1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Iterate over all children of the current object. This includes the normal 30 * dataset hierarchy, but also arbitrary hierarchies due to clones. We want to 31 * walk all datasets in the pool, and construct a directed graph of the form: 32 * 33 * home 34 * | 35 * +----+----+ 36 * | | 37 * v v ws 38 * bar baz | 39 * | | 40 * v v 41 * @yesterday ----> foo 42 * 43 * In order to construct this graph, we have to walk every dataset in the pool, 44 * because the clone parent is stored as a property of the child, not the 45 * parent. The parent only keeps track of the number of clones. 46 * 47 * In the normal case (without clones) this would be rather expensive. To avoid 48 * unnecessary computation, we first try a walk of the subtree hierarchy 49 * starting from the initial node. At each dataset, we construct a node in the 50 * graph and an edge leading from its parent. If we don't see any snapshots 51 * with a non-zero clone count, then we are finished. 52 * 53 * If we do find a cloned snapshot, then we finish the walk of the current 54 * subtree, but indicate that we need to do a complete walk. We then perform a 55 * global walk of all datasets, avoiding the subtree we already processed. 56 * 57 * At the end of this, we'll end up with a directed graph of all relevant (and 58 * possible some irrelevant) datasets in the system. We need to both find our 59 * limiting subgraph and determine a safe ordering in which to destroy the 60 * datasets. We do a topological ordering of our graph starting at our target 61 * dataset, and then walk the results in reverse. 62 * 63 * It's possible for the graph to have cycles if, for example, the user renames 64 * a clone to be the parent of its origin snapshot. The user can request to 65 * generate an error in this case, or ignore the cycle and continue. 66 * 67 * When removing datasets, we want to destroy the snapshots in chronological 68 * order (because this is the most efficient method). In order to accomplish 69 * this, we store the creation transaction group with each vertex and keep each 70 * vertex's edges sorted according to this value. The topological sort will 71 * automatically walk the snapshots in the correct order. 72 */ 73 74 #include <assert.h> 75 #include <libintl.h> 76 #include <stdio.h> 77 #include <stdlib.h> 78 #include <string.h> 79 #include <strings.h> 80 #include <unistd.h> 81 82 #include <libzfs.h> 83 84 #include "libzfs_impl.h" 85 #include "zfs_namecheck.h" 86 87 #define MIN_EDGECOUNT 4 88 89 /* 90 * Vertex structure. Indexed by dataset name, this structure maintains a list 91 * of edges to other vertices. 92 */ 93 struct zfs_edge; 94 typedef struct zfs_vertex { 95 char zv_dataset[ZFS_MAXNAMELEN]; 96 struct zfs_vertex *zv_next; 97 int zv_visited; 98 uint64_t zv_txg; 99 struct zfs_edge **zv_edges; 100 int zv_edgecount; 101 int zv_edgealloc; 102 } zfs_vertex_t; 103 104 enum { 105 VISIT_SEEN = 1, 106 VISIT_SORT_PRE, 107 VISIT_SORT_POST 108 }; 109 110 /* 111 * Edge structure. Simply maintains a pointer to the destination vertex. There 112 * is no need to store the source vertex, since we only use edges in the context 113 * of the source vertex. 114 */ 115 typedef struct zfs_edge { 116 zfs_vertex_t *ze_dest; 117 struct zfs_edge *ze_next; 118 } zfs_edge_t; 119 120 #define ZFS_GRAPH_SIZE 1027 /* this could be dynamic some day */ 121 122 /* 123 * Graph structure. Vertices are maintained in a hash indexed by dataset name. 124 */ 125 typedef struct zfs_graph { 126 zfs_vertex_t **zg_hash; 127 size_t zg_size; 128 size_t zg_nvertex; 129 } zfs_graph_t; 130 131 /* 132 * Allocate a new edge pointing to the target vertex. 133 */ 134 static zfs_edge_t * 135 zfs_edge_create(libzfs_handle_t *hdl, zfs_vertex_t *dest) 136 { 137 zfs_edge_t *zep = zfs_alloc(hdl, sizeof (zfs_edge_t)); 138 139 if (zep == NULL) 140 return (NULL); 141 142 zep->ze_dest = dest; 143 144 return (zep); 145 } 146 147 /* 148 * Destroy an edge. 149 */ 150 static void 151 zfs_edge_destroy(zfs_edge_t *zep) 152 { 153 free(zep); 154 } 155 156 /* 157 * Allocate a new vertex with the given name. 158 */ 159 static zfs_vertex_t * 160 zfs_vertex_create(libzfs_handle_t *hdl, const char *dataset) 161 { 162 zfs_vertex_t *zvp = zfs_alloc(hdl, sizeof (zfs_vertex_t)); 163 164 if (zvp == NULL) 165 return (NULL); 166 167 assert(strlen(dataset) < ZFS_MAXNAMELEN); 168 169 (void) strlcpy(zvp->zv_dataset, dataset, sizeof (zvp->zv_dataset)); 170 171 if ((zvp->zv_edges = zfs_alloc(hdl, 172 MIN_EDGECOUNT * sizeof (void *))) == NULL) { 173 free(zvp); 174 return (NULL); 175 } 176 177 zvp->zv_edgealloc = MIN_EDGECOUNT; 178 179 return (zvp); 180 } 181 182 /* 183 * Destroy a vertex. Frees up any associated edges. 184 */ 185 static void 186 zfs_vertex_destroy(zfs_vertex_t *zvp) 187 { 188 int i; 189 190 for (i = 0; i < zvp->zv_edgecount; i++) 191 zfs_edge_destroy(zvp->zv_edges[i]); 192 193 free(zvp->zv_edges); 194 free(zvp); 195 } 196 197 /* 198 * Given a vertex, add an edge to the destination vertex. 199 */ 200 static int 201 zfs_vertex_add_edge(libzfs_handle_t *hdl, zfs_vertex_t *zvp, 202 zfs_vertex_t *dest) 203 { 204 zfs_edge_t *zep = zfs_edge_create(hdl, dest); 205 206 if (zep == NULL) 207 return (-1); 208 209 if (zvp->zv_edgecount == zvp->zv_edgealloc) { 210 void *ptr; 211 212 if ((ptr = zfs_realloc(hdl, zvp->zv_edges, 213 zvp->zv_edgealloc * sizeof (void *), 214 zvp->zv_edgealloc * 2 * sizeof (void *))) == NULL) 215 return (-1); 216 217 zvp->zv_edges = ptr; 218 zvp->zv_edgealloc *= 2; 219 } 220 221 zvp->zv_edges[zvp->zv_edgecount++] = zep; 222 223 return (0); 224 } 225 226 static int 227 zfs_edge_compare(const void *a, const void *b) 228 { 229 const zfs_edge_t *ea = *((zfs_edge_t **)a); 230 const zfs_edge_t *eb = *((zfs_edge_t **)b); 231 232 if (ea->ze_dest->zv_txg < eb->ze_dest->zv_txg) 233 return (-1); 234 if (ea->ze_dest->zv_txg > eb->ze_dest->zv_txg) 235 return (1); 236 return (0); 237 } 238 239 /* 240 * Sort the given vertex edges according to the creation txg of each vertex. 241 */ 242 static void 243 zfs_vertex_sort_edges(zfs_vertex_t *zvp) 244 { 245 if (zvp->zv_edgecount == 0) 246 return; 247 248 qsort(zvp->zv_edges, zvp->zv_edgecount, sizeof (void *), 249 zfs_edge_compare); 250 } 251 252 /* 253 * Construct a new graph object. We allow the size to be specified as a 254 * parameter so in the future we can size the hash according to the number of 255 * datasets in the pool. 256 */ 257 static zfs_graph_t * 258 zfs_graph_create(libzfs_handle_t *hdl, size_t size) 259 { 260 zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t)); 261 262 if (zgp == NULL) 263 return (NULL); 264 265 zgp->zg_size = size; 266 if ((zgp->zg_hash = zfs_alloc(hdl, 267 size * sizeof (zfs_vertex_t *))) == NULL) { 268 free(zgp); 269 return (NULL); 270 } 271 272 return (zgp); 273 } 274 275 /* 276 * Destroy a graph object. We have to iterate over all the hash chains, 277 * destroying each vertex in the process. 278 */ 279 static void 280 zfs_graph_destroy(zfs_graph_t *zgp) 281 { 282 int i; 283 zfs_vertex_t *current, *next; 284 285 for (i = 0; i < zgp->zg_size; i++) { 286 current = zgp->zg_hash[i]; 287 while (current != NULL) { 288 next = current->zv_next; 289 zfs_vertex_destroy(current); 290 current = next; 291 } 292 } 293 294 free(zgp->zg_hash); 295 free(zgp); 296 } 297 298 /* 299 * Graph hash function. Classic bernstein k=33 hash function, taken from 300 * usr/src/cmd/sgs/tools/common/strhash.c 301 */ 302 static size_t 303 zfs_graph_hash(zfs_graph_t *zgp, const char *str) 304 { 305 size_t hash = 5381; 306 int c; 307 308 while ((c = *str++) != 0) 309 hash = ((hash << 5) + hash) + c; /* hash * 33 + c */ 310 311 return (hash % zgp->zg_size); 312 } 313 314 /* 315 * Given a dataset name, finds the associated vertex, creating it if necessary. 316 */ 317 static zfs_vertex_t * 318 zfs_graph_lookup(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset, 319 uint64_t txg) 320 { 321 size_t idx = zfs_graph_hash(zgp, dataset); 322 zfs_vertex_t *zvp; 323 324 for (zvp = zgp->zg_hash[idx]; zvp != NULL; zvp = zvp->zv_next) { 325 if (strcmp(zvp->zv_dataset, dataset) == 0) { 326 if (zvp->zv_txg == 0) 327 zvp->zv_txg = txg; 328 return (zvp); 329 } 330 } 331 332 if ((zvp = zfs_vertex_create(hdl, dataset)) == NULL) 333 return (NULL); 334 335 zvp->zv_next = zgp->zg_hash[idx]; 336 zvp->zv_txg = txg; 337 zgp->zg_hash[idx] = zvp; 338 zgp->zg_nvertex++; 339 340 return (zvp); 341 } 342 343 /* 344 * Given two dataset names, create an edge between them. For the source vertex, 345 * mark 'zv_visited' to indicate that we have seen this vertex, and not simply 346 * created it as a destination of another edge. If 'dest' is NULL, then this 347 * is an individual vertex (i.e. the starting vertex), so don't add an edge. 348 */ 349 static int 350 zfs_graph_add(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *source, 351 const char *dest, uint64_t txg) 352 { 353 zfs_vertex_t *svp, *dvp; 354 355 if ((svp = zfs_graph_lookup(hdl, zgp, source, 0)) == NULL) 356 return (-1); 357 svp->zv_visited = VISIT_SEEN; 358 if (dest != NULL) { 359 dvp = zfs_graph_lookup(hdl, zgp, dest, txg); 360 if (dvp == NULL) 361 return (-1); 362 if (zfs_vertex_add_edge(hdl, svp, dvp) != 0) 363 return (-1); 364 } 365 366 return (0); 367 } 368 369 /* 370 * Iterate over all children of the given dataset, adding any vertices as 371 * necessary. Returns 0 if no cloned snapshots were seen, -1 if there was an 372 * error, or 1 otherwise. This is a simple recursive algorithm - the ZFS 373 * namespace typically is very flat. We manually invoke the necessary ioctl() 374 * calls to avoid the overhead and additional semantics of zfs_open(). 375 */ 376 static int 377 iterate_children(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset) 378 { 379 zfs_cmd_t zc = { 0 }; 380 int ret = 0, err; 381 zfs_vertex_t *zvp; 382 383 /* 384 * Look up the source vertex, and avoid it if we've seen it before. 385 */ 386 zvp = zfs_graph_lookup(hdl, zgp, dataset, 0); 387 if (zvp == NULL) 388 return (-1); 389 if (zvp->zv_visited == VISIT_SEEN) 390 return (0); 391 392 /* 393 * We check the clone parent here instead of within the loop, so that if 394 * the root dataset has been promoted from a clone, we find its parent 395 * appropriately. 396 */ 397 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); 398 if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0 && 399 zc.zc_objset_stats.dds_clone_of[0] != '\0') { 400 if (zfs_graph_add(hdl, zgp, zc.zc_objset_stats.dds_clone_of, 401 zc.zc_name, zc.zc_objset_stats.dds_creation_txg) != 0) 402 return (-1); 403 } 404 405 for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); 406 ioctl(hdl->libzfs_fd, ZFS_IOC_DATASET_LIST_NEXT, &zc) == 0; 407 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) { 408 409 /* 410 * Ignore private dataset names. 411 */ 412 if (dataset_name_hidden(zc.zc_name)) 413 continue; 414 415 /* 416 * Get statistics for this dataset, to determine the type of the 417 * dataset and clone statistics. If this fails, the dataset has 418 * since been removed, and we're pretty much screwed anyway. 419 */ 420 if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) 421 continue; 422 423 /* 424 * Add an edge between the parent and the child. 425 */ 426 if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name, 427 zc.zc_objset_stats.dds_creation_txg) != 0) 428 return (-1); 429 430 /* 431 * Iterate over all children 432 */ 433 err = iterate_children(hdl, zgp, zc.zc_name); 434 if (err == -1) 435 return (-1); 436 else if (err == 1) 437 ret = 1; 438 439 /* 440 * Indicate if we found a dataset with a non-zero clone count. 441 */ 442 if (zc.zc_objset_stats.dds_num_clones != 0) 443 ret = 1; 444 } 445 446 /* 447 * Now iterate over all snapshots. 448 */ 449 bzero(&zc, sizeof (zc)); 450 451 for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); 452 ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0; 453 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) { 454 455 /* 456 * Get statistics for this dataset, to determine the type of the 457 * dataset and clone statistics. If this fails, the dataset has 458 * since been removed, and we're pretty much screwed anyway. 459 */ 460 if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0) 461 continue; 462 463 /* 464 * Add an edge between the parent and the child. 465 */ 466 if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name, 467 zc.zc_objset_stats.dds_creation_txg) != 0) 468 return (-1); 469 470 /* 471 * Indicate if we found a dataset with a non-zero clone count. 472 */ 473 if (zc.zc_objset_stats.dds_num_clones != 0) 474 ret = 1; 475 } 476 477 zvp->zv_visited = VISIT_SEEN; 478 479 return (ret); 480 } 481 482 /* 483 * Construct a complete graph of all necessary vertices. First, we iterate over 484 * only our object's children. If we don't find any cloned snapshots, then we 485 * simple return that. Otherwise, we have to start at the pool root and iterate 486 * over all datasets. 487 */ 488 static zfs_graph_t * 489 construct_graph(libzfs_handle_t *hdl, const char *dataset) 490 { 491 zfs_graph_t *zgp = zfs_graph_create(hdl, ZFS_GRAPH_SIZE); 492 zfs_cmd_t zc = { 0 }; 493 int ret = 0; 494 495 if (zgp == NULL) 496 return (zgp); 497 498 /* 499 * We need to explicitly check whether this dataset has clones or not, 500 * since iterate_children() only checks the children. 501 */ 502 (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name)); 503 (void) ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc); 504 505 if (zc.zc_objset_stats.dds_num_clones != 0 || 506 (ret = iterate_children(hdl, zgp, dataset)) != 0) { 507 /* 508 * Determine pool name and try again. 509 */ 510 char *pool, *slash; 511 512 if ((slash = strchr(dataset, '/')) != NULL || 513 (slash = strchr(dataset, '@')) != NULL) { 514 pool = zfs_alloc(hdl, slash - dataset + 1); 515 if (pool == NULL) { 516 zfs_graph_destroy(zgp); 517 return (NULL); 518 } 519 (void) strncpy(pool, dataset, slash - dataset); 520 pool[slash - dataset] = '\0'; 521 522 if (iterate_children(hdl, zgp, pool) == -1 || 523 zfs_graph_add(hdl, zgp, pool, NULL, 0) != 0) { 524 free(pool); 525 zfs_graph_destroy(zgp); 526 return (NULL); 527 } 528 529 free(pool); 530 } 531 } 532 533 if (ret == -1 || zfs_graph_add(hdl, zgp, dataset, NULL, 0) != 0) { 534 zfs_graph_destroy(zgp); 535 return (NULL); 536 } 537 538 return (zgp); 539 } 540 541 /* 542 * Given a graph, do a recursive topological sort into the given array. This is 543 * really just a depth first search, so that the deepest nodes appear first. 544 * hijack the 'zv_visited' marker to avoid visiting the same vertex twice. 545 */ 546 static int 547 topo_sort(libzfs_handle_t *hdl, boolean_t allowrecursion, char **result, 548 size_t *idx, zfs_vertex_t *zgv) 549 { 550 int i; 551 552 if (zgv->zv_visited == VISIT_SORT_PRE && !allowrecursion) { 553 /* 554 * If we've already seen this vertex as part of our depth-first 555 * search, then we have a cyclic dependency, and we must return 556 * an error. 557 */ 558 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 559 "recursive dependency at '%s'"), 560 zgv->zv_dataset); 561 return (zfs_error(hdl, EZFS_RECURSIVE, 562 dgettext(TEXT_DOMAIN, 563 "cannot determine dependent datasets"))); 564 } else if (zgv->zv_visited >= VISIT_SORT_PRE) { 565 /* 566 * If we've already processed this as part of the topological 567 * sort, then don't bother doing so again. 568 */ 569 return (0); 570 } 571 572 zgv->zv_visited = VISIT_SORT_PRE; 573 574 /* avoid doing a search if we don't have to */ 575 zfs_vertex_sort_edges(zgv); 576 for (i = 0; i < zgv->zv_edgecount; i++) { 577 if (topo_sort(hdl, allowrecursion, result, idx, 578 zgv->zv_edges[i]->ze_dest) != 0) 579 return (-1); 580 } 581 582 /* we may have visited this in the course of the above */ 583 if (zgv->zv_visited == VISIT_SORT_POST) 584 return (0); 585 586 if ((result[*idx] = zfs_alloc(hdl, 587 strlen(zgv->zv_dataset) + 1)) == NULL) 588 return (-1); 589 590 (void) strcpy(result[*idx], zgv->zv_dataset); 591 *idx += 1; 592 zgv->zv_visited = VISIT_SORT_POST; 593 return (0); 594 } 595 596 /* 597 * The only public interface for this file. Do the dirty work of constructing a 598 * child list for the given object. Construct the graph, do the toplogical 599 * sort, and then return the array of strings to the caller. 600 * 601 * The 'allowrecursion' parameter controls behavior when cycles are found. If 602 * it is set, the the cycle is ignored and the results returned as if the cycle 603 * did not exist. If it is not set, then the routine will generate an error if 604 * a cycle is found. 605 */ 606 int 607 get_dependents(libzfs_handle_t *hdl, boolean_t allowrecursion, 608 const char *dataset, char ***result, size_t *count) 609 { 610 zfs_graph_t *zgp; 611 zfs_vertex_t *zvp; 612 613 if ((zgp = construct_graph(hdl, dataset)) == NULL) 614 return (-1); 615 616 if ((*result = zfs_alloc(hdl, 617 zgp->zg_nvertex * sizeof (char *))) == NULL) { 618 zfs_graph_destroy(zgp); 619 return (-1); 620 } 621 622 if ((zvp = zfs_graph_lookup(hdl, zgp, dataset, 0)) == NULL) { 623 free(*result); 624 zfs_graph_destroy(zgp); 625 return (-1); 626 } 627 628 *count = 0; 629 if (topo_sort(hdl, allowrecursion, *result, count, zvp) != 0) { 630 free(*result); 631 zfs_graph_destroy(zgp); 632 return (-1); 633 } 634 635 /* 636 * Get rid of the last entry, which is our starting vertex and not 637 * strictly a dependent. 638 */ 639 assert(*count > 0); 640 free((*result)[*count - 1]); 641 (*count)--; 642 643 zfs_graph_destroy(zgp); 644 645 return (0); 646 } 647