1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
23 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */
24 /* All Rights Reserved */
25
26 /*
27 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
28 */
29
30
31 /*
32 * Serial I/O driver for 8250/16450/16550A/16650/16750 chips.
33 */
34
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/signal.h>
38 #include <sys/stream.h>
39 #include <sys/termio.h>
40 #include <sys/errno.h>
41 #include <sys/file.h>
42 #include <sys/cmn_err.h>
43 #include <sys/stropts.h>
44 #include <sys/strsubr.h>
45 #include <sys/strtty.h>
46 #include <sys/debug.h>
47 #include <sys/kbio.h>
48 #include <sys/cred.h>
49 #include <sys/stat.h>
50 #include <sys/consdev.h>
51 #include <sys/mkdev.h>
52 #include <sys/kmem.h>
53 #include <sys/cred.h>
54 #include <sys/strsun.h>
55 #ifdef DEBUG
56 #include <sys/promif.h>
57 #endif
58 #include <sys/modctl.h>
59 #include <sys/ddi.h>
60 #include <sys/sunddi.h>
61 #include <sys/pci.h>
62 #include <sys/asy.h>
63 #include <sys/policy.h>
64
65 /*
66 * set the RX FIFO trigger_level to half the RX FIFO size for now
67 * we may want to make this configurable later.
68 */
69 static int asy_trig_level = FIFO_TRIG_8;
70
71 int asy_drain_check = 15000000; /* tunable: exit drain check time */
72 int asy_min_dtr_low = 500000; /* tunable: minimum DTR down time */
73 int asy_min_utbrk = 100000; /* tunable: minumum untimed brk time */
74
75 int asymaxchip = ASY16750; /* tunable: limit chip support we look for */
76
77 /*
78 * Just in case someone has a chip with broken loopback mode, we provide a
79 * means to disable the loopback test. By default, we only loopback test
80 * UARTs which look like they have FIFOs bigger than 16 bytes.
81 * Set to 0 to suppress test, or to 2 to enable test on any size FIFO.
82 */
83 int asy_fifo_test = 1; /* tunable: set to 0, 1, or 2 */
84
85 /*
86 * Allow ability to switch off testing of the scratch register.
87 * Some UART emulators might not have it. This will also disable the test
88 * for Exar/Startech ST16C650, as that requires use of the SCR register.
89 */
90 int asy_scr_test = 1; /* tunable: set to 0 to disable SCR reg test */
91
92 /*
93 * As we don't yet support on-chip flow control, it's a bad idea to put a
94 * large number of characters in the TX FIFO, since if other end tells us
95 * to stop transmitting, we can only stop filling the TX FIFO, but it will
96 * still carry on draining by itself, so remote end still gets what's left
97 * in the FIFO.
98 */
99 int asy_max_tx_fifo = 16; /* tunable: max fill of TX FIFO */
100
101 #define async_stopc async_ttycommon.t_stopc
102 #define async_startc async_ttycommon.t_startc
103
104 #define ASY_INIT 1
105 #define ASY_NOINIT 0
106
107 /* enum value for sw and hw flow control action */
108 typedef enum {
109 FLOW_CHECK,
110 FLOW_STOP,
111 FLOW_START
112 } async_flowc_action;
113
114 #ifdef DEBUG
115 #define ASY_DEBUG_INIT 0x0001 /* Output msgs during driver initialization. */
116 #define ASY_DEBUG_INPUT 0x0002 /* Report characters received during int. */
117 #define ASY_DEBUG_EOT 0x0004 /* Output msgs when wait for xmit to finish. */
118 #define ASY_DEBUG_CLOSE 0x0008 /* Output msgs when driver open/close called */
119 #define ASY_DEBUG_HFLOW 0x0010 /* Output msgs when H/W flowcontrol is active */
120 #define ASY_DEBUG_PROCS 0x0020 /* Output each proc name as it is entered. */
121 #define ASY_DEBUG_STATE 0x0040 /* Output value of Interrupt Service Reg. */
122 #define ASY_DEBUG_INTR 0x0080 /* Output value of Interrupt Service Reg. */
123 #define ASY_DEBUG_OUT 0x0100 /* Output msgs about output events. */
124 #define ASY_DEBUG_BUSY 0x0200 /* Output msgs when xmit is enabled/disabled */
125 #define ASY_DEBUG_MODEM 0x0400 /* Output msgs about modem status & control. */
126 #define ASY_DEBUG_MODM2 0x0800 /* Output msgs about modem status & control. */
127 #define ASY_DEBUG_IOCTL 0x1000 /* Output msgs about ioctl messages. */
128 #define ASY_DEBUG_CHIP 0x2000 /* Output msgs about chip identification. */
129 #define ASY_DEBUG_SFLOW 0x4000 /* Output msgs when S/W flowcontrol is active */
130 #define ASY_DEBUG(x) (debug & (x))
131 static int debug = 0;
132 #else
133 #define ASY_DEBUG(x) B_FALSE
134 #endif
135
136 /* pnpISA compressed device ids */
137 #define pnpMTS0219 0xb6930219 /* Multitech MT5634ZTX modem */
138
139 /*
140 * PPS (Pulse Per Second) support.
141 */
142 void ddi_hardpps();
143 /*
144 * This is protected by the asy_excl_hi of the port on which PPS event
145 * handling is enabled. Note that only one port should have this enabled at
146 * any one time. Enabling PPS handling on multiple ports will result in
147 * unpredictable (but benign) results.
148 */
149 static struct ppsclockev asy_ppsev;
150
151 #ifdef PPSCLOCKLED
152 /* XXX Use these to observe PPS latencies and jitter on a scope */
153 #define LED_ON
154 #define LED_OFF
155 #else
156 #define LED_ON
157 #define LED_OFF
158 #endif
159
160 static int max_asy_instance = -1;
161
162 static uint_t asysoftintr(caddr_t intarg);
163 static uint_t asyintr(caddr_t argasy);
164
165 static boolean_t abort_charseq_recognize(uchar_t ch);
166
167 /* The async interrupt entry points */
168 static void async_txint(struct asycom *asy);
169 static void async_rxint(struct asycom *asy, uchar_t lsr);
170 static void async_msint(struct asycom *asy);
171 static void async_softint(struct asycom *asy);
172
173 static void async_ioctl(struct asyncline *async, queue_t *q, mblk_t *mp);
174 static void async_reioctl(void *unit);
175 static void async_iocdata(queue_t *q, mblk_t *mp);
176 static void async_restart(void *arg);
177 static void async_start(struct asyncline *async);
178 static void async_nstart(struct asyncline *async, int mode);
179 static void async_resume(struct asyncline *async);
180 static void asy_program(struct asycom *asy, int mode);
181 static void asyinit(struct asycom *asy);
182 static void asy_waiteot(struct asycom *asy);
183 static void asyputchar(cons_polledio_arg_t, uchar_t c);
184 static int asygetchar(cons_polledio_arg_t);
185 static boolean_t asyischar(cons_polledio_arg_t);
186
187 static int asymctl(struct asycom *, int, int);
188 static int asytodm(int, int);
189 static int dmtoasy(int);
190 /*PRINTFLIKE2*/
191 static void asyerror(int level, const char *fmt, ...) __KPRINTFLIKE(2);
192 static void asy_parse_mode(dev_info_t *devi, struct asycom *asy);
193 static void asy_soft_state_free(struct asycom *);
194 static char *asy_hw_name(struct asycom *asy);
195 static void async_hold_utbrk(void *arg);
196 static void async_resume_utbrk(struct asyncline *async);
197 static void async_dtr_free(struct asyncline *async);
198 static int asy_identify_chip(dev_info_t *devi, struct asycom *asy);
199 static void asy_reset_fifo(struct asycom *asy, uchar_t flags);
200 static int asy_getproperty(dev_info_t *devi, struct asycom *asy,
201 const char *property);
202 static boolean_t async_flowcontrol_sw_input(struct asycom *asy,
203 async_flowc_action onoff, int type);
204 static void async_flowcontrol_sw_output(struct asycom *asy,
205 async_flowc_action onoff);
206 static void async_flowcontrol_hw_input(struct asycom *asy,
207 async_flowc_action onoff, int type);
208 static void async_flowcontrol_hw_output(struct asycom *asy,
209 async_flowc_action onoff);
210
211 #define GET_PROP(devi, pname, pflag, pval, plen) \
212 (ddi_prop_op(DDI_DEV_T_ANY, (devi), PROP_LEN_AND_VAL_BUF, \
213 (pflag), (pname), (caddr_t)(pval), (plen)))
214
215 kmutex_t asy_glob_lock; /* lock protecting global data manipulation */
216 void *asy_soft_state;
217
218 /* Standard COM port I/O addresses */
219 static const int standard_com_ports[] = {
220 COM1_IOADDR, COM2_IOADDR, COM3_IOADDR, COM4_IOADDR
221 };
222
223 static int *com_ports;
224 static uint_t num_com_ports;
225
226 #ifdef DEBUG
227 /*
228 * Set this to true to make the driver pretend to do a suspend. Useful
229 * for debugging suspend/resume code with a serial debugger.
230 */
231 boolean_t asy_nosuspend = B_FALSE;
232 #endif
233
234
235 /*
236 * Baud rate table. Indexed by #defines found in sys/termios.h
237 */
238 ushort_t asyspdtab[] = {
239 0, /* 0 baud rate */
240 0x900, /* 50 baud rate */
241 0x600, /* 75 baud rate */
242 0x417, /* 110 baud rate (%0.026) */
243 0x359, /* 134 baud rate (%0.058) */
244 0x300, /* 150 baud rate */
245 0x240, /* 200 baud rate */
246 0x180, /* 300 baud rate */
247 0x0c0, /* 600 baud rate */
248 0x060, /* 1200 baud rate */
249 0x040, /* 1800 baud rate */
250 0x030, /* 2400 baud rate */
251 0x018, /* 4800 baud rate */
252 0x00c, /* 9600 baud rate */
253 0x006, /* 19200 baud rate */
254 0x003, /* 38400 baud rate */
255
256 0x002, /* 57600 baud rate */
257 0x0, /* 76800 baud rate not supported */
258 0x001, /* 115200 baud rate */
259 0x0, /* 153600 baud rate not supported */
260 0x0, /* 0x8002 (SMC chip) 230400 baud rate not supported */
261 0x0, /* 307200 baud rate not supported */
262 0x0, /* 0x8001 (SMC chip) 460800 baud rate not supported */
263 0x0, /* unused */
264 0x0, /* unused */
265 0x0, /* unused */
266 0x0, /* unused */
267 0x0, /* unused */
268 0x0, /* unused */
269 0x0, /* unused */
270 0x0, /* unused */
271 0x0, /* unused */
272 };
273
274 static int asyrsrv(queue_t *q);
275 static int asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr);
276 static int asyclose(queue_t *q, int flag, cred_t *credp);
277 static int asywputdo(queue_t *q, mblk_t *mp, boolean_t);
278 static int asywput(queue_t *q, mblk_t *mp);
279
280 struct module_info asy_info = {
281 0,
282 "asy",
283 0,
284 INFPSZ,
285 4096,
286 128
287 };
288
289 static struct qinit asy_rint = {
290 putq,
291 asyrsrv,
292 asyopen,
293 asyclose,
294 NULL,
295 &asy_info,
296 NULL
297 };
298
299 static struct qinit asy_wint = {
300 asywput,
301 NULL,
302 NULL,
303 NULL,
304 NULL,
305 &asy_info,
306 NULL
307 };
308
309 struct streamtab asy_str_info = {
310 &asy_rint,
311 &asy_wint,
312 NULL,
313 NULL
314 };
315
316 static int asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
317 void **result);
318 static int asyprobe(dev_info_t *);
319 static int asyattach(dev_info_t *, ddi_attach_cmd_t);
320 static int asydetach(dev_info_t *, ddi_detach_cmd_t);
321 static int asyquiesce(dev_info_t *);
322
323 static struct cb_ops cb_asy_ops = {
324 nodev, /* cb_open */
325 nodev, /* cb_close */
326 nodev, /* cb_strategy */
327 nodev, /* cb_print */
328 nodev, /* cb_dump */
329 nodev, /* cb_read */
330 nodev, /* cb_write */
331 nodev, /* cb_ioctl */
332 nodev, /* cb_devmap */
333 nodev, /* cb_mmap */
334 nodev, /* cb_segmap */
335 nochpoll, /* cb_chpoll */
336 ddi_prop_op, /* cb_prop_op */
337 &asy_str_info, /* cb_stream */
338 D_MP /* cb_flag */
339 };
340
341 struct dev_ops asy_ops = {
342 DEVO_REV, /* devo_rev */
343 0, /* devo_refcnt */
344 asyinfo, /* devo_getinfo */
345 nulldev, /* devo_identify */
346 asyprobe, /* devo_probe */
347 asyattach, /* devo_attach */
348 asydetach, /* devo_detach */
349 nodev, /* devo_reset */
350 &cb_asy_ops, /* devo_cb_ops */
351 NULL, /* devo_bus_ops */
352 NULL, /* power */
353 asyquiesce, /* quiesce */
354 };
355
356 static struct modldrv modldrv = {
357 &mod_driverops, /* Type of module. This one is a driver */
358 "ASY driver",
359 &asy_ops, /* driver ops */
360 };
361
362 static struct modlinkage modlinkage = {
363 MODREV_1,
364 (void *)&modldrv,
365 NULL
366 };
367
368 int
_init(void)369 _init(void)
370 {
371 int i;
372
373 i = ddi_soft_state_init(&asy_soft_state, sizeof (struct asycom), 2);
374 if (i == 0) {
375 mutex_init(&asy_glob_lock, NULL, MUTEX_DRIVER, NULL);
376 if ((i = mod_install(&modlinkage)) != 0) {
377 mutex_destroy(&asy_glob_lock);
378 ddi_soft_state_fini(&asy_soft_state);
379 } else {
380 DEBUGCONT2(ASY_DEBUG_INIT, "%s, debug = %x\n",
381 modldrv.drv_linkinfo, debug);
382 }
383 }
384 return (i);
385 }
386
387 int
_fini(void)388 _fini(void)
389 {
390 int i;
391
392 if ((i = mod_remove(&modlinkage)) == 0) {
393 DEBUGCONT1(ASY_DEBUG_INIT, "%s unloading\n",
394 modldrv.drv_linkinfo);
395 ASSERT(max_asy_instance == -1);
396 mutex_destroy(&asy_glob_lock);
397 /* free "motherboard-serial-ports" property if allocated */
398 if (com_ports != NULL && com_ports != (int *)standard_com_ports)
399 ddi_prop_free(com_ports);
400 com_ports = NULL;
401 ddi_soft_state_fini(&asy_soft_state);
402 }
403 return (i);
404 }
405
406 int
_info(struct modinfo * modinfop)407 _info(struct modinfo *modinfop)
408 {
409 return (mod_info(&modlinkage, modinfop));
410 }
411
412 void
async_put_suspq(struct asycom * asy,mblk_t * mp)413 async_put_suspq(struct asycom *asy, mblk_t *mp)
414 {
415 struct asyncline *async = asy->asy_priv;
416
417 ASSERT(mutex_owned(&asy->asy_excl));
418
419 if (async->async_suspqf == NULL)
420 async->async_suspqf = mp;
421 else
422 async->async_suspqb->b_next = mp;
423
424 async->async_suspqb = mp;
425 }
426
427 static mblk_t *
async_get_suspq(struct asycom * asy)428 async_get_suspq(struct asycom *asy)
429 {
430 struct asyncline *async = asy->asy_priv;
431 mblk_t *mp;
432
433 ASSERT(mutex_owned(&asy->asy_excl));
434
435 if ((mp = async->async_suspqf) != NULL) {
436 async->async_suspqf = mp->b_next;
437 mp->b_next = NULL;
438 } else {
439 async->async_suspqb = NULL;
440 }
441 return (mp);
442 }
443
444 static void
async_process_suspq(struct asycom * asy)445 async_process_suspq(struct asycom *asy)
446 {
447 struct asyncline *async = asy->asy_priv;
448 mblk_t *mp;
449
450 ASSERT(mutex_owned(&asy->asy_excl));
451
452 while ((mp = async_get_suspq(asy)) != NULL) {
453 queue_t *q;
454
455 q = async->async_ttycommon.t_writeq;
456 ASSERT(q != NULL);
457 mutex_exit(&asy->asy_excl);
458 (void) asywputdo(q, mp, B_FALSE);
459 mutex_enter(&asy->asy_excl);
460 }
461 async->async_flags &= ~ASYNC_DDI_SUSPENDED;
462 cv_broadcast(&async->async_flags_cv);
463 }
464
465 static int
asy_get_bus_type(dev_info_t * devinfo)466 asy_get_bus_type(dev_info_t *devinfo)
467 {
468 char parent_type[16];
469 int parentlen;
470
471 parentlen = sizeof (parent_type);
472
473 if (ddi_prop_op(DDI_DEV_T_ANY, devinfo, PROP_LEN_AND_VAL_BUF, 0,
474 "device_type", (caddr_t)parent_type, &parentlen)
475 != DDI_PROP_SUCCESS && ddi_prop_op(DDI_DEV_T_ANY, devinfo,
476 PROP_LEN_AND_VAL_BUF, 0, "bus-type", (caddr_t)parent_type,
477 &parentlen) != DDI_PROP_SUCCESS) {
478 cmn_err(CE_WARN,
479 "asy: can't figure out device type for"
480 " parent \"%s\"",
481 ddi_get_name(ddi_get_parent(devinfo)));
482 return (ASY_BUS_UNKNOWN);
483 }
484 if (strcmp(parent_type, "isa") == 0)
485 return (ASY_BUS_ISA);
486 else if (strcmp(parent_type, "pci") == 0)
487 return (ASY_BUS_PCI);
488 else
489 return (ASY_BUS_UNKNOWN);
490 }
491
492 static int
asy_get_io_regnum_pci(dev_info_t * devi,struct asycom * asy)493 asy_get_io_regnum_pci(dev_info_t *devi, struct asycom *asy)
494 {
495 int reglen, nregs;
496 int regnum, i;
497 uint64_t size;
498 struct pci_phys_spec *reglist;
499
500 if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
501 "reg", (caddr_t)®list, ®len) != DDI_PROP_SUCCESS) {
502 cmn_err(CE_WARN, "asy_get_io_regnum_pci: reg property"
503 " not found in devices property list");
504 return (-1);
505 }
506
507 /*
508 * PCI devices are assumed to not have broken FIFOs;
509 * Agere/Lucent Venus PCI modem chipsets are an example
510 */
511 if (asy)
512 asy->asy_flags2 |= ASY2_NO_LOOPBACK;
513
514 regnum = -1;
515 nregs = reglen / sizeof (*reglist);
516 for (i = 0; i < nregs; i++) {
517 switch (reglist[i].pci_phys_hi & PCI_ADDR_MASK) {
518 case PCI_ADDR_IO: /* I/O bus reg property */
519 if (regnum == -1) /* use only the first one */
520 regnum = i;
521 break;
522
523 default:
524 break;
525 }
526 }
527
528 /* check for valid count of registers */
529 if (regnum >= 0) {
530 size = ((uint64_t)reglist[regnum].pci_size_low) |
531 ((uint64_t)reglist[regnum].pci_size_hi) << 32;
532 if (size < 8)
533 regnum = -1;
534 }
535 kmem_free(reglist, reglen);
536 return (regnum);
537 }
538
539 static int
asy_get_io_regnum_isa(dev_info_t * devi,struct asycom * asy)540 asy_get_io_regnum_isa(dev_info_t *devi, struct asycom *asy)
541 {
542 int reglen, nregs;
543 int regnum, i;
544 struct {
545 uint_t bustype;
546 int base;
547 int size;
548 } *reglist;
549
550 if (ddi_getlongprop(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS,
551 "reg", (caddr_t)®list, ®len) != DDI_PROP_SUCCESS) {
552 cmn_err(CE_WARN, "asy_get_io_regnum: reg property not found "
553 "in devices property list");
554 return (-1);
555 }
556
557 regnum = -1;
558 nregs = reglen / sizeof (*reglist);
559 for (i = 0; i < nregs; i++) {
560 switch (reglist[i].bustype) {
561 case 1: /* I/O bus reg property */
562 if (regnum == -1) /* only use the first one */
563 regnum = i;
564 break;
565
566 case pnpMTS0219: /* Multitech MT5634ZTX modem */
567 /* Venus chipset can't do loopback test */
568 if (asy)
569 asy->asy_flags2 |= ASY2_NO_LOOPBACK;
570 break;
571
572 default:
573 break;
574 }
575 }
576
577 /* check for valid count of registers */
578 if ((regnum < 0) || (reglist[regnum].size < 8))
579 regnum = -1;
580 kmem_free(reglist, reglen);
581 return (regnum);
582 }
583
584 static int
asy_get_io_regnum(dev_info_t * devinfo,struct asycom * asy)585 asy_get_io_regnum(dev_info_t *devinfo, struct asycom *asy)
586 {
587 switch (asy_get_bus_type(devinfo)) {
588 case ASY_BUS_ISA:
589 return (asy_get_io_regnum_isa(devinfo, asy));
590 case ASY_BUS_PCI:
591 return (asy_get_io_regnum_pci(devinfo, asy));
592 default:
593 return (-1);
594 }
595 }
596
597 static int
asydetach(dev_info_t * devi,ddi_detach_cmd_t cmd)598 asydetach(dev_info_t *devi, ddi_detach_cmd_t cmd)
599 {
600 int instance;
601 struct asycom *asy;
602 struct asyncline *async;
603
604 instance = ddi_get_instance(devi); /* find out which unit */
605
606 asy = ddi_get_soft_state(asy_soft_state, instance);
607 if (asy == NULL)
608 return (DDI_FAILURE);
609 async = asy->asy_priv;
610
611 switch (cmd) {
612 case DDI_DETACH:
613 DEBUGNOTE2(ASY_DEBUG_INIT, "asy%d: %s shutdown.",
614 instance, asy_hw_name(asy));
615
616 /* cancel DTR hold timeout */
617 if (async->async_dtrtid != 0) {
618 (void) untimeout(async->async_dtrtid);
619 async->async_dtrtid = 0;
620 }
621
622 /* remove all minor device node(s) for this device */
623 ddi_remove_minor_node(devi, NULL);
624
625 mutex_destroy(&asy->asy_excl);
626 mutex_destroy(&asy->asy_excl_hi);
627 cv_destroy(&async->async_flags_cv);
628 ddi_remove_intr(devi, 0, asy->asy_iblock);
629 ddi_regs_map_free(&asy->asy_iohandle);
630 ddi_remove_softintr(asy->asy_softintr_id);
631 mutex_destroy(&asy->asy_soft_lock);
632 asy_soft_state_free(asy);
633 DEBUGNOTE1(ASY_DEBUG_INIT, "asy%d: shutdown complete",
634 instance);
635 break;
636 case DDI_SUSPEND:
637 {
638 unsigned i;
639 uchar_t lsr;
640
641 #ifdef DEBUG
642 if (asy_nosuspend)
643 return (DDI_SUCCESS);
644 #endif
645 mutex_enter(&asy->asy_excl);
646
647 ASSERT(async->async_ops >= 0);
648 while (async->async_ops > 0)
649 cv_wait(&async->async_ops_cv, &asy->asy_excl);
650
651 async->async_flags |= ASYNC_DDI_SUSPENDED;
652
653 /* Wait for timed break and delay to complete */
654 while ((async->async_flags & (ASYNC_BREAK|ASYNC_DELAY))) {
655 if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl)
656 == 0) {
657 async_process_suspq(asy);
658 mutex_exit(&asy->asy_excl);
659 return (DDI_FAILURE);
660 }
661 }
662
663 /* Clear untimed break */
664 if (async->async_flags & ASYNC_OUT_SUSPEND)
665 async_resume_utbrk(async);
666
667 mutex_exit(&asy->asy_excl);
668
669 mutex_enter(&asy->asy_soft_sr);
670 mutex_enter(&asy->asy_excl);
671 if (async->async_wbufcid != 0) {
672 bufcall_id_t bcid = async->async_wbufcid;
673 async->async_wbufcid = 0;
674 async->async_flags |= ASYNC_RESUME_BUFCALL;
675 mutex_exit(&asy->asy_excl);
676 unbufcall(bcid);
677 mutex_enter(&asy->asy_excl);
678 }
679 mutex_enter(&asy->asy_excl_hi);
680
681 /* Disable interrupts from chip */
682 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
683 asy->asy_flags |= ASY_DDI_SUSPENDED;
684
685 /*
686 * Hardware interrupts are disabled we can drop our high level
687 * lock and proceed.
688 */
689 mutex_exit(&asy->asy_excl_hi);
690
691 /* Process remaining RX characters and RX errors, if any */
692 lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
693 async_rxint(asy, lsr);
694
695 /* Wait for TX to drain */
696 for (i = 1000; i > 0; i--) {
697 lsr = ddi_get8(asy->asy_iohandle,
698 asy->asy_ioaddr + LSR);
699 if ((lsr & (XSRE | XHRE)) == (XSRE | XHRE))
700 break;
701 delay(drv_usectohz(10000));
702 }
703 if (i == 0)
704 cmn_err(CE_WARN,
705 "asy: transmitter wasn't drained before "
706 "driver was suspended");
707
708 mutex_exit(&asy->asy_excl);
709 mutex_exit(&asy->asy_soft_sr);
710 break;
711 }
712 default:
713 return (DDI_FAILURE);
714 }
715
716 return (DDI_SUCCESS);
717 }
718
719 /*
720 * asyprobe
721 * We don't bother probing for the hardware, as since Solaris 2.6, device
722 * nodes are only created for auto-detected hardware or nodes explicitly
723 * created by the user, e.g. via the DCA. However, we should check the
724 * device node is at least vaguely usable, i.e. we have a block of 8 i/o
725 * ports. This prevents attempting to attach to bogus serial ports which
726 * some BIOSs still partially report when they are disabled in the BIOS.
727 */
728 static int
asyprobe(dev_info_t * devi)729 asyprobe(dev_info_t *devi)
730 {
731 return ((asy_get_io_regnum(devi, NULL) < 0) ?
732 DDI_PROBE_FAILURE : DDI_PROBE_DONTCARE);
733 }
734
735 static int
asyattach(dev_info_t * devi,ddi_attach_cmd_t cmd)736 asyattach(dev_info_t *devi, ddi_attach_cmd_t cmd)
737 {
738 int instance;
739 int mcr;
740 int ret;
741 int regnum = 0;
742 int i;
743 struct asycom *asy;
744 char name[ASY_MINOR_LEN];
745 int status;
746 static ddi_device_acc_attr_t ioattr = {
747 DDI_DEVICE_ATTR_V0,
748 DDI_NEVERSWAP_ACC,
749 DDI_STRICTORDER_ACC,
750 };
751
752 instance = ddi_get_instance(devi); /* find out which unit */
753
754 switch (cmd) {
755 case DDI_ATTACH:
756 break;
757 case DDI_RESUME:
758 {
759 struct asyncline *async;
760
761 #ifdef DEBUG
762 if (asy_nosuspend)
763 return (DDI_SUCCESS);
764 #endif
765 asy = ddi_get_soft_state(asy_soft_state, instance);
766 if (asy == NULL)
767 return (DDI_FAILURE);
768
769 mutex_enter(&asy->asy_soft_sr);
770 mutex_enter(&asy->asy_excl);
771 mutex_enter(&asy->asy_excl_hi);
772
773 async = asy->asy_priv;
774 /* Disable interrupts */
775 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
776 if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
777 mutex_exit(&asy->asy_excl_hi);
778 mutex_exit(&asy->asy_excl);
779 mutex_exit(&asy->asy_soft_sr);
780 cmn_err(CE_WARN, "!Cannot identify UART chip at %p\n",
781 (void *)asy->asy_ioaddr);
782 return (DDI_FAILURE);
783 }
784 asy->asy_flags &= ~ASY_DDI_SUSPENDED;
785 if (async->async_flags & ASYNC_ISOPEN) {
786 asy_program(asy, ASY_INIT);
787 /* Kick off output */
788 if (async->async_ocnt > 0) {
789 async_resume(async);
790 } else {
791 mutex_exit(&asy->asy_excl_hi);
792 if (async->async_xmitblk)
793 freeb(async->async_xmitblk);
794 async->async_xmitblk = NULL;
795 async_start(async);
796 mutex_enter(&asy->asy_excl_hi);
797 }
798 ASYSETSOFT(asy);
799 }
800 mutex_exit(&asy->asy_excl_hi);
801 mutex_exit(&asy->asy_excl);
802 mutex_exit(&asy->asy_soft_sr);
803
804 mutex_enter(&asy->asy_excl);
805 if (async->async_flags & ASYNC_RESUME_BUFCALL) {
806 async->async_wbufcid = bufcall(async->async_wbufcds,
807 BPRI_HI, (void (*)(void *)) async_reioctl,
808 (void *)(intptr_t)async->async_common->asy_unit);
809 async->async_flags &= ~ASYNC_RESUME_BUFCALL;
810 }
811 async_process_suspq(asy);
812 mutex_exit(&asy->asy_excl);
813 return (DDI_SUCCESS);
814 }
815 default:
816 return (DDI_FAILURE);
817 }
818
819 ret = ddi_soft_state_zalloc(asy_soft_state, instance);
820 if (ret != DDI_SUCCESS)
821 return (DDI_FAILURE);
822 asy = ddi_get_soft_state(asy_soft_state, instance);
823 ASSERT(asy != NULL); /* can't fail - we only just allocated it */
824 asy->asy_unit = instance;
825 mutex_enter(&asy_glob_lock);
826 if (instance > max_asy_instance)
827 max_asy_instance = instance;
828 mutex_exit(&asy_glob_lock);
829
830 regnum = asy_get_io_regnum(devi, asy);
831
832 if (regnum < 0 ||
833 ddi_regs_map_setup(devi, regnum, (caddr_t *)&asy->asy_ioaddr,
834 (offset_t)0, (offset_t)0, &ioattr, &asy->asy_iohandle)
835 != DDI_SUCCESS) {
836 cmn_err(CE_WARN, "asy%d: could not map UART registers @ %p",
837 instance, (void *)asy->asy_ioaddr);
838
839 asy_soft_state_free(asy);
840 return (DDI_FAILURE);
841 }
842
843 DEBUGCONT2(ASY_DEBUG_INIT, "asy%dattach: UART @ %p\n",
844 instance, (void *)asy->asy_ioaddr);
845
846 mutex_enter(&asy_glob_lock);
847 if (com_ports == NULL) { /* need to initialize com_ports */
848 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, devi, 0,
849 "motherboard-serial-ports", &com_ports, &num_com_ports) !=
850 DDI_PROP_SUCCESS) {
851 /* Use our built-in COM[1234] values */
852 com_ports = (int *)standard_com_ports;
853 num_com_ports = sizeof (standard_com_ports) /
854 sizeof (standard_com_ports[0]);
855 }
856 if (num_com_ports > 10) {
857 /* We run out of single digits for device properties */
858 num_com_ports = 10;
859 cmn_err(CE_WARN,
860 "More than %d motherboard-serial-ports",
861 num_com_ports);
862 }
863 }
864 mutex_exit(&asy_glob_lock);
865
866 /*
867 * Lookup the i/o address to see if this is a standard COM port
868 * in which case we assign it the correct tty[a-d] to match the
869 * COM port number, or some other i/o address in which case it
870 * will be assigned /dev/term/[0123...] in some rather arbitrary
871 * fashion.
872 */
873
874 for (i = 0; i < num_com_ports; i++) {
875 if (asy->asy_ioaddr == (uint8_t *)(uintptr_t)com_ports[i]) {
876 asy->asy_com_port = i + 1;
877 break;
878 }
879 }
880
881 /*
882 * It appears that there was async hardware that on reset
883 * did not clear ICR. Hence when we get to
884 * ddi_get_iblock_cookie below, this hardware would cause
885 * the system to hang if there was input available.
886 */
887
888 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0x00);
889
890 /* establish default usage */
891 asy->asy_mcr |= RTS|DTR; /* do use RTS/DTR after open */
892 asy->asy_lcr = STOP1|BITS8; /* default to 1 stop 8 bits */
893 asy->asy_bidx = B9600; /* default to 9600 */
894 #ifdef DEBUG
895 asy->asy_msint_cnt = 0; /* # of times in async_msint */
896 #endif
897 mcr = 0; /* don't enable until open */
898
899 if (asy->asy_com_port != 0) {
900 /*
901 * For motherboard ports, emulate tty eeprom properties.
902 * Actually, we can't tell if a port is motherboard or not,
903 * so for "motherboard ports", read standard DOS COM ports.
904 */
905 switch (asy_getproperty(devi, asy, "ignore-cd")) {
906 case 0: /* *-ignore-cd=False */
907 DEBUGCONT1(ASY_DEBUG_MODEM,
908 "asy%dattach: clear ASY_IGNORE_CD\n", instance);
909 asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
910 break;
911 case 1: /* *-ignore-cd=True */
912 /*FALLTHRU*/
913 default: /* *-ignore-cd not defined */
914 /*
915 * We set rather silly defaults of soft carrier on
916 * and DTR/RTS raised here because it might be that
917 * one of the motherboard ports is the system console.
918 */
919 DEBUGCONT1(ASY_DEBUG_MODEM,
920 "asy%dattach: set ASY_IGNORE_CD, set RTS & DTR\n",
921 instance);
922 mcr = asy->asy_mcr; /* rts/dtr on */
923 asy->asy_flags |= ASY_IGNORE_CD; /* ignore cd */
924 break;
925 }
926
927 /* Property for not raising DTR/RTS */
928 switch (asy_getproperty(devi, asy, "rts-dtr-off")) {
929 case 0: /* *-rts-dtr-off=False */
930 asy->asy_flags |= ASY_RTS_DTR_OFF; /* OFF */
931 mcr = asy->asy_mcr; /* rts/dtr on */
932 DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dattach: "
933 "ASY_RTS_DTR_OFF set and DTR & RTS set\n",
934 instance);
935 break;
936 case 1: /* *-rts-dtr-off=True */
937 /*FALLTHRU*/
938 default: /* *-rts-dtr-off undefined */
939 break;
940 }
941
942 /* Parse property for tty modes */
943 asy_parse_mode(devi, asy);
944 } else {
945 DEBUGCONT1(ASY_DEBUG_MODEM,
946 "asy%dattach: clear ASY_IGNORE_CD, clear RTS & DTR\n",
947 instance);
948 asy->asy_flags &= ~ASY_IGNORE_CD; /* wait for cd */
949 }
950
951 /*
952 * Initialize the port with default settings.
953 */
954
955 asy->asy_fifo_buf = 1;
956 asy->asy_use_fifo = FIFO_OFF;
957
958 /*
959 * Get icookie for mutexes initialization
960 */
961 if ((ddi_get_iblock_cookie(devi, 0, &asy->asy_iblock) !=
962 DDI_SUCCESS) ||
963 (ddi_get_soft_iblock_cookie(devi, DDI_SOFTINT_MED,
964 &asy->asy_soft_iblock) != DDI_SUCCESS)) {
965 ddi_regs_map_free(&asy->asy_iohandle);
966 cmn_err(CE_CONT,
967 "asy%d: could not hook interrupt for UART @ %p\n",
968 instance, (void *)asy->asy_ioaddr);
969 asy_soft_state_free(asy);
970 return (DDI_FAILURE);
971 }
972
973 /*
974 * Initialize mutexes before accessing the hardware
975 */
976 mutex_init(&asy->asy_soft_lock, NULL, MUTEX_DRIVER,
977 (void *)asy->asy_soft_iblock);
978 mutex_init(&asy->asy_excl, NULL, MUTEX_DRIVER, NULL);
979 mutex_init(&asy->asy_excl_hi, NULL, MUTEX_DRIVER,
980 (void *)asy->asy_iblock);
981 mutex_init(&asy->asy_soft_sr, NULL, MUTEX_DRIVER,
982 (void *)asy->asy_soft_iblock);
983 mutex_enter(&asy->asy_excl);
984 mutex_enter(&asy->asy_excl_hi);
985
986 if (asy_identify_chip(devi, asy) != DDI_SUCCESS) {
987 mutex_exit(&asy->asy_excl_hi);
988 mutex_exit(&asy->asy_excl);
989 mutex_destroy(&asy->asy_soft_lock);
990 mutex_destroy(&asy->asy_excl);
991 mutex_destroy(&asy->asy_excl_hi);
992 mutex_destroy(&asy->asy_soft_sr);
993 ddi_regs_map_free(&asy->asy_iohandle);
994 cmn_err(CE_CONT, "!Cannot identify UART chip at %p\n",
995 (void *)asy->asy_ioaddr);
996 asy_soft_state_free(asy);
997 return (DDI_FAILURE);
998 }
999
1000 /* disable all interrupts */
1001 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
1002 /* select baud rate generator */
1003 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
1004 /* Set the baud rate to 9600 */
1005 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLL),
1006 asyspdtab[asy->asy_bidx] & 0xff);
1007 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + (DAT+DLH),
1008 (asyspdtab[asy->asy_bidx] >> 8) & 0xff);
1009 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, asy->asy_lcr);
1010 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1011
1012 mutex_exit(&asy->asy_excl_hi);
1013 mutex_exit(&asy->asy_excl);
1014
1015 /*
1016 * Set up the other components of the asycom structure for this port.
1017 */
1018 asy->asy_dip = devi;
1019
1020 /*
1021 * Install per instance software interrupt handler.
1022 */
1023 if (ddi_add_softintr(devi, DDI_SOFTINT_MED,
1024 &(asy->asy_softintr_id), NULL, 0, asysoftintr,
1025 (caddr_t)asy) != DDI_SUCCESS) {
1026 mutex_destroy(&asy->asy_soft_lock);
1027 mutex_destroy(&asy->asy_excl);
1028 mutex_destroy(&asy->asy_excl_hi);
1029 ddi_regs_map_free(&asy->asy_iohandle);
1030 cmn_err(CE_CONT,
1031 "Can not set soft interrupt for ASY driver\n");
1032 asy_soft_state_free(asy);
1033 return (DDI_FAILURE);
1034 }
1035
1036 mutex_enter(&asy->asy_excl);
1037 mutex_enter(&asy->asy_excl_hi);
1038
1039 /*
1040 * Install interrupt handler for this device.
1041 */
1042 if (ddi_add_intr(devi, 0, NULL, 0, asyintr,
1043 (caddr_t)asy) != DDI_SUCCESS) {
1044 mutex_exit(&asy->asy_excl_hi);
1045 mutex_exit(&asy->asy_excl);
1046 ddi_remove_softintr(asy->asy_softintr_id);
1047 mutex_destroy(&asy->asy_soft_lock);
1048 mutex_destroy(&asy->asy_excl);
1049 mutex_destroy(&asy->asy_excl_hi);
1050 ddi_regs_map_free(&asy->asy_iohandle);
1051 cmn_err(CE_CONT,
1052 "Can not set device interrupt for ASY driver\n");
1053 asy_soft_state_free(asy);
1054 return (DDI_FAILURE);
1055 }
1056
1057 mutex_exit(&asy->asy_excl_hi);
1058 mutex_exit(&asy->asy_excl);
1059
1060 asyinit(asy); /* initialize the asyncline structure */
1061
1062 /* create minor device nodes for this device */
1063 if (asy->asy_com_port != 0) {
1064 /*
1065 * For DOS COM ports, add letter suffix so
1066 * devfsadm can create correct link names.
1067 */
1068 name[0] = asy->asy_com_port + 'a' - 1;
1069 name[1] = '\0';
1070 } else {
1071 /*
1072 * asy port which isn't a standard DOS COM
1073 * port gets a numeric name based on instance
1074 */
1075 (void) snprintf(name, ASY_MINOR_LEN, "%d", instance);
1076 }
1077 status = ddi_create_minor_node(devi, name, S_IFCHR, instance,
1078 asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB : DDI_NT_SERIAL, NULL);
1079 if (status == DDI_SUCCESS) {
1080 (void) strcat(name, ",cu");
1081 status = ddi_create_minor_node(devi, name, S_IFCHR,
1082 OUTLINE | instance,
1083 asy->asy_com_port != 0 ? DDI_NT_SERIAL_MB_DO :
1084 DDI_NT_SERIAL_DO, NULL);
1085 }
1086
1087 if (status != DDI_SUCCESS) {
1088 struct asyncline *async = asy->asy_priv;
1089
1090 ddi_remove_minor_node(devi, NULL);
1091 ddi_remove_intr(devi, 0, asy->asy_iblock);
1092 ddi_remove_softintr(asy->asy_softintr_id);
1093 mutex_destroy(&asy->asy_soft_lock);
1094 mutex_destroy(&asy->asy_excl);
1095 mutex_destroy(&asy->asy_excl_hi);
1096 cv_destroy(&async->async_flags_cv);
1097 ddi_regs_map_free(&asy->asy_iohandle);
1098 asy_soft_state_free(asy);
1099 return (DDI_FAILURE);
1100 }
1101
1102 /*
1103 * Fill in the polled I/O structure.
1104 */
1105 asy->polledio.cons_polledio_version = CONSPOLLEDIO_V0;
1106 asy->polledio.cons_polledio_argument = (cons_polledio_arg_t)asy;
1107 asy->polledio.cons_polledio_putchar = asyputchar;
1108 asy->polledio.cons_polledio_getchar = asygetchar;
1109 asy->polledio.cons_polledio_ischar = asyischar;
1110 asy->polledio.cons_polledio_enter = NULL;
1111 asy->polledio.cons_polledio_exit = NULL;
1112
1113 ddi_report_dev(devi);
1114 DEBUGCONT1(ASY_DEBUG_INIT, "asy%dattach: done\n", instance);
1115 return (DDI_SUCCESS);
1116 }
1117
1118 /*ARGSUSED*/
1119 static int
asyinfo(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)1120 asyinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
1121 void **result)
1122 {
1123 dev_t dev = (dev_t)arg;
1124 int instance, error;
1125 struct asycom *asy;
1126
1127 instance = UNIT(dev);
1128
1129 switch (infocmd) {
1130 case DDI_INFO_DEVT2DEVINFO:
1131 asy = ddi_get_soft_state(asy_soft_state, instance);
1132 if ((asy == NULL) || (asy->asy_dip == NULL))
1133 error = DDI_FAILURE;
1134 else {
1135 *result = (void *) asy->asy_dip;
1136 error = DDI_SUCCESS;
1137 }
1138 break;
1139 case DDI_INFO_DEVT2INSTANCE:
1140 *result = (void *)(intptr_t)instance;
1141 error = DDI_SUCCESS;
1142 break;
1143 default:
1144 error = DDI_FAILURE;
1145 }
1146 return (error);
1147 }
1148
1149 /* asy_getproperty -- walk through all name variants until we find a match */
1150
1151 static int
asy_getproperty(dev_info_t * devi,struct asycom * asy,const char * property)1152 asy_getproperty(dev_info_t *devi, struct asycom *asy, const char *property)
1153 {
1154 int len;
1155 int ret;
1156 char letter = asy->asy_com_port + 'a' - 1; /* for ttya */
1157 char number = asy->asy_com_port + '0'; /* for COM1 */
1158 char val[40];
1159 char name[40];
1160
1161 /* Property for ignoring DCD */
1162 (void) sprintf(name, "tty%c-%s", letter, property);
1163 len = sizeof (val);
1164 ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1165 if (ret != DDI_PROP_SUCCESS) {
1166 (void) sprintf(name, "com%c-%s", number, property);
1167 len = sizeof (val);
1168 ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1169 }
1170 if (ret != DDI_PROP_SUCCESS) {
1171 (void) sprintf(name, "tty0%c-%s", number, property);
1172 len = sizeof (val);
1173 ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1174 }
1175 if (ret != DDI_PROP_SUCCESS) {
1176 (void) sprintf(name, "port-%c-%s", letter, property);
1177 len = sizeof (val);
1178 ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
1179 }
1180 if (ret != DDI_PROP_SUCCESS)
1181 return (-1); /* property non-existant */
1182 if (val[0] == 'f' || val[0] == 'F' || val[0] == '0')
1183 return (0); /* property false/0 */
1184 return (1); /* property true/!0 */
1185 }
1186
1187 /* asy_soft_state_free - local wrapper for ddi_soft_state_free(9F) */
1188
1189 static void
asy_soft_state_free(struct asycom * asy)1190 asy_soft_state_free(struct asycom *asy)
1191 {
1192 mutex_enter(&asy_glob_lock);
1193 /* If we were the max_asy_instance, work out new value */
1194 if (asy->asy_unit == max_asy_instance) {
1195 while (--max_asy_instance >= 0) {
1196 if (ddi_get_soft_state(asy_soft_state,
1197 max_asy_instance) != NULL)
1198 break;
1199 }
1200 }
1201 mutex_exit(&asy_glob_lock);
1202
1203 if (asy->asy_priv != NULL) {
1204 kmem_free(asy->asy_priv, sizeof (struct asyncline));
1205 asy->asy_priv = NULL;
1206 }
1207 ddi_soft_state_free(asy_soft_state, asy->asy_unit);
1208 }
1209
1210 static char *
asy_hw_name(struct asycom * asy)1211 asy_hw_name(struct asycom *asy)
1212 {
1213 switch (asy->asy_hwtype) {
1214 case ASY8250A:
1215 return ("8250A/16450");
1216 case ASY16550:
1217 return ("16550");
1218 case ASY16550A:
1219 return ("16550A");
1220 case ASY16650:
1221 return ("16650");
1222 case ASY16750:
1223 return ("16750");
1224 default:
1225 DEBUGNOTE2(ASY_DEBUG_INIT,
1226 "asy%d: asy_hw_name: unknown asy_hwtype: %d",
1227 asy->asy_unit, asy->asy_hwtype);
1228 return ("?");
1229 }
1230 }
1231
1232 static int
asy_identify_chip(dev_info_t * devi,struct asycom * asy)1233 asy_identify_chip(dev_info_t *devi, struct asycom *asy)
1234 {
1235 int ret;
1236 int mcr;
1237 dev_t dev;
1238 uint_t hwtype;
1239
1240 if (asy_scr_test) {
1241 /* Check scratch register works. */
1242
1243 /* write to scratch register */
1244 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, SCRTEST);
1245 /* make sure that pattern doesn't just linger on the bus */
1246 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR, 0x00);
1247 /* read data back from scratch register */
1248 ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1249 if (ret != SCRTEST) {
1250 /*
1251 * Scratch register not working.
1252 * Probably not an async chip.
1253 * 8250 and 8250B don't have scratch registers,
1254 * but only worked in ancient PC XT's anyway.
1255 */
1256 cmn_err(CE_CONT, "!asy%d: UART @ %p "
1257 "scratch register: expected 0x5a, got 0x%02x\n",
1258 asy->asy_unit, (void *)asy->asy_ioaddr, ret);
1259 return (DDI_FAILURE);
1260 }
1261 }
1262 /*
1263 * Use 16550 fifo reset sequence specified in NS application
1264 * note. Disable fifos until chip is initialized.
1265 */
1266 ddi_put8(asy->asy_iohandle,
1267 asy->asy_ioaddr + FIFOR, 0x00); /* clear */
1268 ddi_put8(asy->asy_iohandle,
1269 asy->asy_ioaddr + FIFOR, FIFO_ON); /* enable */
1270 ddi_put8(asy->asy_iohandle,
1271 asy->asy_ioaddr + FIFOR, FIFO_ON | FIFORXFLSH);
1272 /* reset */
1273 if (asymaxchip >= ASY16650 && asy_scr_test) {
1274 /*
1275 * Reset 16650 enhanced regs also, in case we have one of these
1276 */
1277 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1278 EFRACCESS);
1279 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1280 0);
1281 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1282 STOP1|BITS8);
1283 }
1284
1285 /*
1286 * See what sort of FIFO we have.
1287 * Try enabling it and see what chip makes of this.
1288 */
1289
1290 asy->asy_fifor = 0;
1291 asy->asy_hwtype = asymaxchip; /* just for asy_reset_fifo() */
1292 if (asymaxchip >= ASY16550A)
1293 asy->asy_fifor |=
1294 FIFO_ON | FIFODMA | (asy_trig_level & 0xff);
1295 if (asymaxchip >= ASY16650)
1296 asy->asy_fifor |= FIFOEXTRA1 | FIFOEXTRA2;
1297
1298 asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1299
1300 mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1301 ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
1302 DEBUGCONT4(ASY_DEBUG_CHIP,
1303 "asy%d: probe fifo FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1304 asy->asy_unit, asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH,
1305 ret, mcr);
1306 switch (ret & 0xf0) {
1307 case 0x40:
1308 hwtype = ASY16550; /* 16550 with broken FIFO */
1309 asy->asy_fifor = 0;
1310 break;
1311 case 0xc0:
1312 hwtype = ASY16550A;
1313 asy->asy_fifo_buf = 16;
1314 asy->asy_use_fifo = FIFO_ON;
1315 asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1316 break;
1317 case 0xe0:
1318 hwtype = ASY16650;
1319 asy->asy_fifo_buf = 32;
1320 asy->asy_use_fifo = FIFO_ON;
1321 asy->asy_fifor &= ~(FIFOEXTRA1);
1322 break;
1323 case 0xf0:
1324 /*
1325 * Note we get 0xff if chip didn't return us anything,
1326 * e.g. if there's no chip there.
1327 */
1328 if (ret == 0xff) {
1329 cmn_err(CE_CONT, "asy%d: UART @ %p "
1330 "interrupt register: got 0xff\n",
1331 asy->asy_unit, (void *)asy->asy_ioaddr);
1332 return (DDI_FAILURE);
1333 }
1334 /*FALLTHRU*/
1335 case 0xd0:
1336 hwtype = ASY16750;
1337 asy->asy_fifo_buf = 64;
1338 asy->asy_use_fifo = FIFO_ON;
1339 break;
1340 default:
1341 hwtype = ASY8250A; /* No FIFO */
1342 asy->asy_fifor = 0;
1343 }
1344
1345 if (hwtype > asymaxchip) {
1346 cmn_err(CE_CONT, "asy%d: UART @ %p "
1347 "unexpected probe result: "
1348 "FIFOR=0x%02x ISR=0x%02x MCR=0x%02x\n",
1349 asy->asy_unit, (void *)asy->asy_ioaddr,
1350 asy->asy_fifor | FIFOTXFLSH | FIFORXFLSH, ret, mcr);
1351 return (DDI_FAILURE);
1352 }
1353
1354 /*
1355 * Now reset the FIFO operation appropriate for the chip type.
1356 * Note we must call asy_reset_fifo() before any possible
1357 * downgrade of the asy->asy_hwtype, or it may not disable
1358 * the more advanced features we specifically want downgraded.
1359 */
1360 asy_reset_fifo(asy, 0);
1361 asy->asy_hwtype = hwtype;
1362
1363 /*
1364 * Check for Exar/Startech ST16C650, which will still look like a
1365 * 16550A until we enable its enhanced mode.
1366 */
1367 if (asy->asy_hwtype == ASY16550A && asymaxchip >= ASY16650 &&
1368 asy_scr_test) {
1369 /* Enable enhanced mode register access */
1370 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1371 EFRACCESS);
1372 /* zero scratch register (not scratch register if enhanced) */
1373 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + SCR, 0);
1374 /* Disable enhanced mode register access */
1375 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1376 STOP1|BITS8);
1377 /* read back scratch register */
1378 ret = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + SCR);
1379 if (ret == SCRTEST) {
1380 /* looks like we have an ST16650 -- enable it */
1381 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1382 EFRACCESS);
1383 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1384 ENHENABLE);
1385 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1386 STOP1|BITS8);
1387 asy->asy_hwtype = ASY16650;
1388 asy->asy_fifo_buf = 32;
1389 asy->asy_fifor |= 0x10; /* 24 byte txfifo trigger */
1390 asy_reset_fifo(asy, 0);
1391 }
1392 }
1393
1394 /*
1395 * If we think we might have a FIFO larger than 16 characters,
1396 * measure FIFO size and check it against expected.
1397 */
1398 if (asy_fifo_test > 0 &&
1399 !(asy->asy_flags2 & ASY2_NO_LOOPBACK) &&
1400 (asy->asy_fifo_buf > 16 ||
1401 (asy_fifo_test > 1 && asy->asy_use_fifo == FIFO_ON) ||
1402 ASY_DEBUG(ASY_DEBUG_CHIP))) {
1403 int i;
1404
1405 /* Set baud rate to 57600 (fairly arbitrary choice) */
1406 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1407 DLAB);
1408 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
1409 asyspdtab[B57600] & 0xff);
1410 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1411 (asyspdtab[B57600] >> 8) & 0xff);
1412 /* Set 8 bits, 1 stop bit */
1413 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1414 STOP1|BITS8);
1415 /* Set loopback mode */
1416 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1417 DTR | RTS | ASY_LOOP | OUT1 | OUT2);
1418
1419 /* Overfill fifo */
1420 for (i = 0; i < asy->asy_fifo_buf * 2; i++) {
1421 ddi_put8(asy->asy_iohandle,
1422 asy->asy_ioaddr + DAT, i);
1423 }
1424 /*
1425 * Now there's an interesting question here about which
1426 * FIFO we're testing the size of, RX or TX. We just
1427 * filled the TX FIFO much faster than it can empty,
1428 * although it is possible one or two characters may
1429 * have gone from it to the TX shift register.
1430 * We wait for enough time for all the characters to
1431 * move into the RX FIFO and any excess characters to
1432 * have been lost, and then read all the RX FIFO. So
1433 * the answer we finally get will be the size which is
1434 * the MIN(RX FIFO,(TX FIFO + 1 or 2)). The critical
1435 * one is actually the TX FIFO, because if we overfill
1436 * it in normal operation, the excess characters are
1437 * lost with no warning.
1438 */
1439 /*
1440 * Wait for characters to move into RX FIFO.
1441 * In theory, 200 * asy->asy_fifo_buf * 2 should be
1442 * enough. However, in practice it isn't always, so we
1443 * increase to 400 so some slow 16550A's finish, and we
1444 * increase to 3 so we spot more characters coming back
1445 * than we sent, in case that should ever happen.
1446 */
1447 delay(drv_usectohz(400 * asy->asy_fifo_buf * 3));
1448
1449 /* Now see how many characters we can read back */
1450 for (i = 0; i < asy->asy_fifo_buf * 3; i++) {
1451 ret = ddi_get8(asy->asy_iohandle,
1452 asy->asy_ioaddr + LSR);
1453 if (!(ret & RCA))
1454 break; /* FIFO emptied */
1455 (void) ddi_get8(asy->asy_iohandle,
1456 asy->asy_ioaddr + DAT); /* lose another */
1457 }
1458
1459 DEBUGCONT3(ASY_DEBUG_CHIP,
1460 "asy%d FIFO size: expected=%d, measured=%d\n",
1461 asy->asy_unit, asy->asy_fifo_buf, i);
1462
1463 hwtype = asy->asy_hwtype;
1464 if (i < asy->asy_fifo_buf) {
1465 /*
1466 * FIFO is somewhat smaller than we anticipated.
1467 * If we have 16 characters usable, then this
1468 * UART will probably work well enough in
1469 * 16550A mode. If less than 16 characters,
1470 * then we'd better not use it at all.
1471 * UARTs with busted FIFOs do crop up.
1472 */
1473 if (i >= 16 && asy->asy_fifo_buf >= 16) {
1474 /* fall back to a 16550A */
1475 hwtype = ASY16550A;
1476 asy->asy_fifo_buf = 16;
1477 asy->asy_fifor &= ~(FIFOEXTRA1 | FIFOEXTRA2);
1478 } else {
1479 /* fall back to no FIFO at all */
1480 hwtype = ASY16550;
1481 asy->asy_fifo_buf = 1;
1482 asy->asy_use_fifo = FIFO_OFF;
1483 asy->asy_fifor &=
1484 ~(FIFO_ON | FIFOEXTRA1 | FIFOEXTRA2);
1485 }
1486 }
1487 /*
1488 * We will need to reprogram the FIFO if we changed
1489 * our mind about how to drive it above, and in any
1490 * case, it would be a good idea to flush any garbage
1491 * out incase the loopback test left anything behind.
1492 * Again as earlier above, we must call asy_reset_fifo()
1493 * before any possible downgrade of asy->asy_hwtype.
1494 */
1495 if (asy->asy_hwtype >= ASY16650 && hwtype < ASY16650) {
1496 /* Disable 16650 enhanced mode */
1497 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1498 EFRACCESS);
1499 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + EFR,
1500 0);
1501 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1502 STOP1|BITS8);
1503 }
1504 asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
1505 asy->asy_hwtype = hwtype;
1506
1507 /* Clear loopback mode and restore DTR/RTS */
1508 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr);
1509 }
1510
1511 DEBUGNOTE3(ASY_DEBUG_CHIP, "asy%d %s @ %p",
1512 asy->asy_unit, asy_hw_name(asy), (void *)asy->asy_ioaddr);
1513
1514 /* Make UART type visible in device tree for prtconf, etc */
1515 dev = makedevice(DDI_MAJOR_T_UNKNOWN, asy->asy_unit);
1516 (void) ddi_prop_update_string(dev, devi, "uart", asy_hw_name(asy));
1517
1518 if (asy->asy_hwtype == ASY16550) /* for broken 16550's, */
1519 asy->asy_hwtype = ASY8250A; /* drive them as 8250A */
1520
1521 return (DDI_SUCCESS);
1522 }
1523
1524 /*
1525 * asyinit() initializes the TTY protocol-private data for this channel
1526 * before enabling the interrupts.
1527 */
1528 static void
asyinit(struct asycom * asy)1529 asyinit(struct asycom *asy)
1530 {
1531 struct asyncline *async;
1532
1533 asy->asy_priv = kmem_zalloc(sizeof (struct asyncline), KM_SLEEP);
1534 async = asy->asy_priv;
1535 mutex_enter(&asy->asy_excl);
1536 async->async_common = asy;
1537 cv_init(&async->async_flags_cv, NULL, CV_DRIVER, NULL);
1538 mutex_exit(&asy->asy_excl);
1539 }
1540
1541 /*ARGSUSED3*/
1542 static int
asyopen(queue_t * rq,dev_t * dev,int flag,int sflag,cred_t * cr)1543 asyopen(queue_t *rq, dev_t *dev, int flag, int sflag, cred_t *cr)
1544 {
1545 struct asycom *asy;
1546 struct asyncline *async;
1547 int mcr;
1548 int unit;
1549 int len;
1550 struct termios *termiosp;
1551
1552 unit = UNIT(*dev);
1553 DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dopen\n", unit);
1554 asy = ddi_get_soft_state(asy_soft_state, unit);
1555 if (asy == NULL)
1556 return (ENXIO); /* unit not configured */
1557 async = asy->asy_priv;
1558 mutex_enter(&asy->asy_excl);
1559
1560 again:
1561 mutex_enter(&asy->asy_excl_hi);
1562
1563 /*
1564 * Block waiting for carrier to come up, unless this is a no-delay open.
1565 */
1566 if (!(async->async_flags & ASYNC_ISOPEN)) {
1567 /*
1568 * Set the default termios settings (cflag).
1569 * Others are set in ldterm.
1570 */
1571 mutex_exit(&asy->asy_excl_hi);
1572
1573 if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(),
1574 0, "ttymodes",
1575 (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
1576 len == sizeof (struct termios)) {
1577 async->async_ttycommon.t_cflag = termiosp->c_cflag;
1578 kmem_free(termiosp, len);
1579 } else
1580 cmn_err(CE_WARN,
1581 "asy: couldn't get ttymodes property!");
1582 mutex_enter(&asy->asy_excl_hi);
1583
1584 /* eeprom mode support - respect properties */
1585 if (asy->asy_cflag)
1586 async->async_ttycommon.t_cflag = asy->asy_cflag;
1587
1588 async->async_ttycommon.t_iflag = 0;
1589 async->async_ttycommon.t_iocpending = NULL;
1590 async->async_ttycommon.t_size.ws_row = 0;
1591 async->async_ttycommon.t_size.ws_col = 0;
1592 async->async_ttycommon.t_size.ws_xpixel = 0;
1593 async->async_ttycommon.t_size.ws_ypixel = 0;
1594 async->async_dev = *dev;
1595 async->async_wbufcid = 0;
1596
1597 async->async_startc = CSTART;
1598 async->async_stopc = CSTOP;
1599 asy_program(asy, ASY_INIT);
1600 } else
1601 if ((async->async_ttycommon.t_flags & TS_XCLUDE) &&
1602 secpolicy_excl_open(cr) != 0) {
1603 mutex_exit(&asy->asy_excl_hi);
1604 mutex_exit(&asy->asy_excl);
1605 return (EBUSY);
1606 } else if ((*dev & OUTLINE) && !(async->async_flags & ASYNC_OUT)) {
1607 mutex_exit(&asy->asy_excl_hi);
1608 mutex_exit(&asy->asy_excl);
1609 return (EBUSY);
1610 }
1611
1612 if (*dev & OUTLINE)
1613 async->async_flags |= ASYNC_OUT;
1614
1615 /* Raise DTR on every open, but delay if it was just lowered. */
1616 while (async->async_flags & ASYNC_DTR_DELAY) {
1617 DEBUGCONT1(ASY_DEBUG_MODEM,
1618 "asy%dopen: waiting for the ASYNC_DTR_DELAY to be clear\n",
1619 unit);
1620 mutex_exit(&asy->asy_excl_hi);
1621 if (cv_wait_sig(&async->async_flags_cv,
1622 &asy->asy_excl) == 0) {
1623 DEBUGCONT1(ASY_DEBUG_MODEM,
1624 "asy%dopen: interrupted by signal, exiting\n",
1625 unit);
1626 mutex_exit(&asy->asy_excl);
1627 return (EINTR);
1628 }
1629 mutex_enter(&asy->asy_excl_hi);
1630 }
1631
1632 mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
1633 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1634 mcr|(asy->asy_mcr&DTR));
1635
1636 DEBUGCONT3(ASY_DEBUG_INIT,
1637 "asy%dopen: \"Raise DTR on every open\": make mcr = %x, "
1638 "make TS_SOFTCAR = %s\n",
1639 unit, mcr|(asy->asy_mcr&DTR),
1640 (asy->asy_flags & ASY_IGNORE_CD) ? "ON" : "OFF");
1641
1642 if (asy->asy_flags & ASY_IGNORE_CD) {
1643 DEBUGCONT1(ASY_DEBUG_MODEM,
1644 "asy%dopen: ASY_IGNORE_CD set, set TS_SOFTCAR\n",
1645 unit);
1646 async->async_ttycommon.t_flags |= TS_SOFTCAR;
1647 }
1648 else
1649 async->async_ttycommon.t_flags &= ~TS_SOFTCAR;
1650
1651 /*
1652 * Check carrier.
1653 */
1654 asy->asy_msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
1655 DEBUGCONT3(ASY_DEBUG_INIT, "asy%dopen: TS_SOFTCAR is %s, "
1656 "MSR & DCD is %s\n",
1657 unit,
1658 (async->async_ttycommon.t_flags & TS_SOFTCAR) ? "set" : "clear",
1659 (asy->asy_msr & DCD) ? "set" : "clear");
1660
1661 if (asy->asy_msr & DCD)
1662 async->async_flags |= ASYNC_CARR_ON;
1663 else
1664 async->async_flags &= ~ASYNC_CARR_ON;
1665 mutex_exit(&asy->asy_excl_hi);
1666
1667 /*
1668 * If FNDELAY and FNONBLOCK are clear, block until carrier up.
1669 * Quit on interrupt.
1670 */
1671 if (!(flag & (FNDELAY|FNONBLOCK)) &&
1672 !(async->async_ttycommon.t_cflag & CLOCAL)) {
1673 if ((!(async->async_flags & (ASYNC_CARR_ON|ASYNC_OUT)) &&
1674 !(async->async_ttycommon.t_flags & TS_SOFTCAR)) ||
1675 ((async->async_flags & ASYNC_OUT) &&
1676 !(*dev & OUTLINE))) {
1677 async->async_flags |= ASYNC_WOPEN;
1678 if (cv_wait_sig(&async->async_flags_cv,
1679 &asy->asy_excl) == B_FALSE) {
1680 async->async_flags &= ~ASYNC_WOPEN;
1681 mutex_exit(&asy->asy_excl);
1682 return (EINTR);
1683 }
1684 async->async_flags &= ~ASYNC_WOPEN;
1685 goto again;
1686 }
1687 } else if ((async->async_flags & ASYNC_OUT) && !(*dev & OUTLINE)) {
1688 mutex_exit(&asy->asy_excl);
1689 return (EBUSY);
1690 }
1691
1692 async->async_ttycommon.t_readq = rq;
1693 async->async_ttycommon.t_writeq = WR(rq);
1694 rq->q_ptr = WR(rq)->q_ptr = (caddr_t)async;
1695 mutex_exit(&asy->asy_excl);
1696 /*
1697 * Caution here -- qprocson sets the pointers that are used by canput
1698 * called by async_softint. ASYNC_ISOPEN must *not* be set until those
1699 * pointers are valid.
1700 */
1701 qprocson(rq);
1702 async->async_flags |= ASYNC_ISOPEN;
1703 async->async_polltid = 0;
1704 DEBUGCONT1(ASY_DEBUG_INIT, "asy%dopen: done\n", unit);
1705 return (0);
1706 }
1707
1708 static void
async_progress_check(void * arg)1709 async_progress_check(void *arg)
1710 {
1711 struct asyncline *async = arg;
1712 struct asycom *asy = async->async_common;
1713 mblk_t *bp;
1714
1715 /*
1716 * We define "progress" as either waiting on a timed break or delay, or
1717 * having had at least one transmitter interrupt. If none of these are
1718 * true, then just terminate the output and wake up that close thread.
1719 */
1720 mutex_enter(&asy->asy_excl);
1721 mutex_enter(&asy->asy_excl_hi);
1722 if (!(async->async_flags & (ASYNC_BREAK|ASYNC_DELAY|ASYNC_PROGRESS))) {
1723 async->async_ocnt = 0;
1724 async->async_flags &= ~ASYNC_BUSY;
1725 async->async_timer = 0;
1726 bp = async->async_xmitblk;
1727 async->async_xmitblk = NULL;
1728 mutex_exit(&asy->asy_excl_hi);
1729 if (bp != NULL)
1730 freeb(bp);
1731 /*
1732 * Since this timer is running, we know that we're in exit(2).
1733 * That means that the user can't possibly be waiting on any
1734 * valid ioctl(2) completion anymore, and we should just flush
1735 * everything.
1736 */
1737 flushq(async->async_ttycommon.t_writeq, FLUSHALL);
1738 cv_broadcast(&async->async_flags_cv);
1739 } else {
1740 async->async_flags &= ~ASYNC_PROGRESS;
1741 async->async_timer = timeout(async_progress_check, async,
1742 drv_usectohz(asy_drain_check));
1743 mutex_exit(&asy->asy_excl_hi);
1744 }
1745 mutex_exit(&asy->asy_excl);
1746 }
1747
1748 /*
1749 * Release DTR so that asyopen() can raise it.
1750 */
1751 static void
async_dtr_free(struct asyncline * async)1752 async_dtr_free(struct asyncline *async)
1753 {
1754 struct asycom *asy = async->async_common;
1755
1756 DEBUGCONT0(ASY_DEBUG_MODEM,
1757 "async_dtr_free, clearing ASYNC_DTR_DELAY\n");
1758 mutex_enter(&asy->asy_excl);
1759 async->async_flags &= ~ASYNC_DTR_DELAY;
1760 async->async_dtrtid = 0;
1761 cv_broadcast(&async->async_flags_cv);
1762 mutex_exit(&asy->asy_excl);
1763 }
1764
1765 /*
1766 * Close routine.
1767 */
1768 /*ARGSUSED2*/
1769 static int
asyclose(queue_t * q,int flag,cred_t * credp)1770 asyclose(queue_t *q, int flag, cred_t *credp)
1771 {
1772 struct asyncline *async;
1773 struct asycom *asy;
1774 int icr, lcr;
1775 #ifdef DEBUG
1776 int instance;
1777 #endif
1778
1779 async = (struct asyncline *)q->q_ptr;
1780 ASSERT(async != NULL);
1781 #ifdef DEBUG
1782 instance = UNIT(async->async_dev);
1783 DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose\n", instance);
1784 #endif
1785 asy = async->async_common;
1786
1787 mutex_enter(&asy->asy_excl);
1788 async->async_flags |= ASYNC_CLOSING;
1789
1790 /*
1791 * Turn off PPS handling early to avoid events occuring during
1792 * close. Also reset the DCD edge monitoring bit.
1793 */
1794 mutex_enter(&asy->asy_excl_hi);
1795 asy->asy_flags &= ~(ASY_PPS | ASY_PPS_EDGE);
1796 mutex_exit(&asy->asy_excl_hi);
1797
1798 /*
1799 * There are two flavors of break -- timed (M_BREAK or TCSBRK) and
1800 * untimed (TIOCSBRK). For the timed case, these are enqueued on our
1801 * write queue and there's a timer running, so we don't have to worry
1802 * about them. For the untimed case, though, the user obviously made a
1803 * mistake, because these are handled immediately. We'll terminate the
1804 * break now and honor his implicit request by discarding the rest of
1805 * the data.
1806 */
1807 if (async->async_flags & ASYNC_OUT_SUSPEND) {
1808 if (async->async_utbrktid != 0) {
1809 (void) untimeout(async->async_utbrktid);
1810 async->async_utbrktid = 0;
1811 }
1812 mutex_enter(&asy->asy_excl_hi);
1813 lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1814 ddi_put8(asy->asy_iohandle,
1815 asy->asy_ioaddr + LCR, (lcr & ~SETBREAK));
1816 mutex_exit(&asy->asy_excl_hi);
1817 async->async_flags &= ~ASYNC_OUT_SUSPEND;
1818 goto nodrain;
1819 }
1820
1821 /*
1822 * If the user told us not to delay the close ("non-blocking"), then
1823 * don't bother trying to drain.
1824 *
1825 * If the user did M_STOP (ASYNC_STOPPED), there's no hope of ever
1826 * getting an M_START (since these messages aren't enqueued), and the
1827 * only other way to clear the stop condition is by loss of DCD, which
1828 * would discard the queue data. Thus, we drop the output data if
1829 * ASYNC_STOPPED is set.
1830 */
1831 if ((flag & (FNDELAY|FNONBLOCK)) ||
1832 (async->async_flags & ASYNC_STOPPED)) {
1833 goto nodrain;
1834 }
1835
1836 /*
1837 * If there's any pending output, then we have to try to drain it.
1838 * There are two main cases to be handled:
1839 * - called by close(2): need to drain until done or until
1840 * a signal is received. No timeout.
1841 * - called by exit(2): need to drain while making progress
1842 * or until a timeout occurs. No signals.
1843 *
1844 * If we can't rely on receiving a signal to get us out of a hung
1845 * session, then we have to use a timer. In this case, we set a timer
1846 * to check for progress in sending the output data -- all that we ask
1847 * (at each interval) is that there's been some progress made. Since
1848 * the interrupt routine grabs buffers from the write queue, we can't
1849 * trust changes in async_ocnt. Instead, we use a progress flag.
1850 *
1851 * Note that loss of carrier will cause the output queue to be flushed,
1852 * and we'll wake up again and finish normally.
1853 */
1854 if (!ddi_can_receive_sig() && asy_drain_check != 0) {
1855 async->async_flags &= ~ASYNC_PROGRESS;
1856 async->async_timer = timeout(async_progress_check, async,
1857 drv_usectohz(asy_drain_check));
1858 }
1859 while (async->async_ocnt > 0 ||
1860 async->async_ttycommon.t_writeq->q_first != NULL ||
1861 (async->async_flags & (ASYNC_BUSY|ASYNC_BREAK|ASYNC_DELAY))) {
1862 if (cv_wait_sig(&async->async_flags_cv, &asy->asy_excl) == 0)
1863 break;
1864 }
1865 if (async->async_timer != 0) {
1866 (void) untimeout(async->async_timer);
1867 async->async_timer = 0;
1868 }
1869
1870 nodrain:
1871 async->async_ocnt = 0;
1872 if (async->async_xmitblk != NULL)
1873 freeb(async->async_xmitblk);
1874 async->async_xmitblk = NULL;
1875
1876 /*
1877 * If line has HUPCL set or is incompletely opened fix up the modem
1878 * lines.
1879 */
1880 DEBUGCONT1(ASY_DEBUG_MODEM, "asy%dclose: next check HUPCL flag\n",
1881 instance);
1882 mutex_enter(&asy->asy_excl_hi);
1883 if ((async->async_ttycommon.t_cflag & HUPCL) ||
1884 (async->async_flags & ASYNC_WOPEN)) {
1885 DEBUGCONT3(ASY_DEBUG_MODEM,
1886 "asy%dclose: HUPCL flag = %x, ASYNC_WOPEN flag = %x\n",
1887 instance,
1888 async->async_ttycommon.t_cflag & HUPCL,
1889 async->async_ttycommon.t_cflag & ASYNC_WOPEN);
1890 async->async_flags |= ASYNC_DTR_DELAY;
1891
1892 /* turn off DTR, RTS but NOT interrupt to 386 */
1893 if (asy->asy_flags & (ASY_IGNORE_CD|ASY_RTS_DTR_OFF)) {
1894 DEBUGCONT3(ASY_DEBUG_MODEM,
1895 "asy%dclose: ASY_IGNORE_CD flag = %x, "
1896 "ASY_RTS_DTR_OFF flag = %x\n",
1897 instance,
1898 asy->asy_flags & ASY_IGNORE_CD,
1899 asy->asy_flags & ASY_RTS_DTR_OFF);
1900
1901 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1902 asy->asy_mcr|OUT2);
1903 } else {
1904 DEBUGCONT1(ASY_DEBUG_MODEM,
1905 "asy%dclose: Dropping DTR and RTS\n", instance);
1906 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
1907 OUT2);
1908 }
1909 async->async_dtrtid =
1910 timeout((void (*)())async_dtr_free,
1911 (caddr_t)async, drv_usectohz(asy_min_dtr_low));
1912 }
1913 /*
1914 * If nobody's using it now, turn off receiver interrupts.
1915 */
1916 if ((async->async_flags & (ASYNC_WOPEN|ASYNC_ISOPEN)) == 0) {
1917 icr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ICR);
1918 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
1919 (icr & ~RIEN));
1920 }
1921 mutex_exit(&asy->asy_excl_hi);
1922 out:
1923 ttycommon_close(&async->async_ttycommon);
1924
1925 /*
1926 * Cancel outstanding "bufcall" request.
1927 */
1928 if (async->async_wbufcid != 0) {
1929 unbufcall(async->async_wbufcid);
1930 async->async_wbufcid = 0;
1931 }
1932
1933 /* Note that qprocsoff can't be done until after interrupts are off */
1934 qprocsoff(q);
1935 q->q_ptr = WR(q)->q_ptr = NULL;
1936 async->async_ttycommon.t_readq = NULL;
1937 async->async_ttycommon.t_writeq = NULL;
1938
1939 /*
1940 * Clear out device state, except persistant device property flags.
1941 */
1942 async->async_flags &= (ASYNC_DTR_DELAY|ASY_RTS_DTR_OFF);
1943 cv_broadcast(&async->async_flags_cv);
1944 mutex_exit(&asy->asy_excl);
1945
1946 DEBUGCONT1(ASY_DEBUG_CLOSE, "asy%dclose: done\n", instance);
1947 return (0);
1948 }
1949
1950 static boolean_t
asy_isbusy(struct asycom * asy)1951 asy_isbusy(struct asycom *asy)
1952 {
1953 struct asyncline *async;
1954
1955 DEBUGCONT0(ASY_DEBUG_EOT, "asy_isbusy\n");
1956 async = asy->asy_priv;
1957 ASSERT(mutex_owned(&asy->asy_excl));
1958 ASSERT(mutex_owned(&asy->asy_excl_hi));
1959 /*
1960 * XXXX this should be recoded
1961 */
1962 return ((async->async_ocnt > 0) ||
1963 ((ddi_get8(asy->asy_iohandle,
1964 asy->asy_ioaddr + LSR) & (XSRE|XHRE)) == 0));
1965 }
1966
1967 static void
asy_waiteot(struct asycom * asy)1968 asy_waiteot(struct asycom *asy)
1969 {
1970 /*
1971 * Wait for the current transmission block and the
1972 * current fifo data to transmit. Once this is done
1973 * we may go on.
1974 */
1975 DEBUGCONT0(ASY_DEBUG_EOT, "asy_waiteot\n");
1976 ASSERT(mutex_owned(&asy->asy_excl));
1977 ASSERT(mutex_owned(&asy->asy_excl_hi));
1978 while (asy_isbusy(asy)) {
1979 mutex_exit(&asy->asy_excl_hi);
1980 mutex_exit(&asy->asy_excl);
1981 drv_usecwait(10000); /* wait .01 */
1982 mutex_enter(&asy->asy_excl);
1983 mutex_enter(&asy->asy_excl_hi);
1984 }
1985 }
1986
1987 /* asy_reset_fifo -- flush fifos and [re]program fifo control register */
1988 static void
asy_reset_fifo(struct asycom * asy,uchar_t flush)1989 asy_reset_fifo(struct asycom *asy, uchar_t flush)
1990 {
1991 uchar_t lcr;
1992
1993 /* On a 16750, we have to set DLAB in order to set FIFOEXTRA. */
1994
1995 if (asy->asy_hwtype >= ASY16750) {
1996 lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
1997 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
1998 lcr | DLAB);
1999 }
2000
2001 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + FIFOR,
2002 asy->asy_fifor | flush);
2003
2004 /* Clear DLAB */
2005
2006 if (asy->asy_hwtype >= ASY16750) {
2007 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2008 }
2009 }
2010
2011 /*
2012 * Program the ASY port. Most of the async operation is based on the values
2013 * of 'c_iflag' and 'c_cflag'.
2014 */
2015
2016 #define BAUDINDEX(cflg) (((cflg) & CBAUDEXT) ? \
2017 (((cflg) & CBAUD) + CBAUD + 1) : ((cflg) & CBAUD))
2018
2019 static void
asy_program(struct asycom * asy,int mode)2020 asy_program(struct asycom *asy, int mode)
2021 {
2022 struct asyncline *async;
2023 int baudrate, c_flag;
2024 int icr, lcr;
2025 int flush_reg;
2026 int ocflags;
2027 #ifdef DEBUG
2028 int instance;
2029 #endif
2030
2031 ASSERT(mutex_owned(&asy->asy_excl));
2032 ASSERT(mutex_owned(&asy->asy_excl_hi));
2033
2034 async = asy->asy_priv;
2035 #ifdef DEBUG
2036 instance = UNIT(async->async_dev);
2037 DEBUGCONT2(ASY_DEBUG_PROCS,
2038 "asy%d_program: mode = 0x%08X, enter\n", instance, mode);
2039 #endif
2040
2041 baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2042
2043 async->async_ttycommon.t_cflag &= ~(CIBAUD);
2044
2045 if (baudrate > CBAUD) {
2046 async->async_ttycommon.t_cflag |= CIBAUDEXT;
2047 async->async_ttycommon.t_cflag |=
2048 (((baudrate - CBAUD - 1) << IBSHIFT) & CIBAUD);
2049 } else {
2050 async->async_ttycommon.t_cflag &= ~CIBAUDEXT;
2051 async->async_ttycommon.t_cflag |=
2052 ((baudrate << IBSHIFT) & CIBAUD);
2053 }
2054
2055 c_flag = async->async_ttycommon.t_cflag &
2056 (CLOCAL|CREAD|CSTOPB|CSIZE|PARENB|PARODD|CBAUD|CBAUDEXT);
2057
2058 /* disable interrupts */
2059 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
2060
2061 ocflags = asy->asy_ocflag;
2062
2063 /* flush/reset the status registers */
2064 (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR);
2065 (void) ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2066 asy->asy_msr = flush_reg = ddi_get8(asy->asy_iohandle,
2067 asy->asy_ioaddr + MSR);
2068 /*
2069 * The device is programmed in the open sequence, if we
2070 * have to hardware handshake, then this is a good time
2071 * to check if the device can receive any data.
2072 */
2073
2074 if ((CRTSCTS & async->async_ttycommon.t_cflag) && !(flush_reg & CTS)) {
2075 async_flowcontrol_hw_output(asy, FLOW_STOP);
2076 } else {
2077 /*
2078 * We can not use async_flowcontrol_hw_output(asy, FLOW_START)
2079 * here, because if CRTSCTS is clear, we need clear
2080 * ASYNC_HW_OUT_FLW bit.
2081 */
2082 async->async_flags &= ~ASYNC_HW_OUT_FLW;
2083 }
2084
2085 /*
2086 * If IXON is not set, clear ASYNC_SW_OUT_FLW;
2087 * If IXON is set, no matter what IXON flag is before this
2088 * function call to asy_program,
2089 * we will use the old ASYNC_SW_OUT_FLW status.
2090 * Because of handling IXON in the driver, we also should re-calculate
2091 * the value of ASYNC_OUT_FLW_RESUME bit, but in fact,
2092 * the TCSET* commands which call asy_program
2093 * are put into the write queue, so there is no output needed to
2094 * be resumed at this point.
2095 */
2096 if (!(IXON & async->async_ttycommon.t_iflag))
2097 async->async_flags &= ~ASYNC_SW_OUT_FLW;
2098
2099 /* manually flush receive buffer or fifo (workaround for buggy fifos) */
2100 if (mode == ASY_INIT)
2101 if (asy->asy_use_fifo == FIFO_ON) {
2102 for (flush_reg = asy->asy_fifo_buf; flush_reg-- > 0; ) {
2103 (void) ddi_get8(asy->asy_iohandle,
2104 asy->asy_ioaddr + DAT);
2105 }
2106 } else {
2107 flush_reg = ddi_get8(asy->asy_iohandle,
2108 asy->asy_ioaddr + DAT);
2109 }
2110
2111 if (ocflags != (c_flag & ~CLOCAL) || mode == ASY_INIT) {
2112 /* Set line control */
2113 lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
2114 lcr &= ~(WLS0|WLS1|STB|PEN|EPS);
2115
2116 if (c_flag & CSTOPB)
2117 lcr |= STB; /* 2 stop bits */
2118
2119 if (c_flag & PARENB)
2120 lcr |= PEN;
2121
2122 if ((c_flag & PARODD) == 0)
2123 lcr |= EPS;
2124
2125 switch (c_flag & CSIZE) {
2126 case CS5:
2127 lcr |= BITS5;
2128 break;
2129 case CS6:
2130 lcr |= BITS6;
2131 break;
2132 case CS7:
2133 lcr |= BITS7;
2134 break;
2135 case CS8:
2136 lcr |= BITS8;
2137 break;
2138 }
2139
2140 /* set the baud rate, unless it is "0" */
2141 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, DLAB);
2142
2143 if (baudrate != 0) {
2144 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
2145 asyspdtab[baudrate] & 0xff);
2146 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR,
2147 (asyspdtab[baudrate] >> 8) & 0xff);
2148 }
2149 /* set the line control modes */
2150 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR, lcr);
2151
2152 /*
2153 * If we have a FIFO buffer, enable/flush
2154 * at intialize time, flush if transitioning from
2155 * CREAD off to CREAD on.
2156 */
2157 if ((ocflags & CREAD) == 0 && (c_flag & CREAD) ||
2158 mode == ASY_INIT)
2159 if (asy->asy_use_fifo == FIFO_ON)
2160 asy_reset_fifo(asy, FIFORXFLSH);
2161
2162 /* remember the new cflags */
2163 asy->asy_ocflag = c_flag & ~CLOCAL;
2164 }
2165
2166 if (baudrate == 0)
2167 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2168 (asy->asy_mcr & RTS) | OUT2);
2169 else
2170 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR,
2171 asy->asy_mcr | OUT2);
2172
2173 /*
2174 * Call the modem status interrupt handler to check for the carrier
2175 * in case CLOCAL was turned off after the carrier came on.
2176 * (Note: Modem status interrupt is not enabled if CLOCAL is ON.)
2177 */
2178 async_msint(asy);
2179
2180 /* Set interrupt control */
2181 DEBUGCONT3(ASY_DEBUG_MODM2,
2182 "asy%d_program: c_flag & CLOCAL = %x t_cflag & CRTSCTS = %x\n",
2183 instance, c_flag & CLOCAL,
2184 async->async_ttycommon.t_cflag & CRTSCTS);
2185
2186 if ((c_flag & CLOCAL) && !(async->async_ttycommon.t_cflag & CRTSCTS))
2187 /*
2188 * direct-wired line ignores DCD, so we don't enable modem
2189 * status interrupts.
2190 */
2191 icr = (TIEN | SIEN);
2192 else
2193 icr = (TIEN | SIEN | MIEN);
2194
2195 if (c_flag & CREAD)
2196 icr |= RIEN;
2197
2198 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, icr);
2199 DEBUGCONT1(ASY_DEBUG_PROCS, "asy%d_program: done\n", instance);
2200 }
2201
2202 static boolean_t
asy_baudok(struct asycom * asy)2203 asy_baudok(struct asycom *asy)
2204 {
2205 struct asyncline *async = asy->asy_priv;
2206 int baudrate;
2207
2208
2209 baudrate = BAUDINDEX(async->async_ttycommon.t_cflag);
2210
2211 if (baudrate >= sizeof (asyspdtab)/sizeof (*asyspdtab))
2212 return (0);
2213
2214 return (baudrate == 0 || asyspdtab[baudrate]);
2215 }
2216
2217 /*
2218 * asyintr() is the High Level Interrupt Handler.
2219 *
2220 * There are four different interrupt types indexed by ISR register values:
2221 * 0: modem
2222 * 1: Tx holding register is empty, ready for next char
2223 * 2: Rx register now holds a char to be picked up
2224 * 3: error or break on line
2225 * This routine checks the Bit 0 (interrupt-not-pending) to determine if
2226 * the interrupt is from this port.
2227 */
2228 uint_t
asyintr(caddr_t argasy)2229 asyintr(caddr_t argasy)
2230 {
2231 struct asycom *asy = (struct asycom *)argasy;
2232 struct asyncline *async;
2233 int ret_status = DDI_INTR_UNCLAIMED;
2234 uchar_t interrupt_id, lsr;
2235
2236 interrupt_id = ddi_get8(asy->asy_iohandle,
2237 asy->asy_ioaddr + ISR) & 0x0F;
2238 async = asy->asy_priv;
2239
2240 if ((async == NULL) ||
2241 !(async->async_flags & (ASYNC_ISOPEN|ASYNC_WOPEN))) {
2242 if (interrupt_id & NOINTERRUPT)
2243 return (DDI_INTR_UNCLAIMED);
2244 else {
2245 /*
2246 * reset the device by:
2247 * reading line status
2248 * reading any data from data status register
2249 * reading modem status
2250 */
2251 (void) ddi_get8(asy->asy_iohandle,
2252 asy->asy_ioaddr + LSR);
2253 (void) ddi_get8(asy->asy_iohandle,
2254 asy->asy_ioaddr + DAT);
2255 asy->asy_msr = ddi_get8(asy->asy_iohandle,
2256 asy->asy_ioaddr + MSR);
2257 return (DDI_INTR_CLAIMED);
2258 }
2259 }
2260
2261 mutex_enter(&asy->asy_excl_hi);
2262
2263 if (asy->asy_flags & ASY_DDI_SUSPENDED) {
2264 mutex_exit(&asy->asy_excl_hi);
2265 return (DDI_INTR_CLAIMED);
2266 }
2267
2268 /*
2269 * We will loop until the interrupt line is pulled low. asy
2270 * interrupt is edge triggered.
2271 */
2272 /* CSTYLED */
2273 for (;; interrupt_id =
2274 (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + ISR) & 0x0F)) {
2275
2276 if (interrupt_id & NOINTERRUPT)
2277 break;
2278 ret_status = DDI_INTR_CLAIMED;
2279
2280 DEBUGCONT1(ASY_DEBUG_INTR, "asyintr: interrupt_id = 0x%d\n",
2281 interrupt_id);
2282 lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2283 switch (interrupt_id) {
2284 case RxRDY:
2285 case RSTATUS:
2286 case FFTMOUT:
2287 /* receiver interrupt or receiver errors */
2288 async_rxint(asy, lsr);
2289 break;
2290 case TxRDY:
2291 /* transmit interrupt */
2292 async_txint(asy);
2293 continue;
2294 case MSTATUS:
2295 /* modem status interrupt */
2296 async_msint(asy);
2297 break;
2298 }
2299 if ((lsr & XHRE) && (async->async_flags & ASYNC_BUSY) &&
2300 (async->async_ocnt > 0))
2301 async_txint(asy);
2302 }
2303 mutex_exit(&asy->asy_excl_hi);
2304 return (ret_status);
2305 }
2306
2307 /*
2308 * Transmitter interrupt service routine.
2309 * If there is more data to transmit in the current pseudo-DMA block,
2310 * send the next character if output is not stopped or draining.
2311 * Otherwise, queue up a soft interrupt.
2312 *
2313 * XXX - Needs review for HW FIFOs.
2314 */
2315 static void
async_txint(struct asycom * asy)2316 async_txint(struct asycom *asy)
2317 {
2318 struct asyncline *async = asy->asy_priv;
2319 int fifo_len;
2320
2321 /*
2322 * If ASYNC_BREAK or ASYNC_OUT_SUSPEND has been set, return to
2323 * asyintr()'s context to claim the interrupt without performing
2324 * any action. No character will be loaded into FIFO/THR until
2325 * timed or untimed break is removed
2326 */
2327 if (async->async_flags & (ASYNC_BREAK|ASYNC_OUT_SUSPEND))
2328 return;
2329
2330 fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
2331 if (fifo_len > asy_max_tx_fifo)
2332 fifo_len = asy_max_tx_fifo;
2333
2334 if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
2335 fifo_len--;
2336
2337 if (async->async_ocnt > 0 && fifo_len > 0 &&
2338 !(async->async_flags &
2339 (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_STOPPED))) {
2340 while (fifo_len-- > 0 && async->async_ocnt-- > 0) {
2341 ddi_put8(asy->asy_iohandle,
2342 asy->asy_ioaddr + DAT, *async->async_optr++);
2343 }
2344 async->async_flags |= ASYNC_PROGRESS;
2345 }
2346
2347 if (fifo_len <= 0)
2348 return;
2349
2350 ASYSETSOFT(asy);
2351 }
2352
2353 /*
2354 * Interrupt on port: handle PPS event. This function is only called
2355 * for a port on which PPS event handling has been enabled.
2356 */
2357 static void
asy_ppsevent(struct asycom * asy,int msr)2358 asy_ppsevent(struct asycom *asy, int msr)
2359 {
2360 if (asy->asy_flags & ASY_PPS_EDGE) {
2361 /* Have seen leading edge, now look for and record drop */
2362 if ((msr & DCD) == 0)
2363 asy->asy_flags &= ~ASY_PPS_EDGE;
2364 /*
2365 * Waiting for leading edge, look for rise; stamp event and
2366 * calibrate kernel clock.
2367 */
2368 } else if (msr & DCD) {
2369 /*
2370 * This code captures a timestamp at the designated
2371 * transition of the PPS signal (DCD asserted). The
2372 * code provides a pointer to the timestamp, as well
2373 * as the hardware counter value at the capture.
2374 *
2375 * Note: the kernel has nano based time values while
2376 * NTP requires micro based, an in-line fast algorithm
2377 * to convert nsec to usec is used here -- see hrt2ts()
2378 * in common/os/timers.c for a full description.
2379 */
2380 struct timeval *tvp = &asy_ppsev.tv;
2381 timestruc_t ts;
2382 long nsec, usec;
2383
2384 asy->asy_flags |= ASY_PPS_EDGE;
2385 LED_OFF;
2386 gethrestime(&ts);
2387 LED_ON;
2388 nsec = ts.tv_nsec;
2389 usec = nsec + (nsec >> 2);
2390 usec = nsec + (usec >> 1);
2391 usec = nsec + (usec >> 2);
2392 usec = nsec + (usec >> 4);
2393 usec = nsec - (usec >> 3);
2394 usec = nsec + (usec >> 2);
2395 usec = nsec + (usec >> 3);
2396 usec = nsec + (usec >> 4);
2397 usec = nsec + (usec >> 1);
2398 usec = nsec + (usec >> 6);
2399 tvp->tv_usec = usec >> 10;
2400 tvp->tv_sec = ts.tv_sec;
2401
2402 ++asy_ppsev.serial;
2403
2404 /*
2405 * Because the kernel keeps a high-resolution time,
2406 * pass the current highres timestamp in tvp and zero
2407 * in usec.
2408 */
2409 ddi_hardpps(tvp, 0);
2410 }
2411 }
2412
2413 /*
2414 * Receiver interrupt: RxRDY interrupt, FIFO timeout interrupt or receive
2415 * error interrupt.
2416 * Try to put the character into the circular buffer for this line; if it
2417 * overflows, indicate a circular buffer overrun. If this port is always
2418 * to be serviced immediately, or the character is a STOP character, or
2419 * more than 15 characters have arrived, queue up a soft interrupt to
2420 * drain the circular buffer.
2421 * XXX - needs review for hw FIFOs support.
2422 */
2423
2424 static void
async_rxint(struct asycom * asy,uchar_t lsr)2425 async_rxint(struct asycom *asy, uchar_t lsr)
2426 {
2427 struct asyncline *async = asy->asy_priv;
2428 uchar_t c;
2429 uint_t s, needsoft = 0;
2430 tty_common_t *tp;
2431 int looplim = asy->asy_fifo_buf * 2;
2432
2433 tp = &async->async_ttycommon;
2434 if (!(tp->t_cflag & CREAD)) {
2435 while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2436 (void) (ddi_get8(asy->asy_iohandle,
2437 asy->asy_ioaddr + DAT) & 0xff);
2438 lsr = ddi_get8(asy->asy_iohandle,
2439 asy->asy_ioaddr + LSR);
2440 if (looplim-- < 0) /* limit loop */
2441 break;
2442 }
2443 return; /* line is not open for read? */
2444 }
2445
2446 while (lsr & (RCA|PARERR|FRMERR|BRKDET|OVRRUN)) {
2447 c = 0;
2448 s = 0; /* reset error status */
2449 if (lsr & RCA) {
2450 c = ddi_get8(asy->asy_iohandle,
2451 asy->asy_ioaddr + DAT) & 0xff;
2452
2453 /*
2454 * We handle XON/XOFF char if IXON is set,
2455 * but if received char is _POSIX_VDISABLE,
2456 * we left it to the up level module.
2457 */
2458 if (tp->t_iflag & IXON) {
2459 if ((c == async->async_stopc) &&
2460 (c != _POSIX_VDISABLE)) {
2461 async_flowcontrol_sw_output(asy,
2462 FLOW_STOP);
2463 goto check_looplim;
2464 } else if ((c == async->async_startc) &&
2465 (c != _POSIX_VDISABLE)) {
2466 async_flowcontrol_sw_output(asy,
2467 FLOW_START);
2468 needsoft = 1;
2469 goto check_looplim;
2470 }
2471 if ((tp->t_iflag & IXANY) &&
2472 (async->async_flags & ASYNC_SW_OUT_FLW)) {
2473 async_flowcontrol_sw_output(asy,
2474 FLOW_START);
2475 needsoft = 1;
2476 }
2477 }
2478 }
2479
2480 /*
2481 * Check for character break sequence
2482 */
2483 if ((abort_enable == KIOCABORTALTERNATE) &&
2484 (asy->asy_flags & ASY_CONSOLE)) {
2485 if (abort_charseq_recognize(c))
2486 abort_sequence_enter((char *)NULL);
2487 }
2488
2489 /* Handle framing errors */
2490 if (lsr & (PARERR|FRMERR|BRKDET|OVRRUN)) {
2491 if (lsr & PARERR) {
2492 if (tp->t_iflag & INPCK) /* parity enabled */
2493 s |= PERROR;
2494 }
2495
2496 if (lsr & (FRMERR|BRKDET))
2497 s |= FRERROR;
2498 if (lsr & OVRRUN) {
2499 async->async_hw_overrun = 1;
2500 s |= OVERRUN;
2501 }
2502 }
2503
2504 if (s == 0)
2505 if ((tp->t_iflag & PARMRK) &&
2506 !(tp->t_iflag & (IGNPAR|ISTRIP)) &&
2507 (c == 0377))
2508 if (RING_POK(async, 2)) {
2509 RING_PUT(async, 0377);
2510 RING_PUT(async, c);
2511 } else
2512 async->async_sw_overrun = 1;
2513 else
2514 if (RING_POK(async, 1))
2515 RING_PUT(async, c);
2516 else
2517 async->async_sw_overrun = 1;
2518 else
2519 if (s & FRERROR) /* Handle framing errors */
2520 if (c == 0)
2521 if ((asy->asy_flags & ASY_CONSOLE) &&
2522 (abort_enable !=
2523 KIOCABORTALTERNATE))
2524 abort_sequence_enter((char *)0);
2525 else
2526 async->async_break++;
2527 else
2528 if (RING_POK(async, 1))
2529 RING_MARK(async, c, s);
2530 else
2531 async->async_sw_overrun = 1;
2532 else /* Parity errors are handled by ldterm */
2533 if (RING_POK(async, 1))
2534 RING_MARK(async, c, s);
2535 else
2536 async->async_sw_overrun = 1;
2537 check_looplim:
2538 lsr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR);
2539 if (looplim-- < 0) /* limit loop */
2540 break;
2541 }
2542 if ((RING_CNT(async) > (RINGSIZE * 3)/4) &&
2543 !(async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2544 async_flowcontrol_hw_input(asy, FLOW_STOP, IN_FLOW_RINGBUFF);
2545 (void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2546 IN_FLOW_RINGBUFF);
2547 }
2548
2549 if ((async->async_flags & ASYNC_SERVICEIMM) || needsoft ||
2550 (RING_FRAC(async)) || (async->async_polltid == 0))
2551 ASYSETSOFT(asy); /* need a soft interrupt */
2552 }
2553
2554 /*
2555 * Modem status interrupt.
2556 *
2557 * (Note: It is assumed that the MSR hasn't been read by asyintr().)
2558 */
2559
2560 static void
async_msint(struct asycom * asy)2561 async_msint(struct asycom *asy)
2562 {
2563 struct asyncline *async = asy->asy_priv;
2564 int msr, t_cflag = async->async_ttycommon.t_cflag;
2565 #ifdef DEBUG
2566 int instance = UNIT(async->async_dev);
2567 #endif
2568
2569 async_msint_retry:
2570 /* this resets the interrupt */
2571 msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2572 DEBUGCONT10(ASY_DEBUG_STATE,
2573 "async%d_msint call #%d:\n"
2574 " transition: %3s %3s %3s %3s\n"
2575 "current state: %3s %3s %3s %3s\n",
2576 instance,
2577 ++(asy->asy_msint_cnt),
2578 (msr & DCTS) ? "DCTS" : " ",
2579 (msr & DDSR) ? "DDSR" : " ",
2580 (msr & DRI) ? "DRI " : " ",
2581 (msr & DDCD) ? "DDCD" : " ",
2582 (msr & CTS) ? "CTS " : " ",
2583 (msr & DSR) ? "DSR " : " ",
2584 (msr & RI) ? "RI " : " ",
2585 (msr & DCD) ? "DCD " : " ");
2586
2587 /* If CTS status is changed, do H/W output flow control */
2588 if ((t_cflag & CRTSCTS) && (((asy->asy_msr ^ msr) & CTS) != 0))
2589 async_flowcontrol_hw_output(asy,
2590 msr & CTS ? FLOW_START : FLOW_STOP);
2591 /*
2592 * Reading MSR resets the interrupt, we save the
2593 * value of msr so that other functions could examine MSR by
2594 * looking at asy_msr.
2595 */
2596 asy->asy_msr = (uchar_t)msr;
2597
2598 /* Handle PPS event */
2599 if (asy->asy_flags & ASY_PPS)
2600 asy_ppsevent(asy, msr);
2601
2602 async->async_ext++;
2603 ASYSETSOFT(asy);
2604 /*
2605 * We will make sure that the modem status presented to us
2606 * during the previous read has not changed. If the chip samples
2607 * the modem status on the falling edge of the interrupt line,
2608 * and uses this state as the base for detecting change of modem
2609 * status, we would miss a change of modem status event that occured
2610 * after we initiated a read MSR operation.
2611 */
2612 msr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MSR);
2613 if (STATES(msr) != STATES(asy->asy_msr))
2614 goto async_msint_retry;
2615 }
2616
2617 /*
2618 * Handle a second-stage interrupt.
2619 */
2620 /*ARGSUSED*/
2621 uint_t
asysoftintr(caddr_t intarg)2622 asysoftintr(caddr_t intarg)
2623 {
2624 struct asycom *asy = (struct asycom *)intarg;
2625 struct asyncline *async;
2626 int rv;
2627 uint_t cc;
2628
2629 /*
2630 * Test and clear soft interrupt.
2631 */
2632 mutex_enter(&asy->asy_soft_lock);
2633 DEBUGCONT0(ASY_DEBUG_PROCS, "asysoftintr: enter\n");
2634 rv = asy->asysoftpend;
2635 if (rv != 0)
2636 asy->asysoftpend = 0;
2637 mutex_exit(&asy->asy_soft_lock);
2638
2639 if (rv) {
2640 if (asy->asy_priv == NULL)
2641 return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2642 async = (struct asyncline *)asy->asy_priv;
2643 mutex_enter(&asy->asy_excl_hi);
2644 if (asy->asy_flags & ASY_NEEDSOFT) {
2645 asy->asy_flags &= ~ASY_NEEDSOFT;
2646 mutex_exit(&asy->asy_excl_hi);
2647 async_softint(asy);
2648 mutex_enter(&asy->asy_excl_hi);
2649 }
2650
2651 /*
2652 * There are some instances where the softintr is not
2653 * scheduled and hence not called. It so happens that
2654 * causes the last few characters to be stuck in the
2655 * ringbuffer. Hence, call the handler once again so
2656 * the last few characters are cleared.
2657 */
2658 cc = RING_CNT(async);
2659 mutex_exit(&asy->asy_excl_hi);
2660 if (cc > 0)
2661 (void) async_softint(asy);
2662 }
2663 return (rv ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
2664 }
2665
2666 /*
2667 * Handle a software interrupt.
2668 */
2669 static void
async_softint(struct asycom * asy)2670 async_softint(struct asycom *asy)
2671 {
2672 struct asyncline *async = asy->asy_priv;
2673 uint_t cc;
2674 mblk_t *bp;
2675 queue_t *q;
2676 uchar_t val;
2677 uchar_t c;
2678 tty_common_t *tp;
2679 int nb;
2680 int instance = UNIT(async->async_dev);
2681
2682 DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint\n", instance);
2683 mutex_enter(&asy->asy_excl_hi);
2684 if (asy->asy_flags & ASY_DOINGSOFT) {
2685 asy->asy_flags |= ASY_DOINGSOFT_RETRY;
2686 mutex_exit(&asy->asy_excl_hi);
2687 return;
2688 }
2689 asy->asy_flags |= ASY_DOINGSOFT;
2690 begin:
2691 asy->asy_flags &= ~ASY_DOINGSOFT_RETRY;
2692 mutex_exit(&asy->asy_excl_hi);
2693 mutex_enter(&asy->asy_excl);
2694 tp = &async->async_ttycommon;
2695 q = tp->t_readq;
2696 if (async->async_flags & ASYNC_OUT_FLW_RESUME) {
2697 if (async->async_ocnt > 0) {
2698 mutex_enter(&asy->asy_excl_hi);
2699 async_resume(async);
2700 mutex_exit(&asy->asy_excl_hi);
2701 } else {
2702 if (async->async_xmitblk)
2703 freeb(async->async_xmitblk);
2704 async->async_xmitblk = NULL;
2705 async_start(async);
2706 }
2707 async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
2708 }
2709 mutex_enter(&asy->asy_excl_hi);
2710 if (async->async_ext) {
2711 async->async_ext = 0;
2712 /* check for carrier up */
2713 DEBUGCONT3(ASY_DEBUG_MODM2,
2714 "async%d_softint: asy_msr & DCD = %x, "
2715 "tp->t_flags & TS_SOFTCAR = %x\n",
2716 instance, asy->asy_msr & DCD, tp->t_flags & TS_SOFTCAR);
2717
2718 if (asy->asy_msr & DCD) {
2719 /* carrier present */
2720 if ((async->async_flags & ASYNC_CARR_ON) == 0) {
2721 DEBUGCONT1(ASY_DEBUG_MODM2,
2722 "async%d_softint: set ASYNC_CARR_ON\n",
2723 instance);
2724 async->async_flags |= ASYNC_CARR_ON;
2725 if (async->async_flags & ASYNC_ISOPEN) {
2726 mutex_exit(&asy->asy_excl_hi);
2727 mutex_exit(&asy->asy_excl);
2728 (void) putctl(q, M_UNHANGUP);
2729 mutex_enter(&asy->asy_excl);
2730 mutex_enter(&asy->asy_excl_hi);
2731 }
2732 cv_broadcast(&async->async_flags_cv);
2733 }
2734 } else {
2735 if ((async->async_flags & ASYNC_CARR_ON) &&
2736 !(tp->t_cflag & CLOCAL) &&
2737 !(tp->t_flags & TS_SOFTCAR)) {
2738 int flushflag;
2739
2740 DEBUGCONT1(ASY_DEBUG_MODEM,
2741 "async%d_softint: carrier dropped, "
2742 "so drop DTR\n",
2743 instance);
2744 /*
2745 * Carrier went away.
2746 * Drop DTR, abort any output in
2747 * progress, indicate that output is
2748 * not stopped, and send a hangup
2749 * notification upstream.
2750 */
2751 val = ddi_get8(asy->asy_iohandle,
2752 asy->asy_ioaddr + MCR);
2753 ddi_put8(asy->asy_iohandle,
2754 asy->asy_ioaddr + MCR, (val & ~DTR));
2755
2756 if (async->async_flags & ASYNC_BUSY) {
2757 DEBUGCONT0(ASY_DEBUG_BUSY,
2758 "async_softint: "
2759 "Carrier dropped. "
2760 "Clearing async_ocnt\n");
2761 async->async_ocnt = 0;
2762 } /* if */
2763
2764 async->async_flags &= ~ASYNC_STOPPED;
2765 if (async->async_flags & ASYNC_ISOPEN) {
2766 mutex_exit(&asy->asy_excl_hi);
2767 mutex_exit(&asy->asy_excl);
2768 (void) putctl(q, M_HANGUP);
2769 mutex_enter(&asy->asy_excl);
2770 DEBUGCONT1(ASY_DEBUG_MODEM,
2771 "async%d_softint: "
2772 "putctl(q, M_HANGUP)\n",
2773 instance);
2774 /*
2775 * Flush FIFO buffers
2776 * Any data left in there is invalid now
2777 */
2778 if (asy->asy_use_fifo == FIFO_ON)
2779 asy_reset_fifo(asy, FIFOTXFLSH);
2780 /*
2781 * Flush our write queue if we have one.
2782 * If we're in the midst of close, then
2783 * flush everything. Don't leave stale
2784 * ioctls lying about.
2785 */
2786 flushflag = (async->async_flags &
2787 ASYNC_CLOSING) ? FLUSHALL :
2788 FLUSHDATA;
2789 flushq(tp->t_writeq, flushflag);
2790
2791 /* active msg */
2792 bp = async->async_xmitblk;
2793 if (bp != NULL) {
2794 freeb(bp);
2795 async->async_xmitblk = NULL;
2796 }
2797
2798 mutex_enter(&asy->asy_excl_hi);
2799 async->async_flags &= ~ASYNC_BUSY;
2800 /*
2801 * This message warns of Carrier loss
2802 * with data left to transmit can hang
2803 * the system.
2804 */
2805 DEBUGCONT0(ASY_DEBUG_MODEM,
2806 "async_softint: Flushing to "
2807 "prevent HUPCL hanging\n");
2808 } /* if (ASYNC_ISOPEN) */
2809 } /* if (ASYNC_CARR_ON && CLOCAL) */
2810 async->async_flags &= ~ASYNC_CARR_ON;
2811 cv_broadcast(&async->async_flags_cv);
2812 } /* else */
2813 } /* if (async->async_ext) */
2814
2815 mutex_exit(&asy->asy_excl_hi);
2816
2817 /*
2818 * If data has been added to the circular buffer, remove
2819 * it from the buffer, and send it up the stream if there's
2820 * somebody listening. Try to do it 16 bytes at a time. If we
2821 * have more than 16 bytes to move, move 16 byte chunks and
2822 * leave the rest for next time around (maybe it will grow).
2823 */
2824 mutex_enter(&asy->asy_excl_hi);
2825 if (!(async->async_flags & ASYNC_ISOPEN)) {
2826 RING_INIT(async);
2827 goto rv;
2828 }
2829 if ((cc = RING_CNT(async)) == 0)
2830 goto rv;
2831 mutex_exit(&asy->asy_excl_hi);
2832
2833 if (!canput(q)) {
2834 mutex_enter(&asy->asy_excl_hi);
2835 if (!(async->async_inflow_source & IN_FLOW_STREAMS)) {
2836 async_flowcontrol_hw_input(asy, FLOW_STOP,
2837 IN_FLOW_STREAMS);
2838 (void) async_flowcontrol_sw_input(asy, FLOW_STOP,
2839 IN_FLOW_STREAMS);
2840 }
2841 goto rv;
2842 }
2843 if (async->async_inflow_source & IN_FLOW_STREAMS) {
2844 mutex_enter(&asy->asy_excl_hi);
2845 async_flowcontrol_hw_input(asy, FLOW_START,
2846 IN_FLOW_STREAMS);
2847 (void) async_flowcontrol_sw_input(asy, FLOW_START,
2848 IN_FLOW_STREAMS);
2849 mutex_exit(&asy->asy_excl_hi);
2850 }
2851
2852 DEBUGCONT2(ASY_DEBUG_INPUT, "async%d_softint: %d char(s) in queue.\n",
2853 instance, cc);
2854
2855 if (!(bp = allocb(cc, BPRI_MED))) {
2856 mutex_exit(&asy->asy_excl);
2857 ttycommon_qfull(&async->async_ttycommon, q);
2858 mutex_enter(&asy->asy_excl);
2859 mutex_enter(&asy->asy_excl_hi);
2860 goto rv;
2861 }
2862 mutex_enter(&asy->asy_excl_hi);
2863 do {
2864 if (RING_ERR(async, S_ERRORS)) {
2865 RING_UNMARK(async);
2866 c = RING_GET(async);
2867 break;
2868 } else
2869 *bp->b_wptr++ = RING_GET(async);
2870 } while (--cc);
2871 mutex_exit(&asy->asy_excl_hi);
2872 mutex_exit(&asy->asy_excl);
2873 if (bp->b_wptr > bp->b_rptr) {
2874 if (!canput(q)) {
2875 asyerror(CE_NOTE, "asy%d: local queue full",
2876 instance);
2877 freemsg(bp);
2878 } else
2879 (void) putq(q, bp);
2880 } else
2881 freemsg(bp);
2882 /*
2883 * If we have a parity error, then send
2884 * up an M_BREAK with the "bad"
2885 * character as an argument. Let ldterm
2886 * figure out what to do with the error.
2887 */
2888 if (cc) {
2889 (void) putctl1(q, M_BREAK, c);
2890 ASYSETSOFT(async->async_common); /* finish cc chars */
2891 }
2892 mutex_enter(&asy->asy_excl);
2893 mutex_enter(&asy->asy_excl_hi);
2894 rv:
2895 if ((RING_CNT(async) < (RINGSIZE/4)) &&
2896 (async->async_inflow_source & IN_FLOW_RINGBUFF)) {
2897 async_flowcontrol_hw_input(asy, FLOW_START, IN_FLOW_RINGBUFF);
2898 (void) async_flowcontrol_sw_input(asy, FLOW_START,
2899 IN_FLOW_RINGBUFF);
2900 }
2901
2902 /*
2903 * If a transmission has finished, indicate that it's finished,
2904 * and start that line up again.
2905 */
2906 if (async->async_break > 0) {
2907 nb = async->async_break;
2908 async->async_break = 0;
2909 if (async->async_flags & ASYNC_ISOPEN) {
2910 mutex_exit(&asy->asy_excl_hi);
2911 mutex_exit(&asy->asy_excl);
2912 for (; nb > 0; nb--)
2913 (void) putctl(q, M_BREAK);
2914 mutex_enter(&asy->asy_excl);
2915 mutex_enter(&asy->asy_excl_hi);
2916 }
2917 }
2918 if (async->async_ocnt <= 0 && (async->async_flags & ASYNC_BUSY)) {
2919 DEBUGCONT2(ASY_DEBUG_BUSY,
2920 "async%d_softint: Clearing ASYNC_BUSY. async_ocnt=%d\n",
2921 instance,
2922 async->async_ocnt);
2923 async->async_flags &= ~ASYNC_BUSY;
2924 mutex_exit(&asy->asy_excl_hi);
2925 if (async->async_xmitblk)
2926 freeb(async->async_xmitblk);
2927 async->async_xmitblk = NULL;
2928 async_start(async);
2929 /*
2930 * If the flag isn't set after doing the async_start above, we
2931 * may have finished all the queued output. Signal any thread
2932 * stuck in close.
2933 */
2934 if (!(async->async_flags & ASYNC_BUSY))
2935 cv_broadcast(&async->async_flags_cv);
2936 mutex_enter(&asy->asy_excl_hi);
2937 }
2938 /*
2939 * A note about these overrun bits: all they do is *tell* someone
2940 * about an error- They do not track multiple errors. In fact,
2941 * you could consider them latched register bits if you like.
2942 * We are only interested in printing the error message once for
2943 * any cluster of overrun errrors.
2944 */
2945 if (async->async_hw_overrun) {
2946 if (async->async_flags & ASYNC_ISOPEN) {
2947 mutex_exit(&asy->asy_excl_hi);
2948 mutex_exit(&asy->asy_excl);
2949 asyerror(CE_NOTE, "asy%d: silo overflow", instance);
2950 mutex_enter(&asy->asy_excl);
2951 mutex_enter(&asy->asy_excl_hi);
2952 }
2953 async->async_hw_overrun = 0;
2954 }
2955 if (async->async_sw_overrun) {
2956 if (async->async_flags & ASYNC_ISOPEN) {
2957 mutex_exit(&asy->asy_excl_hi);
2958 mutex_exit(&asy->asy_excl);
2959 asyerror(CE_NOTE, "asy%d: ring buffer overflow",
2960 instance);
2961 mutex_enter(&asy->asy_excl);
2962 mutex_enter(&asy->asy_excl_hi);
2963 }
2964 async->async_sw_overrun = 0;
2965 }
2966 if (asy->asy_flags & ASY_DOINGSOFT_RETRY) {
2967 mutex_exit(&asy->asy_excl);
2968 goto begin;
2969 }
2970 asy->asy_flags &= ~ASY_DOINGSOFT;
2971 mutex_exit(&asy->asy_excl_hi);
2972 mutex_exit(&asy->asy_excl);
2973 DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_softint: done\n", instance);
2974 }
2975
2976 /*
2977 * Restart output on a line after a delay or break timer expired.
2978 */
2979 static void
async_restart(void * arg)2980 async_restart(void *arg)
2981 {
2982 struct asyncline *async = (struct asyncline *)arg;
2983 struct asycom *asy = async->async_common;
2984 uchar_t lcr;
2985
2986 /*
2987 * If break timer expired, turn off the break bit.
2988 */
2989 #ifdef DEBUG
2990 int instance = UNIT(async->async_dev);
2991
2992 DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_restart\n", instance);
2993 #endif
2994 mutex_enter(&asy->asy_excl);
2995 /*
2996 * If ASYNC_OUT_SUSPEND is also set, we don't really
2997 * clean the HW break, TIOCCBRK is responsible for this.
2998 */
2999 if ((async->async_flags & ASYNC_BREAK) &&
3000 !(async->async_flags & ASYNC_OUT_SUSPEND)) {
3001 mutex_enter(&asy->asy_excl_hi);
3002 lcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3003 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3004 (lcr & ~SETBREAK));
3005 mutex_exit(&asy->asy_excl_hi);
3006 }
3007 async->async_flags &= ~(ASYNC_DELAY|ASYNC_BREAK);
3008 cv_broadcast(&async->async_flags_cv);
3009 async_start(async);
3010
3011 mutex_exit(&asy->asy_excl);
3012 }
3013
3014 static void
async_start(struct asyncline * async)3015 async_start(struct asyncline *async)
3016 {
3017 async_nstart(async, 0);
3018 }
3019
3020 /*
3021 * Start output on a line, unless it's busy, frozen, or otherwise.
3022 */
3023 /*ARGSUSED*/
3024 static void
async_nstart(struct asyncline * async,int mode)3025 async_nstart(struct asyncline *async, int mode)
3026 {
3027 struct asycom *asy = async->async_common;
3028 int cc;
3029 queue_t *q;
3030 mblk_t *bp;
3031 uchar_t *xmit_addr;
3032 uchar_t val;
3033 int fifo_len = 1;
3034 boolean_t didsome;
3035 mblk_t *nbp;
3036
3037 #ifdef DEBUG
3038 int instance = UNIT(async->async_dev);
3039
3040 DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_nstart\n", instance);
3041 #endif
3042 if (asy->asy_use_fifo == FIFO_ON) {
3043 fifo_len = asy->asy_fifo_buf; /* with FIFO buffers */
3044 if (fifo_len > asy_max_tx_fifo)
3045 fifo_len = asy_max_tx_fifo;
3046 }
3047
3048 ASSERT(mutex_owned(&asy->asy_excl));
3049
3050 /*
3051 * If the chip is busy (i.e., we're waiting for a break timeout
3052 * to expire, or for the current transmission to finish, or for
3053 * output to finish draining from chip), don't grab anything new.
3054 */
3055 if (async->async_flags & (ASYNC_BREAK|ASYNC_BUSY)) {
3056 DEBUGCONT2((mode? ASY_DEBUG_OUT : 0),
3057 "async%d_nstart: start %s.\n",
3058 instance,
3059 async->async_flags & ASYNC_BREAK ? "break" : "busy");
3060 return;
3061 }
3062
3063 /*
3064 * Check only pended sw input flow control.
3065 */
3066 mutex_enter(&asy->asy_excl_hi);
3067 if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3068 fifo_len--;
3069 mutex_exit(&asy->asy_excl_hi);
3070
3071 /*
3072 * If we're waiting for a delay timeout to expire, don't grab
3073 * anything new.
3074 */
3075 if (async->async_flags & ASYNC_DELAY) {
3076 DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3077 "async%d_nstart: start ASYNC_DELAY.\n", instance);
3078 return;
3079 }
3080
3081 if ((q = async->async_ttycommon.t_writeq) == NULL) {
3082 DEBUGCONT1((mode? ASY_DEBUG_OUT : 0),
3083 "async%d_nstart: start writeq is null.\n", instance);
3084 return; /* not attached to a stream */
3085 }
3086
3087 for (;;) {
3088 if ((bp = getq(q)) == NULL)
3089 return; /* no data to transmit */
3090
3091 /*
3092 * We have a message block to work on.
3093 * Check whether it's a break, a delay, or an ioctl (the latter
3094 * occurs if the ioctl in question was waiting for the output
3095 * to drain). If it's one of those, process it immediately.
3096 */
3097 switch (bp->b_datap->db_type) {
3098
3099 case M_BREAK:
3100 /*
3101 * Set the break bit, and arrange for "async_restart"
3102 * to be called in 1/4 second; it will turn the
3103 * break bit off, and call "async_start" to grab
3104 * the next message.
3105 */
3106 mutex_enter(&asy->asy_excl_hi);
3107 val = ddi_get8(asy->asy_iohandle,
3108 asy->asy_ioaddr + LCR);
3109 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3110 (val | SETBREAK));
3111 mutex_exit(&asy->asy_excl_hi);
3112 async->async_flags |= ASYNC_BREAK;
3113 (void) timeout(async_restart, (caddr_t)async,
3114 drv_usectohz(1000000)/4);
3115 freemsg(bp);
3116 return; /* wait for this to finish */
3117
3118 case M_DELAY:
3119 /*
3120 * Arrange for "async_restart" to be called when the
3121 * delay expires; it will turn ASYNC_DELAY off,
3122 * and call "async_start" to grab the next message.
3123 */
3124 (void) timeout(async_restart, (caddr_t)async,
3125 (int)(*(unsigned char *)bp->b_rptr + 6));
3126 async->async_flags |= ASYNC_DELAY;
3127 freemsg(bp);
3128 return; /* wait for this to finish */
3129
3130 case M_IOCTL:
3131 /*
3132 * This ioctl was waiting for the output ahead of
3133 * it to drain; obviously, it has. Do it, and
3134 * then grab the next message after it.
3135 */
3136 mutex_exit(&asy->asy_excl);
3137 async_ioctl(async, q, bp);
3138 mutex_enter(&asy->asy_excl);
3139 continue;
3140 }
3141
3142 while (bp != NULL && ((cc = MBLKL(bp)) == 0)) {
3143 nbp = bp->b_cont;
3144 freeb(bp);
3145 bp = nbp;
3146 }
3147 if (bp != NULL)
3148 break;
3149 }
3150
3151 /*
3152 * We have data to transmit. If output is stopped, put
3153 * it back and try again later.
3154 */
3155 if (async->async_flags & (ASYNC_HW_OUT_FLW | ASYNC_SW_OUT_FLW |
3156 ASYNC_STOPPED | ASYNC_OUT_SUSPEND)) {
3157 (void) putbq(q, bp);
3158 return;
3159 }
3160
3161 async->async_xmitblk = bp;
3162 xmit_addr = bp->b_rptr;
3163 bp = bp->b_cont;
3164 if (bp != NULL)
3165 (void) putbq(q, bp); /* not done with this message yet */
3166
3167 /*
3168 * In 5-bit mode, the high order bits are used
3169 * to indicate character sizes less than five,
3170 * so we need to explicitly mask before transmitting
3171 */
3172 if ((async->async_ttycommon.t_cflag & CSIZE) == CS5) {
3173 unsigned char *p = xmit_addr;
3174 int cnt = cc;
3175
3176 while (cnt--)
3177 *p++ &= (unsigned char) 0x1f;
3178 }
3179
3180 /*
3181 * Set up this block for pseudo-DMA.
3182 */
3183 mutex_enter(&asy->asy_excl_hi);
3184 /*
3185 * If the transmitter is ready, shove the first
3186 * character out.
3187 */
3188 didsome = B_FALSE;
3189 while (--fifo_len >= 0 && cc > 0) {
3190 if (!(ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) &
3191 XHRE))
3192 break;
3193 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
3194 *xmit_addr++);
3195 cc--;
3196 didsome = B_TRUE;
3197 }
3198 async->async_optr = xmit_addr;
3199 async->async_ocnt = cc;
3200 if (didsome)
3201 async->async_flags |= ASYNC_PROGRESS;
3202 DEBUGCONT2(ASY_DEBUG_BUSY,
3203 "async%d_nstart: Set ASYNC_BUSY. async_ocnt=%d\n",
3204 instance, async->async_ocnt);
3205 async->async_flags |= ASYNC_BUSY;
3206 mutex_exit(&asy->asy_excl_hi);
3207 }
3208
3209 /*
3210 * Resume output by poking the transmitter.
3211 */
3212 static void
async_resume(struct asyncline * async)3213 async_resume(struct asyncline *async)
3214 {
3215 struct asycom *asy = async->async_common;
3216 #ifdef DEBUG
3217 int instance;
3218 #endif
3219
3220 ASSERT(mutex_owned(&asy->asy_excl_hi));
3221 #ifdef DEBUG
3222 instance = UNIT(async->async_dev);
3223 DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_resume\n", instance);
3224 #endif
3225
3226 if (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE) {
3227 if (async_flowcontrol_sw_input(asy, FLOW_CHECK, IN_FLOW_NULL))
3228 return;
3229 if (async->async_ocnt > 0 &&
3230 !(async->async_flags &
3231 (ASYNC_HW_OUT_FLW|ASYNC_SW_OUT_FLW|ASYNC_OUT_SUSPEND))) {
3232 ddi_put8(asy->asy_iohandle,
3233 asy->asy_ioaddr + DAT, *async->async_optr++);
3234 async->async_ocnt--;
3235 async->async_flags |= ASYNC_PROGRESS;
3236 }
3237 }
3238 }
3239
3240 /*
3241 * Hold the untimed break to last the minimum time.
3242 */
3243 static void
async_hold_utbrk(void * arg)3244 async_hold_utbrk(void *arg)
3245 {
3246 struct asyncline *async = arg;
3247 struct asycom *asy = async->async_common;
3248
3249 mutex_enter(&asy->asy_excl);
3250 async->async_flags &= ~ASYNC_HOLD_UTBRK;
3251 cv_broadcast(&async->async_flags_cv);
3252 async->async_utbrktid = 0;
3253 mutex_exit(&asy->asy_excl);
3254 }
3255
3256 /*
3257 * Resume the untimed break.
3258 */
3259 static void
async_resume_utbrk(struct asyncline * async)3260 async_resume_utbrk(struct asyncline *async)
3261 {
3262 uchar_t val;
3263 struct asycom *asy = async->async_common;
3264 ASSERT(mutex_owned(&asy->asy_excl));
3265
3266 /*
3267 * Because the wait time is very short,
3268 * so we use uninterruptably wait.
3269 */
3270 while (async->async_flags & ASYNC_HOLD_UTBRK) {
3271 cv_wait(&async->async_flags_cv, &asy->asy_excl);
3272 }
3273 mutex_enter(&asy->asy_excl_hi);
3274 /*
3275 * Timed break and untimed break can exist simultaneously,
3276 * if ASYNC_BREAK is also set at here, we don't
3277 * really clean the HW break.
3278 */
3279 if (!(async->async_flags & ASYNC_BREAK)) {
3280 val = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LCR);
3281 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + LCR,
3282 (val & ~SETBREAK));
3283 }
3284 async->async_flags &= ~ASYNC_OUT_SUSPEND;
3285 cv_broadcast(&async->async_flags_cv);
3286 if (async->async_ocnt > 0) {
3287 async_resume(async);
3288 mutex_exit(&asy->asy_excl_hi);
3289 } else {
3290 async->async_flags &= ~ASYNC_BUSY;
3291 mutex_exit(&asy->asy_excl_hi);
3292 if (async->async_xmitblk != NULL) {
3293 freeb(async->async_xmitblk);
3294 async->async_xmitblk = NULL;
3295 }
3296 async_start(async);
3297 }
3298 }
3299
3300 /*
3301 * Process an "ioctl" message sent down to us.
3302 * Note that we don't need to get any locks until we are ready to access
3303 * the hardware. Nothing we access until then is going to be altered
3304 * outside of the STREAMS framework, so we should be safe.
3305 */
3306 int asydelay = 10000;
3307 static void
async_ioctl(struct asyncline * async,queue_t * wq,mblk_t * mp)3308 async_ioctl(struct asyncline *async, queue_t *wq, mblk_t *mp)
3309 {
3310 struct asycom *asy = async->async_common;
3311 tty_common_t *tp = &async->async_ttycommon;
3312 struct iocblk *iocp;
3313 unsigned datasize;
3314 int error = 0;
3315 uchar_t val;
3316 mblk_t *datamp;
3317 unsigned int index;
3318
3319 #ifdef DEBUG
3320 int instance = UNIT(async->async_dev);
3321
3322 DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl\n", instance);
3323 #endif
3324
3325 if (tp->t_iocpending != NULL) {
3326 /*
3327 * We were holding an "ioctl" response pending the
3328 * availability of an "mblk" to hold data to be passed up;
3329 * another "ioctl" came through, which means that "ioctl"
3330 * must have timed out or been aborted.
3331 */
3332 freemsg(async->async_ttycommon.t_iocpending);
3333 async->async_ttycommon.t_iocpending = NULL;
3334 }
3335
3336 iocp = (struct iocblk *)mp->b_rptr;
3337
3338 /*
3339 * For TIOCMGET and the PPS ioctls, do NOT call ttycommon_ioctl()
3340 * because this function frees up the message block (mp->b_cont) that
3341 * contains the user location where we pass back the results.
3342 *
3343 * Similarly, CONSOPENPOLLEDIO needs ioc_count, which ttycommon_ioctl
3344 * zaps. We know that ttycommon_ioctl doesn't know any CONS*
3345 * ioctls, so keep the others safe too.
3346 */
3347 DEBUGCONT2(ASY_DEBUG_IOCTL, "async%d_ioctl: %s\n",
3348 instance,
3349 iocp->ioc_cmd == TIOCMGET ? "TIOCMGET" :
3350 iocp->ioc_cmd == TIOCMSET ? "TIOCMSET" :
3351 iocp->ioc_cmd == TIOCMBIS ? "TIOCMBIS" :
3352 iocp->ioc_cmd == TIOCMBIC ? "TIOCMBIC" :
3353 "other");
3354
3355 switch (iocp->ioc_cmd) {
3356 case TIOCMGET:
3357 case TIOCGPPS:
3358 case TIOCSPPS:
3359 case TIOCGPPSEV:
3360 case CONSOPENPOLLEDIO:
3361 case CONSCLOSEPOLLEDIO:
3362 case CONSSETABORTENABLE:
3363 case CONSGETABORTENABLE:
3364 error = -1; /* Do Nothing */
3365 break;
3366 default:
3367
3368 /*
3369 * The only way in which "ttycommon_ioctl" can fail is if the
3370 * "ioctl" requires a response containing data to be returned
3371 * to the user, and no mblk could be allocated for the data.
3372 * No such "ioctl" alters our state. Thus, we always go ahead
3373 * and do any state-changes the "ioctl" calls for. If we
3374 * couldn't allocate the data, "ttycommon_ioctl" has stashed
3375 * the "ioctl" away safely, so we just call "bufcall" to
3376 * request that we be called back when we stand a better
3377 * chance of allocating the data.
3378 */
3379 if ((datasize = ttycommon_ioctl(tp, wq, mp, &error)) != 0) {
3380 if (async->async_wbufcid)
3381 unbufcall(async->async_wbufcid);
3382 async->async_wbufcid = bufcall(datasize, BPRI_HI,
3383 (void (*)(void *)) async_reioctl,
3384 (void *)(intptr_t)async->async_common->asy_unit);
3385 return;
3386 }
3387 }
3388
3389 mutex_enter(&asy->asy_excl);
3390
3391 if (error == 0) {
3392 /*
3393 * "ttycommon_ioctl" did most of the work; we just use the
3394 * data it set up.
3395 */
3396 switch (iocp->ioc_cmd) {
3397
3398 case TCSETS:
3399 mutex_enter(&asy->asy_excl_hi);
3400 if (asy_baudok(asy))
3401 asy_program(asy, ASY_NOINIT);
3402 else
3403 error = EINVAL;
3404 mutex_exit(&asy->asy_excl_hi);
3405 break;
3406 case TCSETSF:
3407 case TCSETSW:
3408 case TCSETA:
3409 case TCSETAW:
3410 case TCSETAF:
3411 mutex_enter(&asy->asy_excl_hi);
3412 if (!asy_baudok(asy))
3413 error = EINVAL;
3414 else {
3415 if (asy_isbusy(asy))
3416 asy_waiteot(asy);
3417 asy_program(asy, ASY_NOINIT);
3418 }
3419 mutex_exit(&asy->asy_excl_hi);
3420 break;
3421 }
3422 } else if (error < 0) {
3423 /*
3424 * "ttycommon_ioctl" didn't do anything; we process it here.
3425 */
3426 error = 0;
3427 switch (iocp->ioc_cmd) {
3428
3429 case TIOCGPPS:
3430 /*
3431 * Get PPS on/off.
3432 */
3433 if (mp->b_cont != NULL)
3434 freemsg(mp->b_cont);
3435
3436 mp->b_cont = allocb(sizeof (int), BPRI_HI);
3437 if (mp->b_cont == NULL) {
3438 error = ENOMEM;
3439 break;
3440 }
3441 if (asy->asy_flags & ASY_PPS)
3442 *(int *)mp->b_cont->b_wptr = 1;
3443 else
3444 *(int *)mp->b_cont->b_wptr = 0;
3445 mp->b_cont->b_wptr += sizeof (int);
3446 mp->b_datap->db_type = M_IOCACK;
3447 iocp->ioc_count = sizeof (int);
3448 break;
3449
3450 case TIOCSPPS:
3451 /*
3452 * Set PPS on/off.
3453 */
3454 error = miocpullup(mp, sizeof (int));
3455 if (error != 0)
3456 break;
3457
3458 mutex_enter(&asy->asy_excl_hi);
3459 if (*(int *)mp->b_cont->b_rptr)
3460 asy->asy_flags |= ASY_PPS;
3461 else
3462 asy->asy_flags &= ~ASY_PPS;
3463 /* Reset edge sense */
3464 asy->asy_flags &= ~ASY_PPS_EDGE;
3465 mutex_exit(&asy->asy_excl_hi);
3466 mp->b_datap->db_type = M_IOCACK;
3467 break;
3468
3469 case TIOCGPPSEV:
3470 {
3471 /*
3472 * Get PPS event data.
3473 */
3474 mblk_t *bp;
3475 void *buf;
3476 #ifdef _SYSCALL32_IMPL
3477 struct ppsclockev32 p32;
3478 #endif
3479 struct ppsclockev ppsclockev;
3480
3481 if (mp->b_cont != NULL) {
3482 freemsg(mp->b_cont);
3483 mp->b_cont = NULL;
3484 }
3485
3486 if ((asy->asy_flags & ASY_PPS) == 0) {
3487 error = ENXIO;
3488 break;
3489 }
3490
3491 /* Protect from incomplete asy_ppsev */
3492 mutex_enter(&asy->asy_excl_hi);
3493 ppsclockev = asy_ppsev;
3494 mutex_exit(&asy->asy_excl_hi);
3495
3496 #ifdef _SYSCALL32_IMPL
3497 if ((iocp->ioc_flag & IOC_MODELS) != IOC_NATIVE) {
3498 TIMEVAL_TO_TIMEVAL32(&p32.tv, &ppsclockev.tv);
3499 p32.serial = ppsclockev.serial;
3500 buf = &p32;
3501 iocp->ioc_count = sizeof (struct ppsclockev32);
3502 } else
3503 #endif
3504 {
3505 buf = &ppsclockev;
3506 iocp->ioc_count = sizeof (struct ppsclockev);
3507 }
3508
3509 if ((bp = allocb(iocp->ioc_count, BPRI_HI)) == NULL) {
3510 error = ENOMEM;
3511 break;
3512 }
3513 mp->b_cont = bp;
3514
3515 bcopy(buf, bp->b_wptr, iocp->ioc_count);
3516 bp->b_wptr += iocp->ioc_count;
3517 mp->b_datap->db_type = M_IOCACK;
3518 break;
3519 }
3520
3521 case TCSBRK:
3522 error = miocpullup(mp, sizeof (int));
3523 if (error != 0)
3524 break;
3525
3526 if (*(int *)mp->b_cont->b_rptr == 0) {
3527
3528 /*
3529 * XXX Arrangements to ensure that a break
3530 * isn't in progress should be sufficient.
3531 * This ugly delay() is the only thing
3532 * that seems to work on the NCR Worldmark.
3533 * It should be replaced. Note that an
3534 * asy_waiteot() also does not work.
3535 */
3536 if (asydelay)
3537 delay(drv_usectohz(asydelay));
3538
3539 while (async->async_flags & ASYNC_BREAK) {
3540 cv_wait(&async->async_flags_cv,
3541 &asy->asy_excl);
3542 }
3543 mutex_enter(&asy->asy_excl_hi);
3544 /*
3545 * We loop until the TSR is empty and then
3546 * set the break. ASYNC_BREAK has been set
3547 * to ensure that no characters are
3548 * transmitted while the TSR is being
3549 * flushed and SOUT is being used for the
3550 * break signal.
3551 *
3552 * The wait period is equal to
3553 * clock / (baud * 16) * 16 * 2.
3554 */
3555 index = BAUDINDEX(
3556 async->async_ttycommon.t_cflag);
3557 async->async_flags |= ASYNC_BREAK;
3558
3559 while ((ddi_get8(asy->asy_iohandle,
3560 asy->asy_ioaddr + LSR) & XSRE) == 0) {
3561 mutex_exit(&asy->asy_excl_hi);
3562 mutex_exit(&asy->asy_excl);
3563 drv_usecwait(
3564 32*asyspdtab[index] & 0xfff);
3565 mutex_enter(&asy->asy_excl);
3566 mutex_enter(&asy->asy_excl_hi);
3567 }
3568 /*
3569 * Arrange for "async_restart"
3570 * to be called in 1/4 second;
3571 * it will turn the break bit off, and call
3572 * "async_start" to grab the next message.
3573 */
3574 val = ddi_get8(asy->asy_iohandle,
3575 asy->asy_ioaddr + LCR);
3576 ddi_put8(asy->asy_iohandle,
3577 asy->asy_ioaddr + LCR,
3578 (val | SETBREAK));
3579 mutex_exit(&asy->asy_excl_hi);
3580 (void) timeout(async_restart, (caddr_t)async,
3581 drv_usectohz(1000000)/4);
3582 } else {
3583 DEBUGCONT1(ASY_DEBUG_OUT,
3584 "async%d_ioctl: wait for flush.\n",
3585 instance);
3586 mutex_enter(&asy->asy_excl_hi);
3587 asy_waiteot(asy);
3588 mutex_exit(&asy->asy_excl_hi);
3589 DEBUGCONT1(ASY_DEBUG_OUT,
3590 "async%d_ioctl: ldterm satisfied.\n",
3591 instance);
3592 }
3593 break;
3594
3595 case TIOCSBRK:
3596 if (!(async->async_flags & ASYNC_OUT_SUSPEND)) {
3597 mutex_enter(&asy->asy_excl_hi);
3598 async->async_flags |= ASYNC_OUT_SUSPEND;
3599 async->async_flags |= ASYNC_HOLD_UTBRK;
3600 index = BAUDINDEX(
3601 async->async_ttycommon.t_cflag);
3602 while ((ddi_get8(asy->asy_iohandle,
3603 asy->asy_ioaddr + LSR) & XSRE) == 0) {
3604 mutex_exit(&asy->asy_excl_hi);
3605 mutex_exit(&asy->asy_excl);
3606 drv_usecwait(
3607 32*asyspdtab[index] & 0xfff);
3608 mutex_enter(&asy->asy_excl);
3609 mutex_enter(&asy->asy_excl_hi);
3610 }
3611 val = ddi_get8(asy->asy_iohandle,
3612 asy->asy_ioaddr + LCR);
3613 ddi_put8(asy->asy_iohandle,
3614 asy->asy_ioaddr + LCR, (val | SETBREAK));
3615 mutex_exit(&asy->asy_excl_hi);
3616 /* wait for 100ms to hold BREAK */
3617 async->async_utbrktid =
3618 timeout((void (*)())async_hold_utbrk,
3619 (caddr_t)async,
3620 drv_usectohz(asy_min_utbrk));
3621 }
3622 mioc2ack(mp, NULL, 0, 0);
3623 break;
3624
3625 case TIOCCBRK:
3626 if (async->async_flags & ASYNC_OUT_SUSPEND)
3627 async_resume_utbrk(async);
3628 mioc2ack(mp, NULL, 0, 0);
3629 break;
3630
3631 case TIOCMSET:
3632 case TIOCMBIS:
3633 case TIOCMBIC:
3634 if (iocp->ioc_count != TRANSPARENT) {
3635 DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3636 "non-transparent\n", instance);
3637
3638 error = miocpullup(mp, sizeof (int));
3639 if (error != 0)
3640 break;
3641
3642 mutex_enter(&asy->asy_excl_hi);
3643 (void) asymctl(asy,
3644 dmtoasy(*(int *)mp->b_cont->b_rptr),
3645 iocp->ioc_cmd);
3646 mutex_exit(&asy->asy_excl_hi);
3647 iocp->ioc_error = 0;
3648 mp->b_datap->db_type = M_IOCACK;
3649 } else {
3650 DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3651 "transparent\n", instance);
3652 mcopyin(mp, NULL, sizeof (int), NULL);
3653 }
3654 break;
3655
3656 case TIOCMGET:
3657 datamp = allocb(sizeof (int), BPRI_MED);
3658 if (datamp == NULL) {
3659 error = EAGAIN;
3660 break;
3661 }
3662
3663 mutex_enter(&asy->asy_excl_hi);
3664 *(int *)datamp->b_rptr = asymctl(asy, 0, TIOCMGET);
3665 mutex_exit(&asy->asy_excl_hi);
3666
3667 if (iocp->ioc_count == TRANSPARENT) {
3668 DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3669 "transparent\n", instance);
3670 mcopyout(mp, NULL, sizeof (int), NULL, datamp);
3671 } else {
3672 DEBUGCONT1(ASY_DEBUG_IOCTL, "async%d_ioctl: "
3673 "non-transparent\n", instance);
3674 mioc2ack(mp, datamp, sizeof (int), 0);
3675 }
3676 break;
3677
3678 case CONSOPENPOLLEDIO:
3679 error = miocpullup(mp, sizeof (struct cons_polledio *));
3680 if (error != 0)
3681 break;
3682
3683 *(struct cons_polledio **)mp->b_cont->b_rptr =
3684 &asy->polledio;
3685
3686 mp->b_datap->db_type = M_IOCACK;
3687 break;
3688
3689 case CONSCLOSEPOLLEDIO:
3690 mp->b_datap->db_type = M_IOCACK;
3691 iocp->ioc_error = 0;
3692 iocp->ioc_rval = 0;
3693 break;
3694
3695 case CONSSETABORTENABLE:
3696 error = secpolicy_console(iocp->ioc_cr);
3697 if (error != 0)
3698 break;
3699
3700 if (iocp->ioc_count != TRANSPARENT) {
3701 error = EINVAL;
3702 break;
3703 }
3704
3705 if (*(intptr_t *)mp->b_cont->b_rptr)
3706 asy->asy_flags |= ASY_CONSOLE;
3707 else
3708 asy->asy_flags &= ~ASY_CONSOLE;
3709
3710 mp->b_datap->db_type = M_IOCACK;
3711 iocp->ioc_error = 0;
3712 iocp->ioc_rval = 0;
3713 break;
3714
3715 case CONSGETABORTENABLE:
3716 /*CONSTANTCONDITION*/
3717 ASSERT(sizeof (boolean_t) <= sizeof (boolean_t *));
3718 /*
3719 * Store the return value right in the payload
3720 * we were passed. Crude.
3721 */
3722 mcopyout(mp, NULL, sizeof (boolean_t), NULL, NULL);
3723 *(boolean_t *)mp->b_cont->b_rptr =
3724 (asy->asy_flags & ASY_CONSOLE) != 0;
3725 break;
3726
3727 default:
3728 /*
3729 * If we don't understand it, it's an error. NAK it.
3730 */
3731 error = EINVAL;
3732 break;
3733 }
3734 }
3735 if (error != 0) {
3736 iocp->ioc_error = error;
3737 mp->b_datap->db_type = M_IOCNAK;
3738 }
3739 mutex_exit(&asy->asy_excl);
3740 qreply(wq, mp);
3741 DEBUGCONT1(ASY_DEBUG_PROCS, "async%d_ioctl: done\n", instance);
3742 }
3743
3744 static int
asyrsrv(queue_t * q)3745 asyrsrv(queue_t *q)
3746 {
3747 mblk_t *bp;
3748 struct asyncline *async;
3749
3750 async = (struct asyncline *)q->q_ptr;
3751
3752 while (canputnext(q) && (bp = getq(q)))
3753 putnext(q, bp);
3754 ASYSETSOFT(async->async_common);
3755 async->async_polltid = 0;
3756 return (0);
3757 }
3758
3759 /*
3760 * The ASYWPUTDO_NOT_SUSP macro indicates to asywputdo() whether it should
3761 * handle messages as though the driver is operating normally or is
3762 * suspended. In the suspended case, some or all of the processing may have
3763 * to be delayed until the driver is resumed.
3764 */
3765 #define ASYWPUTDO_NOT_SUSP(async, wput) \
3766 !((wput) && ((async)->async_flags & ASYNC_DDI_SUSPENDED))
3767
3768 /*
3769 * Processing for write queue put procedure.
3770 * Respond to M_STOP, M_START, M_IOCTL, and M_FLUSH messages here;
3771 * set the flow control character for M_STOPI and M_STARTI messages;
3772 * queue up M_BREAK, M_DELAY, and M_DATA messages for processing
3773 * by the start routine, and then call the start routine; discard
3774 * everything else. Note that this driver does not incorporate any
3775 * mechanism to negotiate to handle the canonicalization process.
3776 * It expects that these functions are handled in upper module(s),
3777 * as we do in ldterm.
3778 */
3779 static int
asywputdo(queue_t * q,mblk_t * mp,boolean_t wput)3780 asywputdo(queue_t *q, mblk_t *mp, boolean_t wput)
3781 {
3782 struct asyncline *async;
3783 struct asycom *asy;
3784 #ifdef DEBUG
3785 int instance;
3786 #endif
3787 int error;
3788
3789 async = (struct asyncline *)q->q_ptr;
3790
3791 #ifdef DEBUG
3792 instance = UNIT(async->async_dev);
3793 #endif
3794 asy = async->async_common;
3795
3796 switch (mp->b_datap->db_type) {
3797
3798 case M_STOP:
3799 /*
3800 * Since we don't do real DMA, we can just let the
3801 * chip coast to a stop after applying the brakes.
3802 */
3803 mutex_enter(&asy->asy_excl);
3804 async->async_flags |= ASYNC_STOPPED;
3805 mutex_exit(&asy->asy_excl);
3806 freemsg(mp);
3807 break;
3808
3809 case M_START:
3810 mutex_enter(&asy->asy_excl);
3811 if (async->async_flags & ASYNC_STOPPED) {
3812 async->async_flags &= ~ASYNC_STOPPED;
3813 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3814 /*
3815 * If an output operation is in progress,
3816 * resume it. Otherwise, prod the start
3817 * routine.
3818 */
3819 if (async->async_ocnt > 0) {
3820 mutex_enter(&asy->asy_excl_hi);
3821 async_resume(async);
3822 mutex_exit(&asy->asy_excl_hi);
3823 } else {
3824 async_start(async);
3825 }
3826 }
3827 }
3828 mutex_exit(&asy->asy_excl);
3829 freemsg(mp);
3830 break;
3831
3832 case M_IOCTL:
3833 switch (((struct iocblk *)mp->b_rptr)->ioc_cmd) {
3834
3835 case TCSBRK:
3836 error = miocpullup(mp, sizeof (int));
3837 if (error != 0) {
3838 miocnak(q, mp, 0, error);
3839 return (0);
3840 }
3841
3842 if (*(int *)mp->b_cont->b_rptr != 0) {
3843 DEBUGCONT1(ASY_DEBUG_OUT,
3844 "async%d_ioctl: flush request.\n",
3845 instance);
3846 (void) putq(q, mp);
3847
3848 mutex_enter(&asy->asy_excl);
3849 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3850 /*
3851 * If an TIOCSBRK is in progress,
3852 * clean it as TIOCCBRK does,
3853 * then kick off output.
3854 * If TIOCSBRK is not in progress,
3855 * just kick off output.
3856 */
3857 async_resume_utbrk(async);
3858 }
3859 mutex_exit(&asy->asy_excl);
3860 break;
3861 }
3862 /*FALLTHROUGH*/
3863 case TCSETSW:
3864 case TCSETSF:
3865 case TCSETAW:
3866 case TCSETAF:
3867 /*
3868 * The changes do not take effect until all
3869 * output queued before them is drained.
3870 * Put this message on the queue, so that
3871 * "async_start" will see it when it's done
3872 * with the output before it. Poke the
3873 * start routine, just in case.
3874 */
3875 (void) putq(q, mp);
3876
3877 mutex_enter(&asy->asy_excl);
3878 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3879 /*
3880 * If an TIOCSBRK is in progress,
3881 * clean it as TIOCCBRK does.
3882 * then kick off output.
3883 * If TIOCSBRK is not in progress,
3884 * just kick off output.
3885 */
3886 async_resume_utbrk(async);
3887 }
3888 mutex_exit(&asy->asy_excl);
3889 break;
3890
3891 default:
3892 /*
3893 * Do it now.
3894 */
3895 mutex_enter(&asy->asy_excl);
3896 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3897 mutex_exit(&asy->asy_excl);
3898 async_ioctl(async, q, mp);
3899 break;
3900 }
3901 async_put_suspq(asy, mp);
3902 mutex_exit(&asy->asy_excl);
3903 break;
3904 }
3905 break;
3906
3907 case M_FLUSH:
3908 if (*mp->b_rptr & FLUSHW) {
3909 mutex_enter(&asy->asy_excl);
3910
3911 /*
3912 * Abort any output in progress.
3913 */
3914 mutex_enter(&asy->asy_excl_hi);
3915 if (async->async_flags & ASYNC_BUSY) {
3916 DEBUGCONT1(ASY_DEBUG_BUSY, "asy%dwput: "
3917 "Clearing async_ocnt, "
3918 "leaving ASYNC_BUSY set\n",
3919 instance);
3920 async->async_ocnt = 0;
3921 async->async_flags &= ~ASYNC_BUSY;
3922 } /* if */
3923
3924 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3925 /* Flush FIFO buffers */
3926 if (asy->asy_use_fifo == FIFO_ON) {
3927 asy_reset_fifo(asy, FIFOTXFLSH);
3928 }
3929 }
3930 mutex_exit(&asy->asy_excl_hi);
3931
3932 /* Flush FIFO buffers */
3933 if (asy->asy_use_fifo == FIFO_ON) {
3934 asy_reset_fifo(asy, FIFOTXFLSH);
3935 }
3936
3937 /*
3938 * Flush our write queue.
3939 */
3940 flushq(q, FLUSHDATA); /* XXX doesn't flush M_DELAY */
3941 if (async->async_xmitblk != NULL) {
3942 freeb(async->async_xmitblk);
3943 async->async_xmitblk = NULL;
3944 }
3945 mutex_exit(&asy->asy_excl);
3946 *mp->b_rptr &= ~FLUSHW; /* it has been flushed */
3947 }
3948 if (*mp->b_rptr & FLUSHR) {
3949 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3950 /* Flush FIFO buffers */
3951 if (asy->asy_use_fifo == FIFO_ON) {
3952 asy_reset_fifo(asy, FIFORXFLSH);
3953 }
3954 }
3955 flushq(RD(q), FLUSHDATA);
3956 qreply(q, mp); /* give the read queues a crack at it */
3957 } else {
3958 freemsg(mp);
3959 }
3960
3961 /*
3962 * We must make sure we process messages that survive the
3963 * write-side flush.
3964 */
3965 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3966 mutex_enter(&asy->asy_excl);
3967 async_start(async);
3968 mutex_exit(&asy->asy_excl);
3969 }
3970 break;
3971
3972 case M_BREAK:
3973 case M_DELAY:
3974 case M_DATA:
3975 /*
3976 * Queue the message up to be transmitted,
3977 * and poke the start routine.
3978 */
3979 (void) putq(q, mp);
3980 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3981 mutex_enter(&asy->asy_excl);
3982 async_start(async);
3983 mutex_exit(&asy->asy_excl);
3984 }
3985 break;
3986
3987 case M_STOPI:
3988 mutex_enter(&asy->asy_excl);
3989 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
3990 mutex_enter(&asy->asy_excl_hi);
3991 if (!(async->async_inflow_source & IN_FLOW_USER)) {
3992 async_flowcontrol_hw_input(asy, FLOW_STOP,
3993 IN_FLOW_USER);
3994 (void) async_flowcontrol_sw_input(asy,
3995 FLOW_STOP, IN_FLOW_USER);
3996 }
3997 mutex_exit(&asy->asy_excl_hi);
3998 mutex_exit(&asy->asy_excl);
3999 freemsg(mp);
4000 break;
4001 }
4002 async_put_suspq(asy, mp);
4003 mutex_exit(&asy->asy_excl);
4004 break;
4005
4006 case M_STARTI:
4007 mutex_enter(&asy->asy_excl);
4008 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4009 mutex_enter(&asy->asy_excl_hi);
4010 if (async->async_inflow_source & IN_FLOW_USER) {
4011 async_flowcontrol_hw_input(asy, FLOW_START,
4012 IN_FLOW_USER);
4013 (void) async_flowcontrol_sw_input(asy,
4014 FLOW_START, IN_FLOW_USER);
4015 }
4016 mutex_exit(&asy->asy_excl_hi);
4017 mutex_exit(&asy->asy_excl);
4018 freemsg(mp);
4019 break;
4020 }
4021 async_put_suspq(asy, mp);
4022 mutex_exit(&asy->asy_excl);
4023 break;
4024
4025 case M_CTL:
4026 if (MBLKL(mp) >= sizeof (struct iocblk) &&
4027 ((struct iocblk *)mp->b_rptr)->ioc_cmd == MC_POSIXQUERY) {
4028 mutex_enter(&asy->asy_excl);
4029 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4030 ((struct iocblk *)mp->b_rptr)->ioc_cmd =
4031 MC_HAS_POSIX;
4032 mutex_exit(&asy->asy_excl);
4033 qreply(q, mp);
4034 break;
4035 } else {
4036 async_put_suspq(asy, mp);
4037 }
4038 } else {
4039 /*
4040 * These MC_SERVICE type messages are used by upper
4041 * modules to tell this driver to send input up
4042 * immediately, or that it can wait for normal
4043 * processing that may or may not be done. Sun
4044 * requires these for the mouse module.
4045 * (XXX - for x86?)
4046 */
4047 mutex_enter(&asy->asy_excl);
4048 switch (*mp->b_rptr) {
4049
4050 case MC_SERVICEIMM:
4051 async->async_flags |= ASYNC_SERVICEIMM;
4052 break;
4053
4054 case MC_SERVICEDEF:
4055 async->async_flags &= ~ASYNC_SERVICEIMM;
4056 break;
4057 }
4058 mutex_exit(&asy->asy_excl);
4059 freemsg(mp);
4060 }
4061 break;
4062
4063 case M_IOCDATA:
4064 mutex_enter(&asy->asy_excl);
4065 if (ASYWPUTDO_NOT_SUSP(async, wput)) {
4066 mutex_exit(&asy->asy_excl);
4067 async_iocdata(q, mp);
4068 break;
4069 }
4070 async_put_suspq(asy, mp);
4071 mutex_exit(&asy->asy_excl);
4072 break;
4073
4074 default:
4075 freemsg(mp);
4076 break;
4077 }
4078 return (0);
4079 }
4080
4081 static int
asywput(queue_t * q,mblk_t * mp)4082 asywput(queue_t *q, mblk_t *mp)
4083 {
4084 return (asywputdo(q, mp, B_TRUE));
4085 }
4086
4087 /*
4088 * Retry an "ioctl", now that "bufcall" claims we may be able to allocate
4089 * the buffer we need.
4090 */
4091 static void
async_reioctl(void * unit)4092 async_reioctl(void *unit)
4093 {
4094 int instance = (uintptr_t)unit;
4095 struct asyncline *async;
4096 struct asycom *asy;
4097 queue_t *q;
4098 mblk_t *mp;
4099
4100 asy = ddi_get_soft_state(asy_soft_state, instance);
4101 ASSERT(asy != NULL);
4102 async = asy->asy_priv;
4103
4104 /*
4105 * The bufcall is no longer pending.
4106 */
4107 mutex_enter(&asy->asy_excl);
4108 async->async_wbufcid = 0;
4109 if ((q = async->async_ttycommon.t_writeq) == NULL) {
4110 mutex_exit(&asy->asy_excl);
4111 return;
4112 }
4113 if ((mp = async->async_ttycommon.t_iocpending) != NULL) {
4114 /* not pending any more */
4115 async->async_ttycommon.t_iocpending = NULL;
4116 mutex_exit(&asy->asy_excl);
4117 async_ioctl(async, q, mp);
4118 } else
4119 mutex_exit(&asy->asy_excl);
4120 }
4121
4122 static void
async_iocdata(queue_t * q,mblk_t * mp)4123 async_iocdata(queue_t *q, mblk_t *mp)
4124 {
4125 struct asyncline *async = (struct asyncline *)q->q_ptr;
4126 struct asycom *asy;
4127 struct iocblk *ip;
4128 struct copyresp *csp;
4129 #ifdef DEBUG
4130 int instance = UNIT(async->async_dev);
4131 #endif
4132
4133 asy = async->async_common;
4134 ip = (struct iocblk *)mp->b_rptr;
4135 csp = (struct copyresp *)mp->b_rptr;
4136
4137 if (csp->cp_rval != 0) {
4138 if (csp->cp_private)
4139 freemsg(csp->cp_private);
4140 freemsg(mp);
4141 return;
4142 }
4143
4144 mutex_enter(&asy->asy_excl);
4145 DEBUGCONT2(ASY_DEBUG_MODEM, "async%d_iocdata: case %s\n",
4146 instance,
4147 csp->cp_cmd == TIOCMGET ? "TIOCMGET" :
4148 csp->cp_cmd == TIOCMSET ? "TIOCMSET" :
4149 csp->cp_cmd == TIOCMBIS ? "TIOCMBIS" :
4150 "TIOCMBIC");
4151 switch (csp->cp_cmd) {
4152
4153 case TIOCMGET:
4154 if (mp->b_cont) {
4155 freemsg(mp->b_cont);
4156 mp->b_cont = NULL;
4157 }
4158 mp->b_datap->db_type = M_IOCACK;
4159 ip->ioc_error = 0;
4160 ip->ioc_count = 0;
4161 ip->ioc_rval = 0;
4162 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
4163 break;
4164
4165 case TIOCMSET:
4166 case TIOCMBIS:
4167 case TIOCMBIC:
4168 mutex_enter(&asy->asy_excl_hi);
4169 (void) asymctl(asy, dmtoasy(*(int *)mp->b_cont->b_rptr),
4170 csp->cp_cmd);
4171 mutex_exit(&asy->asy_excl_hi);
4172 mioc2ack(mp, NULL, 0, 0);
4173 break;
4174
4175 default:
4176 mp->b_datap->db_type = M_IOCNAK;
4177 ip->ioc_error = EINVAL;
4178 break;
4179 }
4180 qreply(q, mp);
4181 mutex_exit(&asy->asy_excl);
4182 }
4183
4184 /*
4185 * debugger/console support routines.
4186 */
4187
4188 /*
4189 * put a character out
4190 * Do not use interrupts. If char is LF, put out CR, LF.
4191 */
4192 static void
asyputchar(cons_polledio_arg_t arg,uchar_t c)4193 asyputchar(cons_polledio_arg_t arg, uchar_t c)
4194 {
4195 struct asycom *asy = (struct asycom *)arg;
4196
4197 if (c == '\n')
4198 asyputchar(arg, '\r');
4199
4200 while ((ddi_get8(asy->asy_iohandle,
4201 asy->asy_ioaddr + LSR) & XHRE) == 0) {
4202 /* wait for xmit to finish */
4203 drv_usecwait(10);
4204 }
4205
4206 /* put the character out */
4207 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT, c);
4208 }
4209
4210 /*
4211 * See if there's a character available. If no character is
4212 * available, return 0. Run in polled mode, no interrupts.
4213 */
4214 static boolean_t
asyischar(cons_polledio_arg_t arg)4215 asyischar(cons_polledio_arg_t arg)
4216 {
4217 struct asycom *asy = (struct asycom *)arg;
4218
4219 return ((ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & RCA)
4220 != 0);
4221 }
4222
4223 /*
4224 * Get a character. Run in polled mode, no interrupts.
4225 */
4226 static int
asygetchar(cons_polledio_arg_t arg)4227 asygetchar(cons_polledio_arg_t arg)
4228 {
4229 struct asycom *asy = (struct asycom *)arg;
4230
4231 while (!asyischar(arg))
4232 drv_usecwait(10);
4233 return (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + DAT));
4234 }
4235
4236 /*
4237 * Set or get the modem control status.
4238 */
4239 static int
asymctl(struct asycom * asy,int bits,int how)4240 asymctl(struct asycom *asy, int bits, int how)
4241 {
4242 int mcr_r, msr_r;
4243 int instance = asy->asy_unit;
4244
4245 ASSERT(mutex_owned(&asy->asy_excl_hi));
4246 ASSERT(mutex_owned(&asy->asy_excl));
4247
4248 /* Read Modem Control Registers */
4249 mcr_r = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4250
4251 switch (how) {
4252
4253 case TIOCMSET:
4254 DEBUGCONT2(ASY_DEBUG_MODEM,
4255 "asy%dmctl: TIOCMSET, bits = %x\n", instance, bits);
4256 mcr_r = bits; /* Set bits */
4257 break;
4258
4259 case TIOCMBIS:
4260 DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIS, bits = %x\n",
4261 instance, bits);
4262 mcr_r |= bits; /* Mask in bits */
4263 break;
4264
4265 case TIOCMBIC:
4266 DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dmctl: TIOCMBIC, bits = %x\n",
4267 instance, bits);
4268 mcr_r &= ~bits; /* Mask out bits */
4269 break;
4270
4271 case TIOCMGET:
4272 /* Read Modem Status Registers */
4273 /*
4274 * If modem interrupts are enabled, we return the
4275 * saved value of msr. We read MSR only in async_msint()
4276 */
4277 if (ddi_get8(asy->asy_iohandle,
4278 asy->asy_ioaddr + ICR) & MIEN) {
4279 msr_r = asy->asy_msr;
4280 DEBUGCONT2(ASY_DEBUG_MODEM,
4281 "asy%dmctl: TIOCMGET, read msr_r = %x\n",
4282 instance, msr_r);
4283 } else {
4284 msr_r = ddi_get8(asy->asy_iohandle,
4285 asy->asy_ioaddr + MSR);
4286 DEBUGCONT2(ASY_DEBUG_MODEM,
4287 "asy%dmctl: TIOCMGET, read MSR = %x\n",
4288 instance, msr_r);
4289 }
4290 DEBUGCONT2(ASY_DEBUG_MODEM, "asy%dtodm: modem_lines = %x\n",
4291 instance, asytodm(mcr_r, msr_r));
4292 return (asytodm(mcr_r, msr_r));
4293 }
4294
4295 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + MCR, mcr_r);
4296
4297 return (mcr_r);
4298 }
4299
4300 static int
asytodm(int mcr_r,int msr_r)4301 asytodm(int mcr_r, int msr_r)
4302 {
4303 int b = 0;
4304
4305 /* MCR registers */
4306 if (mcr_r & RTS)
4307 b |= TIOCM_RTS;
4308
4309 if (mcr_r & DTR)
4310 b |= TIOCM_DTR;
4311
4312 /* MSR registers */
4313 if (msr_r & DCD)
4314 b |= TIOCM_CAR;
4315
4316 if (msr_r & CTS)
4317 b |= TIOCM_CTS;
4318
4319 if (msr_r & DSR)
4320 b |= TIOCM_DSR;
4321
4322 if (msr_r & RI)
4323 b |= TIOCM_RNG;
4324 return (b);
4325 }
4326
4327 static int
dmtoasy(int bits)4328 dmtoasy(int bits)
4329 {
4330 int b = 0;
4331
4332 DEBUGCONT1(ASY_DEBUG_MODEM, "dmtoasy: bits = %x\n", bits);
4333 #ifdef CAN_NOT_SET /* only DTR and RTS can be set */
4334 if (bits & TIOCM_CAR)
4335 b |= DCD;
4336 if (bits & TIOCM_CTS)
4337 b |= CTS;
4338 if (bits & TIOCM_DSR)
4339 b |= DSR;
4340 if (bits & TIOCM_RNG)
4341 b |= RI;
4342 #endif
4343
4344 if (bits & TIOCM_RTS) {
4345 DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & RTS\n");
4346 b |= RTS;
4347 }
4348 if (bits & TIOCM_DTR) {
4349 DEBUGCONT0(ASY_DEBUG_MODEM, "dmtoasy: set b & DTR\n");
4350 b |= DTR;
4351 }
4352
4353 return (b);
4354 }
4355
4356 static void
asyerror(int level,const char * fmt,...)4357 asyerror(int level, const char *fmt, ...)
4358 {
4359 va_list adx;
4360 static time_t last;
4361 static const char *lastfmt;
4362 time_t now;
4363
4364 /*
4365 * Don't print the same error message too often.
4366 * Print the message only if we have not printed the
4367 * message within the last second.
4368 * Note: that fmt cannot be a pointer to a string
4369 * stored on the stack. The fmt pointer
4370 * must be in the data segment otherwise lastfmt would point
4371 * to non-sense.
4372 */
4373 now = gethrestime_sec();
4374 if (last == now && lastfmt == fmt)
4375 return;
4376
4377 last = now;
4378 lastfmt = fmt;
4379
4380 va_start(adx, fmt);
4381 vcmn_err(level, fmt, adx);
4382 va_end(adx);
4383 }
4384
4385 /*
4386 * asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4387 * The value of this property is in the form of "9600,8,n,1,-"
4388 * 1) speed: 9600, 4800, ...
4389 * 2) data bits
4390 * 3) parity: n(none), e(even), o(odd)
4391 * 4) stop bits
4392 * 5) handshake: -(none), h(hardware: rts/cts), s(software: xon/off)
4393 *
4394 * This parsing came from a SPARCstation eeprom.
4395 */
4396 static void
asy_parse_mode(dev_info_t * devi,struct asycom * asy)4397 asy_parse_mode(dev_info_t *devi, struct asycom *asy)
4398 {
4399 char name[40];
4400 char val[40];
4401 int len;
4402 int ret;
4403 char *p;
4404 char *p1;
4405
4406 ASSERT(asy->asy_com_port != 0);
4407
4408 /*
4409 * Parse the ttyx-mode property
4410 */
4411 (void) sprintf(name, "tty%c-mode", asy->asy_com_port + 'a' - 1);
4412 len = sizeof (val);
4413 ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4414 if (ret != DDI_PROP_SUCCESS) {
4415 (void) sprintf(name, "com%c-mode", asy->asy_com_port + '0');
4416 len = sizeof (val);
4417 ret = GET_PROP(devi, name, DDI_PROP_CANSLEEP, val, &len);
4418 }
4419
4420 /* no property to parse */
4421 asy->asy_cflag = 0;
4422 if (ret != DDI_PROP_SUCCESS)
4423 return;
4424
4425 p = val;
4426 /* ---- baud rate ---- */
4427 asy->asy_cflag = CREAD|B9600; /* initial default */
4428 if (p && (p1 = strchr(p, ',')) != 0) {
4429 *p1++ = '\0';
4430 } else {
4431 asy->asy_cflag |= BITS8; /* add default bits */
4432 return;
4433 }
4434
4435 if (strcmp(p, "110") == 0)
4436 asy->asy_bidx = B110;
4437 else if (strcmp(p, "150") == 0)
4438 asy->asy_bidx = B150;
4439 else if (strcmp(p, "300") == 0)
4440 asy->asy_bidx = B300;
4441 else if (strcmp(p, "600") == 0)
4442 asy->asy_bidx = B600;
4443 else if (strcmp(p, "1200") == 0)
4444 asy->asy_bidx = B1200;
4445 else if (strcmp(p, "2400") == 0)
4446 asy->asy_bidx = B2400;
4447 else if (strcmp(p, "4800") == 0)
4448 asy->asy_bidx = B4800;
4449 else if (strcmp(p, "9600") == 0)
4450 asy->asy_bidx = B9600;
4451 else if (strcmp(p, "19200") == 0)
4452 asy->asy_bidx = B19200;
4453 else if (strcmp(p, "38400") == 0)
4454 asy->asy_bidx = B38400;
4455 else if (strcmp(p, "57600") == 0)
4456 asy->asy_bidx = B57600;
4457 else if (strcmp(p, "115200") == 0)
4458 asy->asy_bidx = B115200;
4459 else
4460 asy->asy_bidx = B9600;
4461
4462 asy->asy_cflag &= ~CBAUD;
4463 if (asy->asy_bidx > CBAUD) { /* > 38400 uses the CBAUDEXT bit */
4464 asy->asy_cflag |= CBAUDEXT;
4465 asy->asy_cflag |= asy->asy_bidx - CBAUD - 1;
4466 } else {
4467 asy->asy_cflag |= asy->asy_bidx;
4468 }
4469
4470 ASSERT(asy->asy_bidx == BAUDINDEX(asy->asy_cflag));
4471
4472 /* ---- Next item is data bits ---- */
4473 p = p1;
4474 if (p && (p1 = strchr(p, ',')) != 0) {
4475 *p1++ = '\0';
4476 } else {
4477 asy->asy_cflag |= BITS8; /* add default bits */
4478 return;
4479 }
4480 switch (*p) {
4481 default:
4482 case '8':
4483 asy->asy_cflag |= CS8;
4484 asy->asy_lcr = BITS8;
4485 break;
4486 case '7':
4487 asy->asy_cflag |= CS7;
4488 asy->asy_lcr = BITS7;
4489 break;
4490 case '6':
4491 asy->asy_cflag |= CS6;
4492 asy->asy_lcr = BITS6;
4493 break;
4494 case '5':
4495 /* LINTED: CS5 is currently zero (but might change) */
4496 asy->asy_cflag |= CS5;
4497 asy->asy_lcr = BITS5;
4498 break;
4499 }
4500
4501 /* ---- Parity info ---- */
4502 p = p1;
4503 if (p && (p1 = strchr(p, ',')) != 0) {
4504 *p1++ = '\0';
4505 } else {
4506 return;
4507 }
4508 switch (*p) {
4509 default:
4510 case 'n':
4511 break;
4512 case 'e':
4513 asy->asy_cflag |= PARENB;
4514 asy->asy_lcr |= PEN; break;
4515 case 'o':
4516 asy->asy_cflag |= PARENB|PARODD;
4517 asy->asy_lcr |= PEN|EPS;
4518 break;
4519 }
4520
4521 /* ---- Find stop bits ---- */
4522 p = p1;
4523 if (p && (p1 = strchr(p, ',')) != 0) {
4524 *p1++ = '\0';
4525 } else {
4526 return;
4527 }
4528 if (*p == '2') {
4529 asy->asy_cflag |= CSTOPB;
4530 asy->asy_lcr |= STB;
4531 }
4532
4533 /* ---- handshake is next ---- */
4534 p = p1;
4535 if (p) {
4536 if ((p1 = strchr(p, ',')) != 0)
4537 *p1++ = '\0';
4538
4539 if (*p == 'h')
4540 asy->asy_cflag |= CRTSCTS;
4541 else if (*p == 's')
4542 asy->asy_cflag |= CRTSXOFF;
4543 }
4544 }
4545
4546 /*
4547 * Check for abort character sequence
4548 */
4549 static boolean_t
abort_charseq_recognize(uchar_t ch)4550 abort_charseq_recognize(uchar_t ch)
4551 {
4552 static int state = 0;
4553 #define CNTRL(c) ((c)&037)
4554 static char sequence[] = { '\r', '~', CNTRL('b') };
4555
4556 if (ch == sequence[state]) {
4557 if (++state >= sizeof (sequence)) {
4558 state = 0;
4559 return (B_TRUE);
4560 }
4561 } else {
4562 state = (ch == sequence[0]) ? 1 : 0;
4563 }
4564 return (B_FALSE);
4565 }
4566
4567 /*
4568 * Flow control functions
4569 */
4570 /*
4571 * Software input flow control
4572 * This function can execute software input flow control sucessfully
4573 * at most of situations except that the line is in BREAK status
4574 * (timed and untimed break).
4575 * INPUT VALUE of onoff:
4576 * FLOW_START means to send out a XON char
4577 * and clear SW input flow control flag.
4578 * FLOW_STOP means to send out a XOFF char
4579 * and set SW input flow control flag.
4580 * FLOW_CHECK means to check whether there is pending XON/XOFF
4581 * if it is true, send it out.
4582 * INPUT VALUE of type:
4583 * IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4584 * IN_FLOW_STREAMS means flow control is due to STREAMS
4585 * IN_FLOW_USER means flow control is due to user's commands
4586 * RETURN VALUE: B_FALSE means no flow control char is sent
4587 * B_TRUE means one flow control char is sent
4588 */
4589 static boolean_t
async_flowcontrol_sw_input(struct asycom * asy,async_flowc_action onoff,int type)4590 async_flowcontrol_sw_input(struct asycom *asy, async_flowc_action onoff,
4591 int type)
4592 {
4593 struct asyncline *async = asy->asy_priv;
4594 int instance = UNIT(async->async_dev);
4595 int rval = B_FALSE;
4596
4597 ASSERT(mutex_owned(&asy->asy_excl_hi));
4598
4599 if (!(async->async_ttycommon.t_iflag & IXOFF))
4600 return (rval);
4601
4602 /*
4603 * If we get this far, then we know IXOFF is set.
4604 */
4605 switch (onoff) {
4606 case FLOW_STOP:
4607 async->async_inflow_source |= type;
4608
4609 /*
4610 * We'll send an XOFF character for each of up to
4611 * three different input flow control attempts to stop input.
4612 * If we already send out one XOFF, but FLOW_STOP comes again,
4613 * it seems that input flow control becomes more serious,
4614 * then send XOFF again.
4615 */
4616 if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4617 IN_FLOW_STREAMS | IN_FLOW_USER))
4618 async->async_flags |= ASYNC_SW_IN_FLOW |
4619 ASYNC_SW_IN_NEEDED;
4620 DEBUGCONT2(ASY_DEBUG_SFLOW, "async%d: input sflow stop, "
4621 "type = %x\n", instance, async->async_inflow_source);
4622 break;
4623 case FLOW_START:
4624 async->async_inflow_source &= ~type;
4625 if (async->async_inflow_source == 0) {
4626 async->async_flags = (async->async_flags &
4627 ~ASYNC_SW_IN_FLOW) | ASYNC_SW_IN_NEEDED;
4628 DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: "
4629 "input sflow start\n", instance);
4630 }
4631 break;
4632 default:
4633 break;
4634 }
4635
4636 if (((async->async_flags & (ASYNC_SW_IN_NEEDED | ASYNC_BREAK |
4637 ASYNC_OUT_SUSPEND)) == ASYNC_SW_IN_NEEDED) &&
4638 (ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + LSR) & XHRE)) {
4639 /*
4640 * If we get this far, then we know we need to send out
4641 * XON or XOFF char.
4642 */
4643 async->async_flags = (async->async_flags &
4644 ~ASYNC_SW_IN_NEEDED) | ASYNC_BUSY;
4645 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + DAT,
4646 async->async_flags & ASYNC_SW_IN_FLOW ?
4647 async->async_stopc : async->async_startc);
4648 rval = B_TRUE;
4649 }
4650 return (rval);
4651 }
4652
4653 /*
4654 * Software output flow control
4655 * This function can be executed sucessfully at any situation.
4656 * It does not handle HW, and just change the SW output flow control flag.
4657 * INPUT VALUE of onoff:
4658 * FLOW_START means to clear SW output flow control flag,
4659 * also combine with HW output flow control status to
4660 * determine if we need to set ASYNC_OUT_FLW_RESUME.
4661 * FLOW_STOP means to set SW output flow control flag,
4662 * also clear ASYNC_OUT_FLW_RESUME.
4663 */
4664 static void
async_flowcontrol_sw_output(struct asycom * asy,async_flowc_action onoff)4665 async_flowcontrol_sw_output(struct asycom *asy, async_flowc_action onoff)
4666 {
4667 struct asyncline *async = asy->asy_priv;
4668 int instance = UNIT(async->async_dev);
4669
4670 ASSERT(mutex_owned(&asy->asy_excl_hi));
4671
4672 if (!(async->async_ttycommon.t_iflag & IXON))
4673 return;
4674
4675 switch (onoff) {
4676 case FLOW_STOP:
4677 async->async_flags |= ASYNC_SW_OUT_FLW;
4678 async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4679 DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow stop\n",
4680 instance);
4681 break;
4682 case FLOW_START:
4683 async->async_flags &= ~ASYNC_SW_OUT_FLW;
4684 if (!(async->async_flags & ASYNC_HW_OUT_FLW))
4685 async->async_flags |= ASYNC_OUT_FLW_RESUME;
4686 DEBUGCONT1(ASY_DEBUG_SFLOW, "async%d: output sflow start\n",
4687 instance);
4688 break;
4689 default:
4690 break;
4691 }
4692 }
4693
4694 /*
4695 * Hardware input flow control
4696 * This function can be executed sucessfully at any situation.
4697 * It directly changes RTS depending on input parameter onoff.
4698 * INPUT VALUE of onoff:
4699 * FLOW_START means to clear HW input flow control flag,
4700 * and pull up RTS if it is low.
4701 * FLOW_STOP means to set HW input flow control flag,
4702 * and low RTS if it is high.
4703 * INPUT VALUE of type:
4704 * IN_FLOW_RINGBUFF means flow control is due to RING BUFFER
4705 * IN_FLOW_STREAMS means flow control is due to STREAMS
4706 * IN_FLOW_USER means flow control is due to user's commands
4707 */
4708 static void
async_flowcontrol_hw_input(struct asycom * asy,async_flowc_action onoff,int type)4709 async_flowcontrol_hw_input(struct asycom *asy, async_flowc_action onoff,
4710 int type)
4711 {
4712 uchar_t mcr;
4713 uchar_t flag;
4714 struct asyncline *async = asy->asy_priv;
4715 int instance = UNIT(async->async_dev);
4716
4717 ASSERT(mutex_owned(&asy->asy_excl_hi));
4718
4719 if (!(async->async_ttycommon.t_cflag & CRTSXOFF))
4720 return;
4721
4722 switch (onoff) {
4723 case FLOW_STOP:
4724 async->async_inflow_source |= type;
4725 if (async->async_inflow_source & (IN_FLOW_RINGBUFF |
4726 IN_FLOW_STREAMS | IN_FLOW_USER))
4727 async->async_flags |= ASYNC_HW_IN_FLOW;
4728 DEBUGCONT2(ASY_DEBUG_HFLOW, "async%d: input hflow stop, "
4729 "type = %x\n", instance, async->async_inflow_source);
4730 break;
4731 case FLOW_START:
4732 async->async_inflow_source &= ~type;
4733 if (async->async_inflow_source == 0) {
4734 async->async_flags &= ~ASYNC_HW_IN_FLOW;
4735 DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: "
4736 "input hflow start\n", instance);
4737 }
4738 break;
4739 default:
4740 break;
4741 }
4742 mcr = ddi_get8(asy->asy_iohandle, asy->asy_ioaddr + MCR);
4743 flag = (async->async_flags & ASYNC_HW_IN_FLOW) ? 0 : RTS;
4744
4745 if (((mcr ^ flag) & RTS) != 0) {
4746 ddi_put8(asy->asy_iohandle,
4747 asy->asy_ioaddr + MCR, (mcr ^ RTS));
4748 }
4749 }
4750
4751 /*
4752 * Hardware output flow control
4753 * This function can execute HW output flow control sucessfully
4754 * at any situation.
4755 * It doesn't really change RTS, and just change
4756 * HW output flow control flag depending on CTS status.
4757 * INPUT VALUE of onoff:
4758 * FLOW_START means to clear HW output flow control flag.
4759 * also combine with SW output flow control status to
4760 * determine if we need to set ASYNC_OUT_FLW_RESUME.
4761 * FLOW_STOP means to set HW output flow control flag.
4762 * also clear ASYNC_OUT_FLW_RESUME.
4763 */
4764 static void
async_flowcontrol_hw_output(struct asycom * asy,async_flowc_action onoff)4765 async_flowcontrol_hw_output(struct asycom *asy, async_flowc_action onoff)
4766 {
4767 struct asyncline *async = asy->asy_priv;
4768 int instance = UNIT(async->async_dev);
4769
4770 ASSERT(mutex_owned(&asy->asy_excl_hi));
4771
4772 if (!(async->async_ttycommon.t_cflag & CRTSCTS))
4773 return;
4774
4775 switch (onoff) {
4776 case FLOW_STOP:
4777 async->async_flags |= ASYNC_HW_OUT_FLW;
4778 async->async_flags &= ~ASYNC_OUT_FLW_RESUME;
4779 DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow stop\n",
4780 instance);
4781 break;
4782 case FLOW_START:
4783 async->async_flags &= ~ASYNC_HW_OUT_FLW;
4784 if (!(async->async_flags & ASYNC_SW_OUT_FLW))
4785 async->async_flags |= ASYNC_OUT_FLW_RESUME;
4786 DEBUGCONT1(ASY_DEBUG_HFLOW, "async%d: output hflow start\n",
4787 instance);
4788 break;
4789 default:
4790 break;
4791 }
4792 }
4793
4794
4795 /*
4796 * quiesce(9E) entry point.
4797 *
4798 * This function is called when the system is single-threaded at high
4799 * PIL with preemption disabled. Therefore, this function must not be
4800 * blocked.
4801 *
4802 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
4803 * DDI_FAILURE indicates an error condition and should almost never happen.
4804 */
4805 static int
asyquiesce(dev_info_t * devi)4806 asyquiesce(dev_info_t *devi)
4807 {
4808 int instance;
4809 struct asycom *asy;
4810
4811 instance = ddi_get_instance(devi); /* find out which unit */
4812
4813 asy = ddi_get_soft_state(asy_soft_state, instance);
4814 if (asy == NULL)
4815 return (DDI_FAILURE);
4816
4817 /* disable all interrupts */
4818 ddi_put8(asy->asy_iohandle, asy->asy_ioaddr + ICR, 0);
4819
4820 /* reset the FIFO */
4821 asy_reset_fifo(asy, FIFOTXFLSH | FIFORXFLSH);
4822
4823 return (DDI_SUCCESS);
4824 }
4825