1789Sahrens /*
2789Sahrens  * CDDL HEADER START
3789Sahrens  *
4789Sahrens  * The contents of this file are subject to the terms of the
51544Seschrock  * Common Development and Distribution License (the "License").
61544Seschrock  * You may not use this file except in compliance with the License.
7789Sahrens  *
8789Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9789Sahrens  * or http://www.opensolaris.org/os/licensing.
10789Sahrens  * See the License for the specific language governing permissions
11789Sahrens  * and limitations under the License.
12789Sahrens  *
13789Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14789Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15789Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16789Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17789Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18789Sahrens  *
19789Sahrens  * CDDL HEADER END
20789Sahrens  */
21789Sahrens /*
221544Seschrock  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23789Sahrens  * Use is subject to license terms.
24789Sahrens  */
25789Sahrens 
26789Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
27789Sahrens 
28789Sahrens /*
29789Sahrens  * Iterate over all children of the current object.  This includes the normal
30789Sahrens  * dataset hierarchy, but also arbitrary hierarchies due to clones.  We want to
31789Sahrens  * walk all datasets in the pool, and construct a directed graph of the form:
32789Sahrens  *
33789Sahrens  * 			home
34789Sahrens  *                        |
35789Sahrens  *                   +----+----+
36789Sahrens  *                   |         |
37789Sahrens  *                   v         v             ws
38789Sahrens  *                  bar       baz             |
39789Sahrens  *                             |              |
40789Sahrens  *                             v              v
41789Sahrens  *                          @yesterday ----> foo
42789Sahrens  *
43789Sahrens  * In order to construct this graph, we have to walk every dataset in the pool,
44789Sahrens  * because the clone parent is stored as a property of the child, not the
45789Sahrens  * parent.  The parent only keeps track of the number of clones.
46789Sahrens  *
47789Sahrens  * In the normal case (without clones) this would be rather expensive.  To avoid
48789Sahrens  * unnecessary computation, we first try a walk of the subtree hierarchy
49789Sahrens  * starting from the initial node.  At each dataset, we construct a node in the
50789Sahrens  * graph and an edge leading from its parent.  If we don't see any snapshots
51789Sahrens  * with a non-zero clone count, then we are finished.
52789Sahrens  *
53789Sahrens  * If we do find a cloned snapshot, then we finish the walk of the current
54789Sahrens  * subtree, but indicate that we need to do a complete walk.  We then perform a
55789Sahrens  * global walk of all datasets, avoiding the subtree we already processed.
56789Sahrens  *
57789Sahrens  * At the end of this, we'll end up with a directed graph of all relevant (and
58789Sahrens  * possible some irrelevant) datasets in the system.  We need to both find our
59789Sahrens  * limiting subgraph and determine a safe ordering in which to destroy the
60789Sahrens  * datasets.  We do a topological ordering of our graph starting at our target
61789Sahrens  * dataset, and then walk the results in reverse.
62789Sahrens  *
63*2474Seschrock  * It's possible for the graph to have cycles if, for example, the user renames
64*2474Seschrock  * a clone to be the parent of its origin snapshot.  The user can request to
65*2474Seschrock  * generate an error in this case, or ignore the cycle and continue.
66*2474Seschrock  *
67789Sahrens  * When removing datasets, we want to destroy the snapshots in chronological
68789Sahrens  * order (because this is the most efficient method).  In order to accomplish
69789Sahrens  * this, we store the creation transaction group with each vertex and keep each
70789Sahrens  * vertex's edges sorted according to this value.  The topological sort will
71789Sahrens  * automatically walk the snapshots in the correct order.
72789Sahrens  */
73789Sahrens 
74789Sahrens #include <assert.h>
75*2474Seschrock #include <libintl.h>
76789Sahrens #include <stdio.h>
77789Sahrens #include <stdlib.h>
78789Sahrens #include <string.h>
79789Sahrens #include <strings.h>
80789Sahrens #include <unistd.h>
81789Sahrens 
82789Sahrens #include <libzfs.h>
83789Sahrens 
84789Sahrens #include "libzfs_impl.h"
85789Sahrens #include "zfs_namecheck.h"
86789Sahrens 
87789Sahrens #define	MIN_EDGECOUNT	4
88789Sahrens 
89789Sahrens /*
90789Sahrens  * Vertex structure.  Indexed by dataset name, this structure maintains a list
91789Sahrens  * of edges to other vertices.
92789Sahrens  */
93789Sahrens struct zfs_edge;
94789Sahrens typedef struct zfs_vertex {
95789Sahrens 	char			zv_dataset[ZFS_MAXNAMELEN];
96789Sahrens 	struct zfs_vertex	*zv_next;
97789Sahrens 	int			zv_visited;
98789Sahrens 	uint64_t		zv_txg;
99789Sahrens 	struct zfs_edge		**zv_edges;
100789Sahrens 	int			zv_edgecount;
101789Sahrens 	int			zv_edgealloc;
102789Sahrens } zfs_vertex_t;
103789Sahrens 
104*2474Seschrock enum {
105*2474Seschrock 	VISIT_SEEN = 1,
106*2474Seschrock 	VISIT_SORT_PRE,
107*2474Seschrock 	VISIT_SORT_POST
108*2474Seschrock };
109*2474Seschrock 
110789Sahrens /*
111789Sahrens  * Edge structure.  Simply maintains a pointer to the destination vertex.  There
112789Sahrens  * is no need to store the source vertex, since we only use edges in the context
113789Sahrens  * of the source vertex.
114789Sahrens  */
115789Sahrens typedef struct zfs_edge {
116789Sahrens 	zfs_vertex_t		*ze_dest;
117789Sahrens 	struct zfs_edge		*ze_next;
118789Sahrens } zfs_edge_t;
119789Sahrens 
120789Sahrens #define	ZFS_GRAPH_SIZE		1027	/* this could be dynamic some day */
121789Sahrens 
122789Sahrens /*
123789Sahrens  * Graph structure.  Vertices are maintained in a hash indexed by dataset name.
124789Sahrens  */
125789Sahrens typedef struct zfs_graph {
126789Sahrens 	zfs_vertex_t		**zg_hash;
127789Sahrens 	size_t			zg_size;
128789Sahrens 	size_t			zg_nvertex;
129789Sahrens } zfs_graph_t;
130789Sahrens 
131789Sahrens /*
132789Sahrens  * Allocate a new edge pointing to the target vertex.
133789Sahrens  */
134789Sahrens static zfs_edge_t *
1352082Seschrock zfs_edge_create(libzfs_handle_t *hdl, zfs_vertex_t *dest)
136789Sahrens {
1372082Seschrock 	zfs_edge_t *zep = zfs_alloc(hdl, sizeof (zfs_edge_t));
1382082Seschrock 
1392082Seschrock 	if (zep == NULL)
1402082Seschrock 		return (NULL);
141789Sahrens 
142789Sahrens 	zep->ze_dest = dest;
143789Sahrens 
144789Sahrens 	return (zep);
145789Sahrens }
146789Sahrens 
147789Sahrens /*
148789Sahrens  * Destroy an edge.
149789Sahrens  */
150789Sahrens static void
151789Sahrens zfs_edge_destroy(zfs_edge_t *zep)
152789Sahrens {
153789Sahrens 	free(zep);
154789Sahrens }
155789Sahrens 
156789Sahrens /*
157789Sahrens  * Allocate a new vertex with the given name.
158789Sahrens  */
159789Sahrens static zfs_vertex_t *
1602082Seschrock zfs_vertex_create(libzfs_handle_t *hdl, const char *dataset)
161789Sahrens {
1622082Seschrock 	zfs_vertex_t *zvp = zfs_alloc(hdl, sizeof (zfs_vertex_t));
1632082Seschrock 
1642082Seschrock 	if (zvp == NULL)
1652082Seschrock 		return (NULL);
166789Sahrens 
167789Sahrens 	assert(strlen(dataset) < ZFS_MAXNAMELEN);
168789Sahrens 
169789Sahrens 	(void) strlcpy(zvp->zv_dataset, dataset, sizeof (zvp->zv_dataset));
170789Sahrens 
1712082Seschrock 	if ((zvp->zv_edges = zfs_alloc(hdl,
1722082Seschrock 	    MIN_EDGECOUNT * sizeof (void *))) == NULL) {
1732082Seschrock 		free(zvp);
1742082Seschrock 		return (NULL);
1752082Seschrock 	}
1762082Seschrock 
177789Sahrens 	zvp->zv_edgealloc = MIN_EDGECOUNT;
178789Sahrens 
179789Sahrens 	return (zvp);
180789Sahrens }
181789Sahrens 
182789Sahrens /*
183789Sahrens  * Destroy a vertex.  Frees up any associated edges.
184789Sahrens  */
185789Sahrens static void
186789Sahrens zfs_vertex_destroy(zfs_vertex_t *zvp)
187789Sahrens {
188789Sahrens 	int i;
189789Sahrens 
190789Sahrens 	for (i = 0; i < zvp->zv_edgecount; i++)
191789Sahrens 		zfs_edge_destroy(zvp->zv_edges[i]);
192789Sahrens 
193789Sahrens 	free(zvp->zv_edges);
194789Sahrens 	free(zvp);
195789Sahrens }
196789Sahrens 
197789Sahrens /*
198789Sahrens  * Given a vertex, add an edge to the destination vertex.
199789Sahrens  */
2002082Seschrock static int
2012082Seschrock zfs_vertex_add_edge(libzfs_handle_t *hdl, zfs_vertex_t *zvp,
2022082Seschrock     zfs_vertex_t *dest)
203789Sahrens {
2042082Seschrock 	zfs_edge_t *zep = zfs_edge_create(hdl, dest);
2052082Seschrock 
2062082Seschrock 	if (zep == NULL)
2072082Seschrock 		return (-1);
208789Sahrens 
209789Sahrens 	if (zvp->zv_edgecount == zvp->zv_edgealloc) {
2102082Seschrock 		zfs_edge_t **newedges = zfs_alloc(hdl, zvp->zv_edgealloc * 2 *
211789Sahrens 		    sizeof (void *));
212789Sahrens 
2132082Seschrock 		if (newedges == NULL)
2142082Seschrock 			return (-1);
2152082Seschrock 
216789Sahrens 		bcopy(zvp->zv_edges, newedges,
217789Sahrens 		    zvp->zv_edgealloc * sizeof (void *));
218789Sahrens 
219789Sahrens 		zvp->zv_edgealloc *= 2;
220789Sahrens 		free(zvp->zv_edges);
221789Sahrens 		zvp->zv_edges = newedges;
222789Sahrens 	}
223789Sahrens 
224789Sahrens 	zvp->zv_edges[zvp->zv_edgecount++] = zep;
2252082Seschrock 
2262082Seschrock 	return (0);
227789Sahrens }
228789Sahrens 
229789Sahrens static int
230789Sahrens zfs_edge_compare(const void *a, const void *b)
231789Sahrens {
232789Sahrens 	const zfs_edge_t *ea = *((zfs_edge_t **)a);
233789Sahrens 	const zfs_edge_t *eb = *((zfs_edge_t **)b);
234789Sahrens 
235789Sahrens 	if (ea->ze_dest->zv_txg < eb->ze_dest->zv_txg)
236789Sahrens 		return (-1);
237789Sahrens 	if (ea->ze_dest->zv_txg > eb->ze_dest->zv_txg)
238789Sahrens 		return (1);
239789Sahrens 	return (0);
240789Sahrens }
241789Sahrens 
242789Sahrens /*
243789Sahrens  * Sort the given vertex edges according to the creation txg of each vertex.
244789Sahrens  */
245789Sahrens static void
246789Sahrens zfs_vertex_sort_edges(zfs_vertex_t *zvp)
247789Sahrens {
248789Sahrens 	if (zvp->zv_edgecount == 0)
249789Sahrens 		return;
250789Sahrens 
251789Sahrens 	qsort(zvp->zv_edges, zvp->zv_edgecount, sizeof (void *),
252789Sahrens 	    zfs_edge_compare);
253789Sahrens }
254789Sahrens 
255789Sahrens /*
256789Sahrens  * Construct a new graph object.  We allow the size to be specified as a
257789Sahrens  * parameter so in the future we can size the hash according to the number of
258789Sahrens  * datasets in the pool.
259789Sahrens  */
260789Sahrens static zfs_graph_t *
2612082Seschrock zfs_graph_create(libzfs_handle_t *hdl, size_t size)
262789Sahrens {
2632082Seschrock 	zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t));
2642082Seschrock 
2652082Seschrock 	if (zgp == NULL)
2662082Seschrock 		return (NULL);
267789Sahrens 
268789Sahrens 	zgp->zg_size = size;
2692082Seschrock 	if ((zgp->zg_hash = zfs_alloc(hdl,
2702082Seschrock 	    size * sizeof (zfs_vertex_t *))) == NULL) {
2712082Seschrock 		free(zgp);
2722082Seschrock 		return (NULL);
2732082Seschrock 	}
274789Sahrens 
275789Sahrens 	return (zgp);
276789Sahrens }
277789Sahrens 
278789Sahrens /*
279789Sahrens  * Destroy a graph object.  We have to iterate over all the hash chains,
280789Sahrens  * destroying each vertex in the process.
281789Sahrens  */
282789Sahrens static void
283789Sahrens zfs_graph_destroy(zfs_graph_t *zgp)
284789Sahrens {
285789Sahrens 	int i;
286789Sahrens 	zfs_vertex_t *current, *next;
287789Sahrens 
288789Sahrens 	for (i = 0; i < zgp->zg_size; i++) {
289789Sahrens 		current = zgp->zg_hash[i];
290789Sahrens 		while (current != NULL) {
291789Sahrens 			next = current->zv_next;
292789Sahrens 			zfs_vertex_destroy(current);
293789Sahrens 			current = next;
294789Sahrens 		}
295789Sahrens 	}
296789Sahrens 
297789Sahrens 	free(zgp->zg_hash);
298789Sahrens 	free(zgp);
299789Sahrens }
300789Sahrens 
301789Sahrens /*
302789Sahrens  * Graph hash function.  Classic bernstein k=33 hash function, taken from
303789Sahrens  * usr/src/cmd/sgs/tools/common/strhash.c
304789Sahrens  */
305789Sahrens static size_t
306789Sahrens zfs_graph_hash(zfs_graph_t *zgp, const char *str)
307789Sahrens {
308789Sahrens 	size_t hash = 5381;
309789Sahrens 	int c;
310789Sahrens 
311789Sahrens 	while ((c = *str++) != 0)
312789Sahrens 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
313789Sahrens 
314789Sahrens 	return (hash % zgp->zg_size);
315789Sahrens }
316789Sahrens 
317789Sahrens /*
318789Sahrens  * Given a dataset name, finds the associated vertex, creating it if necessary.
319789Sahrens  */
320789Sahrens static zfs_vertex_t *
3212082Seschrock zfs_graph_lookup(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset,
3222082Seschrock     uint64_t txg)
323789Sahrens {
324789Sahrens 	size_t idx = zfs_graph_hash(zgp, dataset);
325789Sahrens 	zfs_vertex_t *zvp;
326789Sahrens 
327789Sahrens 	for (zvp = zgp->zg_hash[idx]; zvp != NULL; zvp = zvp->zv_next) {
328789Sahrens 		if (strcmp(zvp->zv_dataset, dataset) == 0) {
329789Sahrens 			if (zvp->zv_txg == 0)
330789Sahrens 				zvp->zv_txg = txg;
331789Sahrens 			return (zvp);
332789Sahrens 		}
333789Sahrens 	}
334789Sahrens 
3352082Seschrock 	if ((zvp = zfs_vertex_create(hdl, dataset)) == NULL)
3362082Seschrock 		return (NULL);
3372082Seschrock 
338789Sahrens 	zvp->zv_next = zgp->zg_hash[idx];
339789Sahrens 	zvp->zv_txg = txg;
340789Sahrens 	zgp->zg_hash[idx] = zvp;
341789Sahrens 	zgp->zg_nvertex++;
342789Sahrens 
343789Sahrens 	return (zvp);
344789Sahrens }
345789Sahrens 
346789Sahrens /*
347789Sahrens  * Given two dataset names, create an edge between them.  For the source vertex,
348789Sahrens  * mark 'zv_visited' to indicate that we have seen this vertex, and not simply
349789Sahrens  * created it as a destination of another edge.  If 'dest' is NULL, then this
350789Sahrens  * is an individual vertex (i.e. the starting vertex), so don't add an edge.
351789Sahrens  */
3522082Seschrock static int
3532082Seschrock zfs_graph_add(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *source,
3542082Seschrock     const char *dest, uint64_t txg)
355789Sahrens {
356789Sahrens 	zfs_vertex_t *svp, *dvp;
357789Sahrens 
3582082Seschrock 	if ((svp = zfs_graph_lookup(hdl, zgp, source, 0)) == NULL)
3592082Seschrock 		return (-1);
360*2474Seschrock 	svp->zv_visited = VISIT_SEEN;
361789Sahrens 	if (dest != NULL) {
3622082Seschrock 		dvp = zfs_graph_lookup(hdl, zgp, dest, txg);
3632082Seschrock 		if (dvp == NULL)
3642082Seschrock 			return (-1);
3652082Seschrock 		if (zfs_vertex_add_edge(hdl, svp, dvp) != 0)
3662082Seschrock 			return (-1);
367789Sahrens 	}
3682082Seschrock 
3692082Seschrock 	return (0);
370789Sahrens }
371789Sahrens 
372789Sahrens /*
373789Sahrens  * Iterate over all children of the given dataset, adding any vertices as
3742082Seschrock  * necessary.  Returns 0 if no cloned snapshots were seen, -1 if there was an
375*2474Seschrock  * error, or 1 otherwise.  This is a simple recursive algorithm - the ZFS
376*2474Seschrock  * namespace typically is very flat.  We manually invoke the necessary ioctl()
377*2474Seschrock  * calls to avoid the overhead and additional semantics of zfs_open().
378789Sahrens  */
379789Sahrens static int
3802082Seschrock iterate_children(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset)
381789Sahrens {
382789Sahrens 	zfs_cmd_t zc = { 0 };
3832082Seschrock 	int ret = 0, err;
384789Sahrens 	zfs_vertex_t *zvp;
385789Sahrens 
386789Sahrens 	/*
387789Sahrens 	 * Look up the source vertex, and avoid it if we've seen it before.
388789Sahrens 	 */
3892082Seschrock 	zvp = zfs_graph_lookup(hdl, zgp, dataset, 0);
3902082Seschrock 	if (zvp == NULL)
3912082Seschrock 		return (-1);
392*2474Seschrock 	if (zvp->zv_visited == VISIT_SEEN)
393789Sahrens 		return (0);
394789Sahrens 
395*2474Seschrock 	/*
396*2474Seschrock 	 * We check the clone parent here instead of within the loop, so that if
397*2474Seschrock 	 * the root dataset has been promoted from a clone, we find its parent
398*2474Seschrock 	 * appropriately.
399*2474Seschrock 	 */
400*2474Seschrock 	(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
401*2474Seschrock 	if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) == 0 &&
402*2474Seschrock 	    zc.zc_objset_stats.dds_clone_of[0] != '\0') {
403*2474Seschrock 		if (zfs_graph_add(hdl, zgp, zc.zc_objset_stats.dds_clone_of,
404*2474Seschrock 		    zc.zc_name, zc.zc_objset_stats.dds_creation_txg) != 0)
405*2474Seschrock 			return (-1);
406*2474Seschrock 	}
407*2474Seschrock 
408789Sahrens 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
4092082Seschrock 	    ioctl(hdl->libzfs_fd, ZFS_IOC_DATASET_LIST_NEXT, &zc) == 0;
410789Sahrens 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
411789Sahrens 
412789Sahrens 		/*
413789Sahrens 		 * Ignore private dataset names.
414789Sahrens 		 */
415789Sahrens 		if (dataset_name_hidden(zc.zc_name))
416789Sahrens 			continue;
417789Sahrens 
418789Sahrens 		/*
419789Sahrens 		 * Get statistics for this dataset, to determine the type of the
420789Sahrens 		 * dataset and clone statistics.  If this fails, the dataset has
421789Sahrens 		 * since been removed, and we're pretty much screwed anyway.
422789Sahrens 		 */
4232082Seschrock 		if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
424789Sahrens 			continue;
425789Sahrens 
426789Sahrens 		/*
427789Sahrens 		 * Add an edge between the parent and the child.
428789Sahrens 		 */
4292082Seschrock 		if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name,
4302082Seschrock 		    zc.zc_objset_stats.dds_creation_txg) != 0)
4312082Seschrock 			return (-1);
432789Sahrens 
433789Sahrens 		/*
434789Sahrens 		 * Iterate over all children
435789Sahrens 		 */
4362082Seschrock 		err = iterate_children(hdl, zgp, zc.zc_name);
4372082Seschrock 		if (err == -1)
4382082Seschrock 			return (-1);
4392082Seschrock 		else if (err == 1)
4402082Seschrock 			ret = 1;
441789Sahrens 
442789Sahrens 		/*
443789Sahrens 		 * Indicate if we found a dataset with a non-zero clone count.
444789Sahrens 		 */
445789Sahrens 		if (zc.zc_objset_stats.dds_num_clones != 0)
4462082Seschrock 			ret = 1;
447789Sahrens 	}
448789Sahrens 
449789Sahrens 	/*
450789Sahrens 	 * Now iterate over all snapshots.
451789Sahrens 	 */
452789Sahrens 	bzero(&zc, sizeof (zc));
453789Sahrens 
454789Sahrens 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
4552082Seschrock 	    ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0;
456789Sahrens 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
457789Sahrens 
458789Sahrens 		/*
459789Sahrens 		 * Get statistics for this dataset, to determine the type of the
460789Sahrens 		 * dataset and clone statistics.  If this fails, the dataset has
461789Sahrens 		 * since been removed, and we're pretty much screwed anyway.
462789Sahrens 		 */
4632082Seschrock 		if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
464789Sahrens 			continue;
465789Sahrens 
466789Sahrens 		/*
467789Sahrens 		 * Add an edge between the parent and the child.
468789Sahrens 		 */
4692082Seschrock 		if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name,
4702082Seschrock 		    zc.zc_objset_stats.dds_creation_txg) != 0)
4712082Seschrock 			return (-1);
472789Sahrens 
473789Sahrens 		/*
474789Sahrens 		 * Indicate if we found a dataset with a non-zero clone count.
475789Sahrens 		 */
476789Sahrens 		if (zc.zc_objset_stats.dds_num_clones != 0)
4772082Seschrock 			ret = 1;
478789Sahrens 	}
479789Sahrens 
480*2474Seschrock 	zvp->zv_visited = VISIT_SEEN;
481789Sahrens 
482789Sahrens 	return (ret);
483789Sahrens }
484789Sahrens 
485789Sahrens /*
486789Sahrens  * Construct a complete graph of all necessary vertices.  First, we iterate over
487789Sahrens  * only our object's children.  If we don't find any cloned snapshots, then we
488789Sahrens  * simple return that.  Otherwise, we have to start at the pool root and iterate
489789Sahrens  * over all datasets.
490789Sahrens  */
491789Sahrens static zfs_graph_t *
4922082Seschrock construct_graph(libzfs_handle_t *hdl, const char *dataset)
493789Sahrens {
4942082Seschrock 	zfs_graph_t *zgp = zfs_graph_create(hdl, ZFS_GRAPH_SIZE);
495789Sahrens 	zfs_cmd_t zc = { 0 };
4962082Seschrock 	int ret = 0;
4972082Seschrock 
4982082Seschrock 	if (zgp == NULL)
4992082Seschrock 		return (zgp);
500789Sahrens 
501789Sahrens 	/*
502789Sahrens 	 * We need to explicitly check whether this dataset has clones or not,
503789Sahrens 	 * since iterate_children() only checks the children.
504789Sahrens 	 */
505789Sahrens 	(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
5062082Seschrock 	(void) ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc);
507789Sahrens 
508789Sahrens 	if (zc.zc_objset_stats.dds_num_clones != 0 ||
5092082Seschrock 	    (ret = iterate_children(hdl, zgp, dataset)) != 0) {
510789Sahrens 		/*
511789Sahrens 		 * Determine pool name and try again.
512789Sahrens 		 */
513789Sahrens 		char *pool, *slash;
514789Sahrens 
515789Sahrens 		if ((slash = strchr(dataset, '/')) != NULL ||
516789Sahrens 		    (slash = strchr(dataset, '@')) != NULL) {
5172082Seschrock 			pool = zfs_alloc(hdl, slash - dataset + 1);
5182082Seschrock 			if (pool == NULL) {
5192082Seschrock 				zfs_graph_destroy(zgp);
5202082Seschrock 				return (NULL);
5212082Seschrock 			}
522789Sahrens 			(void) strncpy(pool, dataset, slash - dataset);
523789Sahrens 			pool[slash - dataset] = '\0';
524789Sahrens 
5252082Seschrock 			if (iterate_children(hdl, zgp, pool) == -1 ||
5262082Seschrock 			    zfs_graph_add(hdl, zgp, pool, NULL, 0) != 0) {
5272082Seschrock 				free(pool);
5282082Seschrock 				zfs_graph_destroy(zgp);
5292082Seschrock 				return (NULL);
5302082Seschrock 			}
531789Sahrens 
532789Sahrens 			free(pool);
533789Sahrens 		}
534789Sahrens 	}
5352082Seschrock 
5362082Seschrock 	if (ret == -1 || zfs_graph_add(hdl, zgp, dataset, NULL, 0) != 0) {
5372082Seschrock 		zfs_graph_destroy(zgp);
5382082Seschrock 		return (NULL);
5392082Seschrock 	}
540789Sahrens 
541789Sahrens 	return (zgp);
542789Sahrens }
543789Sahrens 
544789Sahrens /*
545789Sahrens  * Given a graph, do a recursive topological sort into the given array.  This is
546789Sahrens  * really just a depth first search, so that the deepest nodes appear first.
547789Sahrens  * hijack the 'zv_visited' marker to avoid visiting the same vertex twice.
548789Sahrens  */
5492082Seschrock static int
550*2474Seschrock topo_sort(libzfs_handle_t *hdl, boolean_t allowrecursion, char **result,
551*2474Seschrock     size_t *idx, zfs_vertex_t *zgv)
552789Sahrens {
553789Sahrens 	int i;
554789Sahrens 
555*2474Seschrock 	if (zgv->zv_visited == VISIT_SORT_PRE && !allowrecursion) {
556*2474Seschrock 		/*
557*2474Seschrock 		 * If we've already seen this vertex as part of our depth-first
558*2474Seschrock 		 * search, then we have a cyclic dependency, and we must return
559*2474Seschrock 		 * an error.
560*2474Seschrock 		 */
561*2474Seschrock 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
562*2474Seschrock 		    "recursive dependency at '%s'"),
563*2474Seschrock 		    zgv->zv_dataset);
564*2474Seschrock 		return (zfs_error(hdl, EZFS_RECURSIVE,
565*2474Seschrock 		    dgettext(TEXT_DOMAIN,
566*2474Seschrock 		    "cannot determine dependent datasets")));
567*2474Seschrock 	} else if (zgv->zv_visited >= VISIT_SORT_PRE) {
568*2474Seschrock 		/*
569*2474Seschrock 		 * If we've already processed this as part of the topological
570*2474Seschrock 		 * sort, then don't bother doing so again.
571*2474Seschrock 		 */
572*2474Seschrock 		return (0);
573*2474Seschrock 	}
574*2474Seschrock 
575*2474Seschrock 	zgv->zv_visited = VISIT_SORT_PRE;
576*2474Seschrock 
577789Sahrens 	/* avoid doing a search if we don't have to */
578789Sahrens 	zfs_vertex_sort_edges(zgv);
5792082Seschrock 	for (i = 0; i < zgv->zv_edgecount; i++) {
580*2474Seschrock 		if (topo_sort(hdl, allowrecursion, result, idx,
581*2474Seschrock 		    zgv->zv_edges[i]->ze_dest) != 0)
5822082Seschrock 			return (-1);
5832082Seschrock 	}
584789Sahrens 
585789Sahrens 	/* we may have visited this in the course of the above */
586*2474Seschrock 	if (zgv->zv_visited == VISIT_SORT_POST)
5872082Seschrock 		return (0);
588789Sahrens 
5892082Seschrock 	if ((result[*idx] = zfs_alloc(hdl,
5902082Seschrock 	    strlen(zgv->zv_dataset) + 1)) == NULL)
5912082Seschrock 		return (-1);
5922082Seschrock 
593789Sahrens 	(void) strcpy(result[*idx], zgv->zv_dataset);
594789Sahrens 	*idx += 1;
595*2474Seschrock 	zgv->zv_visited = VISIT_SORT_POST;
5962082Seschrock 	return (0);
597789Sahrens }
598789Sahrens 
599789Sahrens /*
600789Sahrens  * The only public interface for this file.  Do the dirty work of constructing a
601789Sahrens  * child list for the given object.  Construct the graph, do the toplogical
602789Sahrens  * sort, and then return the array of strings to the caller.
603*2474Seschrock  *
604*2474Seschrock  * The 'allowrecursion' parameter controls behavior when cycles are found.  If
605*2474Seschrock  * it is set, the the cycle is ignored and the results returned as if the cycle
606*2474Seschrock  * did not exist.  If it is not set, then the routine will generate an error if
607*2474Seschrock  * a cycle is found.
608789Sahrens  */
609*2474Seschrock int
610*2474Seschrock get_dependents(libzfs_handle_t *hdl, boolean_t allowrecursion,
611*2474Seschrock     const char *dataset, char ***result, size_t *count)
612789Sahrens {
613789Sahrens 	zfs_graph_t *zgp;
614789Sahrens 	zfs_vertex_t *zvp;
615789Sahrens 
6162082Seschrock 	if ((zgp = construct_graph(hdl, dataset)) == NULL)
617*2474Seschrock 		return (-1);
618789Sahrens 
619*2474Seschrock 	if ((*result = zfs_alloc(hdl,
6202082Seschrock 	    zgp->zg_nvertex * sizeof (char *))) == NULL) {
6212082Seschrock 		zfs_graph_destroy(zgp);
622*2474Seschrock 		return (-1);
6232082Seschrock 	}
6242082Seschrock 
6252082Seschrock 	if ((zvp = zfs_graph_lookup(hdl, zgp, dataset, 0)) == NULL) {
626*2474Seschrock 		free(*result);
6272082Seschrock 		zfs_graph_destroy(zgp);
628*2474Seschrock 		return (-1);
6292082Seschrock 	}
630789Sahrens 
631789Sahrens 	*count = 0;
632*2474Seschrock 	if (topo_sort(hdl, allowrecursion, *result, count, zvp) != 0) {
633*2474Seschrock 		free(*result);
6342082Seschrock 		zfs_graph_destroy(zgp);
635*2474Seschrock 		return (-1);
6362082Seschrock 	}
637789Sahrens 
638789Sahrens 	/*
639789Sahrens 	 * Get rid of the last entry, which is our starting vertex and not
640789Sahrens 	 * strictly a dependent.
641789Sahrens 	 */
642789Sahrens 	assert(*count > 0);
643*2474Seschrock 	free((*result)[*count - 1]);
644789Sahrens 	(*count)--;
645789Sahrens 
646789Sahrens 	zfs_graph_destroy(zgp);
647789Sahrens 
648*2474Seschrock 	return (0);
649789Sahrens }
650