sip->si_signo = SIGPROF;
2585 sip->si_code = PROF_SIG;
2586 sip->si_errno = error;
2587 hrt2ts(gethrtime(), &sip->si_tstamp);
2588 sip->si_syscall = sysnum;
2589 sip->si_nsysarg = nsysarg;
2590 sip->si_fault = lwp->lwp_lastfault;
2591 sip->si_faddr = lwp->lwp_lastfaddr;
2592 lwp->lwp_lastfault = 0;
2593 lwp->lwp_lastfaddr = NULL;
2594 sigtoproc(p, t, SIGPROF);
2595 mutex_exit(&p->p_lock);
2596 ASSERT(lwp->lwp_cursig == 0);
2597 if (issig(FORREAL))
2598 psig();
2599 sip->si_signo = 0;
2600 bzero(t->t_rprof, sizeof (*t->t_rprof));
2601 }
2602
2603 /*
2604 * We are not tracing the SIGPROF signal, or doing any other unnatural
2605 * acts, like watchpoints, so dispatch the real time profiling signal
2606 * directly, bypassing all of the overhead built into issig().
2607 */
2608 static void
realsigprof_fast(int sysnum,int nsysarg,int error)2609 realsigprof_fast(int sysnum, int nsysarg, int error)
2610 {
2611 kthread_t *t = curthread;
2612 proc_t *p = ttoproc(t);
2613 klwp_t *lwp = ttolwp(t);
2614 k_siginfo_t *sip = &lwp->lwp_siginfo;
2615 void (*func)();
2616 int rc;
2617 int code;
2618
2619 /*
2620 * We don't need to acquire p->p_lock here;
2621 * we are manipulating thread-private data.
2622 */
2623 func = PTOU(p)->u_signal[SIGPROF - 1];
2624 if (p->p_rprof_cyclic == CYCLIC_NONE ||
2625 func == SIG_DFL || func == SIG_IGN) {
2626 bzero(t->t_rprof, sizeof (*t->t_rprof));
2627 return;
2628 }
2629 if (lwp->lwp_cursig != 0 ||
2630 lwp->lwp_curinfo != NULL ||
2631 sigismember(&t->t_hold, SIGPROF)) {
2632 return;
2633 }
2634 sip->si_signo = SIGPROF;
2635 sip->si_code = PROF_SIG;
2636 sip->si_errno = error;
2637 hrt2ts(gethrtime(), &sip->si_tstamp);
2638 sip->si_syscall = sysnum;
2639 sip->si_nsysarg = nsysarg;
2640 sip->si_fault = lwp->lwp_lastfault;
2641 sip->si_faddr = lwp->lwp_lastfaddr;
2642 lwp->lwp_lastfault = 0;
2643 lwp->lwp_lastfaddr = NULL;
2644 if (t->t_flag & T_TOMASK)
2645 t->t_flag &= ~T_TOMASK;
2646 else
2647 lwp->lwp_sigoldmask = t->t_hold;
2648 sigorset(&t->t_hold, &PTOU(p)->u_sigmask[SIGPROF - 1]);
2649 if (!sigismember(&PTOU(p)->u_signodefer, SIGPROF))
2650 sigaddset(&t->t_hold, SIGPROF);
2651 lwp->lwp_extsig = 0;
2652 lwp->lwp_ru.nsignals++;
2653 if (p->p_model == DATAMODEL_NATIVE)
2654 rc = sendsig(SIGPROF, sip, func);
2655 #ifdef _SYSCALL32_IMPL
2656 else
2657 rc = sendsig32(SIGPROF, sip, func);
2658 #endif /* _SYSCALL32_IMPL */
2659 sip->si_signo = 0;
2660 bzero(t->t_rprof, sizeof (*t->t_rprof));
2661 if (rc == 0) {
2662 /*
2663 * sendsig() failed; we must dump core with a SIGSEGV.
2664 * See psig(). This code is copied from there.
2665 */
2666 lwp->lwp_cursig = SIGSEGV;
2667 code = CLD_KILLED;
2668 proc_is_exiting(p);
2669 if (exitlwps(1) != 0) {
2670 mutex_enter(&p->p_lock);
2671 lwp_exit();
2672 }
2673 if (audit_active == C2AUDIT_LOADED)
2674 audit_core_start(SIGSEGV);
2675 if (core(SIGSEGV, 0) == 0)
2676 code = CLD_DUMPED;
2677 if (audit_active == C2AUDIT_LOADED)
2678 audit_core_finish(code);
2679 exit(code, SIGSEGV);
2680 }
2681 }
2682
2683 /*
2684 * Arrange for the real time profiling signal to be dispatched.
2685 */
2686 void
realsigprof(int sysnum,int nsysarg,int error)2687 realsigprof(int sysnum, int nsysarg, int error)
2688 {
2689 kthread_t *t = curthread;
2690 proc_t *p = ttoproc(t);
2691
2692 if (t->t_rprof->rp_anystate == 0)
2693 return;
2694
2695 schedctl_finish_sigblock(t);
2696
2697 /* test for any activity that requires p->p_lock */
2698 if (tracing(p, SIGPROF) || pr_watch_active(p) ||
2699 sigismember(&PTOU(p)->u_sigresethand, SIGPROF)) {
2700 /* do it the classic slow way */
2701 realsigprof_slow(sysnum, nsysarg, error);
2702 } else {
2703 /* do it the cheating-a-little fast way */
2704 realsigprof_fast(sysnum, nsysarg, error);
2705 }
2706 }
2707
2708 #ifdef _SYSCALL32_IMPL
2709
2710 /*
2711 * It's tricky to transmit a sigval between 32-bit and 64-bit
2712 * process, since in the 64-bit world, a pointer and an integer
2713 * are different sizes. Since we're constrained by the standards
2714 * world not to change the types, and it's unclear how useful it is
2715 * to send pointers between address spaces this way, we preserve
2716 * the 'int' interpretation for 32-bit processes interoperating
2717 * with 64-bit processes. The full semantics (pointers or integers)
2718 * are available for N-bit processes interoperating with N-bit
2719 * processes.
2720 */
2721 void
siginfo_kto32(const k_siginfo_t * src,siginfo32_t * dest)2722 siginfo_kto32(const k_siginfo_t *src, siginfo32_t *dest)
2723 {
2724 bzero(dest, sizeof (*dest));
2725
2726 /*
2727 * The absolute minimum content is si_signo and si_code.
2728 */
2729 dest->si_signo = src->si_signo;
2730 if ((dest->si_code = src->si_code) == SI_NOINFO)
2731 return;
2732
2733 /*
2734 * A siginfo generated by user level is structured
2735 * differently from one generated by the kernel.
2736 */
2737 if (SI_FROMUSER(src)) {
2738 dest->si_pid = src->si_pid;
2739 dest->si_ctid = src->si_ctid;
2740 dest->si_zoneid = src->si_zoneid;
2741 dest->si_uid = src->si_uid;
2742 if (SI_CANQUEUE(src->si_code))
2743 dest->si_value.sival_int =
2744 (int32_t)src->si_value.sival_int;
2745 return;
2746 }
2747
2748 dest->si_errno = src->si_errno;
2749
2750 switch (src->si_signo) {
2751 default:
2752 dest->si_pid = src->si_pid;
2753 dest->si_ctid = src->si_ctid;
2754 dest->si_zoneid = src->si_zoneid;
2755 dest->si_uid = src->si_uid;
2756 dest->si_value.sival_int = (int32_t)src->si_value.sival_int;
2757 break;
2758 case SIGCLD:
2759 dest->si_pid = src->si_pid;
2760 dest->si_ctid = src->si_ctid;
2761 dest->si_zoneid = src->si_zoneid;
2762 dest->si_status = src->si_status;
2763 dest->si_stime = src->si_stime;
2764 dest->si_utime = src->si_utime;
2765 break;
2766 case SIGSEGV:
2767 case SIGBUS:
2768 case SIGILL:
2769 case SIGTRAP:
2770 case SIGFPE:
2771 case SIGEMT:
2772 dest->si_addr = (caddr32_t)(uintptr_t)src->si_addr;
2773 dest->si_trapno = src->si_trapno;
2774 dest->si_pc = (caddr32_t)(uintptr_t)src->si_pc;
2775 break;
2776 case SIGPOLL:
2777 case SIGXFSZ:
2778 dest->si_fd = src->si_fd;
2779 dest->si_band = src->si_band;
2780 break;
2781 case SIGPROF:
2782 dest->si_faddr = (caddr32_t)(uintptr_t)src->si_faddr;
2783 dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2784 dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2785 dest->si_syscall = src->si_syscall;
2786 dest->si_nsysarg = src->si_nsysarg;
2787 dest->si_fault = src->si_fault;
2788 break;
2789 }
2790 }
2791
2792 void
siginfo_32tok(const siginfo32_t * src,k_siginfo_t * dest)2793 siginfo_32tok(const siginfo32_t *src, k_siginfo_t *dest)
2794 {
2795 bzero(dest, sizeof (*dest));
2796
2797 /*
2798 * The absolute minimum content is si_signo and si_code.
2799 */
2800 dest->si_signo = src->si_signo;
2801 if ((dest->si_code = src->si_code) == SI_NOINFO)
2802 return;
2803
2804 /*
2805 * A siginfo generated by user level is structured
2806 * differently from one generated by the kernel.
2807 */
2808 if (SI_FROMUSER(src)) {
2809 dest->si_pid = src->si_pid;
2810 dest->si_ctid = src->si_ctid;
2811 dest->si_zoneid = src->si_zoneid;
2812 dest->si_uid = src->si_uid;
2813 if (SI_CANQUEUE(src->si_code))
2814 dest->si_value.sival_int =
2815 (int)src->si_value.sival_int;
2816 return;
2817 }
2818
2819 dest->si_errno = src->si_errno;
2820
2821 switch (src->si_signo) {
2822 default:
2823 dest->si_pid = src->si_pid;
2824 dest->si_ctid = src->si_ctid;
2825 dest->si_zoneid = src->si_zoneid;
2826 dest->si_uid = src->si_uid;
2827 dest->si_value.sival_int = (int)src->si_value.sival_int;
2828 break;
2829 case SIGCLD:
2830 dest->si_pid = src->si_pid;
2831 dest->si_ctid = src->si_ctid;
2832 dest->si_zoneid = src->si_zoneid;
2833 dest->si_status = src->si_status;
2834 dest->si_stime = src->si_stime;
2835 dest->si_utime = src->si_utime;
2836 break;
2837 case SIGSEGV:
2838 case SIGBUS:
2839 case SIGILL:
2840 case SIGTRAP:
2841 case SIGFPE:
2842 case SIGEMT:
2843 dest->si_addr = (void *)(uintptr_t)src->si_addr;
2844 dest->si_trapno = src->si_trapno;
2845 dest->si_pc = (void *)(uintptr_t)src->si_pc;
2846 break;
2847 case SIGPOLL:
2848 case SIGXFSZ:
2849 dest->si_fd = src->si_fd;
2850 dest->si_band = src->si_band;
2851 break;
2852 case SIGPROF:
2853 dest->si_faddr = (void *)(uintptr_t)src->si_faddr;
2854 dest->si_tstamp.tv_sec = src->si_tstamp.tv_sec;
2855 dest->si_tstamp.tv_nsec = src->si_tstamp.tv_nsec;
2856 dest->si_syscall = src->si_syscall;
2857 dest->si_nsysarg = src->si_nsysarg;
2858 dest->si_fault = src->si_fault;
2859 break;
2860 }
2861 }
2862
2863 #endif /* _SYSCALL32_IMPL */
2864