xref: /onnv-gate/usr/src/lib/libzfs/common/libzfs_graph.c (revision 9396:f41cf682d0d3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Iterate over all children of the current object.  This includes the normal
28  * dataset hierarchy, but also arbitrary hierarchies due to clones.  We want to
29  * walk all datasets in the pool, and construct a directed graph of the form:
30  *
31  * 			home
32  *                        |
33  *                   +----+----+
34  *                   |         |
35  *                   v         v             ws
36  *                  bar       baz             |
37  *                             |              |
38  *                             v              v
39  *                          @yesterday ----> foo
40  *
41  * In order to construct this graph, we have to walk every dataset in the pool,
42  * because the clone parent is stored as a property of the child, not the
43  * parent.  The parent only keeps track of the number of clones.
44  *
45  * In the normal case (without clones) this would be rather expensive.  To avoid
46  * unnecessary computation, we first try a walk of the subtree hierarchy
47  * starting from the initial node.  At each dataset, we construct a node in the
48  * graph and an edge leading from its parent.  If we don't see any snapshots
49  * with a non-zero clone count, then we are finished.
50  *
51  * If we do find a cloned snapshot, then we finish the walk of the current
52  * subtree, but indicate that we need to do a complete walk.  We then perform a
53  * global walk of all datasets, avoiding the subtree we already processed.
54  *
55  * At the end of this, we'll end up with a directed graph of all relevant (and
56  * possible some irrelevant) datasets in the system.  We need to both find our
57  * limiting subgraph and determine a safe ordering in which to destroy the
58  * datasets.  We do a topological ordering of our graph starting at our target
59  * dataset, and then walk the results in reverse.
60  *
61  * It's possible for the graph to have cycles if, for example, the user renames
62  * a clone to be the parent of its origin snapshot.  The user can request to
63  * generate an error in this case, or ignore the cycle and continue.
64  *
65  * When removing datasets, we want to destroy the snapshots in chronological
66  * order (because this is the most efficient method).  In order to accomplish
67  * this, we store the creation transaction group with each vertex and keep each
68  * vertex's edges sorted according to this value.  The topological sort will
69  * automatically walk the snapshots in the correct order.
70  */
71 
72 #include <assert.h>
73 #include <libintl.h>
74 #include <stdio.h>
75 #include <stdlib.h>
76 #include <string.h>
77 #include <strings.h>
78 #include <unistd.h>
79 
80 #include <libzfs.h>
81 
82 #include "libzfs_impl.h"
83 #include "zfs_namecheck.h"
84 
85 #define	MIN_EDGECOUNT	4
86 
87 /*
88  * Vertex structure.  Indexed by dataset name, this structure maintains a list
89  * of edges to other vertices.
90  */
91 struct zfs_edge;
92 typedef struct zfs_vertex {
93 	char			zv_dataset[ZFS_MAXNAMELEN];
94 	struct zfs_vertex	*zv_next;
95 	int			zv_visited;
96 	uint64_t		zv_txg;
97 	struct zfs_edge		**zv_edges;
98 	int			zv_edgecount;
99 	int			zv_edgealloc;
100 } zfs_vertex_t;
101 
102 enum {
103 	VISIT_SEEN = 1,
104 	VISIT_SORT_PRE,
105 	VISIT_SORT_POST
106 };
107 
108 /*
109  * Edge structure.  Simply maintains a pointer to the destination vertex.  There
110  * is no need to store the source vertex, since we only use edges in the context
111  * of the source vertex.
112  */
113 typedef struct zfs_edge {
114 	zfs_vertex_t		*ze_dest;
115 	struct zfs_edge		*ze_next;
116 } zfs_edge_t;
117 
118 #define	ZFS_GRAPH_SIZE		1027	/* this could be dynamic some day */
119 
120 /*
121  * Graph structure.  Vertices are maintained in a hash indexed by dataset name.
122  */
123 typedef struct zfs_graph {
124 	zfs_vertex_t		**zg_hash;
125 	size_t			zg_size;
126 	size_t			zg_nvertex;
127 	const char		*zg_root;
128 	int			zg_clone_count;
129 } zfs_graph_t;
130 
131 /*
132  * Allocate a new edge pointing to the target vertex.
133  */
134 static zfs_edge_t *
zfs_edge_create(libzfs_handle_t * hdl,zfs_vertex_t * dest)135 zfs_edge_create(libzfs_handle_t *hdl, zfs_vertex_t *dest)
136 {
137 	zfs_edge_t *zep = zfs_alloc(hdl, sizeof (zfs_edge_t));
138 
139 	if (zep == NULL)
140 		return (NULL);
141 
142 	zep->ze_dest = dest;
143 
144 	return (zep);
145 }
146 
147 /*
148  * Destroy an edge.
149  */
150 static void
zfs_edge_destroy(zfs_edge_t * zep)151 zfs_edge_destroy(zfs_edge_t *zep)
152 {
153 	free(zep);
154 }
155 
156 /*
157  * Allocate a new vertex with the given name.
158  */
159 static zfs_vertex_t *
zfs_vertex_create(libzfs_handle_t * hdl,const char * dataset)160 zfs_vertex_create(libzfs_handle_t *hdl, const char *dataset)
161 {
162 	zfs_vertex_t *zvp = zfs_alloc(hdl, sizeof (zfs_vertex_t));
163 
164 	if (zvp == NULL)
165 		return (NULL);
166 
167 	assert(strlen(dataset) < ZFS_MAXNAMELEN);
168 
169 	(void) strlcpy(zvp->zv_dataset, dataset, sizeof (zvp->zv_dataset));
170 
171 	if ((zvp->zv_edges = zfs_alloc(hdl,
172 	    MIN_EDGECOUNT * sizeof (void *))) == NULL) {
173 		free(zvp);
174 		return (NULL);
175 	}
176 
177 	zvp->zv_edgealloc = MIN_EDGECOUNT;
178 
179 	return (zvp);
180 }
181 
182 /*
183  * Destroy a vertex.  Frees up any associated edges.
184  */
185 static void
zfs_vertex_destroy(zfs_vertex_t * zvp)186 zfs_vertex_destroy(zfs_vertex_t *zvp)
187 {
188 	int i;
189 
190 	for (i = 0; i < zvp->zv_edgecount; i++)
191 		zfs_edge_destroy(zvp->zv_edges[i]);
192 
193 	free(zvp->zv_edges);
194 	free(zvp);
195 }
196 
197 /*
198  * Given a vertex, add an edge to the destination vertex.
199  */
200 static int
zfs_vertex_add_edge(libzfs_handle_t * hdl,zfs_vertex_t * zvp,zfs_vertex_t * dest)201 zfs_vertex_add_edge(libzfs_handle_t *hdl, zfs_vertex_t *zvp,
202     zfs_vertex_t *dest)
203 {
204 	zfs_edge_t *zep = zfs_edge_create(hdl, dest);
205 
206 	if (zep == NULL)
207 		return (-1);
208 
209 	if (zvp->zv_edgecount == zvp->zv_edgealloc) {
210 		void *ptr;
211 
212 		if ((ptr = zfs_realloc(hdl, zvp->zv_edges,
213 		    zvp->zv_edgealloc * sizeof (void *),
214 		    zvp->zv_edgealloc * 2 * sizeof (void *))) == NULL)
215 			return (-1);
216 
217 		zvp->zv_edges = ptr;
218 		zvp->zv_edgealloc *= 2;
219 	}
220 
221 	zvp->zv_edges[zvp->zv_edgecount++] = zep;
222 
223 	return (0);
224 }
225 
226 static int
zfs_edge_compare(const void * a,const void * b)227 zfs_edge_compare(const void *a, const void *b)
228 {
229 	const zfs_edge_t *ea = *((zfs_edge_t **)a);
230 	const zfs_edge_t *eb = *((zfs_edge_t **)b);
231 
232 	if (ea->ze_dest->zv_txg < eb->ze_dest->zv_txg)
233 		return (-1);
234 	if (ea->ze_dest->zv_txg > eb->ze_dest->zv_txg)
235 		return (1);
236 	return (0);
237 }
238 
239 /*
240  * Sort the given vertex edges according to the creation txg of each vertex.
241  */
242 static void
zfs_vertex_sort_edges(zfs_vertex_t * zvp)243 zfs_vertex_sort_edges(zfs_vertex_t *zvp)
244 {
245 	if (zvp->zv_edgecount == 0)
246 		return;
247 
248 	qsort(zvp->zv_edges, zvp->zv_edgecount, sizeof (void *),
249 	    zfs_edge_compare);
250 }
251 
252 /*
253  * Construct a new graph object.  We allow the size to be specified as a
254  * parameter so in the future we can size the hash according to the number of
255  * datasets in the pool.
256  */
257 static zfs_graph_t *
zfs_graph_create(libzfs_handle_t * hdl,const char * dataset,size_t size)258 zfs_graph_create(libzfs_handle_t *hdl, const char *dataset, size_t size)
259 {
260 	zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t));
261 
262 	if (zgp == NULL)
263 		return (NULL);
264 
265 	zgp->zg_size = size;
266 	if ((zgp->zg_hash = zfs_alloc(hdl,
267 	    size * sizeof (zfs_vertex_t *))) == NULL) {
268 		free(zgp);
269 		return (NULL);
270 	}
271 
272 	zgp->zg_root = dataset;
273 	zgp->zg_clone_count = 0;
274 
275 	return (zgp);
276 }
277 
278 /*
279  * Destroy a graph object.  We have to iterate over all the hash chains,
280  * destroying each vertex in the process.
281  */
282 static void
zfs_graph_destroy(zfs_graph_t * zgp)283 zfs_graph_destroy(zfs_graph_t *zgp)
284 {
285 	int i;
286 	zfs_vertex_t *current, *next;
287 
288 	for (i = 0; i < zgp->zg_size; i++) {
289 		current = zgp->zg_hash[i];
290 		while (current != NULL) {
291 			next = current->zv_next;
292 			zfs_vertex_destroy(current);
293 			current = next;
294 		}
295 	}
296 
297 	free(zgp->zg_hash);
298 	free(zgp);
299 }
300 
301 /*
302  * Graph hash function.  Classic bernstein k=33 hash function, taken from
303  * usr/src/cmd/sgs/tools/common/strhash.c
304  */
305 static size_t
zfs_graph_hash(zfs_graph_t * zgp,const char * str)306 zfs_graph_hash(zfs_graph_t *zgp, const char *str)
307 {
308 	size_t hash = 5381;
309 	int c;
310 
311 	while ((c = *str++) != 0)
312 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
313 
314 	return (hash % zgp->zg_size);
315 }
316 
317 /*
318  * Given a dataset name, finds the associated vertex, creating it if necessary.
319  */
320 static zfs_vertex_t *
zfs_graph_lookup(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * dataset,uint64_t txg)321 zfs_graph_lookup(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset,
322     uint64_t txg)
323 {
324 	size_t idx = zfs_graph_hash(zgp, dataset);
325 	zfs_vertex_t *zvp;
326 
327 	for (zvp = zgp->zg_hash[idx]; zvp != NULL; zvp = zvp->zv_next) {
328 		if (strcmp(zvp->zv_dataset, dataset) == 0) {
329 			if (zvp->zv_txg == 0)
330 				zvp->zv_txg = txg;
331 			return (zvp);
332 		}
333 	}
334 
335 	if ((zvp = zfs_vertex_create(hdl, dataset)) == NULL)
336 		return (NULL);
337 
338 	zvp->zv_next = zgp->zg_hash[idx];
339 	zvp->zv_txg = txg;
340 	zgp->zg_hash[idx] = zvp;
341 	zgp->zg_nvertex++;
342 
343 	return (zvp);
344 }
345 
346 /*
347  * Given two dataset names, create an edge between them.  For the source vertex,
348  * mark 'zv_visited' to indicate that we have seen this vertex, and not simply
349  * created it as a destination of another edge.  If 'dest' is NULL, then this
350  * is an individual vertex (i.e. the starting vertex), so don't add an edge.
351  */
352 static int
zfs_graph_add(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * source,const char * dest,uint64_t txg)353 zfs_graph_add(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *source,
354     const char *dest, uint64_t txg)
355 {
356 	zfs_vertex_t *svp, *dvp;
357 
358 	if ((svp = zfs_graph_lookup(hdl, zgp, source, 0)) == NULL)
359 		return (-1);
360 	svp->zv_visited = VISIT_SEEN;
361 	if (dest != NULL) {
362 		dvp = zfs_graph_lookup(hdl, zgp, dest, txg);
363 		if (dvp == NULL)
364 			return (-1);
365 		if (zfs_vertex_add_edge(hdl, svp, dvp) != 0)
366 			return (-1);
367 	}
368 
369 	return (0);
370 }
371 
372 /*
373  * Iterate over all children of the given dataset, adding any vertices
374  * as necessary.  Returns -1 if there was an error, or 0 otherwise.
375  * This is a simple recursive algorithm - the ZFS namespace typically
376  * is very flat.  We manually invoke the necessary ioctl() calls to
377  * avoid the overhead and additional semantics of zfs_open().
378  */
379 static int
iterate_children(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * dataset)380 iterate_children(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset)
381 {
382 	zfs_cmd_t zc = { 0 };
383 	zfs_vertex_t *zvp;
384 
385 	/*
386 	 * Look up the source vertex, and avoid it if we've seen it before.
387 	 */
388 	zvp = zfs_graph_lookup(hdl, zgp, dataset, 0);
389 	if (zvp == NULL)
390 		return (-1);
391 	if (zvp->zv_visited == VISIT_SEEN)
392 		return (0);
393 
394 	/*
395 	 * Iterate over all children
396 	 */
397 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
398 	    ioctl(hdl->libzfs_fd, ZFS_IOC_DATASET_LIST_NEXT, &zc) == 0;
399 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
400 		/*
401 		 * Get statistics for this dataset, to determine the type of the
402 		 * dataset and clone statistics.  If this fails, the dataset has
403 		 * since been removed, and we're pretty much screwed anyway.
404 		 */
405 		zc.zc_objset_stats.dds_origin[0] = '\0';
406 		if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
407 			continue;
408 
409 		if (zc.zc_objset_stats.dds_origin[0] != '\0') {
410 			if (zfs_graph_add(hdl, zgp,
411 			    zc.zc_objset_stats.dds_origin, zc.zc_name,
412 			    zc.zc_objset_stats.dds_creation_txg) != 0)
413 				return (-1);
414 			/*
415 			 * Count origins only if they are contained in the graph
416 			 */
417 			if (isa_child_of(zc.zc_objset_stats.dds_origin,
418 			    zgp->zg_root))
419 				zgp->zg_clone_count--;
420 		}
421 
422 		/*
423 		 * Add an edge between the parent and the child.
424 		 */
425 		if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name,
426 		    zc.zc_objset_stats.dds_creation_txg) != 0)
427 			return (-1);
428 
429 		/*
430 		 * Recursively visit child
431 		 */
432 		if (iterate_children(hdl, zgp, zc.zc_name))
433 			return (-1);
434 	}
435 
436 	/*
437 	 * Now iterate over all snapshots.
438 	 */
439 	bzero(&zc, sizeof (zc));
440 
441 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
442 	    ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0;
443 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
444 
445 		/*
446 		 * Get statistics for this dataset, to determine the type of the
447 		 * dataset and clone statistics.  If this fails, the dataset has
448 		 * since been removed, and we're pretty much screwed anyway.
449 		 */
450 		if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
451 			continue;
452 
453 		/*
454 		 * Add an edge between the parent and the child.
455 		 */
456 		if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name,
457 		    zc.zc_objset_stats.dds_creation_txg) != 0)
458 			return (-1);
459 
460 		zgp->zg_clone_count += zc.zc_objset_stats.dds_num_clones;
461 	}
462 
463 	zvp->zv_visited = VISIT_SEEN;
464 
465 	return (0);
466 }
467 
468 /*
469  * Returns false if there are no snapshots with dependent clones in this
470  * subtree or if all of those clones are also in this subtree.  Returns
471  * true if there is an error or there are external dependents.
472  */
473 static boolean_t
external_dependents(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * dataset)474 external_dependents(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset)
475 {
476 	zfs_cmd_t zc = { 0 };
477 
478 	/*
479 	 * Check whether this dataset is a clone or has clones since
480 	 * iterate_children() only checks the children.
481 	 */
482 	(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
483 	if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
484 		return (B_TRUE);
485 
486 	if (zc.zc_objset_stats.dds_origin[0] != '\0') {
487 		if (zfs_graph_add(hdl, zgp,
488 		    zc.zc_objset_stats.dds_origin, zc.zc_name,
489 		    zc.zc_objset_stats.dds_creation_txg) != 0)
490 			return (B_TRUE);
491 		if (isa_child_of(zc.zc_objset_stats.dds_origin, dataset))
492 			zgp->zg_clone_count--;
493 	}
494 
495 	if ((zc.zc_objset_stats.dds_num_clones) ||
496 	    iterate_children(hdl, zgp, dataset))
497 		return (B_TRUE);
498 
499 	return (zgp->zg_clone_count != 0);
500 }
501 
502 /*
503  * Construct a complete graph of all necessary vertices.  First, iterate over
504  * only our object's children.  If no cloned snapshots are found, or all of
505  * the cloned snapshots are in this subtree then return a graph of the subtree.
506  * Otherwise, start at the root of the pool and iterate over all datasets.
507  */
508 static zfs_graph_t *
construct_graph(libzfs_handle_t * hdl,const char * dataset)509 construct_graph(libzfs_handle_t *hdl, const char *dataset)
510 {
511 	zfs_graph_t *zgp = zfs_graph_create(hdl, dataset, ZFS_GRAPH_SIZE);
512 	int ret = 0;
513 
514 	if (zgp == NULL)
515 		return (zgp);
516 
517 	if ((strchr(dataset, '/') == NULL) ||
518 	    (external_dependents(hdl, zgp, dataset))) {
519 		/*
520 		 * Determine pool name and try again.
521 		 */
522 		int len = strcspn(dataset, "/@") + 1;
523 		char *pool = zfs_alloc(hdl, len);
524 
525 		if (pool == NULL) {
526 			zfs_graph_destroy(zgp);
527 			return (NULL);
528 		}
529 		(void) strlcpy(pool, dataset, len);
530 
531 		if (iterate_children(hdl, zgp, pool) == -1 ||
532 		    zfs_graph_add(hdl, zgp, pool, NULL, 0) != 0) {
533 			free(pool);
534 			zfs_graph_destroy(zgp);
535 			return (NULL);
536 		}
537 		free(pool);
538 	}
539 
540 	if (ret == -1 || zfs_graph_add(hdl, zgp, dataset, NULL, 0) != 0) {
541 		zfs_graph_destroy(zgp);
542 		return (NULL);
543 	}
544 
545 	return (zgp);
546 }
547 
548 /*
549  * Given a graph, do a recursive topological sort into the given array.  This is
550  * really just a depth first search, so that the deepest nodes appear first.
551  * hijack the 'zv_visited' marker to avoid visiting the same vertex twice.
552  */
553 static int
topo_sort(libzfs_handle_t * hdl,boolean_t allowrecursion,char ** result,size_t * idx,zfs_vertex_t * zgv)554 topo_sort(libzfs_handle_t *hdl, boolean_t allowrecursion, char **result,
555     size_t *idx, zfs_vertex_t *zgv)
556 {
557 	int i;
558 
559 	if (zgv->zv_visited == VISIT_SORT_PRE && !allowrecursion) {
560 		/*
561 		 * If we've already seen this vertex as part of our depth-first
562 		 * search, then we have a cyclic dependency, and we must return
563 		 * an error.
564 		 */
565 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
566 		    "recursive dependency at '%s'"),
567 		    zgv->zv_dataset);
568 		return (zfs_error(hdl, EZFS_RECURSIVE,
569 		    dgettext(TEXT_DOMAIN,
570 		    "cannot determine dependent datasets")));
571 	} else if (zgv->zv_visited >= VISIT_SORT_PRE) {
572 		/*
573 		 * If we've already processed this as part of the topological
574 		 * sort, then don't bother doing so again.
575 		 */
576 		return (0);
577 	}
578 
579 	zgv->zv_visited = VISIT_SORT_PRE;
580 
581 	/* avoid doing a search if we don't have to */
582 	zfs_vertex_sort_edges(zgv);
583 	for (i = 0; i < zgv->zv_edgecount; i++) {
584 		if (topo_sort(hdl, allowrecursion, result, idx,
585 		    zgv->zv_edges[i]->ze_dest) != 0)
586 			return (-1);
587 	}
588 
589 	/* we may have visited this in the course of the above */
590 	if (zgv->zv_visited == VISIT_SORT_POST)
591 		return (0);
592 
593 	if ((result[*idx] = zfs_alloc(hdl,
594 	    strlen(zgv->zv_dataset) + 1)) == NULL)
595 		return (-1);
596 
597 	(void) strcpy(result[*idx], zgv->zv_dataset);
598 	*idx += 1;
599 	zgv->zv_visited = VISIT_SORT_POST;
600 	return (0);
601 }
602 
603 /*
604  * The only public interface for this file.  Do the dirty work of constructing a
605  * child list for the given object.  Construct the graph, do the toplogical
606  * sort, and then return the array of strings to the caller.
607  *
608  * The 'allowrecursion' parameter controls behavior when cycles are found.  If
609  * it is set, the the cycle is ignored and the results returned as if the cycle
610  * did not exist.  If it is not set, then the routine will generate an error if
611  * a cycle is found.
612  */
613 int
get_dependents(libzfs_handle_t * hdl,boolean_t allowrecursion,const char * dataset,char *** result,size_t * count)614 get_dependents(libzfs_handle_t *hdl, boolean_t allowrecursion,
615     const char *dataset, char ***result, size_t *count)
616 {
617 	zfs_graph_t *zgp;
618 	zfs_vertex_t *zvp;
619 
620 	if ((zgp = construct_graph(hdl, dataset)) == NULL)
621 		return (-1);
622 
623 	if ((*result = zfs_alloc(hdl,
624 	    zgp->zg_nvertex * sizeof (char *))) == NULL) {
625 		zfs_graph_destroy(zgp);
626 		return (-1);
627 	}
628 
629 	if ((zvp = zfs_graph_lookup(hdl, zgp, dataset, 0)) == NULL) {
630 		free(*result);
631 		zfs_graph_destroy(zgp);
632 		return (-1);
633 	}
634 
635 	*count = 0;
636 	if (topo_sort(hdl, allowrecursion, *result, count, zvp) != 0) {
637 		free(*result);
638 		zfs_graph_destroy(zgp);
639 		return (-1);
640 	}
641 
642 	/*
643 	 * Get rid of the last entry, which is our starting vertex and not
644 	 * strictly a dependent.
645 	 */
646 	assert(*count > 0);
647 	free((*result)[*count - 1]);
648 	(*count)--;
649 
650 	zfs_graph_destroy(zgp);
651 
652 	return (0);
653 }
654