xref: /onnv-gate/usr/src/lib/libzfs/common/libzfs_graph.c (revision 9396:f41cf682d0d3)
1789Sahrens /*
2789Sahrens  * CDDL HEADER START
3789Sahrens  *
4789Sahrens  * The contents of this file are subject to the terms of the
51544Seschrock  * Common Development and Distribution License (the "License").
61544Seschrock  * You may not use this file except in compliance with the License.
7789Sahrens  *
8789Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9789Sahrens  * or http://www.opensolaris.org/os/licensing.
10789Sahrens  * See the License for the specific language governing permissions
11789Sahrens  * and limitations under the License.
12789Sahrens  *
13789Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14789Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15789Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16789Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17789Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18789Sahrens  *
19789Sahrens  * CDDL HEADER END
20789Sahrens  */
21789Sahrens /*
22*9396SMatthew.Ahrens@Sun.COM  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23789Sahrens  * Use is subject to license terms.
24789Sahrens  */
25789Sahrens 
26789Sahrens /*
27789Sahrens  * Iterate over all children of the current object.  This includes the normal
28789Sahrens  * dataset hierarchy, but also arbitrary hierarchies due to clones.  We want to
29789Sahrens  * walk all datasets in the pool, and construct a directed graph of the form:
30789Sahrens  *
31789Sahrens  * 			home
32789Sahrens  *                        |
33789Sahrens  *                   +----+----+
34789Sahrens  *                   |         |
35789Sahrens  *                   v         v             ws
36789Sahrens  *                  bar       baz             |
37789Sahrens  *                             |              |
38789Sahrens  *                             v              v
39789Sahrens  *                          @yesterday ----> foo
40789Sahrens  *
41789Sahrens  * In order to construct this graph, we have to walk every dataset in the pool,
42789Sahrens  * because the clone parent is stored as a property of the child, not the
43789Sahrens  * parent.  The parent only keeps track of the number of clones.
44789Sahrens  *
45789Sahrens  * In the normal case (without clones) this would be rather expensive.  To avoid
46789Sahrens  * unnecessary computation, we first try a walk of the subtree hierarchy
47789Sahrens  * starting from the initial node.  At each dataset, we construct a node in the
48789Sahrens  * graph and an edge leading from its parent.  If we don't see any snapshots
49789Sahrens  * with a non-zero clone count, then we are finished.
50789Sahrens  *
51789Sahrens  * If we do find a cloned snapshot, then we finish the walk of the current
52789Sahrens  * subtree, but indicate that we need to do a complete walk.  We then perform a
53789Sahrens  * global walk of all datasets, avoiding the subtree we already processed.
54789Sahrens  *
55789Sahrens  * At the end of this, we'll end up with a directed graph of all relevant (and
56789Sahrens  * possible some irrelevant) datasets in the system.  We need to both find our
57789Sahrens  * limiting subgraph and determine a safe ordering in which to destroy the
58789Sahrens  * datasets.  We do a topological ordering of our graph starting at our target
59789Sahrens  * dataset, and then walk the results in reverse.
60789Sahrens  *
612474Seschrock  * It's possible for the graph to have cycles if, for example, the user renames
622474Seschrock  * a clone to be the parent of its origin snapshot.  The user can request to
632474Seschrock  * generate an error in this case, or ignore the cycle and continue.
642474Seschrock  *
65789Sahrens  * When removing datasets, we want to destroy the snapshots in chronological
66789Sahrens  * order (because this is the most efficient method).  In order to accomplish
67789Sahrens  * this, we store the creation transaction group with each vertex and keep each
68789Sahrens  * vertex's edges sorted according to this value.  The topological sort will
69789Sahrens  * automatically walk the snapshots in the correct order.
70789Sahrens  */
71789Sahrens 
72789Sahrens #include <assert.h>
732474Seschrock #include <libintl.h>
74789Sahrens #include <stdio.h>
75789Sahrens #include <stdlib.h>
76789Sahrens #include <string.h>
77789Sahrens #include <strings.h>
78789Sahrens #include <unistd.h>
79789Sahrens 
80789Sahrens #include <libzfs.h>
81789Sahrens 
82789Sahrens #include "libzfs_impl.h"
83789Sahrens #include "zfs_namecheck.h"
84789Sahrens 
85789Sahrens #define	MIN_EDGECOUNT	4
86789Sahrens 
87789Sahrens /*
88789Sahrens  * Vertex structure.  Indexed by dataset name, this structure maintains a list
89789Sahrens  * of edges to other vertices.
90789Sahrens  */
91789Sahrens struct zfs_edge;
92789Sahrens typedef struct zfs_vertex {
93789Sahrens 	char			zv_dataset[ZFS_MAXNAMELEN];
94789Sahrens 	struct zfs_vertex	*zv_next;
95789Sahrens 	int			zv_visited;
96789Sahrens 	uint64_t		zv_txg;
97789Sahrens 	struct zfs_edge		**zv_edges;
98789Sahrens 	int			zv_edgecount;
99789Sahrens 	int			zv_edgealloc;
100789Sahrens } zfs_vertex_t;
101789Sahrens 
1022474Seschrock enum {
1032474Seschrock 	VISIT_SEEN = 1,
1042474Seschrock 	VISIT_SORT_PRE,
1052474Seschrock 	VISIT_SORT_POST
1062474Seschrock };
1072474Seschrock 
108789Sahrens /*
109789Sahrens  * Edge structure.  Simply maintains a pointer to the destination vertex.  There
110789Sahrens  * is no need to store the source vertex, since we only use edges in the context
111789Sahrens  * of the source vertex.
112789Sahrens  */
113789Sahrens typedef struct zfs_edge {
114789Sahrens 	zfs_vertex_t		*ze_dest;
115789Sahrens 	struct zfs_edge		*ze_next;
116789Sahrens } zfs_edge_t;
117789Sahrens 
118789Sahrens #define	ZFS_GRAPH_SIZE		1027	/* this could be dynamic some day */
119789Sahrens 
120789Sahrens /*
121789Sahrens  * Graph structure.  Vertices are maintained in a hash indexed by dataset name.
122789Sahrens  */
123789Sahrens typedef struct zfs_graph {
124789Sahrens 	zfs_vertex_t		**zg_hash;
125789Sahrens 	size_t			zg_size;
126789Sahrens 	size_t			zg_nvertex;
1276027Srm160521 	const char		*zg_root;
1286027Srm160521 	int			zg_clone_count;
129789Sahrens } zfs_graph_t;
130789Sahrens 
131789Sahrens /*
132789Sahrens  * Allocate a new edge pointing to the target vertex.
133789Sahrens  */
134789Sahrens static zfs_edge_t *
zfs_edge_create(libzfs_handle_t * hdl,zfs_vertex_t * dest)1352082Seschrock zfs_edge_create(libzfs_handle_t *hdl, zfs_vertex_t *dest)
136789Sahrens {
1372082Seschrock 	zfs_edge_t *zep = zfs_alloc(hdl, sizeof (zfs_edge_t));
1382082Seschrock 
1392082Seschrock 	if (zep == NULL)
1402082Seschrock 		return (NULL);
141789Sahrens 
142789Sahrens 	zep->ze_dest = dest;
143789Sahrens 
144789Sahrens 	return (zep);
145789Sahrens }
146789Sahrens 
147789Sahrens /*
148789Sahrens  * Destroy an edge.
149789Sahrens  */
150789Sahrens static void
zfs_edge_destroy(zfs_edge_t * zep)151789Sahrens zfs_edge_destroy(zfs_edge_t *zep)
152789Sahrens {
153789Sahrens 	free(zep);
154789Sahrens }
155789Sahrens 
156789Sahrens /*
157789Sahrens  * Allocate a new vertex with the given name.
158789Sahrens  */
159789Sahrens static zfs_vertex_t *
zfs_vertex_create(libzfs_handle_t * hdl,const char * dataset)1602082Seschrock zfs_vertex_create(libzfs_handle_t *hdl, const char *dataset)
161789Sahrens {
1622082Seschrock 	zfs_vertex_t *zvp = zfs_alloc(hdl, sizeof (zfs_vertex_t));
1632082Seschrock 
1642082Seschrock 	if (zvp == NULL)
1652082Seschrock 		return (NULL);
166789Sahrens 
167789Sahrens 	assert(strlen(dataset) < ZFS_MAXNAMELEN);
168789Sahrens 
169789Sahrens 	(void) strlcpy(zvp->zv_dataset, dataset, sizeof (zvp->zv_dataset));
170789Sahrens 
1712082Seschrock 	if ((zvp->zv_edges = zfs_alloc(hdl,
1722082Seschrock 	    MIN_EDGECOUNT * sizeof (void *))) == NULL) {
1732082Seschrock 		free(zvp);
1742082Seschrock 		return (NULL);
1752082Seschrock 	}
1762082Seschrock 
177789Sahrens 	zvp->zv_edgealloc = MIN_EDGECOUNT;
178789Sahrens 
179789Sahrens 	return (zvp);
180789Sahrens }
181789Sahrens 
182789Sahrens /*
183789Sahrens  * Destroy a vertex.  Frees up any associated edges.
184789Sahrens  */
185789Sahrens static void
zfs_vertex_destroy(zfs_vertex_t * zvp)186789Sahrens zfs_vertex_destroy(zfs_vertex_t *zvp)
187789Sahrens {
188789Sahrens 	int i;
189789Sahrens 
190789Sahrens 	for (i = 0; i < zvp->zv_edgecount; i++)
191789Sahrens 		zfs_edge_destroy(zvp->zv_edges[i]);
192789Sahrens 
193789Sahrens 	free(zvp->zv_edges);
194789Sahrens 	free(zvp);
195789Sahrens }
196789Sahrens 
197789Sahrens /*
198789Sahrens  * Given a vertex, add an edge to the destination vertex.
199789Sahrens  */
2002082Seschrock static int
zfs_vertex_add_edge(libzfs_handle_t * hdl,zfs_vertex_t * zvp,zfs_vertex_t * dest)2012082Seschrock zfs_vertex_add_edge(libzfs_handle_t *hdl, zfs_vertex_t *zvp,
2022082Seschrock     zfs_vertex_t *dest)
203789Sahrens {
2042082Seschrock 	zfs_edge_t *zep = zfs_edge_create(hdl, dest);
2052082Seschrock 
2062082Seschrock 	if (zep == NULL)
2072082Seschrock 		return (-1);
208789Sahrens 
209789Sahrens 	if (zvp->zv_edgecount == zvp->zv_edgealloc) {
2102676Seschrock 		void *ptr;
211789Sahrens 
2122676Seschrock 		if ((ptr = zfs_realloc(hdl, zvp->zv_edges,
2132676Seschrock 		    zvp->zv_edgealloc * sizeof (void *),
2142676Seschrock 		    zvp->zv_edgealloc * 2 * sizeof (void *))) == NULL)
2152082Seschrock 			return (-1);
2162082Seschrock 
2172676Seschrock 		zvp->zv_edges = ptr;
218789Sahrens 		zvp->zv_edgealloc *= 2;
219789Sahrens 	}
220789Sahrens 
221789Sahrens 	zvp->zv_edges[zvp->zv_edgecount++] = zep;
2222082Seschrock 
2232082Seschrock 	return (0);
224789Sahrens }
225789Sahrens 
226789Sahrens static int
zfs_edge_compare(const void * a,const void * b)227789Sahrens zfs_edge_compare(const void *a, const void *b)
228789Sahrens {
229789Sahrens 	const zfs_edge_t *ea = *((zfs_edge_t **)a);
230789Sahrens 	const zfs_edge_t *eb = *((zfs_edge_t **)b);
231789Sahrens 
232789Sahrens 	if (ea->ze_dest->zv_txg < eb->ze_dest->zv_txg)
233789Sahrens 		return (-1);
234789Sahrens 	if (ea->ze_dest->zv_txg > eb->ze_dest->zv_txg)
235789Sahrens 		return (1);
236789Sahrens 	return (0);
237789Sahrens }
238789Sahrens 
239789Sahrens /*
240789Sahrens  * Sort the given vertex edges according to the creation txg of each vertex.
241789Sahrens  */
242789Sahrens static void
zfs_vertex_sort_edges(zfs_vertex_t * zvp)243789Sahrens zfs_vertex_sort_edges(zfs_vertex_t *zvp)
244789Sahrens {
245789Sahrens 	if (zvp->zv_edgecount == 0)
246789Sahrens 		return;
247789Sahrens 
248789Sahrens 	qsort(zvp->zv_edges, zvp->zv_edgecount, sizeof (void *),
249789Sahrens 	    zfs_edge_compare);
250789Sahrens }
251789Sahrens 
252789Sahrens /*
253789Sahrens  * Construct a new graph object.  We allow the size to be specified as a
254789Sahrens  * parameter so in the future we can size the hash according to the number of
255789Sahrens  * datasets in the pool.
256789Sahrens  */
257789Sahrens static zfs_graph_t *
zfs_graph_create(libzfs_handle_t * hdl,const char * dataset,size_t size)2586027Srm160521 zfs_graph_create(libzfs_handle_t *hdl, const char *dataset, size_t size)
259789Sahrens {
2602082Seschrock 	zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t));
2612082Seschrock 
2622082Seschrock 	if (zgp == NULL)
2632082Seschrock 		return (NULL);
264789Sahrens 
265789Sahrens 	zgp->zg_size = size;
2662082Seschrock 	if ((zgp->zg_hash = zfs_alloc(hdl,
2672082Seschrock 	    size * sizeof (zfs_vertex_t *))) == NULL) {
2682082Seschrock 		free(zgp);
2692082Seschrock 		return (NULL);
2702082Seschrock 	}
271789Sahrens 
2726027Srm160521 	zgp->zg_root = dataset;
2736027Srm160521 	zgp->zg_clone_count = 0;
2746027Srm160521 
275789Sahrens 	return (zgp);
276789Sahrens }
277789Sahrens 
278789Sahrens /*
279789Sahrens  * Destroy a graph object.  We have to iterate over all the hash chains,
280789Sahrens  * destroying each vertex in the process.
281789Sahrens  */
282789Sahrens static void
zfs_graph_destroy(zfs_graph_t * zgp)283789Sahrens zfs_graph_destroy(zfs_graph_t *zgp)
284789Sahrens {
285789Sahrens 	int i;
286789Sahrens 	zfs_vertex_t *current, *next;
287789Sahrens 
288789Sahrens 	for (i = 0; i < zgp->zg_size; i++) {
289789Sahrens 		current = zgp->zg_hash[i];
290789Sahrens 		while (current != NULL) {
291789Sahrens 			next = current->zv_next;
292789Sahrens 			zfs_vertex_destroy(current);
293789Sahrens 			current = next;
294789Sahrens 		}
295789Sahrens 	}
296789Sahrens 
297789Sahrens 	free(zgp->zg_hash);
298789Sahrens 	free(zgp);
299789Sahrens }
300789Sahrens 
301789Sahrens /*
302789Sahrens  * Graph hash function.  Classic bernstein k=33 hash function, taken from
303789Sahrens  * usr/src/cmd/sgs/tools/common/strhash.c
304789Sahrens  */
305789Sahrens static size_t
zfs_graph_hash(zfs_graph_t * zgp,const char * str)306789Sahrens zfs_graph_hash(zfs_graph_t *zgp, const char *str)
307789Sahrens {
308789Sahrens 	size_t hash = 5381;
309789Sahrens 	int c;
310789Sahrens 
311789Sahrens 	while ((c = *str++) != 0)
312789Sahrens 		hash = ((hash << 5) + hash) + c; /* hash * 33 + c */
313789Sahrens 
314789Sahrens 	return (hash % zgp->zg_size);
315789Sahrens }
316789Sahrens 
317789Sahrens /*
318789Sahrens  * Given a dataset name, finds the associated vertex, creating it if necessary.
319789Sahrens  */
320789Sahrens static zfs_vertex_t *
zfs_graph_lookup(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * dataset,uint64_t txg)3212082Seschrock zfs_graph_lookup(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset,
3222082Seschrock     uint64_t txg)
323789Sahrens {
324789Sahrens 	size_t idx = zfs_graph_hash(zgp, dataset);
325789Sahrens 	zfs_vertex_t *zvp;
326789Sahrens 
327789Sahrens 	for (zvp = zgp->zg_hash[idx]; zvp != NULL; zvp = zvp->zv_next) {
328789Sahrens 		if (strcmp(zvp->zv_dataset, dataset) == 0) {
329789Sahrens 			if (zvp->zv_txg == 0)
330789Sahrens 				zvp->zv_txg = txg;
331789Sahrens 			return (zvp);
332789Sahrens 		}
333789Sahrens 	}
334789Sahrens 
3352082Seschrock 	if ((zvp = zfs_vertex_create(hdl, dataset)) == NULL)
3362082Seschrock 		return (NULL);
3372082Seschrock 
338789Sahrens 	zvp->zv_next = zgp->zg_hash[idx];
339789Sahrens 	zvp->zv_txg = txg;
340789Sahrens 	zgp->zg_hash[idx] = zvp;
341789Sahrens 	zgp->zg_nvertex++;
342789Sahrens 
343789Sahrens 	return (zvp);
344789Sahrens }
345789Sahrens 
346789Sahrens /*
347789Sahrens  * Given two dataset names, create an edge between them.  For the source vertex,
348789Sahrens  * mark 'zv_visited' to indicate that we have seen this vertex, and not simply
349789Sahrens  * created it as a destination of another edge.  If 'dest' is NULL, then this
350789Sahrens  * is an individual vertex (i.e. the starting vertex), so don't add an edge.
351789Sahrens  */
3522082Seschrock static int
zfs_graph_add(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * source,const char * dest,uint64_t txg)3532082Seschrock zfs_graph_add(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *source,
3542082Seschrock     const char *dest, uint64_t txg)
355789Sahrens {
356789Sahrens 	zfs_vertex_t *svp, *dvp;
357789Sahrens 
3582082Seschrock 	if ((svp = zfs_graph_lookup(hdl, zgp, source, 0)) == NULL)
3592082Seschrock 		return (-1);
3602474Seschrock 	svp->zv_visited = VISIT_SEEN;
361789Sahrens 	if (dest != NULL) {
3622082Seschrock 		dvp = zfs_graph_lookup(hdl, zgp, dest, txg);
3632082Seschrock 		if (dvp == NULL)
3642082Seschrock 			return (-1);
3652082Seschrock 		if (zfs_vertex_add_edge(hdl, svp, dvp) != 0)
3662082Seschrock 			return (-1);
367789Sahrens 	}
3682082Seschrock 
3692082Seschrock 	return (0);
370789Sahrens }
371789Sahrens 
372789Sahrens /*
3736027Srm160521  * Iterate over all children of the given dataset, adding any vertices
3746027Srm160521  * as necessary.  Returns -1 if there was an error, or 0 otherwise.
3756027Srm160521  * This is a simple recursive algorithm - the ZFS namespace typically
3766027Srm160521  * is very flat.  We manually invoke the necessary ioctl() calls to
3776027Srm160521  * avoid the overhead and additional semantics of zfs_open().
378789Sahrens  */
379789Sahrens static int
iterate_children(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * dataset)3802082Seschrock iterate_children(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset)
381789Sahrens {
382789Sahrens 	zfs_cmd_t zc = { 0 };
383789Sahrens 	zfs_vertex_t *zvp;
384789Sahrens 
385789Sahrens 	/*
386789Sahrens 	 * Look up the source vertex, and avoid it if we've seen it before.
387789Sahrens 	 */
3882082Seschrock 	zvp = zfs_graph_lookup(hdl, zgp, dataset, 0);
3892082Seschrock 	if (zvp == NULL)
3902082Seschrock 		return (-1);
3912474Seschrock 	if (zvp->zv_visited == VISIT_SEEN)
392789Sahrens 		return (0);
393789Sahrens 
3942474Seschrock 	/*
3956027Srm160521 	 * Iterate over all children
3962474Seschrock 	 */
397789Sahrens 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
3982082Seschrock 	    ioctl(hdl->libzfs_fd, ZFS_IOC_DATASET_LIST_NEXT, &zc) == 0;
399789Sahrens 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
400789Sahrens 		/*
401789Sahrens 		 * Get statistics for this dataset, to determine the type of the
402789Sahrens 		 * dataset and clone statistics.  If this fails, the dataset has
403789Sahrens 		 * since been removed, and we're pretty much screwed anyway.
404789Sahrens 		 */
4056027Srm160521 		zc.zc_objset_stats.dds_origin[0] = '\0';
4062082Seschrock 		if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
407789Sahrens 			continue;
408789Sahrens 
4096027Srm160521 		if (zc.zc_objset_stats.dds_origin[0] != '\0') {
4106027Srm160521 			if (zfs_graph_add(hdl, zgp,
4116027Srm160521 			    zc.zc_objset_stats.dds_origin, zc.zc_name,
4126027Srm160521 			    zc.zc_objset_stats.dds_creation_txg) != 0)
4136027Srm160521 				return (-1);
4146027Srm160521 			/*
4156027Srm160521 			 * Count origins only if they are contained in the graph
4166027Srm160521 			 */
4176027Srm160521 			if (isa_child_of(zc.zc_objset_stats.dds_origin,
4186027Srm160521 			    zgp->zg_root))
4196027Srm160521 				zgp->zg_clone_count--;
4206027Srm160521 		}
4216027Srm160521 
422789Sahrens 		/*
423789Sahrens 		 * Add an edge between the parent and the child.
424789Sahrens 		 */
4252082Seschrock 		if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name,
4262082Seschrock 		    zc.zc_objset_stats.dds_creation_txg) != 0)
4272082Seschrock 			return (-1);
428789Sahrens 
429789Sahrens 		/*
4306027Srm160521 		 * Recursively visit child
431789Sahrens 		 */
4326027Srm160521 		if (iterate_children(hdl, zgp, zc.zc_name))
4332082Seschrock 			return (-1);
434789Sahrens 	}
435789Sahrens 
436789Sahrens 	/*
437789Sahrens 	 * Now iterate over all snapshots.
438789Sahrens 	 */
439789Sahrens 	bzero(&zc, sizeof (zc));
440789Sahrens 
441789Sahrens 	for ((void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
4422082Seschrock 	    ioctl(hdl->libzfs_fd, ZFS_IOC_SNAPSHOT_LIST_NEXT, &zc) == 0;
443789Sahrens 	    (void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name))) {
444789Sahrens 
445789Sahrens 		/*
446789Sahrens 		 * Get statistics for this dataset, to determine the type of the
447789Sahrens 		 * dataset and clone statistics.  If this fails, the dataset has
448789Sahrens 		 * since been removed, and we're pretty much screwed anyway.
449789Sahrens 		 */
4502082Seschrock 		if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
451789Sahrens 			continue;
452789Sahrens 
453789Sahrens 		/*
454789Sahrens 		 * Add an edge between the parent and the child.
455789Sahrens 		 */
4562082Seschrock 		if (zfs_graph_add(hdl, zgp, dataset, zc.zc_name,
4572082Seschrock 		    zc.zc_objset_stats.dds_creation_txg) != 0)
4582082Seschrock 			return (-1);
459789Sahrens 
4606027Srm160521 		zgp->zg_clone_count += zc.zc_objset_stats.dds_num_clones;
461789Sahrens 	}
462789Sahrens 
4632474Seschrock 	zvp->zv_visited = VISIT_SEEN;
464789Sahrens 
4656027Srm160521 	return (0);
466789Sahrens }
467789Sahrens 
468789Sahrens /*
4696027Srm160521  * Returns false if there are no snapshots with dependent clones in this
4706027Srm160521  * subtree or if all of those clones are also in this subtree.  Returns
4716027Srm160521  * true if there is an error or there are external dependents.
4726027Srm160521  */
4736027Srm160521 static boolean_t
external_dependents(libzfs_handle_t * hdl,zfs_graph_t * zgp,const char * dataset)4746027Srm160521 external_dependents(libzfs_handle_t *hdl, zfs_graph_t *zgp, const char *dataset)
4756027Srm160521 {
4766027Srm160521 	zfs_cmd_t zc = { 0 };
4776027Srm160521 
4786027Srm160521 	/*
4796027Srm160521 	 * Check whether this dataset is a clone or has clones since
4806027Srm160521 	 * iterate_children() only checks the children.
4816027Srm160521 	 */
4826027Srm160521 	(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
4836027Srm160521 	if (ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc) != 0)
4846027Srm160521 		return (B_TRUE);
4856027Srm160521 
4866027Srm160521 	if (zc.zc_objset_stats.dds_origin[0] != '\0') {
4876027Srm160521 		if (zfs_graph_add(hdl, zgp,
4886027Srm160521 		    zc.zc_objset_stats.dds_origin, zc.zc_name,
4896027Srm160521 		    zc.zc_objset_stats.dds_creation_txg) != 0)
4906027Srm160521 			return (B_TRUE);
4916027Srm160521 		if (isa_child_of(zc.zc_objset_stats.dds_origin, dataset))
4926027Srm160521 			zgp->zg_clone_count--;
4936027Srm160521 	}
4946027Srm160521 
4956027Srm160521 	if ((zc.zc_objset_stats.dds_num_clones) ||
4966027Srm160521 	    iterate_children(hdl, zgp, dataset))
4976027Srm160521 		return (B_TRUE);
4986027Srm160521 
4996027Srm160521 	return (zgp->zg_clone_count != 0);
5006027Srm160521 }
5016027Srm160521 
5026027Srm160521 /*
5036027Srm160521  * Construct a complete graph of all necessary vertices.  First, iterate over
5046027Srm160521  * only our object's children.  If no cloned snapshots are found, or all of
5056027Srm160521  * the cloned snapshots are in this subtree then return a graph of the subtree.
5066027Srm160521  * Otherwise, start at the root of the pool and iterate over all datasets.
507789Sahrens  */
508789Sahrens static zfs_graph_t *
construct_graph(libzfs_handle_t * hdl,const char * dataset)5092082Seschrock construct_graph(libzfs_handle_t *hdl, const char *dataset)
510789Sahrens {
5116027Srm160521 	zfs_graph_t *zgp = zfs_graph_create(hdl, dataset, ZFS_GRAPH_SIZE);
5122082Seschrock 	int ret = 0;
5132082Seschrock 
5142082Seschrock 	if (zgp == NULL)
5152082Seschrock 		return (zgp);
516789Sahrens 
5176027Srm160521 	if ((strchr(dataset, '/') == NULL) ||
5186027Srm160521 	    (external_dependents(hdl, zgp, dataset))) {
519789Sahrens 		/*
520789Sahrens 		 * Determine pool name and try again.
521789Sahrens 		 */
5226148Srm160521 		int len = strcspn(dataset, "/@") + 1;
5236148Srm160521 		char *pool = zfs_alloc(hdl, len);
524789Sahrens 
5256148Srm160521 		if (pool == NULL) {
5266148Srm160521 			zfs_graph_destroy(zgp);
5276148Srm160521 			return (NULL);
5286148Srm160521 		}
5296148Srm160521 		(void) strlcpy(pool, dataset, len);
530789Sahrens 
5316148Srm160521 		if (iterate_children(hdl, zgp, pool) == -1 ||
5326148Srm160521 		    zfs_graph_add(hdl, zgp, pool, NULL, 0) != 0) {
533789Sahrens 			free(pool);
5346148Srm160521 			zfs_graph_destroy(zgp);
5356148Srm160521 			return (NULL);
536789Sahrens 		}
5376148Srm160521 		free(pool);
538789Sahrens 	}
5392082Seschrock 
5402082Seschrock 	if (ret == -1 || zfs_graph_add(hdl, zgp, dataset, NULL, 0) != 0) {
5412082Seschrock 		zfs_graph_destroy(zgp);
5422082Seschrock 		return (NULL);
5432082Seschrock 	}
544789Sahrens 
545789Sahrens 	return (zgp);
546789Sahrens }
547789Sahrens 
548789Sahrens /*
549789Sahrens  * Given a graph, do a recursive topological sort into the given array.  This is
550789Sahrens  * really just a depth first search, so that the deepest nodes appear first.
551789Sahrens  * hijack the 'zv_visited' marker to avoid visiting the same vertex twice.
552789Sahrens  */
5532082Seschrock static int
topo_sort(libzfs_handle_t * hdl,boolean_t allowrecursion,char ** result,size_t * idx,zfs_vertex_t * zgv)5542474Seschrock topo_sort(libzfs_handle_t *hdl, boolean_t allowrecursion, char **result,
5552474Seschrock     size_t *idx, zfs_vertex_t *zgv)
556789Sahrens {
557789Sahrens 	int i;
558789Sahrens 
5592474Seschrock 	if (zgv->zv_visited == VISIT_SORT_PRE && !allowrecursion) {
5602474Seschrock 		/*
5612474Seschrock 		 * If we've already seen this vertex as part of our depth-first
5622474Seschrock 		 * search, then we have a cyclic dependency, and we must return
5632474Seschrock 		 * an error.
5642474Seschrock 		 */
5652474Seschrock 		zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
5662474Seschrock 		    "recursive dependency at '%s'"),
5672474Seschrock 		    zgv->zv_dataset);
5682474Seschrock 		return (zfs_error(hdl, EZFS_RECURSIVE,
5692474Seschrock 		    dgettext(TEXT_DOMAIN,
5702474Seschrock 		    "cannot determine dependent datasets")));
5712474Seschrock 	} else if (zgv->zv_visited >= VISIT_SORT_PRE) {
5722474Seschrock 		/*
5732474Seschrock 		 * If we've already processed this as part of the topological
5742474Seschrock 		 * sort, then don't bother doing so again.
5752474Seschrock 		 */
5762474Seschrock 		return (0);
5772474Seschrock 	}
5782474Seschrock 
5792474Seschrock 	zgv->zv_visited = VISIT_SORT_PRE;
5802474Seschrock 
581789Sahrens 	/* avoid doing a search if we don't have to */
582789Sahrens 	zfs_vertex_sort_edges(zgv);
5832082Seschrock 	for (i = 0; i < zgv->zv_edgecount; i++) {
5842474Seschrock 		if (topo_sort(hdl, allowrecursion, result, idx,
5852474Seschrock 		    zgv->zv_edges[i]->ze_dest) != 0)
5862082Seschrock 			return (-1);
5872082Seschrock 	}
588789Sahrens 
589789Sahrens 	/* we may have visited this in the course of the above */
5902474Seschrock 	if (zgv->zv_visited == VISIT_SORT_POST)
5912082Seschrock 		return (0);
592789Sahrens 
5932082Seschrock 	if ((result[*idx] = zfs_alloc(hdl,
5942082Seschrock 	    strlen(zgv->zv_dataset) + 1)) == NULL)
5952082Seschrock 		return (-1);
5962082Seschrock 
597789Sahrens 	(void) strcpy(result[*idx], zgv->zv_dataset);
598789Sahrens 	*idx += 1;
5992474Seschrock 	zgv->zv_visited = VISIT_SORT_POST;
6002082Seschrock 	return (0);
601789Sahrens }
602789Sahrens 
603789Sahrens /*
604789Sahrens  * The only public interface for this file.  Do the dirty work of constructing a
605789Sahrens  * child list for the given object.  Construct the graph, do the toplogical
606789Sahrens  * sort, and then return the array of strings to the caller.
6072474Seschrock  *
6082474Seschrock  * The 'allowrecursion' parameter controls behavior when cycles are found.  If
6092474Seschrock  * it is set, the the cycle is ignored and the results returned as if the cycle
6102474Seschrock  * did not exist.  If it is not set, then the routine will generate an error if
6112474Seschrock  * a cycle is found.
612789Sahrens  */
6132474Seschrock int
get_dependents(libzfs_handle_t * hdl,boolean_t allowrecursion,const char * dataset,char *** result,size_t * count)6142474Seschrock get_dependents(libzfs_handle_t *hdl, boolean_t allowrecursion,
6152474Seschrock     const char *dataset, char ***result, size_t *count)
616789Sahrens {
617789Sahrens 	zfs_graph_t *zgp;
618789Sahrens 	zfs_vertex_t *zvp;
619789Sahrens 
6202082Seschrock 	if ((zgp = construct_graph(hdl, dataset)) == NULL)
6212474Seschrock 		return (-1);
622789Sahrens 
6232474Seschrock 	if ((*result = zfs_alloc(hdl,
6242082Seschrock 	    zgp->zg_nvertex * sizeof (char *))) == NULL) {
6252082Seschrock 		zfs_graph_destroy(zgp);
6262474Seschrock 		return (-1);
6272082Seschrock 	}
6282082Seschrock 
6292082Seschrock 	if ((zvp = zfs_graph_lookup(hdl, zgp, dataset, 0)) == NULL) {
6302474Seschrock 		free(*result);
6312082Seschrock 		zfs_graph_destroy(zgp);
6322474Seschrock 		return (-1);
6332082Seschrock 	}
634789Sahrens 
635789Sahrens 	*count = 0;
6362474Seschrock 	if (topo_sort(hdl, allowrecursion, *result, count, zvp) != 0) {
6372474Seschrock 		free(*result);
6382082Seschrock 		zfs_graph_destroy(zgp);
6392474Seschrock 		return (-1);
6402082Seschrock 	}
641789Sahrens 
642789Sahrens 	/*
643789Sahrens 	 * Get rid of the last entry, which is our starting vertex and not
644789Sahrens 	 * strictly a dependent.
645789Sahrens 	 */
646789Sahrens 	assert(*count > 0);
6472474Seschrock 	free((*result)[*count - 1]);
648789Sahrens 	(*count)--;
649789Sahrens 
650789Sahrens 	zfs_graph_destroy(zgp);
651789Sahrens 
6522474Seschrock 	return (0);
653789Sahrens }
654