1789Sahrens /*
2789Sahrens  * CDDL HEADER START
3789Sahrens  *
4789Sahrens  * The contents of this file are subject to the terms of the
5*1544Seschrock  * Common Development and Distribution License (the "License").
6*1544Seschrock  * You may not use this file except in compliance with the License.
7789Sahrens  *
8789Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9789Sahrens  * or http://www.opensolaris.org/os/licensing.
10789Sahrens  * See the License for the specific language governing permissions
11789Sahrens  * and limitations under the License.
12789Sahrens  *
13789Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14789Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15789Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16789Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17789Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18789Sahrens  *
19789Sahrens  * CDDL HEADER END
20789Sahrens  */
21789Sahrens /*
22*1544Seschrock  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23789Sahrens  * Use is subject to license terms.
24789Sahrens  */
25789Sahrens 
26789Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
27789Sahrens 
28789Sahrens /*
29789Sahrens  * Iterate over all children of the current object.  This includes the normal
30789Sahrens  * dataset hierarchy, but also arbitrary hierarchies due to clones.  We want to
31789Sahrens  * walk all datasets in the pool, and construct a directed graph of the form:
32789Sahrens  *
33789Sahrens  * 			home
34789Sahrens  *                        |
35789Sahrens  *                   +----+----+
36789Sahrens  *                   |         |
37789Sahrens  *                   v         v             ws
38789Sahrens  *                  bar       baz             |
39789Sahrens  *                             |              |
40789Sahrens  *                             v              v
41789Sahrens  *                          @yesterday ----> foo
42789Sahrens  *
43789Sahrens  * In order to construct this graph, we have to walk every dataset in the pool,
44789Sahrens  * because the clone parent is stored as a property of the child, not the
45789Sahrens  * parent.  The parent only keeps track of the number of clones.
46789Sahrens  *
47789Sahrens  * In the normal case (without clones) this would be rather expensive.  To avoid
48789Sahrens  * unnecessary computation, we first try a walk of the subtree hierarchy
49789Sahrens  * starting from the initial node.  At each dataset, we construct a node in the
50789Sahrens  * graph and an edge leading from its parent.  If we don't see any snapshots
51789Sahrens  * with a non-zero clone count, then we are finished.
52789Sahrens  *
53789Sahrens  * If we do find a cloned snapshot, then we finish the walk of the current
54789Sahrens  * subtree, but indicate that we need to do a complete walk.  We then perform a
55789Sahrens  * global walk of all datasets, avoiding the subtree we already processed.
56789Sahrens  *
57789Sahrens  * At the end of this, we'll end up with a directed graph of all relevant (and
58789Sahrens  * possible some irrelevant) datasets in the system.  We need to both find our
59789Sahrens  * limiting subgraph and determine a safe ordering in which to destroy the
60789Sahrens  * datasets.  We do a topological ordering of our graph starting at our target
61789Sahrens  * dataset, and then walk the results in reverse.
62789Sahrens  *
63789Sahrens  * When removing datasets, we want to destroy the snapshots in chronological
64789Sahrens  * order (because this is the most efficient method).  In order to accomplish
65789Sahrens  * this, we store the creation transaction group with each vertex and keep each
66789Sahrens  * vertex's edges sorted according to this value.  The topological sort will
67789Sahrens  * automatically walk the snapshots in the correct order.
68789Sahrens  */
69789Sahrens 
70789Sahrens #include <assert.h>
71789Sahrens #include <stdio.h>
72789Sahrens #include <stdlib.h>
73789Sahrens #include <string.h>
74789Sahrens #include <strings.h>
75789Sahrens #include <unistd.h>
76789Sahrens 
77789Sahrens #include <libzfs.h>
78789Sahrens 
79789Sahrens #include "libzfs_impl.h"
80789Sahrens #include "zfs_namecheck.h"
81789Sahrens 
82789Sahrens #define	MIN_EDGECOUNT	4
83789Sahrens 
84789Sahrens /*
85789Sahrens  * Vertex structure.  Indexed by dataset name, this structure maintains a list
86789Sahrens  * of edges to other vertices.
87789Sahrens  */
88789Sahrens struct zfs_edge;
89789Sahrens typedef struct zfs_vertex {
90789Sahrens 	char			zv_dataset[ZFS_MAXNAMELEN];
91789Sahrens 	struct zfs_vertex	*zv_next;
92789Sahrens 	int			zv_visited;
93789Sahrens 	uint64_t		zv_txg;
94789Sahrens 	struct zfs_edge		**zv_edges;
95789Sahrens 	int			zv_edgecount;
96789Sahrens 	int			zv_edgealloc;
97789Sahrens } zfs_vertex_t;
98789Sahrens 
99789Sahrens /*
100789Sahrens  * Edge structure.  Simply maintains a pointer to the destination vertex.  There
101789Sahrens  * is no need to store the source vertex, since we only use edges in the context
102789Sahrens  * of the source vertex.
103789Sahrens  */
104789Sahrens typedef struct zfs_edge {
105789Sahrens 	zfs_vertex_t		*ze_dest;
106789Sahrens 	struct zfs_edge		*ze_next;
107789Sahrens } zfs_edge_t;
108789Sahrens 
109789Sahrens #define	ZFS_GRAPH_SIZE		1027	/* this could be dynamic some day */
110789Sahrens 
111789Sahrens /*
112789Sahrens  * Graph structure.  Vertices are maintained in a hash indexed by dataset name.
113789Sahrens  */
114789Sahrens typedef struct zfs_graph {
115789Sahrens 	zfs_vertex_t		**zg_hash;
116789Sahrens 	size_t			zg_size;
117789Sahrens 	size_t			zg_nvertex;
118789Sahrens } zfs_graph_t;
119789Sahrens 
120789Sahrens /*
121789Sahrens  * Allocate a new edge pointing to the target vertex.
122789Sahrens  */
123789Sahrens static zfs_edge_t *
124789Sahrens zfs_edge_create(zfs_vertex_t *dest)
125789Sahrens {
126789Sahrens 	zfs_edge_t *zep = zfs_malloc(sizeof (zfs_edge_t));
127789Sahrens 
128789Sahrens 	zep->ze_dest = dest;
129789Sahrens 
130789Sahrens 	return (zep);
131789Sahrens }
132789Sahrens 
133789Sahrens /*
134789Sahrens  * Destroy an edge.
135789Sahrens  */
136789Sahrens static void
137789Sahrens zfs_edge_destroy(zfs_edge_t *zep)
138789Sahrens {
139789Sahrens 	free(zep);
140789Sahrens }
141789Sahrens 
142789Sahrens /*
143789Sahrens  * Allocate a new vertex with the given name.
144789Sahrens  */
145789Sahrens static zfs_vertex_t *
146789Sahrens zfs_vertex_create(const char *dataset)
147789Sahrens {
148789Sahrens 	zfs_vertex_t *zvp = zfs_malloc(sizeof (zfs_vertex_t));
149789Sahrens 
150789Sahrens 	assert(strlen(dataset) < ZFS_MAXNAMELEN);
151789Sahrens 
152789Sahrens 	(void) strlcpy(zvp->zv_dataset, dataset, sizeof (zvp->zv_dataset));
153789Sahrens 
154789Sahrens 	zvp->zv_edges = zfs_malloc(MIN_EDGECOUNT * sizeof (void *));
155789Sahrens 	zvp->zv_edgealloc = MIN_EDGECOUNT;
156789Sahrens 
157789Sahrens 	return (zvp);
158789Sahrens }
159789Sahrens 
160789Sahrens /*
161789Sahrens  * Destroy a vertex.  Frees up any associated edges.
162789Sahrens  */
163789Sahrens static void
164789Sahrens zfs_vertex_destroy(zfs_vertex_t *zvp)
165789Sahrens {
166789Sahrens 	int i;
167789Sahrens 
168789Sahrens 	for (i = 0; i < zvp->zv_edgecount; i++)
169789Sahrens 		zfs_edge_destroy(zvp->zv_edges[i]);
170789Sahrens 
171789Sahrens 	free(zvp->zv_edges);
172789Sahrens 	free(zvp);
173789Sahrens }
174789Sahrens 
175789Sahrens /*
176789Sahrens  * Given a vertex, add an edge to the destination vertex.
177789Sahrens  */
178789Sahrens static void
179789Sahrens zfs_vertex_add_edge(zfs_vertex_t *zvp, zfs_vertex_t *dest)
180789Sahrens {
181789Sahrens 	zfs_edge_t *zep = zfs_edge_create(dest);
182789Sahrens 
183789Sahrens 	if (zvp->zv_edgecount == zvp->zv_edgealloc) {
184789Sahrens 		zfs_edge_t **newedges = zfs_malloc(zvp->zv_edgealloc * 2 *
185789Sahrens 		    sizeof (void *));
186789Sahrens 
187789Sahrens 		bcopy(zvp->zv_edges, newedges,
188789Sahrens 		    zvp->zv_edgealloc * sizeof (void *));
189789Sahrens 
190789Sahrens 		zvp->zv_edgealloc *= 2;
191789Sahrens 		free(zvp->zv_edges);
192789Sahrens 		zvp->zv_edges = newedges;
193789Sahrens 	}
194789Sahrens 
195789Sahrens 	zvp->zv_edges[zvp->zv_edgecount++] = zep;
196789Sahrens }
197789Sahrens 
198789Sahrens static int
199789Sahrens zfs_edge_compare(const void *a, const void *b)
200789Sahrens {
201789Sahrens 	const zfs_edge_t *ea = *((zfs_edge_t **)a);
202789Sahrens 	const zfs_edge_t *eb = *((zfs_edge_t **)b);
203789Sahrens 
204789Sahrens 	if (ea->ze_dest->zv_txg < eb->ze_dest->zv_txg)
205789Sahrens 		return (-1);
206789Sahrens 	if (ea->ze_dest->zv_txg > eb->ze_dest->zv_txg)
207789Sahrens 		return (1);
208789Sahrens 	return (0);
209789Sahrens }
210789Sahrens 
211789Sahrens /*
212789Sahrens  * Sort the given vertex edges according to the creation txg of each vertex.
213789Sahrens  */
214789Sahrens static void
215789Sahrens zfs_vertex_sort_edges(zfs_vertex_t *zvp)
216789Sahrens {
217789Sahrens 	if (zvp->zv_edgecount == 0)
218789Sahrens 		return;
219789Sahrens 
220789Sahrens 	qsort(zvp->zv_edges, zvp->zv_edgecount, sizeof (void *),
221789Sahrens 	    zfs_edge_compare);
222789Sahrens }
223789Sahrens 
224789Sahrens /*
225789Sahrens  * Construct a new graph object.  We allow the size to be specified as a
226789Sahrens  * parameter so in the future we can size the hash according to the number of
227789Sahrens  * datasets in the pool.
228789Sahrens  */
229789Sahrens static zfs_graph_t *
230789Sahrens zfs_graph_create(size_t size)
231789Sahrens {
232789Sahrens 	zfs_graph_t *zgp = zfs_malloc(sizeof (zfs_graph_t));
233789Sahrens 
234789Sahrens 	zgp->zg_size = size;
235789Sahrens 	zgp->zg_hash = zfs_malloc(size * sizeof (zfs_vertex_t *));
236789Sahrens 
237789Sahrens 	return (zgp);
238789Sahrens }
239789Sahrens 
240789Sahrens /*
241789Sahrens  * Destroy a graph object.  We have to iterate over all the hash chains,
242789Sahrens  * destroying each vertex in the process.
243789Sahrens  */
244789Sahrens static void
245789Sahrens zfs_graph_destroy(zfs_graph_t *zgp)
246789Sahrens {
247789Sahrens 	int i;
248789Sahrens 	zfs_vertex_t *current, *next;
249789Sahrens 
250789Sahrens 	for (i = 0; i < zgp->zg_size; i++) {
251789Sahrens 		current = zgp->zg_hash[i];
252789Sahrens 		while (current != NULL) {
253789Sahrens 			next = current->zv_next;
254789Sahrens 			zfs_vertex_destroy(current);
255789Sahrens 			current = next;
256789Sahrens 		}
257789Sahrens 	}
258789Sahrens 
259789Sahrens 	free(zgp->zg_hash);
260789Sahrens 	free(zgp);
261789Sahrens }
262789Sahrens 
263789Sahrens /*
264789Sahrens  * Graph hash function.  Classic bernstein k=33 hash function, taken from
265789Sahrens  * usr/src/cmd/sgs/tools/common/strhash.c
266789Sahrens  */
267789Sahrens static size_t
268789Sahrens zfs_graph_hash(zfs_graph_t *zgp, const char *str)
269789Sahrens {
270789Sahrens 	size_t hash = 5381;
271789Sahrens 	int c;
272789Sahrens 
273789Sahrens 	while ((c = *str++) != 0)
274789Sahrens 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
275789Sahrens 
276789Sahrens 	return (hash % zgp->zg_size);
277789Sahrens }
278789Sahrens 
279789Sahrens /*
280789Sahrens  * Given a dataset name, finds the associated vertex, creating it if necessary.
281789Sahrens  */
282789Sahrens static zfs_vertex_t *
283789Sahrens zfs_graph_lookup(zfs_graph_t *zgp, const char *dataset, uint64_t txg)
284789Sahrens {
285789Sahrens 	size_t idx = zfs_graph_hash(zgp, dataset);
286789Sahrens 	zfs_vertex_t *zvp;
287789Sahrens 
288789Sahrens 	for (zvp = zgp->zg_hash[idx]; zvp != NULL; zvp = zvp->zv_next) {
289789Sahrens 		if (strcmp(zvp->zv_dataset, dataset) == 0) {
290789Sahrens 			if (zvp->zv_txg == 0)
291789Sahrens 				zvp->zv_txg = txg;
292789Sahrens 			return (zvp);
293789Sahrens 		}
294789Sahrens 	}
295789Sahrens 
296789Sahrens 	zvp = zfs_vertex_create(dataset);
297789Sahrens 	zvp->zv_next = zgp->zg_hash[idx];
298789Sahrens 	zvp->zv_txg = txg;
299789Sahrens 	zgp->zg_hash[idx] = zvp;
300789Sahrens 	zgp->zg_nvertex++;
301789Sahrens 
302789Sahrens 	return (zvp);
303789Sahrens }
304789Sahrens 
305789Sahrens /*
306789Sahrens  * Given two dataset names, create an edge between them.  For the source vertex,
307789Sahrens  * mark 'zv_visited' to indicate that we have seen this vertex, and not simply
308789Sahrens  * created it as a destination of another edge.  If 'dest' is NULL, then this
309789Sahrens  * is an individual vertex (i.e. the starting vertex), so don't add an edge.
310789Sahrens  */
311789Sahrens static void
312789Sahrens zfs_graph_add(zfs_graph_t *zgp, const char *source, const char *dest,
313789Sahrens     uint64_t txg)
314789Sahrens {
315789Sahrens 	zfs_vertex_t *svp, *dvp;
316789Sahrens 
317789Sahrens 	svp = zfs_graph_lookup(zgp, source, 0);
318789Sahrens 	svp->zv_visited = 1;
319789Sahrens 	if (dest != NULL) {
320789Sahrens 		dvp = zfs_graph_lookup(zgp, dest, txg);
321789Sahrens 		zfs_vertex_add_edge(svp, dvp);
322789Sahrens 	}
323789Sahrens }
324789Sahrens 
325789Sahrens /*
326789Sahrens  * Iterate over all children of the given dataset, adding any vertices as
327789Sahrens  * necessary.  Returns 0 if no cloned snapshots were seen, 1 otherwise.  This is
328789Sahrens  * a simple recursive algorithm - the ZFS namespace typically is very flat.  We
329789Sahrens  * manually invoke the necessary ioctl() calls to avoid the overhead and
330789Sahrens  * additional semantics of zfs_open().
331789Sahrens  */
332789Sahrens static int
333789Sahrens iterate_children(zfs_graph_t *zgp, const char *dataset)
334789Sahrens {
335789Sahrens 	zfs_cmd_t zc = { 0 };
336789Sahrens 	int ret = 0;
337789Sahrens 	zfs_vertex_t *zvp;
338789Sahrens 
339789Sahrens 	/*
340789Sahrens 	 * Look up the source vertex, and avoid it if we've seen it before.
341789Sahrens 	 */
342789Sahrens 	zvp = zfs_graph_lookup(zgp, dataset, 0);
343789Sahrens 	if (zvp->zv_visited)
344789Sahrens 		return (0);
345789Sahrens 
346789Sahrens 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
347*1544Seschrock 	    zfs_ioctl(ZFS_IOC_DATASET_LIST_NEXT, &zc) == 0;
348789Sahrens 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
349789Sahrens 
350789Sahrens 		/*
351789Sahrens 		 * Ignore private dataset names.
352789Sahrens 		 */
353789Sahrens 		if (dataset_name_hidden(zc.zc_name))
354789Sahrens 			continue;
355789Sahrens 
356789Sahrens 		/*
357789Sahrens 		 * Get statistics for this dataset, to determine the type of the
358789Sahrens 		 * dataset and clone statistics.  If this fails, the dataset has
359789Sahrens 		 * since been removed, and we're pretty much screwed anyway.
360789Sahrens 		 */
361*1544Seschrock 		if (zfs_ioctl(ZFS_IOC_OBJSET_STATS, &zc) != 0)
362789Sahrens 			continue;
363789Sahrens 
364789Sahrens 		/*
365789Sahrens 		 * Add an edge between the parent and the child.
366789Sahrens 		 */
367789Sahrens 		zfs_graph_add(zgp, dataset, zc.zc_name,
368789Sahrens 		    zc.zc_objset_stats.dds_creation_txg);
369789Sahrens 
370789Sahrens 		/*
371789Sahrens 		 * If this dataset has a clone parent, add an appropriate edge.
372789Sahrens 		 */
373789Sahrens 		if (zc.zc_objset_stats.dds_clone_of[0] != '\0')
374789Sahrens 			zfs_graph_add(zgp, zc.zc_objset_stats.dds_clone_of,
375789Sahrens 			    zc.zc_name, zc.zc_objset_stats.dds_creation_txg);
376789Sahrens 
377789Sahrens 		/*
378789Sahrens 		 * Iterate over all children
379789Sahrens 		 */
380789Sahrens 		ret |= iterate_children(zgp, zc.zc_name);
381789Sahrens 
382789Sahrens 		/*
383789Sahrens 		 * Indicate if we found a dataset with a non-zero clone count.
384789Sahrens 		 */
385789Sahrens 		if (zc.zc_objset_stats.dds_num_clones != 0)
386789Sahrens 			ret |= 1;
387789Sahrens 	}
388789Sahrens 
389789Sahrens 	/*
390789Sahrens 	 * Now iterate over all snapshots.
391789Sahrens 	 */
392789Sahrens 	bzero(&zc, sizeof (zc));
393789Sahrens 
394789Sahrens 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
395*1544Seschrock 	    zfs_ioctl(ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0;
396789Sahrens 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
397789Sahrens 
398789Sahrens 		/*
399789Sahrens 		 * Get statistics for this dataset, to determine the type of the
400789Sahrens 		 * dataset and clone statistics.  If this fails, the dataset has
401789Sahrens 		 * since been removed, and we're pretty much screwed anyway.
402789Sahrens 		 */
403*1544Seschrock 		if (zfs_ioctl(ZFS_IOC_OBJSET_STATS, &zc) != 0)
404789Sahrens 			continue;
405789Sahrens 
406789Sahrens 		/*
407789Sahrens 		 * Add an edge between the parent and the child.
408789Sahrens 		 */
409789Sahrens 		zfs_graph_add(zgp, dataset, zc.zc_name,
410789Sahrens 		    zc.zc_objset_stats.dds_creation_txg);
411789Sahrens 
412789Sahrens 		/*
413789Sahrens 		 * Indicate if we found a dataset with a non-zero clone count.
414789Sahrens 		 */
415789Sahrens 		if (zc.zc_objset_stats.dds_num_clones != 0)
416789Sahrens 			ret |= 1;
417789Sahrens 	}
418789Sahrens 
419789Sahrens 	zvp->zv_visited = 1;
420789Sahrens 
421789Sahrens 	return (ret);
422789Sahrens }
423789Sahrens 
424789Sahrens /*
425789Sahrens  * Construct a complete graph of all necessary vertices.  First, we iterate over
426789Sahrens  * only our object's children.  If we don't find any cloned snapshots, then we
427789Sahrens  * simple return that.  Otherwise, we have to start at the pool root and iterate
428789Sahrens  * over all datasets.
429789Sahrens  */
430789Sahrens static zfs_graph_t *
431789Sahrens construct_graph(const char *dataset)
432789Sahrens {
433789Sahrens 	zfs_graph_t *zgp = zfs_graph_create(ZFS_GRAPH_SIZE);
434789Sahrens 	zfs_cmd_t zc = { 0 };
435789Sahrens 
436789Sahrens 	/*
437789Sahrens 	 * We need to explicitly check whether this dataset has clones or not,
438789Sahrens 	 * since iterate_children() only checks the children.
439789Sahrens 	 */
440789Sahrens 	(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
441*1544Seschrock 	(void) zfs_ioctl(ZFS_IOC_OBJSET_STATS, &zc);
442789Sahrens 
443789Sahrens 	if (zc.zc_objset_stats.dds_num_clones != 0 ||
444789Sahrens 	    iterate_children(zgp, dataset) != 0) {
445789Sahrens 		/*
446789Sahrens 		 * Determine pool name and try again.
447789Sahrens 		 */
448789Sahrens 		char *pool, *slash;
449789Sahrens 
450789Sahrens 		if ((slash = strchr(dataset, '/')) != NULL ||
451789Sahrens 		    (slash = strchr(dataset, '@')) != NULL) {
452789Sahrens 			pool = zfs_malloc(slash - dataset + 1);
453789Sahrens 			(void) strncpy(pool, dataset, slash - dataset);
454789Sahrens 			pool[slash - dataset] = '\0';
455789Sahrens 
456789Sahrens 			(void) iterate_children(zgp, pool);
457789Sahrens 			zfs_graph_add(zgp, pool, NULL, 0);
458789Sahrens 
459789Sahrens 			free(pool);
460789Sahrens 		}
461789Sahrens 	}
462789Sahrens 	zfs_graph_add(zgp, dataset, NULL, 0);
463789Sahrens 
464789Sahrens 	return (zgp);
465789Sahrens }
466789Sahrens 
467789Sahrens /*
468789Sahrens  * Given a graph, do a recursive topological sort into the given array.  This is
469789Sahrens  * really just a depth first search, so that the deepest nodes appear first.
470789Sahrens  * hijack the 'zv_visited' marker to avoid visiting the same vertex twice.
471789Sahrens  */
472789Sahrens static void
473789Sahrens topo_sort(char **result, size_t *idx, zfs_vertex_t *zgv)
474789Sahrens {
475789Sahrens 	int i;
476789Sahrens 
477789Sahrens 	/* avoid doing a search if we don't have to */
478789Sahrens 	if (zgv->zv_visited == 2)
479789Sahrens 		return;
480789Sahrens 
481789Sahrens 	zfs_vertex_sort_edges(zgv);
482789Sahrens 	for (i = 0; i < zgv->zv_edgecount; i++)
483789Sahrens 		topo_sort(result, idx, zgv->zv_edges[i]->ze_dest);
484789Sahrens 
485789Sahrens 	/* we may have visited this in the course of the above */
486789Sahrens 	if (zgv->zv_visited == 2)
487789Sahrens 		return;
488789Sahrens 
489789Sahrens 	result[*idx] = zfs_malloc(strlen(zgv->zv_dataset) + 1);
490789Sahrens 	(void) strcpy(result[*idx], zgv->zv_dataset);
491789Sahrens 	*idx += 1;
492789Sahrens 	zgv->zv_visited = 2;
493789Sahrens }
494789Sahrens 
495789Sahrens /*
496789Sahrens  * The only public interface for this file.  Do the dirty work of constructing a
497789Sahrens  * child list for the given object.  Construct the graph, do the toplogical
498789Sahrens  * sort, and then return the array of strings to the caller.
499789Sahrens  */
500789Sahrens char **
501789Sahrens get_dependents(const char *dataset, size_t *count)
502789Sahrens {
503789Sahrens 	char **result;
504789Sahrens 	zfs_graph_t *zgp;
505789Sahrens 	zfs_vertex_t *zvp;
506789Sahrens 
507789Sahrens 	zgp = construct_graph(dataset);
508789Sahrens 	result = zfs_malloc(zgp->zg_nvertex * sizeof (char *));
509789Sahrens 
510789Sahrens 	zvp = zfs_graph_lookup(zgp, dataset, 0);
511789Sahrens 
512789Sahrens 	*count = 0;
513789Sahrens 	topo_sort(result, count, zvp);
514789Sahrens 
515789Sahrens 	/*
516789Sahrens 	 * Get rid of the last entry, which is our starting vertex and not
517789Sahrens 	 * strictly a dependent.
518789Sahrens 	 */
519789Sahrens 	assert(*count > 0);
520789Sahrens 	free(result[*count - 1]);
521789Sahrens 	(*count)--;
522789Sahrens 
523789Sahrens 	zfs_graph_destroy(zgp);
524789Sahrens 
525789Sahrens 	return (result);
526789Sahrens }
527