1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <assert.h>
27 #include <stdio.h>
28 #include <stdlib.h>
29 #include <stddef.h>
30 #include <unistd.h>
31 #include <ctype.h>
32 #include <fcntl.h>
33 #include <string.h>
34 #include <strings.h>
35 #include <memory.h>
36 #include <errno.h>
37 #include <dirent.h>
38 #include <signal.h>
39 #include <limits.h>
40 #include <libgen.h>
41 #include <sys/types.h>
42 #include <sys/stat.h>
43 #include <sys/systeminfo.h>
44 #include <sys/sysmacros.h>
45
46 #include "libproc.h"
47 #include "Pcontrol.h"
48 #include "Putil.h"
49 #include "Psymtab_machelf.h"
50
51 static file_info_t *build_map_symtab(struct ps_prochandle *, map_info_t *);
52 static map_info_t *exec_map(struct ps_prochandle *);
53 static map_info_t *object_to_map(struct ps_prochandle *, Lmid_t, const char *);
54 static map_info_t *object_name_to_map(struct ps_prochandle *,
55 Lmid_t, const char *);
56 static GElf_Sym *sym_by_name(sym_tbl_t *, const char *, GElf_Sym *, uint_t *);
57 static int read_ehdr32(struct ps_prochandle *, Elf32_Ehdr *, uint_t *,
58 uintptr_t);
59 #ifdef _LP64
60 static int read_ehdr64(struct ps_prochandle *, Elf64_Ehdr *, uint_t *,
61 uintptr_t);
62 #endif
63
64 #define DATA_TYPES \
65 ((1 << STT_OBJECT) | (1 << STT_FUNC) | \
66 (1 << STT_COMMON) | (1 << STT_TLS))
67 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0)
68
69 #define MA_RWX (MA_READ | MA_WRITE | MA_EXEC)
70
71 typedef enum {
72 PRO_NATURAL,
73 PRO_BYADDR,
74 PRO_BYNAME
75 } pr_order_t;
76
77 static int
addr_cmp(const void * aa,const void * bb)78 addr_cmp(const void *aa, const void *bb)
79 {
80 uintptr_t a = *((uintptr_t *)aa);
81 uintptr_t b = *((uintptr_t *)bb);
82
83 if (a > b)
84 return (1);
85 if (a < b)
86 return (-1);
87 return (0);
88 }
89
90 /*
91 * This function creates a list of addresses for a load object's sections.
92 * The list is in ascending address order and alternates start address
93 * then end address for each section we're interested in. The function
94 * returns a pointer to the list, which must be freed by the caller.
95 */
96 static uintptr_t *
get_saddrs(struct ps_prochandle * P,uintptr_t ehdr_start,uint_t * n)97 get_saddrs(struct ps_prochandle *P, uintptr_t ehdr_start, uint_t *n)
98 {
99 uintptr_t a, addr, *addrs, last = 0;
100 uint_t i, naddrs = 0, unordered = 0;
101
102 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
103 Elf32_Ehdr ehdr;
104 Elf32_Phdr phdr;
105 uint_t phnum;
106
107 if (read_ehdr32(P, &ehdr, &phnum, ehdr_start) != 0)
108 return (NULL);
109
110 addrs = malloc(sizeof (uintptr_t) * phnum * 2);
111 a = ehdr_start + ehdr.e_phoff;
112 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
113 if (Pread(P, &phdr, sizeof (phdr), a) !=
114 sizeof (phdr)) {
115 free(addrs);
116 return (NULL);
117 }
118 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
119 continue;
120
121 addr = phdr.p_vaddr;
122 if (ehdr.e_type == ET_DYN)
123 addr += ehdr_start;
124 if (last > addr)
125 unordered = 1;
126 addrs[naddrs++] = addr;
127 addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
128 }
129 #ifdef _LP64
130 } else {
131 Elf64_Ehdr ehdr;
132 Elf64_Phdr phdr;
133 uint_t phnum;
134
135 if (read_ehdr64(P, &ehdr, &phnum, ehdr_start) != 0)
136 return (NULL);
137
138 addrs = malloc(sizeof (uintptr_t) * phnum * 2);
139 a = ehdr_start + ehdr.e_phoff;
140 for (i = 0; i < phnum; i++, a += ehdr.e_phentsize) {
141 if (Pread(P, &phdr, sizeof (phdr), a) !=
142 sizeof (phdr)) {
143 free(addrs);
144 return (NULL);
145 }
146 if (phdr.p_type != PT_LOAD || phdr.p_memsz == 0)
147 continue;
148
149 addr = phdr.p_vaddr;
150 if (ehdr.e_type == ET_DYN)
151 addr += ehdr_start;
152 if (last > addr)
153 unordered = 1;
154 addrs[naddrs++] = addr;
155 addrs[naddrs++] = last = addr + phdr.p_memsz - 1;
156 }
157 #endif
158 }
159
160 if (unordered)
161 qsort(addrs, naddrs, sizeof (uintptr_t), addr_cmp);
162
163 *n = naddrs;
164 return (addrs);
165 }
166
167 /*
168 * Allocation function for a new file_info_t
169 */
170 file_info_t *
file_info_new(struct ps_prochandle * P,map_info_t * mptr)171 file_info_new(struct ps_prochandle *P, map_info_t *mptr)
172 {
173 file_info_t *fptr;
174 map_info_t *mp;
175 uintptr_t mstart, mend, sstart, send;
176 uint_t i;
177
178 if ((fptr = calloc(1, sizeof (file_info_t))) == NULL)
179 return (NULL);
180
181 list_link(fptr, &P->file_head);
182 (void) strcpy(fptr->file_pname, mptr->map_pmap.pr_mapname);
183 mptr->map_file = fptr;
184 fptr->file_ref = 1;
185 fptr->file_fd = -1;
186 P->num_files++;
187
188 /*
189 * To figure out which map_info_t instances correspond to the mappings
190 * for this load object we try to obtain the start and end address
191 * for each section of our in-memory ELF image. If successful, we
192 * walk down the list of addresses and the list of map_info_t
193 * instances in lock step to correctly find the mappings that
194 * correspond to this load object.
195 */
196 if ((fptr->file_saddrs = get_saddrs(P, mptr->map_pmap.pr_vaddr,
197 &fptr->file_nsaddrs)) == NULL)
198 return (fptr);
199
200 mp = P->mappings;
201 i = 0;
202 while (mp < P->mappings + P->map_count && i < fptr->file_nsaddrs) {
203
204 /* Calculate the start and end of the mapping and section */
205 mstart = mp->map_pmap.pr_vaddr;
206 mend = mp->map_pmap.pr_vaddr + mp->map_pmap.pr_size;
207 sstart = fptr->file_saddrs[i];
208 send = fptr->file_saddrs[i + 1];
209
210 if (mend <= sstart) {
211 /* This mapping is below the current section */
212 mp++;
213 } else if (mstart >= send) {
214 /* This mapping is above the current section */
215 i += 2;
216 } else {
217 /* This mapping overlaps the current section */
218 if (mp->map_file == NULL) {
219 dprintf("file_info_new: associating "
220 "segment at %p\n",
221 (void *)mp->map_pmap.pr_vaddr);
222 mp->map_file = fptr;
223 fptr->file_ref++;
224 } else {
225 dprintf("file_info_new: segment at %p "
226 "already associated with %s\n",
227 (void *)mp->map_pmap.pr_vaddr,
228 (mp == mptr ? "this file" :
229 mp->map_file->file_pname));
230 }
231 mp++;
232 }
233 }
234
235 return (fptr);
236 }
237
238 /*
239 * Deallocation function for a file_info_t
240 */
241 static void
file_info_free(struct ps_prochandle * P,file_info_t * fptr)242 file_info_free(struct ps_prochandle *P, file_info_t *fptr)
243 {
244 if (--fptr->file_ref == 0) {
245 list_unlink(fptr);
246 if (fptr->file_symtab.sym_elf) {
247 (void) elf_end(fptr->file_symtab.sym_elf);
248 free(fptr->file_symtab.sym_elfmem);
249 }
250 if (fptr->file_symtab.sym_byname)
251 free(fptr->file_symtab.sym_byname);
252 if (fptr->file_symtab.sym_byaddr)
253 free(fptr->file_symtab.sym_byaddr);
254
255 if (fptr->file_dynsym.sym_elf) {
256 (void) elf_end(fptr->file_dynsym.sym_elf);
257 free(fptr->file_dynsym.sym_elfmem);
258 }
259 if (fptr->file_dynsym.sym_byname)
260 free(fptr->file_dynsym.sym_byname);
261 if (fptr->file_dynsym.sym_byaddr)
262 free(fptr->file_dynsym.sym_byaddr);
263
264 if (fptr->file_lo)
265 free(fptr->file_lo);
266 if (fptr->file_lname)
267 free(fptr->file_lname);
268 if (fptr->file_rname)
269 free(fptr->file_rname);
270 if (fptr->file_elf)
271 (void) elf_end(fptr->file_elf);
272 if (fptr->file_elfmem != NULL)
273 free(fptr->file_elfmem);
274 if (fptr->file_fd >= 0)
275 (void) close(fptr->file_fd);
276 if (fptr->file_ctfp) {
277 ctf_close(fptr->file_ctfp);
278 free(fptr->file_ctf_buf);
279 }
280 if (fptr->file_saddrs)
281 free(fptr->file_saddrs);
282 free(fptr);
283 P->num_files--;
284 }
285 }
286
287 /*
288 * Deallocation function for a map_info_t
289 */
290 static void
map_info_free(struct ps_prochandle * P,map_info_t * mptr)291 map_info_free(struct ps_prochandle *P, map_info_t *mptr)
292 {
293 file_info_t *fptr;
294
295 if ((fptr = mptr->map_file) != NULL) {
296 if (fptr->file_map == mptr)
297 fptr->file_map = NULL;
298 file_info_free(P, fptr);
299 }
300 if (P->execname && mptr == P->map_exec) {
301 free(P->execname);
302 P->execname = NULL;
303 }
304 if (P->auxv && (mptr == P->map_exec || mptr == P->map_ldso)) {
305 free(P->auxv);
306 P->auxv = NULL;
307 P->nauxv = 0;
308 }
309 if (mptr == P->map_exec)
310 P->map_exec = NULL;
311 if (mptr == P->map_ldso)
312 P->map_ldso = NULL;
313 }
314
315 /*
316 * Call-back function for librtld_db to iterate through all of its shared
317 * libraries. We use this to get the load object names for the mappings.
318 */
319 static int
map_iter(const rd_loadobj_t * lop,void * cd)320 map_iter(const rd_loadobj_t *lop, void *cd)
321 {
322 char buf[PATH_MAX];
323 struct ps_prochandle *P = cd;
324 map_info_t *mptr;
325 file_info_t *fptr;
326
327 dprintf("encountered rd object at %p\n", (void *)lop->rl_base);
328
329 if ((mptr = Paddr2mptr(P, lop->rl_base)) == NULL) {
330 dprintf("map_iter: base address doesn't match any mapping\n");
331 return (1); /* Base address does not match any mapping */
332 }
333
334 if ((fptr = mptr->map_file) == NULL &&
335 (fptr = file_info_new(P, mptr)) == NULL) {
336 dprintf("map_iter: failed to allocate a new file_info_t\n");
337 return (1); /* Failed to allocate a new file_info_t */
338 }
339
340 if ((fptr->file_lo == NULL) &&
341 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
342 dprintf("map_iter: failed to allocate rd_loadobj_t\n");
343 file_info_free(P, fptr);
344 return (1); /* Failed to allocate rd_loadobj_t */
345 }
346
347 fptr->file_map = mptr;
348 *fptr->file_lo = *lop;
349
350 fptr->file_lo->rl_plt_base = fptr->file_plt_base;
351 fptr->file_lo->rl_plt_size = fptr->file_plt_size;
352
353 if (fptr->file_lname) {
354 free(fptr->file_lname);
355 fptr->file_lname = NULL;
356 fptr->file_lbase = NULL;
357 }
358 if (fptr->file_rname) {
359 free(fptr->file_rname);
360 fptr->file_rname = NULL;
361 fptr->file_rbase = NULL;
362 }
363
364 if (Pread_string(P, buf, sizeof (buf), lop->rl_nameaddr) > 0) {
365 if ((fptr->file_lname = strdup(buf)) != NULL)
366 fptr->file_lbase = basename(fptr->file_lname);
367 } else {
368 dprintf("map_iter: failed to read string at %p\n",
369 (void *)lop->rl_nameaddr);
370 }
371
372 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
373 ((fptr->file_rname = strdup(buf)) != NULL))
374 fptr->file_rbase = basename(fptr->file_rname);
375
376 dprintf("loaded rd object %s lmid %lx\n",
377 fptr->file_lname ? buf : "<NULL>", lop->rl_lmident);
378 return (1);
379 }
380
381 static void
map_set(struct ps_prochandle * P,map_info_t * mptr,const char * lname)382 map_set(struct ps_prochandle *P, map_info_t *mptr, const char *lname)
383 {
384 file_info_t *fptr;
385 char buf[PATH_MAX];
386
387 if ((fptr = mptr->map_file) == NULL &&
388 (fptr = file_info_new(P, mptr)) == NULL)
389 return; /* Failed to allocate a new file_info_t */
390
391 fptr->file_map = mptr;
392
393 if ((fptr->file_lo == NULL) &&
394 (fptr->file_lo = malloc(sizeof (rd_loadobj_t))) == NULL) {
395 file_info_free(P, fptr);
396 return; /* Failed to allocate rd_loadobj_t */
397 }
398
399 (void) memset(fptr->file_lo, 0, sizeof (rd_loadobj_t));
400 fptr->file_lo->rl_base = mptr->map_pmap.pr_vaddr;
401 fptr->file_lo->rl_bend =
402 mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
403
404 fptr->file_lo->rl_plt_base = fptr->file_plt_base;
405 fptr->file_lo->rl_plt_size = fptr->file_plt_size;
406
407 if ((fptr->file_lname == NULL) &&
408 (fptr->file_lname = strdup(lname)) != NULL)
409 fptr->file_lbase = basename(fptr->file_lname);
410
411 if ((Pfindmap(P, mptr, buf, sizeof (buf)) != NULL) &&
412 ((fptr->file_rname = strdup(buf)) != NULL))
413 fptr->file_rbase = basename(fptr->file_rname);
414 }
415
416 static void
load_static_maps(struct ps_prochandle * P)417 load_static_maps(struct ps_prochandle *P)
418 {
419 map_info_t *mptr;
420
421 /*
422 * Construct the map for the a.out.
423 */
424 if ((mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_EXEC)) != NULL)
425 map_set(P, mptr, "a.out");
426
427 /*
428 * If the dynamic linker exists for this process,
429 * construct the map for it.
430 */
431 if (Pgetauxval(P, AT_BASE) != -1L &&
432 (mptr = object_name_to_map(P, PR_LMID_EVERY, PR_OBJ_LDSO)) != NULL)
433 map_set(P, mptr, "ld.so.1");
434 }
435
436 /*
437 * Go through all the address space mappings, validating or updating
438 * the information already gathered, or gathering new information.
439 *
440 * This function is only called when we suspect that the mappings have changed
441 * because this is the first time we're calling it or because of rtld activity.
442 */
443 void
Pupdate_maps(struct ps_prochandle * P)444 Pupdate_maps(struct ps_prochandle *P)
445 {
446 char mapfile[PATH_MAX];
447 int mapfd;
448 struct stat statb;
449 prmap_t *Pmap = NULL;
450 prmap_t *pmap;
451 ssize_t nmap;
452 int i;
453 uint_t oldmapcount;
454 map_info_t *newmap, *newp;
455 map_info_t *mptr;
456
457 if (P->info_valid || P->state == PS_UNDEAD)
458 return;
459
460 Preadauxvec(P);
461
462 (void) snprintf(mapfile, sizeof (mapfile), "%s/%d/map",
463 procfs_path, (int)P->pid);
464 if ((mapfd = open(mapfile, O_RDONLY)) < 0 ||
465 fstat(mapfd, &statb) != 0 ||
466 statb.st_size < sizeof (prmap_t) ||
467 (Pmap = malloc(statb.st_size)) == NULL ||
468 (nmap = pread(mapfd, Pmap, statb.st_size, 0L)) <= 0 ||
469 (nmap /= sizeof (prmap_t)) == 0) {
470 if (Pmap != NULL)
471 free(Pmap);
472 if (mapfd >= 0)
473 (void) close(mapfd);
474 Preset_maps(P); /* utter failure; destroy tables */
475 return;
476 }
477 (void) close(mapfd);
478
479 if ((newmap = calloc(1, nmap * sizeof (map_info_t))) == NULL)
480 return;
481
482 /*
483 * We try to merge any file information we may have for existing
484 * mappings, to avoid having to rebuild the file info.
485 */
486 mptr = P->mappings;
487 pmap = Pmap;
488 newp = newmap;
489 oldmapcount = P->map_count;
490 for (i = 0; i < nmap; i++, pmap++, newp++) {
491
492 if (oldmapcount == 0) {
493 /*
494 * We've exhausted all the old mappings. Every new
495 * mapping should be added.
496 */
497 newp->map_pmap = *pmap;
498
499 } else if (pmap->pr_vaddr == mptr->map_pmap.pr_vaddr &&
500 pmap->pr_size == mptr->map_pmap.pr_size &&
501 pmap->pr_offset == mptr->map_pmap.pr_offset &&
502 (pmap->pr_mflags & ~(MA_BREAK | MA_STACK)) ==
503 (mptr->map_pmap.pr_mflags & ~(MA_BREAK | MA_STACK)) &&
504 pmap->pr_pagesize == mptr->map_pmap.pr_pagesize &&
505 pmap->pr_shmid == mptr->map_pmap.pr_shmid &&
506 strcmp(pmap->pr_mapname, mptr->map_pmap.pr_mapname) == 0) {
507
508 /*
509 * This mapping matches exactly. Copy over the old
510 * mapping, taking care to get the latest flags.
511 * Make sure the associated file_info_t is updated
512 * appropriately.
513 */
514 *newp = *mptr;
515 if (P->map_exec == mptr)
516 P->map_exec = newp;
517 if (P->map_ldso == mptr)
518 P->map_ldso = newp;
519 newp->map_pmap.pr_mflags = pmap->pr_mflags;
520 if (mptr->map_file != NULL &&
521 mptr->map_file->file_map == mptr)
522 mptr->map_file->file_map = newp;
523 oldmapcount--;
524 mptr++;
525
526 } else if (pmap->pr_vaddr + pmap->pr_size >
527 mptr->map_pmap.pr_vaddr) {
528
529 /*
530 * The old mapping doesn't exist any more, remove it
531 * from the list.
532 */
533 map_info_free(P, mptr);
534 oldmapcount--;
535 i--;
536 newp--;
537 pmap--;
538 mptr++;
539
540 } else {
541
542 /*
543 * This is a new mapping, add it directly.
544 */
545 newp->map_pmap = *pmap;
546 }
547 }
548
549 /*
550 * Free any old maps
551 */
552 while (oldmapcount) {
553 map_info_free(P, mptr);
554 oldmapcount--;
555 mptr++;
556 }
557
558 free(Pmap);
559 if (P->mappings != NULL)
560 free(P->mappings);
561 P->mappings = newmap;
562 P->map_count = P->map_alloc = nmap;
563 P->info_valid = 1;
564
565 /*
566 * Consult librtld_db to get the load object
567 * names for all of the shared libraries.
568 */
569 if (P->rap != NULL)
570 (void) rd_loadobj_iter(P->rap, map_iter, P);
571 }
572
573 /*
574 * Update all of the mappings and rtld_db as if by Pupdate_maps(), and then
575 * forcibly cache all of the symbol tables associated with all object files.
576 */
577 void
Pupdate_syms(struct ps_prochandle * P)578 Pupdate_syms(struct ps_prochandle *P)
579 {
580 file_info_t *fptr;
581 int i;
582
583 Pupdate_maps(P);
584
585 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
586 i++, fptr = list_next(fptr)) {
587 Pbuild_file_symtab(P, fptr);
588 (void) Pbuild_file_ctf(P, fptr);
589 }
590 }
591
592 /*
593 * Return the librtld_db agent handle for the victim process.
594 * The handle will become invalid at the next successful exec() and the
595 * client (caller of proc_rd_agent()) must not use it beyond that point.
596 * If the process is already dead, we've already tried our best to
597 * create the agent during core file initialization.
598 */
599 rd_agent_t *
Prd_agent(struct ps_prochandle * P)600 Prd_agent(struct ps_prochandle *P)
601 {
602 if (P->rap == NULL && P->state != PS_DEAD && P->state != PS_IDLE) {
603 Pupdate_maps(P);
604 if (P->num_files == 0)
605 load_static_maps(P);
606 rd_log(_libproc_debug);
607 if ((P->rap = rd_new(P)) != NULL)
608 (void) rd_loadobj_iter(P->rap, map_iter, P);
609 }
610 return (P->rap);
611 }
612
613 /*
614 * Return the prmap_t structure containing 'addr', but only if it
615 * is in the dynamic linker's link map and is the text section.
616 */
617 const prmap_t *
Paddr_to_text_map(struct ps_prochandle * P,uintptr_t addr)618 Paddr_to_text_map(struct ps_prochandle *P, uintptr_t addr)
619 {
620 map_info_t *mptr;
621
622 if (!P->info_valid)
623 Pupdate_maps(P);
624
625 if ((mptr = Paddr2mptr(P, addr)) != NULL) {
626 file_info_t *fptr = build_map_symtab(P, mptr);
627 const prmap_t *pmp = &mptr->map_pmap;
628
629 /*
630 * Assume that if rl_data_base is NULL, it means that no
631 * data section was found for this load object, and that
632 * a section must be text. Otherwise, a section will be
633 * text unless it ends above the start of the data
634 * section.
635 */
636 if (fptr != NULL && fptr->file_lo != NULL &&
637 (fptr->file_lo->rl_data_base == NULL ||
638 pmp->pr_vaddr + pmp->pr_size <=
639 fptr->file_lo->rl_data_base))
640 return (pmp);
641 }
642
643 return (NULL);
644 }
645
646 /*
647 * Return the prmap_t structure containing 'addr' (no restrictions on
648 * the type of mapping).
649 */
650 const prmap_t *
Paddr_to_map(struct ps_prochandle * P,uintptr_t addr)651 Paddr_to_map(struct ps_prochandle *P, uintptr_t addr)
652 {
653 map_info_t *mptr;
654
655 if (!P->info_valid)
656 Pupdate_maps(P);
657
658 if ((mptr = Paddr2mptr(P, addr)) != NULL)
659 return (&mptr->map_pmap);
660
661 return (NULL);
662 }
663
664 /*
665 * Convert a full or partial load object name to the prmap_t for its
666 * corresponding primary text mapping.
667 */
668 const prmap_t *
Plmid_to_map(struct ps_prochandle * P,Lmid_t lmid,const char * name)669 Plmid_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
670 {
671 map_info_t *mptr;
672
673 if (name == PR_OBJ_EVERY)
674 return (NULL); /* A reasonable mistake */
675
676 if ((mptr = object_name_to_map(P, lmid, name)) != NULL)
677 return (&mptr->map_pmap);
678
679 return (NULL);
680 }
681
682 const prmap_t *
Pname_to_map(struct ps_prochandle * P,const char * name)683 Pname_to_map(struct ps_prochandle *P, const char *name)
684 {
685 return (Plmid_to_map(P, PR_LMID_EVERY, name));
686 }
687
688 const rd_loadobj_t *
Paddr_to_loadobj(struct ps_prochandle * P,uintptr_t addr)689 Paddr_to_loadobj(struct ps_prochandle *P, uintptr_t addr)
690 {
691 map_info_t *mptr;
692
693 if (!P->info_valid)
694 Pupdate_maps(P);
695
696 if ((mptr = Paddr2mptr(P, addr)) == NULL)
697 return (NULL);
698
699 /*
700 * By building the symbol table, we implicitly bring the PLT
701 * information up to date in the load object.
702 */
703 (void) build_map_symtab(P, mptr);
704
705 return (mptr->map_file->file_lo);
706 }
707
708 const rd_loadobj_t *
Plmid_to_loadobj(struct ps_prochandle * P,Lmid_t lmid,const char * name)709 Plmid_to_loadobj(struct ps_prochandle *P, Lmid_t lmid, const char *name)
710 {
711 map_info_t *mptr;
712
713 if (name == PR_OBJ_EVERY)
714 return (NULL);
715
716 if ((mptr = object_name_to_map(P, lmid, name)) == NULL)
717 return (NULL);
718
719 /*
720 * By building the symbol table, we implicitly bring the PLT
721 * information up to date in the load object.
722 */
723 (void) build_map_symtab(P, mptr);
724
725 return (mptr->map_file->file_lo);
726 }
727
728 const rd_loadobj_t *
Pname_to_loadobj(struct ps_prochandle * P,const char * name)729 Pname_to_loadobj(struct ps_prochandle *P, const char *name)
730 {
731 return (Plmid_to_loadobj(P, PR_LMID_EVERY, name));
732 }
733
734 ctf_file_t *
Pbuild_file_ctf(struct ps_prochandle * P,file_info_t * fptr)735 Pbuild_file_ctf(struct ps_prochandle *P, file_info_t *fptr)
736 {
737 ctf_sect_t ctdata, symtab, strtab;
738 sym_tbl_t *symp;
739 int err;
740
741 if (fptr->file_ctfp != NULL)
742 return (fptr->file_ctfp);
743
744 Pbuild_file_symtab(P, fptr);
745
746 if (fptr->file_ctf_size == 0)
747 return (NULL);
748
749 symp = fptr->file_ctf_dyn ? &fptr->file_dynsym : &fptr->file_symtab;
750 if (symp->sym_data_pri == NULL)
751 return (NULL);
752
753 /*
754 * The buffer may alread be allocated if this is a core file that
755 * contained CTF data for this file.
756 */
757 if (fptr->file_ctf_buf == NULL) {
758 fptr->file_ctf_buf = malloc(fptr->file_ctf_size);
759 if (fptr->file_ctf_buf == NULL) {
760 dprintf("failed to allocate ctf buffer\n");
761 return (NULL);
762 }
763
764 if (pread(fptr->file_fd, fptr->file_ctf_buf,
765 fptr->file_ctf_size, fptr->file_ctf_off) !=
766 fptr->file_ctf_size) {
767 free(fptr->file_ctf_buf);
768 fptr->file_ctf_buf = NULL;
769 dprintf("failed to read ctf data\n");
770 return (NULL);
771 }
772 }
773
774 ctdata.cts_name = ".SUNW_ctf";
775 ctdata.cts_type = SHT_PROGBITS;
776 ctdata.cts_flags = 0;
777 ctdata.cts_data = fptr->file_ctf_buf;
778 ctdata.cts_size = fptr->file_ctf_size;
779 ctdata.cts_entsize = 1;
780 ctdata.cts_offset = 0;
781
782 symtab.cts_name = fptr->file_ctf_dyn ? ".dynsym" : ".symtab";
783 symtab.cts_type = symp->sym_hdr_pri.sh_type;
784 symtab.cts_flags = symp->sym_hdr_pri.sh_flags;
785 symtab.cts_data = symp->sym_data_pri->d_buf;
786 symtab.cts_size = symp->sym_hdr_pri.sh_size;
787 symtab.cts_entsize = symp->sym_hdr_pri.sh_entsize;
788 symtab.cts_offset = symp->sym_hdr_pri.sh_offset;
789
790 strtab.cts_name = fptr->file_ctf_dyn ? ".dynstr" : ".strtab";
791 strtab.cts_type = symp->sym_strhdr.sh_type;
792 strtab.cts_flags = symp->sym_strhdr.sh_flags;
793 strtab.cts_data = symp->sym_strs;
794 strtab.cts_size = symp->sym_strhdr.sh_size;
795 strtab.cts_entsize = symp->sym_strhdr.sh_entsize;
796 strtab.cts_offset = symp->sym_strhdr.sh_offset;
797
798 fptr->file_ctfp = ctf_bufopen(&ctdata, &symtab, &strtab, &err);
799 if (fptr->file_ctfp == NULL) {
800 dprintf("ctf_bufopen() failed, error code %d\n", err);
801 free(fptr->file_ctf_buf);
802 fptr->file_ctf_buf = NULL;
803 return (NULL);
804 }
805
806 dprintf("loaded %lu bytes of CTF data for %s\n",
807 (ulong_t)fptr->file_ctf_size, fptr->file_pname);
808
809 return (fptr->file_ctfp);
810 }
811
812 ctf_file_t *
Paddr_to_ctf(struct ps_prochandle * P,uintptr_t addr)813 Paddr_to_ctf(struct ps_prochandle *P, uintptr_t addr)
814 {
815 map_info_t *mptr;
816 file_info_t *fptr;
817
818 if (!P->info_valid)
819 Pupdate_maps(P);
820
821 if ((mptr = Paddr2mptr(P, addr)) == NULL ||
822 (fptr = mptr->map_file) == NULL)
823 return (NULL);
824
825 return (Pbuild_file_ctf(P, fptr));
826 }
827
828 ctf_file_t *
Plmid_to_ctf(struct ps_prochandle * P,Lmid_t lmid,const char * name)829 Plmid_to_ctf(struct ps_prochandle *P, Lmid_t lmid, const char *name)
830 {
831 map_info_t *mptr;
832 file_info_t *fptr;
833
834 if (name == PR_OBJ_EVERY)
835 return (NULL);
836
837 if ((mptr = object_name_to_map(P, lmid, name)) == NULL ||
838 (fptr = mptr->map_file) == NULL)
839 return (NULL);
840
841 return (Pbuild_file_ctf(P, fptr));
842 }
843
844 ctf_file_t *
Pname_to_ctf(struct ps_prochandle * P,const char * name)845 Pname_to_ctf(struct ps_prochandle *P, const char *name)
846 {
847 return (Plmid_to_ctf(P, PR_LMID_EVERY, name));
848 }
849
850 /*
851 * If we're not a core file, re-read the /proc/<pid>/auxv file and store
852 * its contents in P->auxv. In the case of a core file, we either
853 * initialized P->auxv in Pcore() from the NT_AUXV, or we don't have an
854 * auxv because the note was missing.
855 */
856 void
Preadauxvec(struct ps_prochandle * P)857 Preadauxvec(struct ps_prochandle *P)
858 {
859 char auxfile[64];
860 struct stat statb;
861 ssize_t naux;
862 int fd;
863
864 if (P->state == PS_DEAD)
865 return; /* Already read during Pgrab_core() */
866 if (P->state == PS_IDLE)
867 return; /* No aux vec for Pgrab_file() */
868
869 if (P->auxv != NULL) {
870 free(P->auxv);
871 P->auxv = NULL;
872 P->nauxv = 0;
873 }
874
875 (void) snprintf(auxfile, sizeof (auxfile), "%s/%d/auxv",
876 procfs_path, (int)P->pid);
877 if ((fd = open(auxfile, O_RDONLY)) < 0)
878 return;
879
880 if (fstat(fd, &statb) == 0 &&
881 statb.st_size >= sizeof (auxv_t) &&
882 (P->auxv = malloc(statb.st_size + sizeof (auxv_t))) != NULL) {
883 if ((naux = read(fd, P->auxv, statb.st_size)) < 0 ||
884 (naux /= sizeof (auxv_t)) < 1) {
885 free(P->auxv);
886 P->auxv = NULL;
887 } else {
888 P->auxv[naux].a_type = AT_NULL;
889 P->auxv[naux].a_un.a_val = 0L;
890 P->nauxv = (int)naux;
891 }
892 }
893
894 (void) close(fd);
895 }
896
897 /*
898 * Return a requested element from the process's aux vector.
899 * Return -1 on failure (this is adequate for our purposes).
900 */
901 long
Pgetauxval(struct ps_prochandle * P,int type)902 Pgetauxval(struct ps_prochandle *P, int type)
903 {
904 auxv_t *auxv;
905
906 if (P->auxv == NULL)
907 Preadauxvec(P);
908
909 if (P->auxv == NULL)
910 return (-1);
911
912 for (auxv = P->auxv; auxv->a_type != AT_NULL; auxv++) {
913 if (auxv->a_type == type)
914 return (auxv->a_un.a_val);
915 }
916
917 return (-1);
918 }
919
920 /*
921 * Return a pointer to our internal copy of the process's aux vector.
922 * The caller should not hold on to this pointer across any libproc calls.
923 */
924 const auxv_t *
Pgetauxvec(struct ps_prochandle * P)925 Pgetauxvec(struct ps_prochandle *P)
926 {
927 static const auxv_t empty = { AT_NULL, 0L };
928
929 if (P->auxv == NULL)
930 Preadauxvec(P);
931
932 if (P->auxv == NULL)
933 return (&empty);
934
935 return (P->auxv);
936 }
937
938 /*
939 * Return 1 if the given mapping corresponds to the given file_info_t's
940 * load object; return 0 otherwise.
941 */
942 static int
is_mapping_in_file(struct ps_prochandle * P,map_info_t * mptr,file_info_t * fptr)943 is_mapping_in_file(struct ps_prochandle *P, map_info_t *mptr, file_info_t *fptr)
944 {
945 prmap_t *pmap = &mptr->map_pmap;
946 rd_loadobj_t *lop = fptr->file_lo;
947 uint_t i;
948 uintptr_t mstart, mend, sstart, send;
949
950 /*
951 * We can get for free the start address of the text and data
952 * sections of the load object. Start by seeing if the mapping
953 * encloses either of these.
954 */
955 if ((pmap->pr_vaddr <= lop->rl_base &&
956 lop->rl_base < pmap->pr_vaddr + pmap->pr_size) ||
957 (pmap->pr_vaddr <= lop->rl_data_base &&
958 lop->rl_data_base < pmap->pr_vaddr + pmap->pr_size))
959 return (1);
960
961 /*
962 * It's still possible that this mapping correponds to the load
963 * object. Consider the example of a mapping whose start and end
964 * addresses correspond to those of the load object's text section.
965 * If the mapping splits, e.g. as a result of a segment demotion,
966 * then although both mappings are still backed by the same section,
967 * only one will be seen to enclose that section's start address.
968 * Thus, to be rigorous, we ask not whether this mapping encloses
969 * the start of a section, but whether there exists a section that
970 * overlaps this mapping.
971 *
972 * If we don't already have the section addresses, and we successfully
973 * get them, then we cache them in case we come here again.
974 */
975 if (fptr->file_saddrs == NULL &&
976 (fptr->file_saddrs = get_saddrs(P,
977 fptr->file_map->map_pmap.pr_vaddr, &fptr->file_nsaddrs)) == NULL)
978 return (0);
979
980 mstart = mptr->map_pmap.pr_vaddr;
981 mend = mptr->map_pmap.pr_vaddr + mptr->map_pmap.pr_size;
982 for (i = 0; i < fptr->file_nsaddrs; i += 2) {
983 /* Does this section overlap the mapping? */
984 sstart = fptr->file_saddrs[i];
985 send = fptr->file_saddrs[i + 1];
986 if (!(mend <= sstart || mstart >= send))
987 return (1);
988 }
989
990 return (0);
991 }
992
993 /*
994 * Find or build the symbol table for the given mapping.
995 */
996 static file_info_t *
build_map_symtab(struct ps_prochandle * P,map_info_t * mptr)997 build_map_symtab(struct ps_prochandle *P, map_info_t *mptr)
998 {
999 prmap_t *pmap = &mptr->map_pmap;
1000 file_info_t *fptr;
1001 uint_t i;
1002
1003 if ((fptr = mptr->map_file) != NULL) {
1004 Pbuild_file_symtab(P, fptr);
1005 return (fptr);
1006 }
1007
1008 if (pmap->pr_mapname[0] == '\0')
1009 return (NULL);
1010
1011 /*
1012 * Attempt to find a matching file.
1013 * (A file can be mapped at several different addresses.)
1014 */
1015 for (i = 0, fptr = list_next(&P->file_head); i < P->num_files;
1016 i++, fptr = list_next(fptr)) {
1017 if (strcmp(fptr->file_pname, pmap->pr_mapname) == 0 &&
1018 fptr->file_lo && is_mapping_in_file(P, mptr, fptr)) {
1019 mptr->map_file = fptr;
1020 fptr->file_ref++;
1021 Pbuild_file_symtab(P, fptr);
1022 return (fptr);
1023 }
1024 }
1025
1026 /*
1027 * If we need to create a new file_info structure, iterate
1028 * through the load objects in order to attempt to connect
1029 * this new file with its primary text mapping. We again
1030 * need to handle ld.so as a special case because we need
1031 * to be able to bootstrap librtld_db.
1032 */
1033 if ((fptr = file_info_new(P, mptr)) == NULL)
1034 return (NULL);
1035
1036 if (P->map_ldso != mptr) {
1037 if (P->rap != NULL)
1038 (void) rd_loadobj_iter(P->rap, map_iter, P);
1039 else
1040 (void) Prd_agent(P);
1041 } else {
1042 fptr->file_map = mptr;
1043 }
1044
1045 /*
1046 * If librtld_db wasn't able to help us connect the file to a primary
1047 * text mapping, set file_map to the current mapping because we require
1048 * fptr->file_map to be set in Pbuild_file_symtab. librtld_db may be
1049 * unaware of what's going on in the rare case that a legitimate ELF
1050 * file has been mmap(2)ed into the process address space *without*
1051 * the use of dlopen(3x).
1052 */
1053 if (fptr->file_map == NULL)
1054 fptr->file_map = mptr;
1055
1056 Pbuild_file_symtab(P, fptr);
1057
1058 return (fptr);
1059 }
1060
1061 static int
read_ehdr32(struct ps_prochandle * P,Elf32_Ehdr * ehdr,uint_t * phnum,uintptr_t addr)1062 read_ehdr32(struct ps_prochandle *P, Elf32_Ehdr *ehdr, uint_t *phnum,
1063 uintptr_t addr)
1064 {
1065 if (Pread(P, ehdr, sizeof (*ehdr), addr) != sizeof (*ehdr))
1066 return (-1);
1067
1068 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1069 ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1070 ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1071 ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1072 ehdr->e_ident[EI_CLASS] != ELFCLASS32 ||
1073 #ifdef _BIG_ENDIAN
1074 ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1075 #else
1076 ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1077 #endif
1078 ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1079 return (-1);
1080
1081 if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1082 Elf32_Shdr shdr0;
1083
1084 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1085 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1086 sizeof (shdr0))
1087 return (-1);
1088
1089 if (shdr0.sh_info != 0)
1090 *phnum = shdr0.sh_info;
1091 }
1092
1093 return (0);
1094 }
1095
1096 static int
read_dynamic_phdr32(struct ps_prochandle * P,const Elf32_Ehdr * ehdr,uint_t phnum,Elf32_Phdr * phdr,uintptr_t addr)1097 read_dynamic_phdr32(struct ps_prochandle *P, const Elf32_Ehdr *ehdr,
1098 uint_t phnum, Elf32_Phdr *phdr, uintptr_t addr)
1099 {
1100 uint_t i;
1101
1102 for (i = 0; i < phnum; i++) {
1103 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1104 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1105 return (-1);
1106
1107 if (phdr->p_type == PT_DYNAMIC)
1108 return (0);
1109 }
1110
1111 return (-1);
1112 }
1113
1114 #ifdef _LP64
1115 static int
read_ehdr64(struct ps_prochandle * P,Elf64_Ehdr * ehdr,uint_t * phnum,uintptr_t addr)1116 read_ehdr64(struct ps_prochandle *P, Elf64_Ehdr *ehdr, uint_t *phnum,
1117 uintptr_t addr)
1118 {
1119 if (Pread(P, ehdr, sizeof (Elf64_Ehdr), addr) != sizeof (Elf64_Ehdr))
1120 return (-1);
1121
1122 if (ehdr->e_ident[EI_MAG0] != ELFMAG0 ||
1123 ehdr->e_ident[EI_MAG1] != ELFMAG1 ||
1124 ehdr->e_ident[EI_MAG2] != ELFMAG2 ||
1125 ehdr->e_ident[EI_MAG3] != ELFMAG3 ||
1126 ehdr->e_ident[EI_CLASS] != ELFCLASS64 ||
1127 #ifdef _BIG_ENDIAN
1128 ehdr->e_ident[EI_DATA] != ELFDATA2MSB ||
1129 #else
1130 ehdr->e_ident[EI_DATA] != ELFDATA2LSB ||
1131 #endif
1132 ehdr->e_ident[EI_VERSION] != EV_CURRENT)
1133 return (-1);
1134
1135 if ((*phnum = ehdr->e_phnum) == PN_XNUM) {
1136 Elf64_Shdr shdr0;
1137
1138 if (ehdr->e_shoff == 0 || ehdr->e_shentsize < sizeof (shdr0) ||
1139 Pread(P, &shdr0, sizeof (shdr0), addr + ehdr->e_shoff) !=
1140 sizeof (shdr0))
1141 return (-1);
1142
1143 if (shdr0.sh_info != 0)
1144 *phnum = shdr0.sh_info;
1145 }
1146
1147 return (0);
1148 }
1149
1150 static int
read_dynamic_phdr64(struct ps_prochandle * P,const Elf64_Ehdr * ehdr,uint_t phnum,Elf64_Phdr * phdr,uintptr_t addr)1151 read_dynamic_phdr64(struct ps_prochandle *P, const Elf64_Ehdr *ehdr,
1152 uint_t phnum, Elf64_Phdr *phdr, uintptr_t addr)
1153 {
1154 uint_t i;
1155
1156 for (i = 0; i < phnum; i++) {
1157 uintptr_t a = addr + ehdr->e_phoff + i * ehdr->e_phentsize;
1158 if (Pread(P, phdr, sizeof (*phdr), a) != sizeof (*phdr))
1159 return (-1);
1160
1161 if (phdr->p_type == PT_DYNAMIC)
1162 return (0);
1163 }
1164
1165 return (-1);
1166 }
1167 #endif /* _LP64 */
1168
1169 /*
1170 * The text segment for each load object contains the elf header and
1171 * program headers. We can use this information to determine if the
1172 * file that corresponds to the load object is the same file that
1173 * was loaded into the process's address space. There can be a discrepency
1174 * if a file is recompiled after the process is started or if the target
1175 * represents a core file from a differently configured system -- two
1176 * common examples. The DT_CHECKSUM entry in the dynamic section
1177 * provides an easy method of comparison. It is important to note that
1178 * the dynamic section usually lives in the data segment, but the meta
1179 * data we use to find the dynamic section lives in the text segment so
1180 * if either of those segments is absent we can't proceed.
1181 *
1182 * We're looking through the elf file for several items: the symbol tables
1183 * (both dynsym and symtab), the procedure linkage table (PLT) base,
1184 * size, and relocation base, and the CTF information. Most of this can
1185 * be recovered from the loaded image of the file itself, the exceptions
1186 * being the symtab and CTF data.
1187 *
1188 * First we try to open the file that we think corresponds to the load
1189 * object, if the DT_CHECKSUM values match, we're all set, and can simply
1190 * recover all the information we need from the file. If the values of
1191 * DT_CHECKSUM don't match, or if we can't access the file for whatever
1192 * reasaon, we fake up a elf file to use in its stead. If we can't read
1193 * the elf data in the process's address space, we fall back to using
1194 * the file even though it may give inaccurate information.
1195 *
1196 * The elf file that we fake up has to consist of sections for the
1197 * dynsym, the PLT and the dynamic section. Note that in the case of a
1198 * core file, we'll get the CTF data in the file_info_t later on from
1199 * a section embedded the core file (if it's present).
1200 *
1201 * file_differs() conservatively looks for mismatched files, identifying
1202 * a match when there is any ambiguity (since that's the legacy behavior).
1203 */
1204 static int
file_differs(struct ps_prochandle * P,Elf * elf,file_info_t * fptr)1205 file_differs(struct ps_prochandle *P, Elf *elf, file_info_t *fptr)
1206 {
1207 Elf_Scn *scn;
1208 GElf_Shdr shdr;
1209 GElf_Dyn dyn;
1210 Elf_Data *data;
1211 uint_t i, ndyn;
1212 GElf_Xword cksum;
1213 uintptr_t addr;
1214
1215 if (fptr->file_map == NULL)
1216 return (0);
1217
1218 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1219 (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1220 return (0);
1221
1222 /*
1223 * First, we find the checksum value in the elf file.
1224 */
1225 scn = NULL;
1226 while ((scn = elf_nextscn(elf, scn)) != NULL) {
1227 if (gelf_getshdr(scn, &shdr) != NULL &&
1228 shdr.sh_type == SHT_DYNAMIC)
1229 goto found_shdr;
1230 }
1231 return (0);
1232
1233 found_shdr:
1234 if ((data = elf_getdata(scn, NULL)) == NULL)
1235 return (0);
1236
1237 if (P->status.pr_dmodel == PR_MODEL_ILP32)
1238 ndyn = shdr.sh_size / sizeof (Elf32_Dyn);
1239 #ifdef _LP64
1240 else if (P->status.pr_dmodel == PR_MODEL_LP64)
1241 ndyn = shdr.sh_size / sizeof (Elf64_Dyn);
1242 #endif
1243 else
1244 return (0);
1245
1246 for (i = 0; i < ndyn; i++) {
1247 if (gelf_getdyn(data, i, &dyn) != NULL &&
1248 dyn.d_tag == DT_CHECKSUM)
1249 goto found_cksum;
1250 }
1251
1252 /*
1253 * The in-memory ELF has no DT_CHECKSUM section, but we will report it
1254 * as matching the file anyhow.
1255 */
1256 return (0);
1257
1258 found_cksum:
1259 cksum = dyn.d_un.d_val;
1260 dprintf("elf cksum value is %llx\n", (u_longlong_t)cksum);
1261
1262 /*
1263 * Get the base of the text mapping that corresponds to this file.
1264 */
1265 addr = fptr->file_map->map_pmap.pr_vaddr;
1266
1267 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1268 Elf32_Ehdr ehdr;
1269 Elf32_Phdr phdr;
1270 Elf32_Dyn dync, *dynp;
1271 uint_t phnum, i;
1272
1273 if (read_ehdr32(P, &ehdr, &phnum, addr) != 0 ||
1274 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1275 return (0);
1276
1277 if (ehdr.e_type == ET_DYN)
1278 phdr.p_vaddr += addr;
1279 if ((dynp = malloc(phdr.p_filesz)) == NULL)
1280 return (0);
1281 dync.d_tag = DT_NULL;
1282 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1283 phdr.p_filesz) {
1284 free(dynp);
1285 return (0);
1286 }
1287
1288 for (i = 0; i < phdr.p_filesz / sizeof (Elf32_Dyn); i++) {
1289 if (dynp[i].d_tag == DT_CHECKSUM)
1290 dync = dynp[i];
1291 }
1292
1293 free(dynp);
1294
1295 if (dync.d_tag != DT_CHECKSUM)
1296 return (0);
1297
1298 dprintf("image cksum value is %llx\n",
1299 (u_longlong_t)dync.d_un.d_val);
1300 return (dync.d_un.d_val != cksum);
1301 #ifdef _LP64
1302 } else if (P->status.pr_dmodel == PR_MODEL_LP64) {
1303 Elf64_Ehdr ehdr;
1304 Elf64_Phdr phdr;
1305 Elf64_Dyn dync, *dynp;
1306 uint_t phnum, i;
1307
1308 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1309 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1310 return (0);
1311
1312 if (ehdr.e_type == ET_DYN)
1313 phdr.p_vaddr += addr;
1314 if ((dynp = malloc(phdr.p_filesz)) == NULL)
1315 return (0);
1316 dync.d_tag = DT_NULL;
1317 if (Pread(P, dynp, phdr.p_filesz, phdr.p_vaddr) !=
1318 phdr.p_filesz) {
1319 free(dynp);
1320 return (0);
1321 }
1322
1323 for (i = 0; i < phdr.p_filesz / sizeof (Elf64_Dyn); i++) {
1324 if (dynp[i].d_tag == DT_CHECKSUM)
1325 dync = dynp[i];
1326 }
1327
1328 free(dynp);
1329
1330 if (dync.d_tag != DT_CHECKSUM)
1331 return (0);
1332
1333 dprintf("image cksum value is %llx\n",
1334 (u_longlong_t)dync.d_un.d_val);
1335 return (dync.d_un.d_val != cksum);
1336 #endif /* _LP64 */
1337 }
1338
1339 return (0);
1340 }
1341
1342 /*
1343 * Read data from the specified process and construct an in memory
1344 * image of an ELF file that represents it well enough to let
1345 * us probe it for information.
1346 */
1347 static Elf *
fake_elf(struct ps_prochandle * P,file_info_t * fptr)1348 fake_elf(struct ps_prochandle *P, file_info_t *fptr)
1349 {
1350 Elf *elf;
1351 uintptr_t addr;
1352 uint_t phnum;
1353
1354 if (fptr->file_map == NULL)
1355 return (NULL);
1356
1357 if ((Pcontent(P) & (CC_CONTENT_TEXT | CC_CONTENT_DATA)) !=
1358 (CC_CONTENT_TEXT | CC_CONTENT_DATA))
1359 return (NULL);
1360
1361 addr = fptr->file_map->map_pmap.pr_vaddr;
1362
1363 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
1364 Elf32_Ehdr ehdr;
1365 Elf32_Phdr phdr;
1366
1367 if ((read_ehdr32(P, &ehdr, &phnum, addr) != 0) ||
1368 read_dynamic_phdr32(P, &ehdr, phnum, &phdr, addr) != 0)
1369 return (NULL);
1370
1371 elf = fake_elf32(P, fptr, addr, &ehdr, phnum, &phdr);
1372 #ifdef _LP64
1373 } else {
1374 Elf64_Ehdr ehdr;
1375 Elf64_Phdr phdr;
1376
1377 if (read_ehdr64(P, &ehdr, &phnum, addr) != 0 ||
1378 read_dynamic_phdr64(P, &ehdr, phnum, &phdr, addr) != 0)
1379 return (NULL);
1380
1381 elf = fake_elf64(P, fptr, addr, &ehdr, phnum, &phdr);
1382 #endif
1383 }
1384
1385 return (elf);
1386 }
1387
1388 /*
1389 * We wouldn't need these if qsort(3C) took an argument for the callback...
1390 */
1391 static mutex_t sort_mtx = DEFAULTMUTEX;
1392 static char *sort_strs;
1393 static GElf_Sym *sort_syms;
1394
1395 int
byaddr_cmp_common(GElf_Sym * a,char * aname,GElf_Sym * b,char * bname)1396 byaddr_cmp_common(GElf_Sym *a, char *aname, GElf_Sym *b, char *bname)
1397 {
1398 if (a->st_value < b->st_value)
1399 return (-1);
1400 if (a->st_value > b->st_value)
1401 return (1);
1402
1403 /*
1404 * Prefer the function to the non-function.
1405 */
1406 if (GELF_ST_TYPE(a->st_info) != GELF_ST_TYPE(b->st_info)) {
1407 if (GELF_ST_TYPE(a->st_info) == STT_FUNC)
1408 return (-1);
1409 if (GELF_ST_TYPE(b->st_info) == STT_FUNC)
1410 return (1);
1411 }
1412
1413 /*
1414 * Prefer the weak or strong global symbol to the local symbol.
1415 */
1416 if (GELF_ST_BIND(a->st_info) != GELF_ST_BIND(b->st_info)) {
1417 if (GELF_ST_BIND(b->st_info) == STB_LOCAL)
1418 return (-1);
1419 if (GELF_ST_BIND(a->st_info) == STB_LOCAL)
1420 return (1);
1421 }
1422
1423 /*
1424 * Prefer the symbol that doesn't begin with a '$' since compilers and
1425 * other symbol generators often use it as a prefix.
1426 */
1427 if (*bname == '$')
1428 return (-1);
1429 if (*aname == '$')
1430 return (1);
1431
1432 /*
1433 * Prefer the name with fewer leading underscores in the name.
1434 */
1435 while (*aname == '_' && *bname == '_') {
1436 aname++;
1437 bname++;
1438 }
1439
1440 if (*bname == '_')
1441 return (-1);
1442 if (*aname == '_')
1443 return (1);
1444
1445 /*
1446 * Prefer the symbol with the smaller size.
1447 */
1448 if (a->st_size < b->st_size)
1449 return (-1);
1450 if (a->st_size > b->st_size)
1451 return (1);
1452
1453 /*
1454 * All other factors being equal, fall back to lexicographic order.
1455 */
1456 return (strcmp(aname, bname));
1457 }
1458
1459 static int
byaddr_cmp(const void * aa,const void * bb)1460 byaddr_cmp(const void *aa, const void *bb)
1461 {
1462 GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1463 GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1464 char *aname = sort_strs + a->st_name;
1465 char *bname = sort_strs + b->st_name;
1466
1467 return (byaddr_cmp_common(a, aname, b, bname));
1468 }
1469
1470 static int
byname_cmp(const void * aa,const void * bb)1471 byname_cmp(const void *aa, const void *bb)
1472 {
1473 GElf_Sym *a = &sort_syms[*(uint_t *)aa];
1474 GElf_Sym *b = &sort_syms[*(uint_t *)bb];
1475 char *aname = sort_strs + a->st_name;
1476 char *bname = sort_strs + b->st_name;
1477
1478 return (strcmp(aname, bname));
1479 }
1480
1481 /*
1482 * Given a symbol index, look up the corresponding symbol from the
1483 * given symbol table.
1484 *
1485 * This function allows the caller to treat the symbol table as a single
1486 * logical entity even though there may be 2 actual ELF symbol tables
1487 * involved. See the comments in Pcontrol.h for details.
1488 */
1489 static GElf_Sym *
symtab_getsym(sym_tbl_t * symtab,int ndx,GElf_Sym * dst)1490 symtab_getsym(sym_tbl_t *symtab, int ndx, GElf_Sym *dst)
1491 {
1492 /* If index is in range of primary symtab, look it up there */
1493 if (ndx >= symtab->sym_symn_aux) {
1494 return (gelf_getsym(symtab->sym_data_pri,
1495 ndx - symtab->sym_symn_aux, dst));
1496 }
1497
1498 /* Not in primary: Look it up in the auxiliary symtab */
1499 return (gelf_getsym(symtab->sym_data_aux, ndx, dst));
1500 }
1501
1502 void
optimize_symtab(sym_tbl_t * symtab)1503 optimize_symtab(sym_tbl_t *symtab)
1504 {
1505 GElf_Sym *symp, *syms;
1506 uint_t i, *indexa, *indexb;
1507 size_t symn, strsz, count;
1508
1509 if (symtab == NULL || symtab->sym_data_pri == NULL ||
1510 symtab->sym_byaddr != NULL)
1511 return;
1512
1513 symn = symtab->sym_symn;
1514 strsz = symtab->sym_strsz;
1515
1516 symp = syms = malloc(sizeof (GElf_Sym) * symn);
1517 if (symp == NULL) {
1518 dprintf("optimize_symtab: failed to malloc symbol array");
1519 return;
1520 }
1521
1522 /*
1523 * First record all the symbols into a table and count up the ones
1524 * that we're interested in. We mark symbols as invalid by setting
1525 * the st_name to an illegal value.
1526 */
1527 for (i = 0, count = 0; i < symn; i++, symp++) {
1528 if (symtab_getsym(symtab, i, symp) != NULL &&
1529 symp->st_name < strsz &&
1530 IS_DATA_TYPE(GELF_ST_TYPE(symp->st_info)))
1531 count++;
1532 else
1533 symp->st_name = strsz;
1534 }
1535
1536 /*
1537 * Allocate sufficient space for both tables and populate them
1538 * with the same symbols we just counted.
1539 */
1540 symtab->sym_count = count;
1541 indexa = symtab->sym_byaddr = calloc(sizeof (uint_t), count);
1542 indexb = symtab->sym_byname = calloc(sizeof (uint_t), count);
1543 if (indexa == NULL || indexb == NULL) {
1544 dprintf(
1545 "optimize_symtab: failed to malloc symbol index arrays");
1546 symtab->sym_count = 0;
1547 if (indexa != NULL) { /* First alloc succeeded. Free it */
1548 free(indexa);
1549 symtab->sym_byaddr = NULL;
1550 }
1551 free(syms);
1552 return;
1553 }
1554 for (i = 0, symp = syms; i < symn; i++, symp++) {
1555 if (symp->st_name < strsz)
1556 *indexa++ = *indexb++ = i;
1557 }
1558
1559 /*
1560 * Sort the two tables according to the appropriate criteria,
1561 * unless the user has overridden this behaviour.
1562 *
1563 * An example where we might not sort the tables is the relatively
1564 * unusual case of a process with very large symbol tables in which
1565 * we perform few lookups. In such a case the total time would be
1566 * dominated by the sort. It is difficult to determine a priori
1567 * how many lookups an arbitrary client will perform, and
1568 * hence whether the symbol tables should be sorted. We therefore
1569 * sort the tables by default, but provide the user with a
1570 * "chicken switch" in the form of the LIBPROC_NO_QSORT
1571 * environment variable.
1572 */
1573 if (!_libproc_no_qsort) {
1574 (void) mutex_lock(&sort_mtx);
1575 sort_strs = symtab->sym_strs;
1576 sort_syms = syms;
1577
1578 qsort(symtab->sym_byaddr, count, sizeof (uint_t), byaddr_cmp);
1579 qsort(symtab->sym_byname, count, sizeof (uint_t), byname_cmp);
1580
1581 sort_strs = NULL;
1582 sort_syms = NULL;
1583 (void) mutex_unlock(&sort_mtx);
1584 }
1585
1586 free(syms);
1587 }
1588
1589
1590 static Elf *
build_fake_elf(struct ps_prochandle * P,file_info_t * fptr,GElf_Ehdr * ehdr,size_t * nshdrs,Elf_Data ** shdata)1591 build_fake_elf(struct ps_prochandle *P, file_info_t *fptr, GElf_Ehdr *ehdr,
1592 size_t *nshdrs, Elf_Data **shdata)
1593 {
1594 size_t shstrndx;
1595 Elf_Scn *scn;
1596 Elf *elf;
1597
1598 if ((elf = fake_elf(P, fptr)) == NULL ||
1599 elf_kind(elf) != ELF_K_ELF ||
1600 gelf_getehdr(elf, ehdr) == NULL ||
1601 elf_getshdrnum(elf, nshdrs) == -1 ||
1602 elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1603 (scn = elf_getscn(elf, shstrndx)) == NULL ||
1604 (*shdata = elf_getdata(scn, NULL)) == NULL) {
1605 if (elf != NULL)
1606 (void) elf_end(elf);
1607 dprintf("failed to fake up ELF file\n");
1608 return (NULL);
1609 }
1610
1611 return (elf);
1612 }
1613
1614 /*
1615 * Build the symbol table for the given mapped file.
1616 */
1617 void
Pbuild_file_symtab(struct ps_prochandle * P,file_info_t * fptr)1618 Pbuild_file_symtab(struct ps_prochandle *P, file_info_t *fptr)
1619 {
1620 char objectfile[PATH_MAX];
1621 uint_t i;
1622
1623 GElf_Ehdr ehdr;
1624 GElf_Sym s;
1625
1626 Elf_Data *shdata;
1627 Elf_Scn *scn;
1628 Elf *elf;
1629 size_t nshdrs, shstrndx;
1630
1631 struct {
1632 GElf_Shdr c_shdr;
1633 Elf_Data *c_data;
1634 const char *c_name;
1635 } *cp, *cache = NULL, *dyn = NULL, *plt = NULL, *ctf = NULL;
1636
1637 if (fptr->file_init)
1638 return; /* We've already processed this file */
1639
1640 /*
1641 * Mark the file_info struct as having the symbol table initialized
1642 * even if we fail below. We tried once; we don't try again.
1643 */
1644 fptr->file_init = 1;
1645
1646 if (elf_version(EV_CURRENT) == EV_NONE) {
1647 dprintf("libproc ELF version is more recent than libelf\n");
1648 return;
1649 }
1650
1651 if (P->state == PS_DEAD || P->state == PS_IDLE) {
1652 char *name;
1653 /*
1654 * If we're a not live, we can't open files from the /proc
1655 * object directory; we have only the mapping and file names
1656 * to guide us. We prefer the file_lname, but need to handle
1657 * the case of it being NULL in order to bootstrap: we first
1658 * come here during rd_new() when the only information we have
1659 * is interpreter name associated with the AT_BASE mapping.
1660 *
1661 * Also, if the zone associated with the core file seems
1662 * to exists on this machine we'll try to open the object
1663 * file within the zone.
1664 */
1665 if (fptr->file_rname != NULL)
1666 name = fptr->file_rname;
1667 else if (fptr->file_lname != NULL)
1668 name = fptr->file_lname;
1669 else
1670 name = fptr->file_pname;
1671 (void) strlcpy(objectfile, name, sizeof (objectfile));
1672 } else {
1673 (void) snprintf(objectfile, sizeof (objectfile),
1674 "%s/%d/object/%s",
1675 procfs_path, (int)P->pid, fptr->file_pname);
1676 }
1677
1678 /*
1679 * Open the object file, create the elf file, and then get the elf
1680 * header and .shstrtab data buffer so we can process sections by
1681 * name. If anything goes wrong try to fake up an elf file from
1682 * the in-core elf image.
1683 */
1684
1685 if (_libproc_incore_elf) {
1686 dprintf("Pbuild_file_symtab: using in-core data for: %s\n",
1687 fptr->file_pname);
1688
1689 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1690 NULL)
1691 return;
1692
1693 } else if ((fptr->file_fd = open(objectfile, O_RDONLY)) < 0) {
1694 dprintf("Pbuild_file_symtab: failed to open %s: %s\n",
1695 objectfile, strerror(errno));
1696
1697 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1698 NULL)
1699 return;
1700
1701 } else if ((elf = elf_begin(fptr->file_fd, ELF_C_READ, NULL)) == NULL ||
1702 elf_kind(elf) != ELF_K_ELF ||
1703 gelf_getehdr(elf, &ehdr) == NULL ||
1704 elf_getshdrnum(elf, &nshdrs) == -1 ||
1705 elf_getshdrstrndx(elf, &shstrndx) == -1 ||
1706 (scn = elf_getscn(elf, shstrndx)) == NULL ||
1707 (shdata = elf_getdata(scn, NULL)) == NULL) {
1708 int err = elf_errno();
1709
1710 dprintf("failed to process ELF file %s: %s\n",
1711 objectfile, (err == 0) ? "<null>" : elf_errmsg(err));
1712 (void) elf_end(elf);
1713
1714 if ((elf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata)) ==
1715 NULL)
1716 return;
1717
1718 } else if (file_differs(P, elf, fptr)) {
1719 Elf *newelf;
1720
1721 /*
1722 * Before we get too excited about this elf file, we'll check
1723 * its checksum value against the value we have in memory. If
1724 * they don't agree, we try to fake up a new elf file and
1725 * proceed with that instead.
1726 */
1727 dprintf("ELF file %s (%lx) doesn't match in-core image\n",
1728 fptr->file_pname,
1729 (ulong_t)fptr->file_map->map_pmap.pr_vaddr);
1730
1731 if ((newelf = build_fake_elf(P, fptr, &ehdr, &nshdrs, &shdata))
1732 != NULL) {
1733 (void) elf_end(elf);
1734 elf = newelf;
1735 dprintf("switched to faked up ELF file\n");
1736 }
1737 }
1738
1739 if ((cache = malloc(nshdrs * sizeof (*cache))) == NULL) {
1740 dprintf("failed to malloc section cache for %s\n", objectfile);
1741 goto bad;
1742 }
1743
1744 dprintf("processing ELF file %s\n", objectfile);
1745 fptr->file_class = ehdr.e_ident[EI_CLASS];
1746 fptr->file_etype = ehdr.e_type;
1747 fptr->file_elf = elf;
1748 fptr->file_shstrs = shdata->d_buf;
1749 fptr->file_shstrsz = shdata->d_size;
1750
1751 /*
1752 * Iterate through each section, caching its section header, data
1753 * pointer, and name. We use this for handling sh_link values below.
1754 */
1755 for (cp = cache + 1, scn = NULL; scn = elf_nextscn(elf, scn); cp++) {
1756 if (gelf_getshdr(scn, &cp->c_shdr) == NULL) {
1757 dprintf("Pbuild_file_symtab: Failed to get section "
1758 "header\n");
1759 goto bad; /* Failed to get section header */
1760 }
1761
1762 if ((cp->c_data = elf_getdata(scn, NULL)) == NULL) {
1763 dprintf("Pbuild_file_symtab: Failed to get section "
1764 "data\n");
1765 goto bad; /* Failed to get section data */
1766 }
1767
1768 if (cp->c_shdr.sh_name >= shdata->d_size) {
1769 dprintf("Pbuild_file_symtab: corrupt section name");
1770 goto bad; /* Corrupt section name */
1771 }
1772
1773 cp->c_name = (const char *)shdata->d_buf + cp->c_shdr.sh_name;
1774 }
1775
1776 /*
1777 * Now iterate through the section cache in order to locate info
1778 * for the .symtab, .dynsym, .SUNW_ldynsym, .dynamic, .plt,
1779 * and .SUNW_ctf sections:
1780 */
1781 for (i = 1, cp = cache + 1; i < nshdrs; i++, cp++) {
1782 GElf_Shdr *shp = &cp->c_shdr;
1783
1784 if (shp->sh_type == SHT_SYMTAB || shp->sh_type == SHT_DYNSYM) {
1785 sym_tbl_t *symp = shp->sh_type == SHT_SYMTAB ?
1786 &fptr->file_symtab : &fptr->file_dynsym;
1787 /*
1788 * It's possible that the we already got the symbol
1789 * table from the core file itself. Either the file
1790 * differs in which case our faked up elf file will
1791 * only contain the dynsym (not the symtab) or the
1792 * file matches in which case we'll just be replacing
1793 * the symbol table we pulled out of the core file
1794 * with an equivalent one. In either case, this
1795 * check isn't essential, but it's a good idea.
1796 */
1797 if (symp->sym_data_pri == NULL) {
1798 dprintf("Symbol table found for %s\n",
1799 objectfile);
1800 symp->sym_data_pri = cp->c_data;
1801 symp->sym_symn +=
1802 shp->sh_size / shp->sh_entsize;
1803 symp->sym_strs =
1804 cache[shp->sh_link].c_data->d_buf;
1805 symp->sym_strsz =
1806 cache[shp->sh_link].c_data->d_size;
1807 symp->sym_hdr_pri = cp->c_shdr;
1808 symp->sym_strhdr = cache[shp->sh_link].c_shdr;
1809 } else {
1810 dprintf("Symbol table already there for %s\n",
1811 objectfile);
1812 }
1813 } else if (shp->sh_type == SHT_SUNW_LDYNSYM) {
1814 /* .SUNW_ldynsym section is auxiliary to .dynsym */
1815 if (fptr->file_dynsym.sym_data_aux == NULL) {
1816 dprintf(".SUNW_ldynsym symbol table"
1817 " found for %s\n", objectfile);
1818 fptr->file_dynsym.sym_data_aux = cp->c_data;
1819 fptr->file_dynsym.sym_symn_aux =
1820 shp->sh_size / shp->sh_entsize;
1821 fptr->file_dynsym.sym_symn +=
1822 fptr->file_dynsym.sym_symn_aux;
1823 fptr->file_dynsym.sym_hdr_aux = cp->c_shdr;
1824 } else {
1825 dprintf(".SUNW_ldynsym symbol table already"
1826 " there for %s\n", objectfile);
1827 }
1828 } else if (shp->sh_type == SHT_DYNAMIC) {
1829 dyn = cp;
1830 } else if (strcmp(cp->c_name, ".plt") == 0) {
1831 plt = cp;
1832 } else if (strcmp(cp->c_name, ".SUNW_ctf") == 0) {
1833 /*
1834 * Skip over bogus CTF sections so they don't come back
1835 * to haunt us later.
1836 */
1837 if (shp->sh_link == 0 ||
1838 shp->sh_link >= nshdrs ||
1839 (cache[shp->sh_link].c_shdr.sh_type != SHT_DYNSYM &&
1840 cache[shp->sh_link].c_shdr.sh_type != SHT_SYMTAB)) {
1841 dprintf("Bad sh_link %d for "
1842 "CTF\n", shp->sh_link);
1843 continue;
1844 }
1845 ctf = cp;
1846 }
1847 }
1848
1849 /*
1850 * At this point, we've found all the symbol tables we're ever going
1851 * to find: the ones in the loop above and possibly the symtab that
1852 * was included in the core file. Before we perform any lookups, we
1853 * create sorted versions to optimize for lookups.
1854 */
1855 optimize_symtab(&fptr->file_symtab);
1856 optimize_symtab(&fptr->file_dynsym);
1857
1858 /*
1859 * Fill in the base address of the text mapping for shared libraries.
1860 * This allows us to translate symbols before librtld_db is ready.
1861 */
1862 if (fptr->file_etype == ET_DYN) {
1863 fptr->file_dyn_base = fptr->file_map->map_pmap.pr_vaddr -
1864 fptr->file_map->map_pmap.pr_offset;
1865 dprintf("setting file_dyn_base for %s to %lx\n",
1866 objectfile, (long)fptr->file_dyn_base);
1867 }
1868
1869 /*
1870 * Record the CTF section information in the file info structure.
1871 */
1872 if (ctf != NULL) {
1873 fptr->file_ctf_off = ctf->c_shdr.sh_offset;
1874 fptr->file_ctf_size = ctf->c_shdr.sh_size;
1875 if (ctf->c_shdr.sh_link != 0 &&
1876 cache[ctf->c_shdr.sh_link].c_shdr.sh_type == SHT_DYNSYM)
1877 fptr->file_ctf_dyn = 1;
1878 }
1879
1880 if (fptr->file_lo == NULL)
1881 goto done; /* Nothing else to do if no load object info */
1882
1883 /*
1884 * If the object is a shared library and we have a different rl_base
1885 * value, reset file_dyn_base according to librtld_db's information.
1886 */
1887 if (fptr->file_etype == ET_DYN &&
1888 fptr->file_lo->rl_base != fptr->file_dyn_base) {
1889 dprintf("resetting file_dyn_base for %s to %lx\n",
1890 objectfile, (long)fptr->file_lo->rl_base);
1891 fptr->file_dyn_base = fptr->file_lo->rl_base;
1892 }
1893
1894 /*
1895 * Fill in the PLT information for this file if a PLT symbol is found.
1896 */
1897 if (sym_by_name(&fptr->file_dynsym, "_PROCEDURE_LINKAGE_TABLE_", &s,
1898 NULL) != NULL) {
1899 fptr->file_plt_base = s.st_value + fptr->file_dyn_base;
1900 fptr->file_plt_size = (plt != NULL) ? plt->c_shdr.sh_size : 0;
1901
1902 /*
1903 * Bring the load object up to date; it is the only way the
1904 * user has to access the PLT data. The PLT information in the
1905 * rd_loadobj_t is not set in the call to map_iter() (the
1906 * callback for rd_loadobj_iter) where we set file_lo.
1907 */
1908 fptr->file_lo->rl_plt_base = fptr->file_plt_base;
1909 fptr->file_lo->rl_plt_size = fptr->file_plt_size;
1910
1911 dprintf("PLT found at %p, size = %lu\n",
1912 (void *)fptr->file_plt_base, (ulong_t)fptr->file_plt_size);
1913 }
1914
1915 /*
1916 * Fill in the PLT information.
1917 */
1918 if (dyn != NULL) {
1919 uintptr_t dynaddr = dyn->c_shdr.sh_addr + fptr->file_dyn_base;
1920 size_t ndyn = dyn->c_shdr.sh_size / dyn->c_shdr.sh_entsize;
1921 GElf_Dyn d;
1922
1923 for (i = 0; i < ndyn; i++) {
1924 if (gelf_getdyn(dyn->c_data, i, &d) == NULL)
1925 continue;
1926
1927 switch (d.d_tag) {
1928 case DT_JMPREL:
1929 dprintf("DT_JMPREL is %p\n",
1930 (void *)(uintptr_t)d.d_un.d_ptr);
1931 fptr->file_jmp_rel =
1932 d.d_un.d_ptr + fptr->file_dyn_base;
1933 break;
1934 case DT_STRTAB:
1935 dprintf("DT_STRTAB is %p\n",
1936 (void *)(uintptr_t)d.d_un.d_ptr);
1937 break;
1938 case DT_PLTGOT:
1939 dprintf("DT_PLTGOT is %p\n",
1940 (void *)(uintptr_t)d.d_un.d_ptr);
1941 break;
1942 case DT_SUNW_SYMTAB:
1943 dprintf("DT_SUNW_SYMTAB is %p\n",
1944 (void *)(uintptr_t)d.d_un.d_ptr);
1945 break;
1946 case DT_SYMTAB:
1947 dprintf("DT_SYMTAB is %p\n",
1948 (void *)(uintptr_t)d.d_un.d_ptr);
1949 break;
1950 case DT_HASH:
1951 dprintf("DT_HASH is %p\n",
1952 (void *)(uintptr_t)d.d_un.d_ptr);
1953 break;
1954 }
1955 }
1956
1957 dprintf("_DYNAMIC found at %p, %lu entries, DT_JMPREL = %p\n",
1958 (void *)dynaddr, (ulong_t)ndyn, (void *)fptr->file_jmp_rel);
1959 }
1960
1961 done:
1962 free(cache);
1963 return;
1964
1965 bad:
1966 if (cache != NULL)
1967 free(cache);
1968
1969 (void) elf_end(elf);
1970 fptr->file_elf = NULL;
1971 if (fptr->file_elfmem != NULL) {
1972 free(fptr->file_elfmem);
1973 fptr->file_elfmem = NULL;
1974 }
1975 (void) close(fptr->file_fd);
1976 fptr->file_fd = -1;
1977 }
1978
1979 /*
1980 * Given a process virtual address, return the map_info_t containing it.
1981 * If none found, return NULL.
1982 */
1983 map_info_t *
Paddr2mptr(struct ps_prochandle * P,uintptr_t addr)1984 Paddr2mptr(struct ps_prochandle *P, uintptr_t addr)
1985 {
1986 int lo = 0;
1987 int hi = P->map_count - 1;
1988 int mid;
1989 map_info_t *mp;
1990
1991 while (lo <= hi) {
1992
1993 mid = (lo + hi) / 2;
1994 mp = &P->mappings[mid];
1995
1996 /* check that addr is in [vaddr, vaddr + size) */
1997 if ((addr - mp->map_pmap.pr_vaddr) < mp->map_pmap.pr_size)
1998 return (mp);
1999
2000 if (addr < mp->map_pmap.pr_vaddr)
2001 hi = mid - 1;
2002 else
2003 lo = mid + 1;
2004 }
2005
2006 return (NULL);
2007 }
2008
2009 /*
2010 * Return the map_info_t for the executable file.
2011 * If not found, return NULL.
2012 */
2013 static map_info_t *
exec_map(struct ps_prochandle * P)2014 exec_map(struct ps_prochandle *P)
2015 {
2016 uint_t i;
2017 map_info_t *mptr;
2018 map_info_t *mold = NULL;
2019 file_info_t *fptr;
2020 uintptr_t base;
2021
2022 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2023 if (mptr->map_pmap.pr_mapname[0] == '\0')
2024 continue;
2025 if (strcmp(mptr->map_pmap.pr_mapname, "a.out") == 0) {
2026 if ((fptr = mptr->map_file) != NULL &&
2027 fptr->file_lo != NULL) {
2028 base = fptr->file_lo->rl_base;
2029 if (base >= mptr->map_pmap.pr_vaddr &&
2030 base < mptr->map_pmap.pr_vaddr +
2031 mptr->map_pmap.pr_size) /* text space */
2032 return (mptr);
2033 mold = mptr; /* must be the data */
2034 continue;
2035 }
2036 /* This is a poor way to test for text space */
2037 if (!(mptr->map_pmap.pr_mflags & MA_EXEC) ||
2038 (mptr->map_pmap.pr_mflags & MA_WRITE)) {
2039 mold = mptr;
2040 continue;
2041 }
2042 return (mptr);
2043 }
2044 }
2045
2046 return (mold);
2047 }
2048
2049 /*
2050 * Given a shared object name, return the map_info_t for it. If no matching
2051 * object is found, return NULL. Normally, the link maps contain the full
2052 * object pathname, e.g. /usr/lib/libc.so.1. We allow the object name to
2053 * take one of the following forms:
2054 *
2055 * 1. An exact match (i.e. a full pathname): "/usr/lib/libc.so.1"
2056 * 2. An exact basename match: "libc.so.1"
2057 * 3. An initial basename match up to a '.' suffix: "libc.so" or "libc"
2058 * 4. The literal string "a.out" is an alias for the executable mapping
2059 *
2060 * The third case is a convenience for callers and may not be necessary.
2061 *
2062 * As the exact same object name may be loaded on different link maps (see
2063 * dlmopen(3DL)), we also allow the caller to resolve the object name by
2064 * specifying a particular link map id. If lmid is PR_LMID_EVERY, the
2065 * first matching name will be returned, regardless of the link map id.
2066 */
2067 static map_info_t *
object_to_map(struct ps_prochandle * P,Lmid_t lmid,const char * objname)2068 object_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *objname)
2069 {
2070 map_info_t *mp;
2071 file_info_t *fp;
2072 size_t objlen;
2073 uint_t i;
2074
2075 /*
2076 * If we have no rtld_db, then always treat a request as one for all
2077 * link maps.
2078 */
2079 if (P->rap == NULL)
2080 lmid = PR_LMID_EVERY;
2081
2082 /*
2083 * First pass: look for exact matches of the entire pathname or
2084 * basename (cases 1 and 2 above):
2085 */
2086 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2087
2088 if (mp->map_pmap.pr_mapname[0] == '\0' ||
2089 (fp = mp->map_file) == NULL ||
2090 ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2091 continue;
2092
2093 if (lmid != PR_LMID_EVERY &&
2094 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2095 continue;
2096
2097 /*
2098 * If we match, return the primary text mapping; otherwise
2099 * just return the mapping we matched.
2100 */
2101 if ((fp->file_lbase && strcmp(fp->file_lbase, objname) == 0) ||
2102 (fp->file_rbase && strcmp(fp->file_rbase, objname) == 0) ||
2103 (fp->file_lname && strcmp(fp->file_lname, objname) == 0) ||
2104 (fp->file_rname && strcmp(fp->file_rname, objname) == 0))
2105 return (fp->file_map ? fp->file_map : mp);
2106 }
2107
2108 objlen = strlen(objname);
2109
2110 /*
2111 * Second pass: look for partial matches (case 3 above):
2112 */
2113 for (i = 0, mp = P->mappings; i < P->map_count; i++, mp++) {
2114
2115 if (mp->map_pmap.pr_mapname[0] == '\0' ||
2116 (fp = mp->map_file) == NULL ||
2117 ((fp->file_lname == NULL) && (fp->file_rname == NULL)))
2118 continue;
2119
2120 if (lmid != PR_LMID_EVERY &&
2121 (fp->file_lo == NULL || lmid != fp->file_lo->rl_lmident))
2122 continue;
2123
2124 /*
2125 * If we match, return the primary text mapping; otherwise
2126 * just return the mapping we matched.
2127 */
2128 if ((fp->file_lbase != NULL) &&
2129 (strncmp(fp->file_lbase, objname, objlen) == 0) &&
2130 (fp->file_lbase[objlen] == '.'))
2131 return (fp->file_map ? fp->file_map : mp);
2132 if ((fp->file_rbase != NULL) &&
2133 (strncmp(fp->file_rbase, objname, objlen) == 0) &&
2134 (fp->file_rbase[objlen] == '.'))
2135 return (fp->file_map ? fp->file_map : mp);
2136 }
2137
2138 /*
2139 * One last check: we allow "a.out" to always alias the executable,
2140 * assuming this name was not in use for something else.
2141 */
2142 if ((lmid == PR_LMID_EVERY || lmid == LM_ID_BASE) &&
2143 (strcmp(objname, "a.out") == 0))
2144 return (P->map_exec);
2145
2146 return (NULL);
2147 }
2148
2149 static map_info_t *
object_name_to_map(struct ps_prochandle * P,Lmid_t lmid,const char * name)2150 object_name_to_map(struct ps_prochandle *P, Lmid_t lmid, const char *name)
2151 {
2152 map_info_t *mptr;
2153
2154 if (!P->info_valid)
2155 Pupdate_maps(P);
2156
2157 if (P->map_exec == NULL && ((mptr = Paddr2mptr(P,
2158 Pgetauxval(P, AT_ENTRY))) != NULL || (mptr = exec_map(P)) != NULL))
2159 P->map_exec = mptr;
2160
2161 if (P->map_ldso == NULL && (mptr = Paddr2mptr(P,
2162 Pgetauxval(P, AT_BASE))) != NULL)
2163 P->map_ldso = mptr;
2164
2165 if (name == PR_OBJ_EXEC)
2166 mptr = P->map_exec;
2167 else if (name == PR_OBJ_LDSO)
2168 mptr = P->map_ldso;
2169 else if (Prd_agent(P) != NULL || P->state == PS_IDLE)
2170 mptr = object_to_map(P, lmid, name);
2171 else
2172 mptr = NULL;
2173
2174 return (mptr);
2175 }
2176
2177 /*
2178 * When two symbols are found by address, decide which one is to be preferred.
2179 */
2180 static GElf_Sym *
sym_prefer(GElf_Sym * sym1,char * name1,GElf_Sym * sym2,char * name2)2181 sym_prefer(GElf_Sym *sym1, char *name1, GElf_Sym *sym2, char *name2)
2182 {
2183 /*
2184 * Prefer the non-NULL symbol.
2185 */
2186 if (sym1 == NULL)
2187 return (sym2);
2188 if (sym2 == NULL)
2189 return (sym1);
2190
2191 /*
2192 * Defer to the sort ordering...
2193 */
2194 return (byaddr_cmp_common(sym1, name1, sym2, name2) <= 0 ? sym1 : sym2);
2195 }
2196
2197 /*
2198 * Use a binary search to do the work of sym_by_addr().
2199 */
2200 static GElf_Sym *
sym_by_addr_binary(sym_tbl_t * symtab,GElf_Addr addr,GElf_Sym * symp,uint_t * idp)2201 sym_by_addr_binary(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp,
2202 uint_t *idp)
2203 {
2204 GElf_Sym sym, osym;
2205 uint_t i, oid, *byaddr = symtab->sym_byaddr;
2206 int min, max, mid, omid, found = 0;
2207
2208 if (symtab->sym_data_pri == NULL || symtab->sym_count == 0)
2209 return (NULL);
2210
2211 min = 0;
2212 max = symtab->sym_count - 1;
2213 osym.st_value = 0;
2214
2215 /*
2216 * We can't return when we've found a match, we have to continue
2217 * searching for the closest matching symbol.
2218 */
2219 while (min <= max) {
2220 mid = (max + min) / 2;
2221
2222 i = byaddr[mid];
2223 (void) symtab_getsym(symtab, i, &sym);
2224
2225 if (addr >= sym.st_value &&
2226 addr < sym.st_value + sym.st_size &&
2227 (!found || sym.st_value > osym.st_value)) {
2228 osym = sym;
2229 omid = mid;
2230 oid = i;
2231 found = 1;
2232 }
2233
2234 if (addr < sym.st_value)
2235 max = mid - 1;
2236 else
2237 min = mid + 1;
2238 }
2239
2240 if (!found)
2241 return (NULL);
2242
2243 /*
2244 * There may be many symbols with identical values so we walk
2245 * backward in the byaddr table to find the best match.
2246 */
2247 do {
2248 sym = osym;
2249 i = oid;
2250
2251 if (omid == 0)
2252 break;
2253
2254 oid = byaddr[--omid];
2255 (void) symtab_getsym(symtab, oid, &osym);
2256 } while (addr >= osym.st_value &&
2257 addr < sym.st_value + osym.st_size &&
2258 osym.st_value == sym.st_value);
2259
2260 *symp = sym;
2261 if (idp != NULL)
2262 *idp = i;
2263 return (symp);
2264 }
2265
2266 /*
2267 * Use a linear search to do the work of sym_by_addr().
2268 */
2269 static GElf_Sym *
sym_by_addr_linear(sym_tbl_t * symtab,GElf_Addr addr,GElf_Sym * symbolp,uint_t * idp)2270 sym_by_addr_linear(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symbolp,
2271 uint_t *idp)
2272 {
2273 size_t symn = symtab->sym_symn;
2274 char *strs = symtab->sym_strs;
2275 GElf_Sym sym, *symp = NULL;
2276 GElf_Sym osym, *osymp = NULL;
2277 int i, id;
2278
2279 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2280 return (NULL);
2281
2282 for (i = 0; i < symn; i++) {
2283 if ((symp = symtab_getsym(symtab, i, &sym)) != NULL) {
2284 if (addr >= sym.st_value &&
2285 addr < sym.st_value + sym.st_size) {
2286 if (osymp)
2287 symp = sym_prefer(
2288 symp, strs + symp->st_name,
2289 osymp, strs + osymp->st_name);
2290 if (symp != osymp) {
2291 osym = sym;
2292 osymp = &osym;
2293 id = i;
2294 }
2295 }
2296 }
2297 }
2298 if (osymp) {
2299 *symbolp = osym;
2300 if (idp)
2301 *idp = id;
2302 return (symbolp);
2303 }
2304 return (NULL);
2305 }
2306
2307 /*
2308 * Look up a symbol by address in the specified symbol table.
2309 * Adjustment to 'addr' must already have been made for the
2310 * offset of the symbol if this is a dynamic library symbol table.
2311 *
2312 * Use a linear or a binary search depending on whether or not we
2313 * chose to sort the table in optimize_symtab().
2314 */
2315 static GElf_Sym *
sym_by_addr(sym_tbl_t * symtab,GElf_Addr addr,GElf_Sym * symp,uint_t * idp)2316 sym_by_addr(sym_tbl_t *symtab, GElf_Addr addr, GElf_Sym *symp, uint_t *idp)
2317 {
2318 if (_libproc_no_qsort) {
2319 return (sym_by_addr_linear(symtab, addr, symp, idp));
2320 } else {
2321 return (sym_by_addr_binary(symtab, addr, symp, idp));
2322 }
2323 }
2324
2325 /*
2326 * Use a binary search to do the work of sym_by_name().
2327 */
2328 static GElf_Sym *
sym_by_name_binary(sym_tbl_t * symtab,const char * name,GElf_Sym * symp,uint_t * idp)2329 sym_by_name_binary(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2330 uint_t *idp)
2331 {
2332 char *strs = symtab->sym_strs;
2333 uint_t i, *byname = symtab->sym_byname;
2334 int min, mid, max, cmp;
2335
2336 if (symtab->sym_data_pri == NULL || strs == NULL ||
2337 symtab->sym_count == 0)
2338 return (NULL);
2339
2340 min = 0;
2341 max = symtab->sym_count - 1;
2342
2343 while (min <= max) {
2344 mid = (max + min) / 2;
2345
2346 i = byname[mid];
2347 (void) symtab_getsym(symtab, i, symp);
2348
2349 if ((cmp = strcmp(name, strs + symp->st_name)) == 0) {
2350 if (idp != NULL)
2351 *idp = i;
2352 return (symp);
2353 }
2354
2355 if (cmp < 0)
2356 max = mid - 1;
2357 else
2358 min = mid + 1;
2359 }
2360
2361 return (NULL);
2362 }
2363
2364 /*
2365 * Use a linear search to do the work of sym_by_name().
2366 */
2367 static GElf_Sym *
sym_by_name_linear(sym_tbl_t * symtab,const char * name,GElf_Sym * symp,uint_t * idp)2368 sym_by_name_linear(sym_tbl_t *symtab, const char *name, GElf_Sym *symp,
2369 uint_t *idp)
2370 {
2371 size_t symn = symtab->sym_symn;
2372 char *strs = symtab->sym_strs;
2373 int i;
2374
2375 if (symtab->sym_data_pri == NULL || symn == 0 || strs == NULL)
2376 return (NULL);
2377
2378 for (i = 0; i < symn; i++) {
2379 if (symtab_getsym(symtab, i, symp) &&
2380 strcmp(name, strs + symp->st_name) == 0) {
2381 if (idp)
2382 *idp = i;
2383 return (symp);
2384 }
2385 }
2386
2387 return (NULL);
2388 }
2389
2390 /*
2391 * Look up a symbol by name in the specified symbol table.
2392 *
2393 * Use a linear or a binary search depending on whether or not we
2394 * chose to sort the table in optimize_symtab().
2395 */
2396 static GElf_Sym *
sym_by_name(sym_tbl_t * symtab,const char * name,GElf_Sym * symp,uint_t * idp)2397 sym_by_name(sym_tbl_t *symtab, const char *name, GElf_Sym *symp, uint_t *idp)
2398 {
2399 if (_libproc_no_qsort) {
2400 return (sym_by_name_linear(symtab, name, symp, idp));
2401 } else {
2402 return (sym_by_name_binary(symtab, name, symp, idp));
2403 }
2404 }
2405
2406 /*
2407 * Search the process symbol tables looking for a symbol whose
2408 * value to value+size contain the address specified by addr.
2409 * Return values are:
2410 * sym_name_buffer containing the symbol name
2411 * GElf_Sym symbol table entry
2412 * prsyminfo_t ancillary symbol information
2413 * Returns 0 on success, -1 on failure.
2414 */
2415 static int
i_Pxlookup_by_addr(struct ps_prochandle * P,int lmresolve,uintptr_t addr,char * sym_name_buffer,size_t bufsize,GElf_Sym * symbolp,prsyminfo_t * sip)2416 i_Pxlookup_by_addr(
2417 struct ps_prochandle *P,
2418 int lmresolve, /* use resolve linker object names */
2419 uintptr_t addr, /* process address being sought */
2420 char *sym_name_buffer, /* buffer for the symbol name */
2421 size_t bufsize, /* size of sym_name_buffer */
2422 GElf_Sym *symbolp, /* returned symbol table entry */
2423 prsyminfo_t *sip) /* returned symbol info */
2424 {
2425 GElf_Sym *symp;
2426 char *name;
2427 GElf_Sym sym1, *sym1p = NULL;
2428 GElf_Sym sym2, *sym2p = NULL;
2429 char *name1 = NULL;
2430 char *name2 = NULL;
2431 uint_t i1;
2432 uint_t i2;
2433 map_info_t *mptr;
2434 file_info_t *fptr;
2435
2436 (void) Prd_agent(P);
2437
2438 if ((mptr = Paddr2mptr(P, addr)) == NULL || /* no such address */
2439 (fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2440 fptr->file_elf == NULL) /* not an ELF file */
2441 return (-1);
2442
2443 /*
2444 * Adjust the address by the load object base address in
2445 * case the address turns out to be in a shared library.
2446 */
2447 addr -= fptr->file_dyn_base;
2448
2449 /*
2450 * Search both symbol tables, symtab first, then dynsym.
2451 */
2452 if ((sym1p = sym_by_addr(&fptr->file_symtab, addr, &sym1, &i1)) != NULL)
2453 name1 = fptr->file_symtab.sym_strs + sym1.st_name;
2454 if ((sym2p = sym_by_addr(&fptr->file_dynsym, addr, &sym2, &i2)) != NULL)
2455 name2 = fptr->file_dynsym.sym_strs + sym2.st_name;
2456
2457 if ((symp = sym_prefer(sym1p, name1, sym2p, name2)) == NULL)
2458 return (-1);
2459
2460 name = (symp == sym1p) ? name1 : name2;
2461 if (bufsize > 0) {
2462 (void) strncpy(sym_name_buffer, name, bufsize);
2463 sym_name_buffer[bufsize - 1] = '\0';
2464 }
2465
2466 *symbolp = *symp;
2467 if (sip != NULL) {
2468 sip->prs_name = bufsize == 0 ? NULL : sym_name_buffer;
2469 if (lmresolve && (fptr->file_rname != NULL))
2470 sip->prs_object = fptr->file_rbase;
2471 else
2472 sip->prs_object = fptr->file_lbase;
2473 sip->prs_id = (symp == sym1p) ? i1 : i2;
2474 sip->prs_table = (symp == sym1p) ? PR_SYMTAB : PR_DYNSYM;
2475 sip->prs_lmid = (fptr->file_lo == NULL) ? LM_ID_BASE :
2476 fptr->file_lo->rl_lmident;
2477 }
2478
2479 if (GELF_ST_TYPE(symbolp->st_info) != STT_TLS)
2480 symbolp->st_value += fptr->file_dyn_base;
2481
2482 return (0);
2483 }
2484
2485 int
Pxlookup_by_addr(struct ps_prochandle * P,uintptr_t addr,char * buf,size_t bufsize,GElf_Sym * symp,prsyminfo_t * sip)2486 Pxlookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2487 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2488 {
2489 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, bufsize, symp, sip));
2490 }
2491
2492 int
Pxlookup_by_addr_resolved(struct ps_prochandle * P,uintptr_t addr,char * buf,size_t bufsize,GElf_Sym * symp,prsyminfo_t * sip)2493 Pxlookup_by_addr_resolved(struct ps_prochandle *P, uintptr_t addr, char *buf,
2494 size_t bufsize, GElf_Sym *symp, prsyminfo_t *sip)
2495 {
2496 return (i_Pxlookup_by_addr(P, B_TRUE, addr, buf, bufsize, symp, sip));
2497 }
2498
2499 int
Plookup_by_addr(struct ps_prochandle * P,uintptr_t addr,char * buf,size_t size,GElf_Sym * symp)2500 Plookup_by_addr(struct ps_prochandle *P, uintptr_t addr, char *buf,
2501 size_t size, GElf_Sym *symp)
2502 {
2503 return (i_Pxlookup_by_addr(P, B_FALSE, addr, buf, size, symp, NULL));
2504 }
2505
2506 /*
2507 * Search the process symbol tables looking for a symbol whose name matches the
2508 * specified name and whose object and link map optionally match the specified
2509 * parameters. On success, the function returns 0 and fills in the GElf_Sym
2510 * symbol table entry. On failure, -1 is returned.
2511 */
2512 int
Pxlookup_by_name(struct ps_prochandle * P,Lmid_t lmid,const char * oname,const char * sname,GElf_Sym * symp,prsyminfo_t * sip)2513 Pxlookup_by_name(
2514 struct ps_prochandle *P,
2515 Lmid_t lmid, /* link map to match, or -1 for any */
2516 const char *oname, /* load object name */
2517 const char *sname, /* symbol name */
2518 GElf_Sym *symp, /* returned symbol table entry */
2519 prsyminfo_t *sip) /* returned symbol info */
2520 {
2521 map_info_t *mptr;
2522 file_info_t *fptr;
2523 int cnt;
2524
2525 GElf_Sym sym;
2526 prsyminfo_t si;
2527 int rv = -1;
2528 uint_t id;
2529
2530 if (oname == PR_OBJ_EVERY) {
2531 /* create all the file_info_t's for all the mappings */
2532 (void) Prd_agent(P);
2533 cnt = P->num_files;
2534 fptr = list_next(&P->file_head);
2535 } else {
2536 cnt = 1;
2537 if ((mptr = object_name_to_map(P, lmid, oname)) == NULL ||
2538 (fptr = build_map_symtab(P, mptr)) == NULL)
2539 return (-1);
2540 }
2541
2542 /*
2543 * Iterate through the loaded object files and look for the symbol
2544 * name in the .symtab and .dynsym of each. If we encounter a match
2545 * with SHN_UNDEF, keep looking in hopes of finding a better match.
2546 * This means that a name such as "puts" will match the puts function
2547 * in libc instead of matching the puts PLT entry in the a.out file.
2548 */
2549 for (; cnt > 0; cnt--, fptr = list_next(fptr)) {
2550 Pbuild_file_symtab(P, fptr);
2551
2552 if (fptr->file_elf == NULL)
2553 continue;
2554
2555 if (lmid != PR_LMID_EVERY && fptr->file_lo != NULL &&
2556 lmid != fptr->file_lo->rl_lmident)
2557 continue;
2558
2559 if (fptr->file_symtab.sym_data_pri != NULL &&
2560 sym_by_name(&fptr->file_symtab, sname, symp, &id)) {
2561 if (sip != NULL) {
2562 sip->prs_id = id;
2563 sip->prs_table = PR_SYMTAB;
2564 sip->prs_object = oname;
2565 sip->prs_name = sname;
2566 sip->prs_lmid = fptr->file_lo == NULL ?
2567 LM_ID_BASE : fptr->file_lo->rl_lmident;
2568 }
2569 } else if (fptr->file_dynsym.sym_data_pri != NULL &&
2570 sym_by_name(&fptr->file_dynsym, sname, symp, &id)) {
2571 if (sip != NULL) {
2572 sip->prs_id = id;
2573 sip->prs_table = PR_DYNSYM;
2574 sip->prs_object = oname;
2575 sip->prs_name = sname;
2576 sip->prs_lmid = fptr->file_lo == NULL ?
2577 LM_ID_BASE : fptr->file_lo->rl_lmident;
2578 }
2579 } else {
2580 continue;
2581 }
2582
2583 if (GELF_ST_TYPE(symp->st_info) != STT_TLS)
2584 symp->st_value += fptr->file_dyn_base;
2585
2586 if (symp->st_shndx != SHN_UNDEF)
2587 return (0);
2588
2589 if (rv != 0) {
2590 if (sip != NULL)
2591 si = *sip;
2592 sym = *symp;
2593 rv = 0;
2594 }
2595 }
2596
2597 if (rv == 0) {
2598 if (sip != NULL)
2599 *sip = si;
2600 *symp = sym;
2601 }
2602
2603 return (rv);
2604 }
2605
2606 /*
2607 * Search the process symbol tables looking for a symbol whose name matches the
2608 * specified name, but without any restriction on the link map id.
2609 */
2610 int
Plookup_by_name(struct ps_prochandle * P,const char * object,const char * symbol,GElf_Sym * symp)2611 Plookup_by_name(struct ps_prochandle *P, const char *object,
2612 const char *symbol, GElf_Sym *symp)
2613 {
2614 return (Pxlookup_by_name(P, PR_LMID_EVERY, object, symbol, symp, NULL));
2615 }
2616
2617 /*
2618 * Iterate over the process's address space mappings.
2619 */
2620 static int
i_Pmapping_iter(struct ps_prochandle * P,boolean_t lmresolve,proc_map_f * func,void * cd)2621 i_Pmapping_iter(struct ps_prochandle *P, boolean_t lmresolve,
2622 proc_map_f *func, void *cd)
2623 {
2624 map_info_t *mptr;
2625 file_info_t *fptr;
2626 char *object_name;
2627 int rc = 0;
2628 int i;
2629
2630 /* create all the file_info_t's for all the mappings */
2631 (void) Prd_agent(P);
2632
2633 for (i = 0, mptr = P->mappings; i < P->map_count; i++, mptr++) {
2634 if ((fptr = mptr->map_file) == NULL)
2635 object_name = NULL;
2636 else if (lmresolve && (fptr->file_rname != NULL))
2637 object_name = fptr->file_rname;
2638 else
2639 object_name = fptr->file_lname;
2640 if ((rc = func(cd, &mptr->map_pmap, object_name)) != 0)
2641 return (rc);
2642 }
2643 return (0);
2644 }
2645
2646 int
Pmapping_iter(struct ps_prochandle * P,proc_map_f * func,void * cd)2647 Pmapping_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2648 {
2649 return (i_Pmapping_iter(P, B_FALSE, func, cd));
2650 }
2651
2652 int
Pmapping_iter_resolved(struct ps_prochandle * P,proc_map_f * func,void * cd)2653 Pmapping_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2654 {
2655 return (i_Pmapping_iter(P, B_TRUE, func, cd));
2656 }
2657
2658 /*
2659 * Iterate over the process's mapped objects.
2660 */
2661 static int
i_Pobject_iter(struct ps_prochandle * P,boolean_t lmresolve,proc_map_f * func,void * cd)2662 i_Pobject_iter(struct ps_prochandle *P, boolean_t lmresolve,
2663 proc_map_f *func, void *cd)
2664 {
2665 map_info_t *mptr;
2666 file_info_t *fptr;
2667 uint_t cnt;
2668 int rc = 0;
2669
2670 (void) Prd_agent(P); /* create file_info_t's for all the mappings */
2671 Pupdate_maps(P);
2672
2673 for (cnt = P->num_files, fptr = list_next(&P->file_head);
2674 cnt; cnt--, fptr = list_next(fptr)) {
2675 const char *lname;
2676
2677 if (lmresolve && (fptr->file_rname != NULL))
2678 lname = fptr->file_rname;
2679 else if (fptr->file_lname != NULL)
2680 lname = fptr->file_lname;
2681 else
2682 lname = "";
2683
2684 if ((mptr = fptr->file_map) == NULL)
2685 continue;
2686
2687 if ((rc = func(cd, &mptr->map_pmap, lname)) != 0)
2688 return (rc);
2689
2690 if (!P->info_valid)
2691 Pupdate_maps(P);
2692 }
2693 return (0);
2694 }
2695
2696 int
Pobject_iter(struct ps_prochandle * P,proc_map_f * func,void * cd)2697 Pobject_iter(struct ps_prochandle *P, proc_map_f *func, void *cd)
2698 {
2699 return (i_Pobject_iter(P, B_FALSE, func, cd));
2700 }
2701
2702 int
Pobject_iter_resolved(struct ps_prochandle * P,proc_map_f * func,void * cd)2703 Pobject_iter_resolved(struct ps_prochandle *P, proc_map_f *func, void *cd)
2704 {
2705 return (i_Pobject_iter(P, B_TRUE, func, cd));
2706 }
2707
2708 static char *
i_Pobjname(struct ps_prochandle * P,boolean_t lmresolve,uintptr_t addr,char * buffer,size_t bufsize)2709 i_Pobjname(struct ps_prochandle *P, boolean_t lmresolve, uintptr_t addr,
2710 char *buffer, size_t bufsize)
2711 {
2712 map_info_t *mptr;
2713 file_info_t *fptr;
2714
2715 /* create all the file_info_t's for all the mappings */
2716 (void) Prd_agent(P);
2717
2718 if ((mptr = Paddr2mptr(P, addr)) == NULL)
2719 return (NULL);
2720
2721 if (!lmresolve) {
2722 if (((fptr = mptr->map_file) == NULL) ||
2723 (fptr->file_lname == NULL))
2724 return (NULL);
2725 (void) strlcpy(buffer, fptr->file_lname, bufsize);
2726 return (buffer);
2727 }
2728
2729 /* Check for a cached copy of the resolved path */
2730 if (Pfindmap(P, mptr, buffer, bufsize) != NULL)
2731 return (buffer);
2732
2733 return (NULL);
2734 }
2735
2736 /*
2737 * Given a virtual address, return the name of the underlying
2738 * mapped object (file) as provided by the dynamic linker.
2739 * Return NULL if we can't find any name information for the object.
2740 */
2741 char *
Pobjname(struct ps_prochandle * P,uintptr_t addr,char * buffer,size_t bufsize)2742 Pobjname(struct ps_prochandle *P, uintptr_t addr,
2743 char *buffer, size_t bufsize)
2744 {
2745 return (i_Pobjname(P, B_FALSE, addr, buffer, bufsize));
2746 }
2747
2748 /*
2749 * Given a virtual address, try to return a filesystem path to the
2750 * underlying mapped object (file). If we're in the global zone,
2751 * this path could resolve to an object in another zone. If we're
2752 * unable return a valid filesystem path, we'll fall back to providing
2753 * the mapped object (file) name provided by the dynamic linker in
2754 * the target process (ie, the object reported by Pobjname()).
2755 */
2756 char *
Pobjname_resolved(struct ps_prochandle * P,uintptr_t addr,char * buffer,size_t bufsize)2757 Pobjname_resolved(struct ps_prochandle *P, uintptr_t addr,
2758 char *buffer, size_t bufsize)
2759 {
2760 return (i_Pobjname(P, B_TRUE, addr, buffer, bufsize));
2761 }
2762
2763 /*
2764 * Given a virtual address, return the link map id of the underlying mapped
2765 * object (file), as provided by the dynamic linker. Return -1 on failure.
2766 */
2767 int
Plmid(struct ps_prochandle * P,uintptr_t addr,Lmid_t * lmidp)2768 Plmid(struct ps_prochandle *P, uintptr_t addr, Lmid_t *lmidp)
2769 {
2770 map_info_t *mptr;
2771 file_info_t *fptr;
2772
2773 /* create all the file_info_t's for all the mappings */
2774 (void) Prd_agent(P);
2775
2776 if ((mptr = Paddr2mptr(P, addr)) != NULL &&
2777 (fptr = mptr->map_file) != NULL && fptr->file_lo != NULL) {
2778 *lmidp = fptr->file_lo->rl_lmident;
2779 return (0);
2780 }
2781
2782 return (-1);
2783 }
2784
2785 /*
2786 * Given an object name and optional lmid, iterate over the object's symbols.
2787 * If which == PR_SYMTAB, search the normal symbol table.
2788 * If which == PR_DYNSYM, search the dynamic symbol table.
2789 */
2790 static int
Psymbol_iter_com(struct ps_prochandle * P,Lmid_t lmid,const char * object_name,int which,int mask,pr_order_t order,proc_xsym_f * func,void * cd)2791 Psymbol_iter_com(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2792 int which, int mask, pr_order_t order, proc_xsym_f *func, void *cd)
2793 {
2794 #if STT_NUM != (STT_TLS + 1)
2795 #error "STT_NUM has grown. update Psymbol_iter_com()"
2796 #endif
2797
2798 GElf_Sym sym;
2799 GElf_Shdr shdr;
2800 map_info_t *mptr;
2801 file_info_t *fptr;
2802 sym_tbl_t *symtab;
2803 size_t symn;
2804 const char *strs;
2805 size_t strsz;
2806 prsyminfo_t si;
2807 int rv;
2808 uint_t *map, i, count, ndx;
2809
2810 if ((mptr = object_name_to_map(P, lmid, object_name)) == NULL)
2811 return (-1);
2812
2813 if ((fptr = build_map_symtab(P, mptr)) == NULL || /* no mapped file */
2814 fptr->file_elf == NULL) /* not an ELF file */
2815 return (-1);
2816
2817 /*
2818 * Search the specified symbol table.
2819 */
2820 switch (which) {
2821 case PR_SYMTAB:
2822 symtab = &fptr->file_symtab;
2823 si.prs_table = PR_SYMTAB;
2824 break;
2825 case PR_DYNSYM:
2826 symtab = &fptr->file_dynsym;
2827 si.prs_table = PR_DYNSYM;
2828 break;
2829 default:
2830 return (-1);
2831 }
2832
2833 si.prs_object = object_name;
2834 si.prs_lmid = fptr->file_lo == NULL ?
2835 LM_ID_BASE : fptr->file_lo->rl_lmident;
2836
2837 symn = symtab->sym_symn;
2838 strs = symtab->sym_strs;
2839 strsz = symtab->sym_strsz;
2840
2841 switch (order) {
2842 case PRO_NATURAL:
2843 map = NULL;
2844 count = symn;
2845 break;
2846 case PRO_BYNAME:
2847 map = symtab->sym_byname;
2848 count = symtab->sym_count;
2849 break;
2850 case PRO_BYADDR:
2851 map = symtab->sym_byaddr;
2852 count = symtab->sym_count;
2853 break;
2854 default:
2855 return (-1);
2856 }
2857
2858 if (symtab->sym_data_pri == NULL || strs == NULL || count == 0)
2859 return (-1);
2860
2861 rv = 0;
2862
2863 for (i = 0; i < count; i++) {
2864 ndx = map == NULL ? i : map[i];
2865 if (symtab_getsym(symtab, ndx, &sym) != NULL) {
2866 uint_t s_bind, s_type, type;
2867
2868 if (sym.st_name >= strsz) /* invalid st_name */
2869 continue;
2870
2871 s_bind = GELF_ST_BIND(sym.st_info);
2872 s_type = GELF_ST_TYPE(sym.st_info);
2873
2874 /*
2875 * In case you haven't already guessed, this relies on
2876 * the bitmask used in <libproc.h> for encoding symbol
2877 * type and binding matching the order of STB and STT
2878 * constants in <sys/elf.h>. Changes to ELF must
2879 * maintain binary compatibility, so I think this is
2880 * reasonably fair game.
2881 */
2882 if (s_bind < STB_NUM && s_type < STT_NUM) {
2883 type = (1 << (s_type + 8)) | (1 << s_bind);
2884 if ((type & ~mask) != 0)
2885 continue;
2886 } else
2887 continue; /* Invalid type or binding */
2888
2889 if (GELF_ST_TYPE(sym.st_info) != STT_TLS)
2890 sym.st_value += fptr->file_dyn_base;
2891
2892 si.prs_name = strs + sym.st_name;
2893
2894 /*
2895 * If symbol's type is STT_SECTION, then try to lookup
2896 * the name of the corresponding section.
2897 */
2898 if (GELF_ST_TYPE(sym.st_info) == STT_SECTION &&
2899 fptr->file_shstrs != NULL &&
2900 gelf_getshdr(elf_getscn(fptr->file_elf,
2901 sym.st_shndx), &shdr) != NULL &&
2902 shdr.sh_name != 0 &&
2903 shdr.sh_name < fptr->file_shstrsz)
2904 si.prs_name = fptr->file_shstrs + shdr.sh_name;
2905
2906 si.prs_id = ndx;
2907 if ((rv = func(cd, &sym, si.prs_name, &si)) != 0)
2908 break;
2909 }
2910 }
2911
2912 return (rv);
2913 }
2914
2915 int
Pxsymbol_iter(struct ps_prochandle * P,Lmid_t lmid,const char * object_name,int which,int mask,proc_xsym_f * func,void * cd)2916 Pxsymbol_iter(struct ps_prochandle *P, Lmid_t lmid, const char *object_name,
2917 int which, int mask, proc_xsym_f *func, void *cd)
2918 {
2919 return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2920 PRO_NATURAL, func, cd));
2921 }
2922
2923 int
Psymbol_iter_by_lmid(struct ps_prochandle * P,Lmid_t lmid,const char * object_name,int which,int mask,proc_sym_f * func,void * cd)2924 Psymbol_iter_by_lmid(struct ps_prochandle *P, Lmid_t lmid,
2925 const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2926 {
2927 return (Psymbol_iter_com(P, lmid, object_name, which, mask,
2928 PRO_NATURAL, (proc_xsym_f *)func, cd));
2929 }
2930
2931 int
Psymbol_iter(struct ps_prochandle * P,const char * object_name,int which,int mask,proc_sym_f * func,void * cd)2932 Psymbol_iter(struct ps_prochandle *P,
2933 const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2934 {
2935 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2936 PRO_NATURAL, (proc_xsym_f *)func, cd));
2937 }
2938
2939 int
Psymbol_iter_by_addr(struct ps_prochandle * P,const char * object_name,int which,int mask,proc_sym_f * func,void * cd)2940 Psymbol_iter_by_addr(struct ps_prochandle *P,
2941 const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2942 {
2943 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2944 PRO_BYADDR, (proc_xsym_f *)func, cd));
2945 }
2946
2947 int
Psymbol_iter_by_name(struct ps_prochandle * P,const char * object_name,int which,int mask,proc_sym_f * func,void * cd)2948 Psymbol_iter_by_name(struct ps_prochandle *P,
2949 const char *object_name, int which, int mask, proc_sym_f *func, void *cd)
2950 {
2951 return (Psymbol_iter_com(P, PR_LMID_EVERY, object_name, which, mask,
2952 PRO_BYNAME, (proc_xsym_f *)func, cd));
2953 }
2954
2955 /*
2956 * Get the platform string from the core file if we have it;
2957 * just perform the system call for the caller if this is a live process.
2958 */
2959 char *
Pplatform(struct ps_prochandle * P,char * s,size_t n)2960 Pplatform(struct ps_prochandle *P, char *s, size_t n)
2961 {
2962 if (P->state == PS_IDLE) {
2963 errno = ENODATA;
2964 return (NULL);
2965 }
2966
2967 if (P->state == PS_DEAD) {
2968 if (P->core->core_platform == NULL) {
2969 errno = ENODATA;
2970 return (NULL);
2971 }
2972 (void) strncpy(s, P->core->core_platform, n - 1);
2973 s[n - 1] = '\0';
2974
2975 } else if (sysinfo(SI_PLATFORM, s, n) == -1)
2976 return (NULL);
2977
2978 return (s);
2979 }
2980
2981 /*
2982 * Get the uname(2) information from the core file if we have it;
2983 * just perform the system call for the caller if this is a live process.
2984 */
2985 int
Puname(struct ps_prochandle * P,struct utsname * u)2986 Puname(struct ps_prochandle *P, struct utsname *u)
2987 {
2988 if (P->state == PS_IDLE) {
2989 errno = ENODATA;
2990 return (-1);
2991 }
2992
2993 if (P->state == PS_DEAD) {
2994 if (P->core->core_uts == NULL) {
2995 errno = ENODATA;
2996 return (-1);
2997 }
2998 (void) memcpy(u, P->core->core_uts, sizeof (struct utsname));
2999 return (0);
3000 }
3001 return (uname(u));
3002 }
3003
3004 /*
3005 * Called from Pcreate(), Pgrab(), and Pfgrab_core() to initialize
3006 * the symbol table heads in the new ps_prochandle.
3007 */
3008 void
Pinitsym(struct ps_prochandle * P)3009 Pinitsym(struct ps_prochandle *P)
3010 {
3011 P->num_files = 0;
3012 list_link(&P->file_head, NULL);
3013 }
3014
3015 /*
3016 * Called from Prelease() to destroy the symbol tables.
3017 * Must be called by the client after an exec() in the victim process.
3018 */
3019 void
Preset_maps(struct ps_prochandle * P)3020 Preset_maps(struct ps_prochandle *P)
3021 {
3022 int i;
3023
3024 if (P->rap != NULL) {
3025 rd_delete(P->rap);
3026 P->rap = NULL;
3027 }
3028
3029 if (P->execname != NULL) {
3030 free(P->execname);
3031 P->execname = NULL;
3032 }
3033
3034 if (P->auxv != NULL) {
3035 free(P->auxv);
3036 P->auxv = NULL;
3037 P->nauxv = 0;
3038 }
3039
3040 for (i = 0; i < P->map_count; i++)
3041 map_info_free(P, &P->mappings[i]);
3042
3043 if (P->mappings != NULL) {
3044 free(P->mappings);
3045 P->mappings = NULL;
3046 }
3047 P->map_count = P->map_alloc = 0;
3048
3049 P->info_valid = 0;
3050 }
3051
3052 typedef struct getenv_data {
3053 char *buf;
3054 size_t bufsize;
3055 const char *search;
3056 size_t searchlen;
3057 } getenv_data_t;
3058
3059 /*ARGSUSED*/
3060 static int
getenv_func(void * data,struct ps_prochandle * P,uintptr_t addr,const char * nameval)3061 getenv_func(void *data, struct ps_prochandle *P, uintptr_t addr,
3062 const char *nameval)
3063 {
3064 getenv_data_t *d = data;
3065 size_t len;
3066
3067 if (nameval == NULL)
3068 return (0);
3069
3070 if (d->searchlen < strlen(nameval) &&
3071 strncmp(nameval, d->search, d->searchlen) == 0 &&
3072 nameval[d->searchlen] == '=') {
3073 len = MIN(strlen(nameval), d->bufsize - 1);
3074 (void) strncpy(d->buf, nameval, len);
3075 d->buf[len] = '\0';
3076 return (1);
3077 }
3078
3079 return (0);
3080 }
3081
3082 char *
Pgetenv(struct ps_prochandle * P,const char * name,char * buf,size_t buflen)3083 Pgetenv(struct ps_prochandle *P, const char *name, char *buf, size_t buflen)
3084 {
3085 getenv_data_t d;
3086
3087 d.buf = buf;
3088 d.bufsize = buflen;
3089 d.search = name;
3090 d.searchlen = strlen(name);
3091
3092 if (Penv_iter(P, getenv_func, &d) == 1) {
3093 char *equals = strchr(d.buf, '=');
3094
3095 if (equals != NULL) {
3096 (void) memmove(d.buf, equals + 1,
3097 d.buf + buflen - equals - 1);
3098 d.buf[d.buf + buflen - equals] = '\0';
3099
3100 return (buf);
3101 }
3102 }
3103
3104 return (NULL);
3105 }
3106
3107 /* number of argument or environment pointers to read all at once */
3108 #define NARG 100
3109
3110 int
Penv_iter(struct ps_prochandle * P,proc_env_f * func,void * data)3111 Penv_iter(struct ps_prochandle *P, proc_env_f *func, void *data)
3112 {
3113 const psinfo_t *psp;
3114 uintptr_t envpoff;
3115 GElf_Sym sym;
3116 int ret;
3117 char *buf, *nameval;
3118 size_t buflen;
3119
3120 int nenv = NARG;
3121 long envp[NARG];
3122
3123 /*
3124 * Attempt to find the "_environ" variable in the process.
3125 * Failing that, use the original value provided by Ppsinfo().
3126 */
3127 if ((psp = Ppsinfo(P)) == NULL)
3128 return (-1);
3129
3130 envpoff = psp->pr_envp; /* Default if no _environ found */
3131
3132 if (Plookup_by_name(P, PR_OBJ_EXEC, "_environ", &sym) == 0) {
3133 if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3134 if (Pread(P, &envpoff, sizeof (envpoff),
3135 sym.st_value) != sizeof (envpoff))
3136 envpoff = psp->pr_envp;
3137 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3138 uint32_t envpoff32;
3139
3140 if (Pread(P, &envpoff32, sizeof (envpoff32),
3141 sym.st_value) != sizeof (envpoff32))
3142 envpoff = psp->pr_envp;
3143 else
3144 envpoff = envpoff32;
3145 }
3146 }
3147
3148 buflen = 128;
3149 buf = malloc(buflen);
3150
3151 ret = 0;
3152 for (;;) {
3153 uintptr_t envoff;
3154
3155 if (nenv == NARG) {
3156 (void) memset(envp, 0, sizeof (envp));
3157 if (P->status.pr_dmodel == PR_MODEL_NATIVE) {
3158 if (Pread(P, envp,
3159 sizeof (envp), envpoff) <= 0) {
3160 ret = -1;
3161 break;
3162 }
3163 } else if (P->status.pr_dmodel == PR_MODEL_ILP32) {
3164 uint32_t e32[NARG];
3165 int i;
3166
3167 (void) memset(e32, 0, sizeof (e32));
3168 if (Pread(P, e32, sizeof (e32), envpoff) <= 0) {
3169 ret = -1;
3170 break;
3171 }
3172 for (i = 0; i < NARG; i++)
3173 envp[i] = e32[i];
3174 }
3175 nenv = 0;
3176 }
3177
3178 if ((envoff = envp[nenv++]) == NULL)
3179 break;
3180
3181 /*
3182 * Attempt to read the string from the process.
3183 */
3184 again:
3185 ret = Pread_string(P, buf, buflen, envoff);
3186
3187 if (ret <= 0) {
3188 nameval = NULL;
3189 } else if (ret == buflen - 1) {
3190 free(buf);
3191 /*
3192 * Bail if we have a corrupted environment
3193 */
3194 if (buflen >= ARG_MAX)
3195 return (-1);
3196 buflen *= 2;
3197 buf = malloc(buflen);
3198 goto again;
3199 } else {
3200 nameval = buf;
3201 }
3202
3203 if ((ret = func(data, P, envoff, nameval)) != 0)
3204 break;
3205
3206 envpoff += (P->status.pr_dmodel == PR_MODEL_LP64)? 8 : 4;
3207 }
3208
3209 free(buf);
3210
3211 return (ret);
3212 }
3213