1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/types.h>
27 #include <sys/utsname.h>
28 #include <sys/sysmacros.h>
29
30 #include <alloca.h>
31 #include <rtld_db.h>
32 #include <libgen.h>
33 #include <limits.h>
34 #include <string.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37 #include <errno.h>
38 #include <gelf.h>
39 #include <stddef.h>
40
41 #include "libproc.h"
42 #include "Pcontrol.h"
43 #include "P32ton.h"
44 #include "Putil.h"
45
46 /*
47 * Pcore.c - Code to initialize a ps_prochandle from a core dump. We
48 * allocate an additional structure to hold information from the core
49 * file, and attach this to the standard ps_prochandle in place of the
50 * ability to examine /proc/<pid>/ files.
51 */
52
53 /*
54 * Basic i/o function for reading and writing from the process address space
55 * stored in the core file and associated shared libraries. We compute the
56 * appropriate fd and offsets, and let the provided prw function do the rest.
57 */
58 static ssize_t
core_rw(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr,ssize_t (* prw)(int,void *,size_t,off64_t))59 core_rw(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr,
60 ssize_t (*prw)(int, void *, size_t, off64_t))
61 {
62 ssize_t resid = n;
63
64 while (resid != 0) {
65 map_info_t *mp = Paddr2mptr(P, addr);
66
67 uintptr_t mapoff;
68 ssize_t len;
69 off64_t off;
70 int fd;
71
72 if (mp == NULL)
73 break; /* No mapping for this address */
74
75 if (mp->map_pmap.pr_mflags & MA_RESERVED1) {
76 if (mp->map_file == NULL || mp->map_file->file_fd < 0)
77 break; /* No file or file not open */
78
79 fd = mp->map_file->file_fd;
80 } else
81 fd = P->asfd;
82
83 mapoff = addr - mp->map_pmap.pr_vaddr;
84 len = MIN(resid, mp->map_pmap.pr_size - mapoff);
85 off = mp->map_offset + mapoff;
86
87 if ((len = prw(fd, buf, len, off)) <= 0)
88 break;
89
90 resid -= len;
91 addr += len;
92 buf = (char *)buf + len;
93 }
94
95 /*
96 * Important: Be consistent with the behavior of i/o on the as file:
97 * writing to an invalid address yields EIO; reading from an invalid
98 * address falls through to returning success and zero bytes.
99 */
100 if (resid == n && n != 0 && prw != pread64) {
101 errno = EIO;
102 return (-1);
103 }
104
105 return (n - resid);
106 }
107
108 static ssize_t
Pread_core(struct ps_prochandle * P,void * buf,size_t n,uintptr_t addr)109 Pread_core(struct ps_prochandle *P, void *buf, size_t n, uintptr_t addr)
110 {
111 return (core_rw(P, buf, n, addr, pread64));
112 }
113
114 static ssize_t
Pwrite_core(struct ps_prochandle * P,const void * buf,size_t n,uintptr_t addr)115 Pwrite_core(struct ps_prochandle *P, const void *buf, size_t n, uintptr_t addr)
116 {
117 return (core_rw(P, (void *)buf, n, addr,
118 (ssize_t (*)(int, void *, size_t, off64_t)) pwrite64));
119 }
120
121 static const ps_rwops_t P_core_ops = { Pread_core, Pwrite_core };
122
123 /*
124 * Return the lwp_info_t for the given lwpid. If no such lwpid has been
125 * encountered yet, allocate a new structure and return a pointer to it.
126 * Create a list of lwp_info_t structures sorted in decreasing lwp_id order.
127 */
128 static lwp_info_t *
lwpid2info(struct ps_prochandle * P,lwpid_t id)129 lwpid2info(struct ps_prochandle *P, lwpid_t id)
130 {
131 lwp_info_t *lwp = list_next(&P->core->core_lwp_head);
132 lwp_info_t *next;
133 uint_t i;
134
135 for (i = 0; i < P->core->core_nlwp; i++, lwp = list_next(lwp)) {
136 if (lwp->lwp_id == id) {
137 P->core->core_lwp = lwp;
138 return (lwp);
139 }
140 if (lwp->lwp_id < id) {
141 break;
142 }
143 }
144
145 next = lwp;
146 if ((lwp = calloc(1, sizeof (lwp_info_t))) == NULL)
147 return (NULL);
148
149 list_link(lwp, next);
150 lwp->lwp_id = id;
151
152 P->core->core_lwp = lwp;
153 P->core->core_nlwp++;
154
155 return (lwp);
156 }
157
158 /*
159 * The core file itself contains a series of NOTE segments containing saved
160 * structures from /proc at the time the process died. For each note we
161 * comprehend, we define a function to read it in from the core file,
162 * convert it to our native data model if necessary, and store it inside
163 * the ps_prochandle. Each function is invoked by Pfgrab_core() with the
164 * seek pointer on P->asfd positioned appropriately. We populate a table
165 * of pointers to these note functions below.
166 */
167
168 static int
note_pstatus(struct ps_prochandle * P,size_t nbytes)169 note_pstatus(struct ps_prochandle *P, size_t nbytes)
170 {
171 #ifdef _LP64
172 if (P->core->core_dmodel == PR_MODEL_ILP32) {
173 pstatus32_t ps32;
174
175 if (nbytes < sizeof (pstatus32_t) ||
176 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
177 goto err;
178
179 pstatus_32_to_n(&ps32, &P->status);
180
181 } else
182 #endif
183 if (nbytes < sizeof (pstatus_t) ||
184 read(P->asfd, &P->status, sizeof (pstatus_t)) != sizeof (pstatus_t))
185 goto err;
186
187 P->orig_status = P->status;
188 P->pid = P->status.pr_pid;
189
190 return (0);
191
192 err:
193 dprintf("Pgrab_core: failed to read NT_PSTATUS\n");
194 return (-1);
195 }
196
197 static int
note_lwpstatus(struct ps_prochandle * P,size_t nbytes)198 note_lwpstatus(struct ps_prochandle *P, size_t nbytes)
199 {
200 lwp_info_t *lwp;
201 lwpstatus_t lps;
202
203 #ifdef _LP64
204 if (P->core->core_dmodel == PR_MODEL_ILP32) {
205 lwpstatus32_t l32;
206
207 if (nbytes < sizeof (lwpstatus32_t) ||
208 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
209 goto err;
210
211 lwpstatus_32_to_n(&l32, &lps);
212 } else
213 #endif
214 if (nbytes < sizeof (lwpstatus_t) ||
215 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
216 goto err;
217
218 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
219 dprintf("Pgrab_core: failed to add NT_LWPSTATUS\n");
220 return (-1);
221 }
222
223 /*
224 * Erase a useless and confusing artifact of the kernel implementation:
225 * the lwps which did *not* create the core will show SIGKILL. We can
226 * be assured this is bogus because SIGKILL can't produce core files.
227 */
228 if (lps.pr_cursig == SIGKILL)
229 lps.pr_cursig = 0;
230
231 (void) memcpy(&lwp->lwp_status, &lps, sizeof (lps));
232 return (0);
233
234 err:
235 dprintf("Pgrab_core: failed to read NT_LWPSTATUS\n");
236 return (-1);
237 }
238
239 static int
note_psinfo(struct ps_prochandle * P,size_t nbytes)240 note_psinfo(struct ps_prochandle *P, size_t nbytes)
241 {
242 #ifdef _LP64
243 if (P->core->core_dmodel == PR_MODEL_ILP32) {
244 psinfo32_t ps32;
245
246 if (nbytes < sizeof (psinfo32_t) ||
247 read(P->asfd, &ps32, sizeof (ps32)) != sizeof (ps32))
248 goto err;
249
250 psinfo_32_to_n(&ps32, &P->psinfo);
251 } else
252 #endif
253 if (nbytes < sizeof (psinfo_t) ||
254 read(P->asfd, &P->psinfo, sizeof (psinfo_t)) != sizeof (psinfo_t))
255 goto err;
256
257 dprintf("pr_fname = <%s>\n", P->psinfo.pr_fname);
258 dprintf("pr_psargs = <%s>\n", P->psinfo.pr_psargs);
259 dprintf("pr_wstat = 0x%x\n", P->psinfo.pr_wstat);
260
261 return (0);
262
263 err:
264 dprintf("Pgrab_core: failed to read NT_PSINFO\n");
265 return (-1);
266 }
267
268 static int
note_lwpsinfo(struct ps_prochandle * P,size_t nbytes)269 note_lwpsinfo(struct ps_prochandle *P, size_t nbytes)
270 {
271 lwp_info_t *lwp;
272 lwpsinfo_t lps;
273
274 #ifdef _LP64
275 if (P->core->core_dmodel == PR_MODEL_ILP32) {
276 lwpsinfo32_t l32;
277
278 if (nbytes < sizeof (lwpsinfo32_t) ||
279 read(P->asfd, &l32, sizeof (l32)) != sizeof (l32))
280 goto err;
281
282 lwpsinfo_32_to_n(&l32, &lps);
283 } else
284 #endif
285 if (nbytes < sizeof (lwpsinfo_t) ||
286 read(P->asfd, &lps, sizeof (lps)) != sizeof (lps))
287 goto err;
288
289 if ((lwp = lwpid2info(P, lps.pr_lwpid)) == NULL) {
290 dprintf("Pgrab_core: failed to add NT_LWPSINFO\n");
291 return (-1);
292 }
293
294 (void) memcpy(&lwp->lwp_psinfo, &lps, sizeof (lps));
295 return (0);
296
297 err:
298 dprintf("Pgrab_core: failed to read NT_LWPSINFO\n");
299 return (-1);
300 }
301
302 static int
note_platform(struct ps_prochandle * P,size_t nbytes)303 note_platform(struct ps_prochandle *P, size_t nbytes)
304 {
305 char *plat;
306
307 if (P->core->core_platform != NULL)
308 return (0); /* Already seen */
309
310 if (nbytes != 0 && ((plat = malloc(nbytes + 1)) != NULL)) {
311 if (read(P->asfd, plat, nbytes) != nbytes) {
312 dprintf("Pgrab_core: failed to read NT_PLATFORM\n");
313 free(plat);
314 return (-1);
315 }
316 plat[nbytes - 1] = '\0';
317 P->core->core_platform = plat;
318 }
319
320 return (0);
321 }
322
323 static int
note_utsname(struct ps_prochandle * P,size_t nbytes)324 note_utsname(struct ps_prochandle *P, size_t nbytes)
325 {
326 size_t ubytes = sizeof (struct utsname);
327 struct utsname *utsp;
328
329 if (P->core->core_uts != NULL || nbytes < ubytes)
330 return (0); /* Already seen or bad size */
331
332 if ((utsp = malloc(ubytes)) == NULL)
333 return (-1);
334
335 if (read(P->asfd, utsp, ubytes) != ubytes) {
336 dprintf("Pgrab_core: failed to read NT_UTSNAME\n");
337 free(utsp);
338 return (-1);
339 }
340
341 if (_libproc_debug) {
342 dprintf("uts.sysname = \"%s\"\n", utsp->sysname);
343 dprintf("uts.nodename = \"%s\"\n", utsp->nodename);
344 dprintf("uts.release = \"%s\"\n", utsp->release);
345 dprintf("uts.version = \"%s\"\n", utsp->version);
346 dprintf("uts.machine = \"%s\"\n", utsp->machine);
347 }
348
349 P->core->core_uts = utsp;
350 return (0);
351 }
352
353 static int
note_content(struct ps_prochandle * P,size_t nbytes)354 note_content(struct ps_prochandle *P, size_t nbytes)
355 {
356 core_content_t content;
357
358 if (sizeof (P->core->core_content) != nbytes)
359 return (-1);
360
361 if (read(P->asfd, &content, sizeof (content)) != sizeof (content))
362 return (-1);
363
364 P->core->core_content = content;
365
366 dprintf("core content = %llx\n", content);
367
368 return (0);
369 }
370
371 static int
note_cred(struct ps_prochandle * P,size_t nbytes)372 note_cred(struct ps_prochandle *P, size_t nbytes)
373 {
374 prcred_t *pcrp;
375 int ngroups;
376 const size_t min_size = sizeof (prcred_t) - sizeof (gid_t);
377
378 /*
379 * We allow for prcred_t notes that are actually smaller than a
380 * prcred_t since the last member isn't essential if there are
381 * no group memberships. This allows for more flexibility when it
382 * comes to slightly malformed -- but still valid -- notes.
383 */
384 if (P->core->core_cred != NULL || nbytes < min_size)
385 return (0); /* Already seen or bad size */
386
387 ngroups = (nbytes - min_size) / sizeof (gid_t);
388 nbytes = sizeof (prcred_t) + (ngroups - 1) * sizeof (gid_t);
389
390 if ((pcrp = malloc(nbytes)) == NULL)
391 return (-1);
392
393 if (read(P->asfd, pcrp, nbytes) != nbytes) {
394 dprintf("Pgrab_core: failed to read NT_PRCRED\n");
395 free(pcrp);
396 return (-1);
397 }
398
399 if (pcrp->pr_ngroups > ngroups) {
400 dprintf("pr_ngroups = %d; resetting to %d based on note size\n",
401 pcrp->pr_ngroups, ngroups);
402 pcrp->pr_ngroups = ngroups;
403 }
404
405 P->core->core_cred = pcrp;
406 return (0);
407 }
408
409 #if defined(__i386) || defined(__amd64)
410 static int
note_ldt(struct ps_prochandle * P,size_t nbytes)411 note_ldt(struct ps_prochandle *P, size_t nbytes)
412 {
413 struct ssd *pldt;
414 uint_t nldt;
415
416 if (P->core->core_ldt != NULL || nbytes < sizeof (struct ssd))
417 return (0); /* Already seen or bad size */
418
419 nldt = nbytes / sizeof (struct ssd);
420 nbytes = nldt * sizeof (struct ssd);
421
422 if ((pldt = malloc(nbytes)) == NULL)
423 return (-1);
424
425 if (read(P->asfd, pldt, nbytes) != nbytes) {
426 dprintf("Pgrab_core: failed to read NT_LDT\n");
427 free(pldt);
428 return (-1);
429 }
430
431 P->core->core_ldt = pldt;
432 P->core->core_nldt = nldt;
433 return (0);
434 }
435 #endif /* __i386 */
436
437 static int
note_priv(struct ps_prochandle * P,size_t nbytes)438 note_priv(struct ps_prochandle *P, size_t nbytes)
439 {
440 prpriv_t *pprvp;
441
442 if (P->core->core_priv != NULL || nbytes < sizeof (prpriv_t))
443 return (0); /* Already seen or bad size */
444
445 if ((pprvp = malloc(nbytes)) == NULL)
446 return (-1);
447
448 if (read(P->asfd, pprvp, nbytes) != nbytes) {
449 dprintf("Pgrab_core: failed to read NT_PRPRIV\n");
450 free(pprvp);
451 return (-1);
452 }
453
454 P->core->core_priv = pprvp;
455 P->core->core_priv_size = nbytes;
456 return (0);
457 }
458
459 static int
note_priv_info(struct ps_prochandle * P,size_t nbytes)460 note_priv_info(struct ps_prochandle *P, size_t nbytes)
461 {
462 extern void *__priv_parse_info();
463 priv_impl_info_t *ppii;
464
465 if (P->core->core_privinfo != NULL ||
466 nbytes < sizeof (priv_impl_info_t))
467 return (0); /* Already seen or bad size */
468
469 if ((ppii = malloc(nbytes)) == NULL)
470 return (-1);
471
472 if (read(P->asfd, ppii, nbytes) != nbytes ||
473 PRIV_IMPL_INFO_SIZE(ppii) != nbytes) {
474 dprintf("Pgrab_core: failed to read NT_PRPRIVINFO\n");
475 free(ppii);
476 return (-1);
477 }
478
479 P->core->core_privinfo = __priv_parse_info(ppii);
480 P->core->core_ppii = ppii;
481 return (0);
482 }
483
484 static int
note_zonename(struct ps_prochandle * P,size_t nbytes)485 note_zonename(struct ps_prochandle *P, size_t nbytes)
486 {
487 char *zonename;
488
489 if (P->core->core_zonename != NULL)
490 return (0); /* Already seen */
491
492 if (nbytes != 0) {
493 if ((zonename = malloc(nbytes)) == NULL)
494 return (-1);
495 if (read(P->asfd, zonename, nbytes) != nbytes) {
496 dprintf("Pgrab_core: failed to read NT_ZONENAME\n");
497 free(zonename);
498 return (-1);
499 }
500 zonename[nbytes - 1] = '\0';
501 P->core->core_zonename = zonename;
502 }
503
504 return (0);
505 }
506
507 static int
note_auxv(struct ps_prochandle * P,size_t nbytes)508 note_auxv(struct ps_prochandle *P, size_t nbytes)
509 {
510 size_t n, i;
511
512 #ifdef _LP64
513 if (P->core->core_dmodel == PR_MODEL_ILP32) {
514 auxv32_t *a32;
515
516 n = nbytes / sizeof (auxv32_t);
517 nbytes = n * sizeof (auxv32_t);
518 a32 = alloca(nbytes);
519
520 if (read(P->asfd, a32, nbytes) != nbytes) {
521 dprintf("Pgrab_core: failed to read NT_AUXV\n");
522 return (-1);
523 }
524
525 if ((P->auxv = malloc(sizeof (auxv_t) * (n + 1))) == NULL)
526 return (-1);
527
528 for (i = 0; i < n; i++)
529 auxv_32_to_n(&a32[i], &P->auxv[i]);
530
531 } else {
532 #endif
533 n = nbytes / sizeof (auxv_t);
534 nbytes = n * sizeof (auxv_t);
535
536 if ((P->auxv = malloc(nbytes + sizeof (auxv_t))) == NULL)
537 return (-1);
538
539 if (read(P->asfd, P->auxv, nbytes) != nbytes) {
540 free(P->auxv);
541 P->auxv = NULL;
542 return (-1);
543 }
544 #ifdef _LP64
545 }
546 #endif
547
548 if (_libproc_debug) {
549 for (i = 0; i < n; i++) {
550 dprintf("P->auxv[%lu] = ( %d, 0x%lx )\n", (ulong_t)i,
551 P->auxv[i].a_type, P->auxv[i].a_un.a_val);
552 }
553 }
554
555 /*
556 * Defensive coding for loops which depend upon the auxv array being
557 * terminated by an AT_NULL element; in each case, we've allocated
558 * P->auxv to have an additional element which we force to be AT_NULL.
559 */
560 P->auxv[n].a_type = AT_NULL;
561 P->auxv[n].a_un.a_val = 0L;
562 P->nauxv = (int)n;
563
564 return (0);
565 }
566
567 #ifdef __sparc
568 static int
note_xreg(struct ps_prochandle * P,size_t nbytes)569 note_xreg(struct ps_prochandle *P, size_t nbytes)
570 {
571 lwp_info_t *lwp = P->core->core_lwp;
572 size_t xbytes = sizeof (prxregset_t);
573 prxregset_t *xregs;
574
575 if (lwp == NULL || lwp->lwp_xregs != NULL || nbytes < xbytes)
576 return (0); /* No lwp yet, already seen, or bad size */
577
578 if ((xregs = malloc(xbytes)) == NULL)
579 return (-1);
580
581 if (read(P->asfd, xregs, xbytes) != xbytes) {
582 dprintf("Pgrab_core: failed to read NT_PRXREG\n");
583 free(xregs);
584 return (-1);
585 }
586
587 lwp->lwp_xregs = xregs;
588 return (0);
589 }
590
591 static int
note_gwindows(struct ps_prochandle * P,size_t nbytes)592 note_gwindows(struct ps_prochandle *P, size_t nbytes)
593 {
594 lwp_info_t *lwp = P->core->core_lwp;
595
596 if (lwp == NULL || lwp->lwp_gwins != NULL || nbytes == 0)
597 return (0); /* No lwp yet or already seen or no data */
598
599 if ((lwp->lwp_gwins = malloc(sizeof (gwindows_t))) == NULL)
600 return (-1);
601
602 /*
603 * Since the amount of gwindows data varies with how many windows were
604 * actually saved, we just read up to the minimum of the note size
605 * and the size of the gwindows_t type. It doesn't matter if the read
606 * fails since we have to zero out gwindows first anyway.
607 */
608 #ifdef _LP64
609 if (P->core->core_dmodel == PR_MODEL_ILP32) {
610 gwindows32_t g32;
611
612 (void) memset(&g32, 0, sizeof (g32));
613 (void) read(P->asfd, &g32, MIN(nbytes, sizeof (g32)));
614 gwindows_32_to_n(&g32, lwp->lwp_gwins);
615
616 } else {
617 #endif
618 (void) memset(lwp->lwp_gwins, 0, sizeof (gwindows_t));
619 (void) read(P->asfd, lwp->lwp_gwins,
620 MIN(nbytes, sizeof (gwindows_t)));
621 #ifdef _LP64
622 }
623 #endif
624 return (0);
625 }
626
627 #ifdef __sparcv9
628 static int
note_asrs(struct ps_prochandle * P,size_t nbytes)629 note_asrs(struct ps_prochandle *P, size_t nbytes)
630 {
631 lwp_info_t *lwp = P->core->core_lwp;
632 int64_t *asrs;
633
634 if (lwp == NULL || lwp->lwp_asrs != NULL || nbytes < sizeof (asrset_t))
635 return (0); /* No lwp yet, already seen, or bad size */
636
637 if ((asrs = malloc(sizeof (asrset_t))) == NULL)
638 return (-1);
639
640 if (read(P->asfd, asrs, sizeof (asrset_t)) != sizeof (asrset_t)) {
641 dprintf("Pgrab_core: failed to read NT_ASRS\n");
642 free(asrs);
643 return (-1);
644 }
645
646 lwp->lwp_asrs = asrs;
647 return (0);
648 }
649 #endif /* __sparcv9 */
650 #endif /* __sparc */
651
652 /*ARGSUSED*/
653 static int
note_notsup(struct ps_prochandle * P,size_t nbytes)654 note_notsup(struct ps_prochandle *P, size_t nbytes)
655 {
656 dprintf("skipping unsupported note type\n");
657 return (0);
658 }
659
660 /*
661 * Populate a table of function pointers indexed by Note type with our
662 * functions to process each type of core file note:
663 */
664 static int (*nhdlrs[])(struct ps_prochandle *, size_t) = {
665 note_notsup, /* 0 unassigned */
666 note_notsup, /* 1 NT_PRSTATUS (old) */
667 note_notsup, /* 2 NT_PRFPREG (old) */
668 note_notsup, /* 3 NT_PRPSINFO (old) */
669 #ifdef __sparc
670 note_xreg, /* 4 NT_PRXREG */
671 #else
672 note_notsup, /* 4 NT_PRXREG */
673 #endif
674 note_platform, /* 5 NT_PLATFORM */
675 note_auxv, /* 6 NT_AUXV */
676 #ifdef __sparc
677 note_gwindows, /* 7 NT_GWINDOWS */
678 #ifdef __sparcv9
679 note_asrs, /* 8 NT_ASRS */
680 #else
681 note_notsup, /* 8 NT_ASRS */
682 #endif
683 #else
684 note_notsup, /* 7 NT_GWINDOWS */
685 note_notsup, /* 8 NT_ASRS */
686 #endif
687 #if defined(__i386) || defined(__amd64)
688 note_ldt, /* 9 NT_LDT */
689 #else
690 note_notsup, /* 9 NT_LDT */
691 #endif
692 note_pstatus, /* 10 NT_PSTATUS */
693 note_notsup, /* 11 unassigned */
694 note_notsup, /* 12 unassigned */
695 note_psinfo, /* 13 NT_PSINFO */
696 note_cred, /* 14 NT_PRCRED */
697 note_utsname, /* 15 NT_UTSNAME */
698 note_lwpstatus, /* 16 NT_LWPSTATUS */
699 note_lwpsinfo, /* 17 NT_LWPSINFO */
700 note_priv, /* 18 NT_PRPRIV */
701 note_priv_info, /* 19 NT_PRPRIVINFO */
702 note_content, /* 20 NT_CONTENT */
703 note_zonename, /* 21 NT_ZONENAME */
704 };
705
706 /*
707 * Add information on the address space mapping described by the given
708 * PT_LOAD program header. We fill in more information on the mapping later.
709 */
710 static int
core_add_mapping(struct ps_prochandle * P,GElf_Phdr * php)711 core_add_mapping(struct ps_prochandle *P, GElf_Phdr *php)
712 {
713 int err = 0;
714 prmap_t pmap;
715
716 dprintf("mapping base %llx filesz %llu memsz %llu offset %llu\n",
717 (u_longlong_t)php->p_vaddr, (u_longlong_t)php->p_filesz,
718 (u_longlong_t)php->p_memsz, (u_longlong_t)php->p_offset);
719
720 pmap.pr_vaddr = (uintptr_t)php->p_vaddr;
721 pmap.pr_size = php->p_memsz;
722
723 /*
724 * If Pgcore() or elfcore() fail to write a mapping, they will set
725 * PF_SUNW_FAILURE in the Phdr and try to stash away the errno for us.
726 */
727 if (php->p_flags & PF_SUNW_FAILURE) {
728 (void) pread64(P->asfd, &err,
729 sizeof (err), (off64_t)php->p_offset);
730
731 Perror_printf(P, "core file data for mapping at %p not saved: "
732 "%s\n", (void *)(uintptr_t)php->p_vaddr, strerror(err));
733 dprintf("core file data for mapping at %p not saved: %s\n",
734 (void *)(uintptr_t)php->p_vaddr, strerror(err));
735
736 } else if (php->p_filesz != 0 && php->p_offset >= P->core->core_size) {
737 Perror_printf(P, "core file may be corrupt -- data for mapping "
738 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
739 dprintf("core file may be corrupt -- data for mapping "
740 "at %p is missing\n", (void *)(uintptr_t)php->p_vaddr);
741 }
742
743 /*
744 * The mapping name and offset will hopefully be filled in
745 * by the librtld_db agent. Unfortunately, if it isn't a
746 * shared library mapping, this information is gone forever.
747 */
748 pmap.pr_mapname[0] = '\0';
749 pmap.pr_offset = 0;
750
751 pmap.pr_mflags = 0;
752 if (php->p_flags & PF_R)
753 pmap.pr_mflags |= MA_READ;
754 if (php->p_flags & PF_W)
755 pmap.pr_mflags |= MA_WRITE;
756 if (php->p_flags & PF_X)
757 pmap.pr_mflags |= MA_EXEC;
758
759 if (php->p_filesz == 0)
760 pmap.pr_mflags |= MA_RESERVED1;
761
762 /*
763 * At the time of adding this mapping, we just zero the pagesize.
764 * Once we've processed more of the core file, we'll have the
765 * pagesize from the auxv's AT_PAGESZ element and we can fill this in.
766 */
767 pmap.pr_pagesize = 0;
768
769 /*
770 * Unfortunately whether or not the mapping was a System V
771 * shared memory segment is lost. We use -1 to mark it as not shm.
772 */
773 pmap.pr_shmid = -1;
774
775 return (Padd_mapping(P, php->p_offset, NULL, &pmap));
776 }
777
778 /*
779 * Given a virtual address, name the mapping at that address using the
780 * specified name, and return the map_info_t pointer.
781 */
782 static map_info_t *
core_name_mapping(struct ps_prochandle * P,uintptr_t addr,const char * name)783 core_name_mapping(struct ps_prochandle *P, uintptr_t addr, const char *name)
784 {
785 map_info_t *mp = Paddr2mptr(P, addr);
786
787 if (mp != NULL) {
788 (void) strncpy(mp->map_pmap.pr_mapname, name, PRMAPSZ);
789 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
790 }
791
792 return (mp);
793 }
794
795 /*
796 * libproc uses libelf for all of its symbol table manipulation. This function
797 * takes a symbol table and string table from a core file and places them
798 * in a memory backed elf file.
799 */
800 static void
fake_up_symtab(struct ps_prochandle * P,const elf_file_header_t * ehdr,GElf_Shdr * symtab,GElf_Shdr * strtab)801 fake_up_symtab(struct ps_prochandle *P, const elf_file_header_t *ehdr,
802 GElf_Shdr *symtab, GElf_Shdr *strtab)
803 {
804 size_t size;
805 off64_t off, base;
806 map_info_t *mp;
807 file_info_t *fp;
808 Elf_Scn *scn;
809 Elf_Data *data;
810
811 if (symtab->sh_addr == 0 ||
812 (mp = Paddr2mptr(P, symtab->sh_addr)) == NULL ||
813 (fp = mp->map_file) == NULL) {
814 dprintf("fake_up_symtab: invalid section\n");
815 return;
816 }
817
818 if (fp->file_symtab.sym_data_pri != NULL) {
819 dprintf("Symbol table already loaded (sh_addr 0x%lx)\n",
820 (long)symtab->sh_addr);
821 return;
822 }
823
824 if (P->status.pr_dmodel == PR_MODEL_ILP32) {
825 struct {
826 Elf32_Ehdr ehdr;
827 Elf32_Shdr shdr[3];
828 char data[1];
829 } *b;
830
831 base = sizeof (b->ehdr) + sizeof (b->shdr);
832 size = base + symtab->sh_size + strtab->sh_size;
833
834 if ((b = calloc(1, size)) == NULL)
835 return;
836
837 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
838 sizeof (ehdr->e_ident));
839 b->ehdr.e_type = ehdr->e_type;
840 b->ehdr.e_machine = ehdr->e_machine;
841 b->ehdr.e_version = ehdr->e_version;
842 b->ehdr.e_flags = ehdr->e_flags;
843 b->ehdr.e_ehsize = sizeof (b->ehdr);
844 b->ehdr.e_shoff = sizeof (b->ehdr);
845 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
846 b->ehdr.e_shnum = 3;
847 off = 0;
848
849 b->shdr[1].sh_size = symtab->sh_size;
850 b->shdr[1].sh_type = SHT_SYMTAB;
851 b->shdr[1].sh_offset = off + base;
852 b->shdr[1].sh_entsize = sizeof (Elf32_Sym);
853 b->shdr[1].sh_link = 2;
854 b->shdr[1].sh_info = symtab->sh_info;
855 b->shdr[1].sh_addralign = symtab->sh_addralign;
856
857 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
858 symtab->sh_offset) != b->shdr[1].sh_size) {
859 dprintf("fake_up_symtab: pread of symtab[1] failed\n");
860 free(b);
861 return;
862 }
863
864 off += b->shdr[1].sh_size;
865
866 b->shdr[2].sh_flags = SHF_STRINGS;
867 b->shdr[2].sh_size = strtab->sh_size;
868 b->shdr[2].sh_type = SHT_STRTAB;
869 b->shdr[2].sh_offset = off + base;
870 b->shdr[2].sh_info = strtab->sh_info;
871 b->shdr[2].sh_addralign = 1;
872
873 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
874 strtab->sh_offset) != b->shdr[2].sh_size) {
875 dprintf("fake_up_symtab: pread of symtab[2] failed\n");
876 free(b);
877 return;
878 }
879
880 off += b->shdr[2].sh_size;
881
882 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
883 if (fp->file_symtab.sym_elf == NULL) {
884 free(b);
885 return;
886 }
887
888 fp->file_symtab.sym_elfmem = b;
889 #ifdef _LP64
890 } else {
891 struct {
892 Elf64_Ehdr ehdr;
893 Elf64_Shdr shdr[3];
894 char data[1];
895 } *b;
896
897 base = sizeof (b->ehdr) + sizeof (b->shdr);
898 size = base + symtab->sh_size + strtab->sh_size;
899
900 if ((b = calloc(1, size)) == NULL)
901 return;
902
903 (void) memcpy(b->ehdr.e_ident, ehdr->e_ident,
904 sizeof (ehdr->e_ident));
905 b->ehdr.e_type = ehdr->e_type;
906 b->ehdr.e_machine = ehdr->e_machine;
907 b->ehdr.e_version = ehdr->e_version;
908 b->ehdr.e_flags = ehdr->e_flags;
909 b->ehdr.e_ehsize = sizeof (b->ehdr);
910 b->ehdr.e_shoff = sizeof (b->ehdr);
911 b->ehdr.e_shentsize = sizeof (b->shdr[0]);
912 b->ehdr.e_shnum = 3;
913 off = 0;
914
915 b->shdr[1].sh_size = symtab->sh_size;
916 b->shdr[1].sh_type = SHT_SYMTAB;
917 b->shdr[1].sh_offset = off + base;
918 b->shdr[1].sh_entsize = sizeof (Elf64_Sym);
919 b->shdr[1].sh_link = 2;
920 b->shdr[1].sh_info = symtab->sh_info;
921 b->shdr[1].sh_addralign = symtab->sh_addralign;
922
923 if (pread64(P->asfd, &b->data[off], b->shdr[1].sh_size,
924 symtab->sh_offset) != b->shdr[1].sh_size) {
925 free(b);
926 return;
927 }
928
929 off += b->shdr[1].sh_size;
930
931 b->shdr[2].sh_flags = SHF_STRINGS;
932 b->shdr[2].sh_size = strtab->sh_size;
933 b->shdr[2].sh_type = SHT_STRTAB;
934 b->shdr[2].sh_offset = off + base;
935 b->shdr[2].sh_info = strtab->sh_info;
936 b->shdr[2].sh_addralign = 1;
937
938 if (pread64(P->asfd, &b->data[off], b->shdr[2].sh_size,
939 strtab->sh_offset) != b->shdr[2].sh_size) {
940 free(b);
941 return;
942 }
943
944 off += b->shdr[2].sh_size;
945
946 fp->file_symtab.sym_elf = elf_memory((char *)b, size);
947 if (fp->file_symtab.sym_elf == NULL) {
948 free(b);
949 return;
950 }
951
952 fp->file_symtab.sym_elfmem = b;
953 #endif
954 }
955
956 if ((scn = elf_getscn(fp->file_symtab.sym_elf, 1)) == NULL ||
957 (fp->file_symtab.sym_data_pri = elf_getdata(scn, NULL)) == NULL ||
958 (scn = elf_getscn(fp->file_symtab.sym_elf, 2)) == NULL ||
959 (data = elf_getdata(scn, NULL)) == NULL) {
960 dprintf("fake_up_symtab: failed to get section data at %p\n",
961 (void *)scn);
962 goto err;
963 }
964
965 fp->file_symtab.sym_strs = data->d_buf;
966 fp->file_symtab.sym_strsz = data->d_size;
967 fp->file_symtab.sym_symn = symtab->sh_size / symtab->sh_entsize;
968 fp->file_symtab.sym_hdr_pri = *symtab;
969 fp->file_symtab.sym_strhdr = *strtab;
970
971 optimize_symtab(&fp->file_symtab);
972
973 return;
974 err:
975 (void) elf_end(fp->file_symtab.sym_elf);
976 free(fp->file_symtab.sym_elfmem);
977 fp->file_symtab.sym_elf = NULL;
978 fp->file_symtab.sym_elfmem = NULL;
979 }
980
981 static void
core_phdr_to_gelf(const Elf32_Phdr * src,GElf_Phdr * dst)982 core_phdr_to_gelf(const Elf32_Phdr *src, GElf_Phdr *dst)
983 {
984 dst->p_type = src->p_type;
985 dst->p_flags = src->p_flags;
986 dst->p_offset = (Elf64_Off)src->p_offset;
987 dst->p_vaddr = (Elf64_Addr)src->p_vaddr;
988 dst->p_paddr = (Elf64_Addr)src->p_paddr;
989 dst->p_filesz = (Elf64_Xword)src->p_filesz;
990 dst->p_memsz = (Elf64_Xword)src->p_memsz;
991 dst->p_align = (Elf64_Xword)src->p_align;
992 }
993
994 static void
core_shdr_to_gelf(const Elf32_Shdr * src,GElf_Shdr * dst)995 core_shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
996 {
997 dst->sh_name = src->sh_name;
998 dst->sh_type = src->sh_type;
999 dst->sh_flags = (Elf64_Xword)src->sh_flags;
1000 dst->sh_addr = (Elf64_Addr)src->sh_addr;
1001 dst->sh_offset = (Elf64_Off)src->sh_offset;
1002 dst->sh_size = (Elf64_Xword)src->sh_size;
1003 dst->sh_link = src->sh_link;
1004 dst->sh_info = src->sh_info;
1005 dst->sh_addralign = (Elf64_Xword)src->sh_addralign;
1006 dst->sh_entsize = (Elf64_Xword)src->sh_entsize;
1007 }
1008
1009 /*
1010 * Perform elf_begin on efp->e_fd and verify the ELF file's type and class.
1011 */
1012 static int
core_elf_fdopen(elf_file_t * efp,GElf_Half type,int * perr)1013 core_elf_fdopen(elf_file_t *efp, GElf_Half type, int *perr)
1014 {
1015 #ifdef _BIG_ENDIAN
1016 uchar_t order = ELFDATA2MSB;
1017 #else
1018 uchar_t order = ELFDATA2LSB;
1019 #endif
1020 Elf32_Ehdr e32;
1021 int is_noelf = -1;
1022 int isa_err = 0;
1023
1024 /*
1025 * Because 32-bit libelf cannot deal with large files, we need to read,
1026 * check, and convert the file header manually in case type == ET_CORE.
1027 */
1028 if (pread64(efp->e_fd, &e32, sizeof (e32), 0) != sizeof (e32)) {
1029 if (perr != NULL)
1030 *perr = G_FORMAT;
1031 goto err;
1032 }
1033 if ((is_noelf = memcmp(&e32.e_ident[EI_MAG0], ELFMAG, SELFMAG)) != 0 ||
1034 e32.e_type != type || (isa_err = (e32.e_ident[EI_DATA] != order)) ||
1035 e32.e_version != EV_CURRENT) {
1036 if (perr != NULL) {
1037 if (is_noelf == 0 && isa_err) {
1038 *perr = G_ISAINVAL;
1039 } else {
1040 *perr = G_FORMAT;
1041 }
1042 }
1043 goto err;
1044 }
1045
1046 /*
1047 * If the file is 64-bit and we are 32-bit, fail with G_LP64. If the
1048 * file is 64-bit and we are 64-bit, re-read the header as a Elf64_Ehdr,
1049 * and convert it to a elf_file_header_t. Otherwise, the file is
1050 * 32-bit, so convert e32 to a elf_file_header_t.
1051 */
1052 if (e32.e_ident[EI_CLASS] == ELFCLASS64) {
1053 #ifdef _LP64
1054 Elf64_Ehdr e64;
1055
1056 if (pread64(efp->e_fd, &e64, sizeof (e64), 0) != sizeof (e64)) {
1057 if (perr != NULL)
1058 *perr = G_FORMAT;
1059 goto err;
1060 }
1061
1062 (void) memcpy(efp->e_hdr.e_ident, e64.e_ident, EI_NIDENT);
1063 efp->e_hdr.e_type = e64.e_type;
1064 efp->e_hdr.e_machine = e64.e_machine;
1065 efp->e_hdr.e_version = e64.e_version;
1066 efp->e_hdr.e_entry = e64.e_entry;
1067 efp->e_hdr.e_phoff = e64.e_phoff;
1068 efp->e_hdr.e_shoff = e64.e_shoff;
1069 efp->e_hdr.e_flags = e64.e_flags;
1070 efp->e_hdr.e_ehsize = e64.e_ehsize;
1071 efp->e_hdr.e_phentsize = e64.e_phentsize;
1072 efp->e_hdr.e_phnum = (Elf64_Word)e64.e_phnum;
1073 efp->e_hdr.e_shentsize = e64.e_shentsize;
1074 efp->e_hdr.e_shnum = (Elf64_Word)e64.e_shnum;
1075 efp->e_hdr.e_shstrndx = (Elf64_Word)e64.e_shstrndx;
1076 #else /* _LP64 */
1077 if (perr != NULL)
1078 *perr = G_LP64;
1079 goto err;
1080 #endif /* _LP64 */
1081 } else {
1082 (void) memcpy(efp->e_hdr.e_ident, e32.e_ident, EI_NIDENT);
1083 efp->e_hdr.e_type = e32.e_type;
1084 efp->e_hdr.e_machine = e32.e_machine;
1085 efp->e_hdr.e_version = e32.e_version;
1086 efp->e_hdr.e_entry = (Elf64_Addr)e32.e_entry;
1087 efp->e_hdr.e_phoff = (Elf64_Off)e32.e_phoff;
1088 efp->e_hdr.e_shoff = (Elf64_Off)e32.e_shoff;
1089 efp->e_hdr.e_flags = e32.e_flags;
1090 efp->e_hdr.e_ehsize = e32.e_ehsize;
1091 efp->e_hdr.e_phentsize = e32.e_phentsize;
1092 efp->e_hdr.e_phnum = (Elf64_Word)e32.e_phnum;
1093 efp->e_hdr.e_shentsize = e32.e_shentsize;
1094 efp->e_hdr.e_shnum = (Elf64_Word)e32.e_shnum;
1095 efp->e_hdr.e_shstrndx = (Elf64_Word)e32.e_shstrndx;
1096 }
1097
1098 /*
1099 * If the number of section headers or program headers or the section
1100 * header string table index would overflow their respective fields
1101 * in the ELF header, they're stored in the section header at index
1102 * zero. To simplify use elsewhere, we look for those sentinel values
1103 * here.
1104 */
1105 if ((efp->e_hdr.e_shnum == 0 && efp->e_hdr.e_shoff != 0) ||
1106 efp->e_hdr.e_shstrndx == SHN_XINDEX ||
1107 efp->e_hdr.e_phnum == PN_XNUM) {
1108 GElf_Shdr shdr;
1109
1110 dprintf("extended ELF header\n");
1111
1112 if (efp->e_hdr.e_shoff == 0) {
1113 if (perr != NULL)
1114 *perr = G_FORMAT;
1115 goto err;
1116 }
1117
1118 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1119 Elf32_Shdr shdr32;
1120
1121 if (pread64(efp->e_fd, &shdr32, sizeof (shdr32),
1122 efp->e_hdr.e_shoff) != sizeof (shdr32)) {
1123 if (perr != NULL)
1124 *perr = G_FORMAT;
1125 goto err;
1126 }
1127
1128 core_shdr_to_gelf(&shdr32, &shdr);
1129 } else {
1130 if (pread64(efp->e_fd, &shdr, sizeof (shdr),
1131 efp->e_hdr.e_shoff) != sizeof (shdr)) {
1132 if (perr != NULL)
1133 *perr = G_FORMAT;
1134 goto err;
1135 }
1136 }
1137
1138 if (efp->e_hdr.e_shnum == 0) {
1139 efp->e_hdr.e_shnum = shdr.sh_size;
1140 dprintf("section header count %lu\n",
1141 (ulong_t)shdr.sh_size);
1142 }
1143
1144 if (efp->e_hdr.e_shstrndx == SHN_XINDEX) {
1145 efp->e_hdr.e_shstrndx = shdr.sh_link;
1146 dprintf("section string index %u\n", shdr.sh_link);
1147 }
1148
1149 if (efp->e_hdr.e_phnum == PN_XNUM && shdr.sh_info != 0) {
1150 efp->e_hdr.e_phnum = shdr.sh_info;
1151 dprintf("program header count %u\n", shdr.sh_info);
1152 }
1153
1154 } else if (efp->e_hdr.e_phoff != 0) {
1155 GElf_Phdr phdr;
1156 uint64_t phnum;
1157
1158 /*
1159 * It's possible this core file came from a system that
1160 * accidentally truncated the e_phnum field without correctly
1161 * using the extended format in the section header at index
1162 * zero. We try to detect and correct that specific type of
1163 * corruption by using the knowledge that the core dump
1164 * routines usually place the data referenced by the first
1165 * program header immediately after the last header element.
1166 */
1167 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32) {
1168 Elf32_Phdr phdr32;
1169
1170 if (pread64(efp->e_fd, &phdr32, sizeof (phdr32),
1171 efp->e_hdr.e_phoff) != sizeof (phdr32)) {
1172 if (perr != NULL)
1173 *perr = G_FORMAT;
1174 goto err;
1175 }
1176
1177 core_phdr_to_gelf(&phdr32, &phdr);
1178 } else {
1179 if (pread64(efp->e_fd, &phdr, sizeof (phdr),
1180 efp->e_hdr.e_phoff) != sizeof (phdr)) {
1181 if (perr != NULL)
1182 *perr = G_FORMAT;
1183 goto err;
1184 }
1185 }
1186
1187 phnum = phdr.p_offset - efp->e_hdr.e_ehsize -
1188 (uint64_t)efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1189 phnum /= efp->e_hdr.e_phentsize;
1190
1191 if (phdr.p_offset != 0 && phnum != efp->e_hdr.e_phnum) {
1192 dprintf("suspicious program header count %u %u\n",
1193 (uint_t)phnum, efp->e_hdr.e_phnum);
1194
1195 /*
1196 * If the new program header count we computed doesn't
1197 * jive with count in the ELF header, we'll use the
1198 * data that's there and hope for the best.
1199 *
1200 * If it does, it's also possible that the section
1201 * header offset is incorrect; we'll check that and
1202 * possibly try to fix it.
1203 */
1204 if (phnum <= INT_MAX &&
1205 (uint16_t)phnum == efp->e_hdr.e_phnum) {
1206
1207 if (efp->e_hdr.e_shoff == efp->e_hdr.e_phoff +
1208 efp->e_hdr.e_phentsize *
1209 (uint_t)efp->e_hdr.e_phnum) {
1210 efp->e_hdr.e_shoff =
1211 efp->e_hdr.e_phoff +
1212 efp->e_hdr.e_phentsize * phnum;
1213 }
1214
1215 efp->e_hdr.e_phnum = (Elf64_Word)phnum;
1216 dprintf("using new program header count\n");
1217 } else {
1218 dprintf("inconsistent program header count\n");
1219 }
1220 }
1221 }
1222
1223 /*
1224 * The libelf implementation was never ported to be large-file aware.
1225 * This is typically not a problem for your average executable or
1226 * shared library, but a large 32-bit core file can exceed 2GB in size.
1227 * So if type is ET_CORE, we don't bother doing elf_begin; the code
1228 * in Pfgrab_core() below will do its own i/o and struct conversion.
1229 */
1230
1231 if (type == ET_CORE) {
1232 efp->e_elf = NULL;
1233 return (0);
1234 }
1235
1236 if ((efp->e_elf = elf_begin(efp->e_fd, ELF_C_READ, NULL)) == NULL) {
1237 if (perr != NULL)
1238 *perr = G_ELF;
1239 goto err;
1240 }
1241
1242 return (0);
1243
1244 err:
1245 efp->e_elf = NULL;
1246 return (-1);
1247 }
1248
1249 /*
1250 * Open the specified file and then do a core_elf_fdopen on it.
1251 */
1252 static int
core_elf_open(elf_file_t * efp,const char * path,GElf_Half type,int * perr)1253 core_elf_open(elf_file_t *efp, const char *path, GElf_Half type, int *perr)
1254 {
1255 (void) memset(efp, 0, sizeof (elf_file_t));
1256
1257 if ((efp->e_fd = open64(path, O_RDONLY)) >= 0) {
1258 if (core_elf_fdopen(efp, type, perr) == 0)
1259 return (0);
1260
1261 (void) close(efp->e_fd);
1262 efp->e_fd = -1;
1263 }
1264
1265 return (-1);
1266 }
1267
1268 /*
1269 * Close the ELF handle and file descriptor.
1270 */
1271 static void
core_elf_close(elf_file_t * efp)1272 core_elf_close(elf_file_t *efp)
1273 {
1274 if (efp->e_elf != NULL) {
1275 (void) elf_end(efp->e_elf);
1276 efp->e_elf = NULL;
1277 }
1278
1279 if (efp->e_fd != -1) {
1280 (void) close(efp->e_fd);
1281 efp->e_fd = -1;
1282 }
1283 }
1284
1285 /*
1286 * Given an ELF file for a statically linked executable, locate the likely
1287 * primary text section and fill in rl_base with its virtual address.
1288 */
1289 static map_info_t *
core_find_text(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1290 core_find_text(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1291 {
1292 GElf_Phdr phdr;
1293 uint_t i;
1294 size_t nphdrs;
1295
1296 if (elf_getphdrnum(elf, &nphdrs) == -1)
1297 return (NULL);
1298
1299 for (i = 0; i < nphdrs; i++) {
1300 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1301 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_X)) {
1302 rlp->rl_base = phdr.p_vaddr;
1303 return (Paddr2mptr(P, rlp->rl_base));
1304 }
1305 }
1306
1307 return (NULL);
1308 }
1309
1310 /*
1311 * Given an ELF file and the librtld_db structure corresponding to its primary
1312 * text mapping, deduce where its data segment was loaded and fill in
1313 * rl_data_base and prmap_t.pr_offset accordingly.
1314 */
1315 static map_info_t *
core_find_data(struct ps_prochandle * P,Elf * elf,rd_loadobj_t * rlp)1316 core_find_data(struct ps_prochandle *P, Elf *elf, rd_loadobj_t *rlp)
1317 {
1318 GElf_Ehdr ehdr;
1319 GElf_Phdr phdr;
1320 map_info_t *mp;
1321 uint_t i, pagemask;
1322 size_t nphdrs;
1323
1324 rlp->rl_data_base = NULL;
1325
1326 /*
1327 * Find the first loadable, writeable Phdr and compute rl_data_base
1328 * as the virtual address at which is was loaded.
1329 */
1330 if (gelf_getehdr(elf, &ehdr) == NULL ||
1331 elf_getphdrnum(elf, &nphdrs) == -1)
1332 return (NULL);
1333
1334 for (i = 0; i < nphdrs; i++) {
1335 if (gelf_getphdr(elf, i, &phdr) != NULL &&
1336 phdr.p_type == PT_LOAD && (phdr.p_flags & PF_W)) {
1337 rlp->rl_data_base = phdr.p_vaddr;
1338 if (ehdr.e_type == ET_DYN)
1339 rlp->rl_data_base += rlp->rl_base;
1340 break;
1341 }
1342 }
1343
1344 /*
1345 * If we didn't find an appropriate phdr or if the address we
1346 * computed has no mapping, return NULL.
1347 */
1348 if (rlp->rl_data_base == NULL ||
1349 (mp = Paddr2mptr(P, rlp->rl_data_base)) == NULL)
1350 return (NULL);
1351
1352 /*
1353 * It wouldn't be procfs-related code if we didn't make use of
1354 * unclean knowledge of segvn, even in userland ... the prmap_t's
1355 * pr_offset field will be the segvn offset from mmap(2)ing the
1356 * data section, which will be the file offset & PAGEMASK.
1357 */
1358 pagemask = ~(mp->map_pmap.pr_pagesize - 1);
1359 mp->map_pmap.pr_offset = phdr.p_offset & pagemask;
1360
1361 return (mp);
1362 }
1363
1364 /*
1365 * Librtld_db agent callback for iterating over load object mappings.
1366 * For each load object, we allocate a new file_info_t, perform naming,
1367 * and attempt to construct a symbol table for the load object.
1368 */
1369 static int
core_iter_mapping(const rd_loadobj_t * rlp,struct ps_prochandle * P)1370 core_iter_mapping(const rd_loadobj_t *rlp, struct ps_prochandle *P)
1371 {
1372 char lname[PATH_MAX], buf[PATH_MAX];
1373 file_info_t *fp;
1374 map_info_t *mp;
1375
1376 if (Pread_string(P, lname, PATH_MAX, (off_t)rlp->rl_nameaddr) <= 0) {
1377 dprintf("failed to read name %p\n", (void *)rlp->rl_nameaddr);
1378 return (1); /* Keep going; forget this if we can't get a name */
1379 }
1380
1381 dprintf("rd_loadobj name = \"%s\" rl_base = %p\n",
1382 lname, (void *)rlp->rl_base);
1383
1384 if ((mp = Paddr2mptr(P, rlp->rl_base)) == NULL) {
1385 dprintf("no mapping for %p\n", (void *)rlp->rl_base);
1386 return (1); /* No mapping; advance to next mapping */
1387 }
1388
1389 /*
1390 * Create a new file_info_t for this mapping, and therefore for
1391 * this load object.
1392 *
1393 * If there's an ELF header at the beginning of this mapping,
1394 * file_info_new() will try to use its section headers to
1395 * identify any other mappings that belong to this load object.
1396 */
1397 if ((fp = mp->map_file) == NULL &&
1398 (fp = file_info_new(P, mp)) == NULL) {
1399 P->core->core_errno = errno;
1400 dprintf("failed to malloc mapping data\n");
1401 return (0); /* Abort */
1402 }
1403 fp->file_map = mp;
1404
1405 /* Create a local copy of the load object representation */
1406 if ((fp->file_lo = calloc(1, sizeof (rd_loadobj_t))) == NULL) {
1407 P->core->core_errno = errno;
1408 dprintf("failed to malloc mapping data\n");
1409 return (0); /* Abort */
1410 }
1411 *fp->file_lo = *rlp;
1412
1413 if (lname[0] != '\0') {
1414 /*
1415 * Naming dance part 1: if we got a name from librtld_db, then
1416 * copy this name to the prmap_t if it is unnamed. If the
1417 * file_info_t is unnamed, name it after the lname.
1418 */
1419 if (mp->map_pmap.pr_mapname[0] == '\0') {
1420 (void) strncpy(mp->map_pmap.pr_mapname, lname, PRMAPSZ);
1421 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1422 }
1423
1424 if (fp->file_lname == NULL)
1425 fp->file_lname = strdup(lname);
1426
1427 } else if (fp->file_lname == NULL &&
1428 mp->map_pmap.pr_mapname[0] != '\0') {
1429 /*
1430 * Naming dance part 2: if the mapping is named and the
1431 * file_info_t is not, name the file after the mapping.
1432 */
1433 fp->file_lname = strdup(mp->map_pmap.pr_mapname);
1434 }
1435
1436 if ((fp->file_rname == NULL) &&
1437 (Pfindmap(P, mp, buf, sizeof (buf)) != NULL))
1438 fp->file_rname = strdup(buf);
1439
1440 if (fp->file_lname != NULL)
1441 fp->file_lbase = basename(fp->file_lname);
1442 if (fp->file_rname != NULL)
1443 fp->file_rbase = basename(fp->file_rname);
1444
1445 /* Associate the file and the mapping. */
1446 (void) strncpy(fp->file_pname, mp->map_pmap.pr_mapname, PRMAPSZ);
1447 fp->file_pname[PRMAPSZ - 1] = '\0';
1448
1449 /*
1450 * If no section headers were available then we'll have to
1451 * identify this load object's other mappings with what we've
1452 * got: the start and end of the object's corresponding
1453 * address space.
1454 */
1455 if (fp->file_saddrs == NULL) {
1456 for (mp = fp->file_map + 1; mp < P->mappings + P->map_count &&
1457 mp->map_pmap.pr_vaddr < rlp->rl_bend; mp++) {
1458
1459 if (mp->map_file == NULL) {
1460 dprintf("core_iter_mapping %s: associating "
1461 "segment at %p\n",
1462 fp->file_pname,
1463 (void *)mp->map_pmap.pr_vaddr);
1464 mp->map_file = fp;
1465 fp->file_ref++;
1466 } else {
1467 dprintf("core_iter_mapping %s: segment at "
1468 "%p already associated with %s\n",
1469 fp->file_pname,
1470 (void *)mp->map_pmap.pr_vaddr,
1471 (mp == fp->file_map ? "this file" :
1472 mp->map_file->file_pname));
1473 }
1474 }
1475 }
1476
1477 /* Ensure that all this file's mappings are named. */
1478 for (mp = fp->file_map; mp < P->mappings + P->map_count &&
1479 mp->map_file == fp; mp++) {
1480 if (mp->map_pmap.pr_mapname[0] == '\0' &&
1481 !(mp->map_pmap.pr_mflags & MA_BREAK)) {
1482 (void) strncpy(mp->map_pmap.pr_mapname, fp->file_pname,
1483 PRMAPSZ);
1484 mp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
1485 }
1486 }
1487
1488 /* Attempt to build a symbol table for this file. */
1489 Pbuild_file_symtab(P, fp);
1490 if (fp->file_elf == NULL)
1491 dprintf("core_iter_mapping: no symtab for %s\n",
1492 fp->file_pname);
1493
1494 /* Locate the start of a data segment associated with this file. */
1495 if ((mp = core_find_data(P, fp->file_elf, fp->file_lo)) != NULL) {
1496 dprintf("found data for %s at %p (pr_offset 0x%llx)\n",
1497 fp->file_pname, (void *)fp->file_lo->rl_data_base,
1498 mp->map_pmap.pr_offset);
1499 } else {
1500 dprintf("core_iter_mapping: no data found for %s\n",
1501 fp->file_pname);
1502 }
1503
1504 return (1); /* Advance to next mapping */
1505 }
1506
1507 /*
1508 * Callback function for Pfindexec(). In order to confirm a given pathname,
1509 * we verify that we can open it as an ELF file of type ET_EXEC or ET_DYN.
1510 */
1511 static int
core_exec_open(const char * path,void * efp)1512 core_exec_open(const char *path, void *efp)
1513 {
1514 if (core_elf_open(efp, path, ET_EXEC, NULL) == 0)
1515 return (1);
1516 if (core_elf_open(efp, path, ET_DYN, NULL) == 0)
1517 return (1);
1518 return (0);
1519 }
1520
1521 /*
1522 * Attempt to load any section headers found in the core file. If present,
1523 * this will refer to non-loadable data added to the core file by the kernel
1524 * based on coreadm(1M) settings, including CTF data and the symbol table.
1525 */
1526 static void
core_load_shdrs(struct ps_prochandle * P,elf_file_t * efp)1527 core_load_shdrs(struct ps_prochandle *P, elf_file_t *efp)
1528 {
1529 GElf_Shdr *shp, *shdrs = NULL;
1530 char *shstrtab = NULL;
1531 ulong_t shstrtabsz;
1532 const char *name;
1533 map_info_t *mp;
1534
1535 size_t nbytes;
1536 void *buf;
1537 int i;
1538
1539 if (efp->e_hdr.e_shstrndx >= efp->e_hdr.e_shnum) {
1540 dprintf("corrupt shstrndx (%u) exceeds shnum (%u)\n",
1541 efp->e_hdr.e_shstrndx, efp->e_hdr.e_shnum);
1542 return;
1543 }
1544
1545 /*
1546 * Read the section header table from the core file and then iterate
1547 * over the section headers, converting each to a GElf_Shdr.
1548 */
1549 if ((shdrs = malloc(efp->e_hdr.e_shnum * sizeof (GElf_Shdr))) == NULL) {
1550 dprintf("failed to malloc %u section headers: %s\n",
1551 (uint_t)efp->e_hdr.e_shnum, strerror(errno));
1552 return;
1553 }
1554
1555 nbytes = efp->e_hdr.e_shnum * efp->e_hdr.e_shentsize;
1556 if ((buf = malloc(nbytes)) == NULL) {
1557 dprintf("failed to malloc %d bytes: %s\n", (int)nbytes,
1558 strerror(errno));
1559 free(shdrs);
1560 goto out;
1561 }
1562
1563 if (pread64(efp->e_fd, buf, nbytes, efp->e_hdr.e_shoff) != nbytes) {
1564 dprintf("failed to read section headers at off %lld: %s\n",
1565 (longlong_t)efp->e_hdr.e_shoff, strerror(errno));
1566 free(buf);
1567 goto out;
1568 }
1569
1570 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1571 void *p = (uchar_t *)buf + efp->e_hdr.e_shentsize * i;
1572
1573 if (efp->e_hdr.e_ident[EI_CLASS] == ELFCLASS32)
1574 core_shdr_to_gelf(p, &shdrs[i]);
1575 else
1576 (void) memcpy(&shdrs[i], p, sizeof (GElf_Shdr));
1577 }
1578
1579 free(buf);
1580 buf = NULL;
1581
1582 /*
1583 * Read the .shstrtab section from the core file, terminating it with
1584 * an extra \0 so that a corrupt section will not cause us to die.
1585 */
1586 shp = &shdrs[efp->e_hdr.e_shstrndx];
1587 shstrtabsz = shp->sh_size;
1588
1589 if ((shstrtab = malloc(shstrtabsz + 1)) == NULL) {
1590 dprintf("failed to allocate %lu bytes for shstrtab\n",
1591 (ulong_t)shstrtabsz);
1592 goto out;
1593 }
1594
1595 if (pread64(efp->e_fd, shstrtab, shstrtabsz,
1596 shp->sh_offset) != shstrtabsz) {
1597 dprintf("failed to read %lu bytes of shstrs at off %lld: %s\n",
1598 shstrtabsz, (longlong_t)shp->sh_offset, strerror(errno));
1599 goto out;
1600 }
1601
1602 shstrtab[shstrtabsz] = '\0';
1603
1604 /*
1605 * Now iterate over each section in the section header table, locating
1606 * sections of interest and initializing more of the ps_prochandle.
1607 */
1608 for (i = 0; i < efp->e_hdr.e_shnum; i++) {
1609 shp = &shdrs[i];
1610 name = shstrtab + shp->sh_name;
1611
1612 if (shp->sh_name >= shstrtabsz) {
1613 dprintf("skipping section [%d]: corrupt sh_name\n", i);
1614 continue;
1615 }
1616
1617 if (shp->sh_link >= efp->e_hdr.e_shnum) {
1618 dprintf("skipping section [%d]: corrupt sh_link\n", i);
1619 continue;
1620 }
1621
1622 dprintf("found section header %s (sh_addr 0x%llx)\n",
1623 name, (u_longlong_t)shp->sh_addr);
1624
1625 if (strcmp(name, ".SUNW_ctf") == 0) {
1626 if ((mp = Paddr2mptr(P, shp->sh_addr)) == NULL) {
1627 dprintf("no map at addr 0x%llx for %s [%d]\n",
1628 (u_longlong_t)shp->sh_addr, name, i);
1629 continue;
1630 }
1631
1632 if (mp->map_file == NULL ||
1633 mp->map_file->file_ctf_buf != NULL) {
1634 dprintf("no mapping file or duplicate buffer "
1635 "for %s [%d]\n", name, i);
1636 continue;
1637 }
1638
1639 if ((buf = malloc(shp->sh_size)) == NULL ||
1640 pread64(efp->e_fd, buf, shp->sh_size,
1641 shp->sh_offset) != shp->sh_size) {
1642 dprintf("skipping section %s [%d]: %s\n",
1643 name, i, strerror(errno));
1644 free(buf);
1645 continue;
1646 }
1647
1648 mp->map_file->file_ctf_size = shp->sh_size;
1649 mp->map_file->file_ctf_buf = buf;
1650
1651 if (shdrs[shp->sh_link].sh_type == SHT_DYNSYM)
1652 mp->map_file->file_ctf_dyn = 1;
1653
1654 } else if (strcmp(name, ".symtab") == 0) {
1655 fake_up_symtab(P, &efp->e_hdr,
1656 shp, &shdrs[shp->sh_link]);
1657 }
1658 }
1659 out:
1660 free(shstrtab);
1661 free(shdrs);
1662 }
1663
1664 /*
1665 * Main engine for core file initialization: given an fd for the core file
1666 * and an optional pathname, construct the ps_prochandle. The aout_path can
1667 * either be a suggested executable pathname, or a suggested directory to
1668 * use as a possible current working directory.
1669 */
1670 struct ps_prochandle *
Pfgrab_core(int core_fd,const char * aout_path,int * perr)1671 Pfgrab_core(int core_fd, const char *aout_path, int *perr)
1672 {
1673 struct ps_prochandle *P;
1674 map_info_t *stk_mp, *brk_mp;
1675 const char *execname;
1676 char *interp;
1677 int i, notes, pagesize;
1678 uintptr_t addr, base_addr;
1679 struct stat64 stbuf;
1680 void *phbuf, *php;
1681 size_t nbytes;
1682
1683 elf_file_t aout;
1684 elf_file_t core;
1685
1686 Elf_Scn *scn, *intp_scn = NULL;
1687 Elf_Data *dp;
1688
1689 GElf_Phdr phdr, note_phdr;
1690 GElf_Shdr shdr;
1691 GElf_Xword nleft;
1692
1693 if (elf_version(EV_CURRENT) == EV_NONE) {
1694 dprintf("libproc ELF version is more recent than libelf\n");
1695 *perr = G_ELF;
1696 return (NULL);
1697 }
1698
1699 aout.e_elf = NULL;
1700 aout.e_fd = -1;
1701
1702 core.e_elf = NULL;
1703 core.e_fd = core_fd;
1704
1705 /*
1706 * Allocate and initialize a ps_prochandle structure for the core.
1707 * There are several key pieces of initialization here:
1708 *
1709 * 1. The PS_DEAD state flag marks this prochandle as a core file.
1710 * PS_DEAD also thus prevents all operations which require state
1711 * to be PS_STOP from operating on this handle.
1712 *
1713 * 2. We keep the core file fd in P->asfd since the core file contains
1714 * the remnants of the process address space.
1715 *
1716 * 3. We set the P->info_valid bit because all information about the
1717 * core is determined by the end of this function; there is no need
1718 * for proc_update_maps() to reload mappings at any later point.
1719 *
1720 * 4. The read/write ops vector uses our core_rw() function defined
1721 * above to handle i/o requests.
1722 */
1723 if ((P = malloc(sizeof (struct ps_prochandle))) == NULL) {
1724 *perr = G_STRANGE;
1725 return (NULL);
1726 }
1727
1728 (void) memset(P, 0, sizeof (struct ps_prochandle));
1729 (void) mutex_init(&P->proc_lock, USYNC_THREAD, NULL);
1730 P->state = PS_DEAD;
1731 P->pid = (pid_t)-1;
1732 P->asfd = core.e_fd;
1733 P->ctlfd = -1;
1734 P->statfd = -1;
1735 P->agentctlfd = -1;
1736 P->agentstatfd = -1;
1737 P->zoneroot = NULL;
1738 P->info_valid = 1;
1739 P->ops = &P_core_ops;
1740
1741 Pinitsym(P);
1742
1743 /*
1744 * Fstat and open the core file and make sure it is a valid ELF core.
1745 */
1746 if (fstat64(P->asfd, &stbuf) == -1) {
1747 *perr = G_STRANGE;
1748 goto err;
1749 }
1750
1751 if (core_elf_fdopen(&core, ET_CORE, perr) == -1)
1752 goto err;
1753
1754 /*
1755 * Allocate and initialize a core_info_t to hang off the ps_prochandle
1756 * structure. We keep all core-specific information in this structure.
1757 */
1758 if ((P->core = calloc(1, sizeof (core_info_t))) == NULL) {
1759 *perr = G_STRANGE;
1760 goto err;
1761 }
1762
1763 list_link(&P->core->core_lwp_head, NULL);
1764 P->core->core_size = stbuf.st_size;
1765 /*
1766 * In the days before adjustable core file content, this was the
1767 * default core file content. For new core files, this value will
1768 * be overwritten by the NT_CONTENT note section.
1769 */
1770 P->core->core_content = CC_CONTENT_STACK | CC_CONTENT_HEAP |
1771 CC_CONTENT_DATA | CC_CONTENT_RODATA | CC_CONTENT_ANON |
1772 CC_CONTENT_SHANON;
1773
1774 switch (core.e_hdr.e_ident[EI_CLASS]) {
1775 case ELFCLASS32:
1776 P->core->core_dmodel = PR_MODEL_ILP32;
1777 break;
1778 case ELFCLASS64:
1779 P->core->core_dmodel = PR_MODEL_LP64;
1780 break;
1781 default:
1782 *perr = G_FORMAT;
1783 goto err;
1784 }
1785
1786 /*
1787 * Because the core file may be a large file, we can't use libelf to
1788 * read the Phdrs. We use e_phnum and e_phentsize to simplify things.
1789 */
1790 nbytes = core.e_hdr.e_phnum * core.e_hdr.e_phentsize;
1791
1792 if ((phbuf = malloc(nbytes)) == NULL) {
1793 *perr = G_STRANGE;
1794 goto err;
1795 }
1796
1797 if (pread64(core_fd, phbuf, nbytes, core.e_hdr.e_phoff) != nbytes) {
1798 *perr = G_STRANGE;
1799 free(phbuf);
1800 goto err;
1801 }
1802
1803 /*
1804 * Iterate through the program headers in the core file.
1805 * We're interested in two types of Phdrs: PT_NOTE (which
1806 * contains a set of saved /proc structures), and PT_LOAD (which
1807 * represents a memory mapping from the process's address space).
1808 * In the case of PT_NOTE, we're interested in the last PT_NOTE
1809 * in the core file; currently the first PT_NOTE (if present)
1810 * contains /proc structs in the pre-2.6 unstructured /proc format.
1811 */
1812 for (php = phbuf, notes = 0, i = 0; i < core.e_hdr.e_phnum; i++) {
1813 if (core.e_hdr.e_ident[EI_CLASS] == ELFCLASS64)
1814 (void) memcpy(&phdr, php, sizeof (GElf_Phdr));
1815 else
1816 core_phdr_to_gelf(php, &phdr);
1817
1818 switch (phdr.p_type) {
1819 case PT_NOTE:
1820 note_phdr = phdr;
1821 notes++;
1822 break;
1823
1824 case PT_LOAD:
1825 if (core_add_mapping(P, &phdr) == -1) {
1826 *perr = G_STRANGE;
1827 free(phbuf);
1828 goto err;
1829 }
1830 break;
1831 }
1832
1833 php = (char *)php + core.e_hdr.e_phentsize;
1834 }
1835
1836 free(phbuf);
1837
1838 Psort_mappings(P);
1839
1840 /*
1841 * If we couldn't find anything of type PT_NOTE, or only one PT_NOTE
1842 * was present, abort. The core file is either corrupt or too old.
1843 */
1844 if (notes == 0 || notes == 1) {
1845 *perr = G_NOTE;
1846 goto err;
1847 }
1848
1849 /*
1850 * Advance the seek pointer to the start of the PT_NOTE data
1851 */
1852 if (lseek64(P->asfd, note_phdr.p_offset, SEEK_SET) == (off64_t)-1) {
1853 dprintf("Pgrab_core: failed to lseek to PT_NOTE data\n");
1854 *perr = G_STRANGE;
1855 goto err;
1856 }
1857
1858 /*
1859 * Now process the PT_NOTE structures. Each one is preceded by
1860 * an Elf{32/64}_Nhdr structure describing its type and size.
1861 *
1862 * +--------+
1863 * | header |
1864 * +--------+
1865 * | name |
1866 * | ... |
1867 * +--------+
1868 * | desc |
1869 * | ... |
1870 * +--------+
1871 */
1872 for (nleft = note_phdr.p_filesz; nleft > 0; ) {
1873 Elf64_Nhdr nhdr;
1874 off64_t off, namesz;
1875
1876 /*
1877 * Although <sys/elf.h> defines both Elf32_Nhdr and Elf64_Nhdr
1878 * as different types, they are both of the same content and
1879 * size, so we don't need to worry about 32/64 conversion here.
1880 */
1881 if (read(P->asfd, &nhdr, sizeof (nhdr)) != sizeof (nhdr)) {
1882 dprintf("Pgrab_core: failed to read ELF note header\n");
1883 *perr = G_NOTE;
1884 goto err;
1885 }
1886
1887 /*
1888 * According to the System V ABI, the amount of padding
1889 * following the name field should align the description
1890 * field on a 4 byte boundary for 32-bit binaries or on an 8
1891 * byte boundary for 64-bit binaries. However, this change
1892 * was not made correctly during the 64-bit port so all
1893 * descriptions can assume only 4-byte alignment. We ignore
1894 * the name field and the padding to 4-byte alignment.
1895 */
1896 namesz = P2ROUNDUP((off64_t)nhdr.n_namesz, (off64_t)4);
1897 if (lseek64(P->asfd, namesz, SEEK_CUR) == (off64_t)-1) {
1898 dprintf("failed to seek past name and padding\n");
1899 *perr = G_STRANGE;
1900 goto err;
1901 }
1902
1903 dprintf("Note hdr n_type=%u n_namesz=%u n_descsz=%u\n",
1904 nhdr.n_type, nhdr.n_namesz, nhdr.n_descsz);
1905
1906 off = lseek64(P->asfd, (off64_t)0L, SEEK_CUR);
1907
1908 /*
1909 * Invoke the note handler function from our table
1910 */
1911 if (nhdr.n_type < sizeof (nhdlrs) / sizeof (nhdlrs[0])) {
1912 if (nhdlrs[nhdr.n_type](P, nhdr.n_descsz) < 0) {
1913 *perr = G_NOTE;
1914 goto err;
1915 }
1916 } else
1917 (void) note_notsup(P, nhdr.n_descsz);
1918
1919 /*
1920 * Seek past the current note data to the next Elf_Nhdr
1921 */
1922 if (lseek64(P->asfd, off + nhdr.n_descsz,
1923 SEEK_SET) == (off64_t)-1) {
1924 dprintf("Pgrab_core: failed to seek to next nhdr\n");
1925 *perr = G_STRANGE;
1926 goto err;
1927 }
1928
1929 /*
1930 * Subtract the size of the header and its data from what
1931 * we have left to process.
1932 */
1933 nleft -= sizeof (nhdr) + namesz + nhdr.n_descsz;
1934 }
1935
1936 if (nleft != 0) {
1937 dprintf("Pgrab_core: note section malformed\n");
1938 *perr = G_STRANGE;
1939 goto err;
1940 }
1941
1942 if ((pagesize = Pgetauxval(P, AT_PAGESZ)) == -1) {
1943 pagesize = getpagesize();
1944 dprintf("AT_PAGESZ missing; defaulting to %d\n", pagesize);
1945 }
1946
1947 /*
1948 * Locate and label the mappings corresponding to the end of the
1949 * heap (MA_BREAK) and the base of the stack (MA_STACK).
1950 */
1951 if ((P->status.pr_brkbase != 0 || P->status.pr_brksize != 0) &&
1952 (brk_mp = Paddr2mptr(P, P->status.pr_brkbase +
1953 P->status.pr_brksize - 1)) != NULL)
1954 brk_mp->map_pmap.pr_mflags |= MA_BREAK;
1955 else
1956 brk_mp = NULL;
1957
1958 if ((stk_mp = Paddr2mptr(P, P->status.pr_stkbase)) != NULL)
1959 stk_mp->map_pmap.pr_mflags |= MA_STACK;
1960
1961 /*
1962 * At this point, we have enough information to look for the
1963 * executable and open it: we have access to the auxv, a psinfo_t,
1964 * and the ability to read from mappings provided by the core file.
1965 */
1966 (void) Pfindexec(P, aout_path, core_exec_open, &aout);
1967 dprintf("P->execname = \"%s\"\n", P->execname ? P->execname : "NULL");
1968 execname = P->execname ? P->execname : "a.out";
1969
1970 /*
1971 * Iterate through the sections, looking for the .dynamic and .interp
1972 * sections. If we encounter them, remember their section pointers.
1973 */
1974 for (scn = NULL; (scn = elf_nextscn(aout.e_elf, scn)) != NULL; ) {
1975 char *sname;
1976
1977 if ((gelf_getshdr(scn, &shdr) == NULL) ||
1978 (sname = elf_strptr(aout.e_elf, aout.e_hdr.e_shstrndx,
1979 (size_t)shdr.sh_name)) == NULL)
1980 continue;
1981
1982 if (strcmp(sname, ".interp") == 0)
1983 intp_scn = scn;
1984 }
1985
1986 /*
1987 * Get the AT_BASE auxv element. If this is missing (-1), then
1988 * we assume this is a statically-linked executable.
1989 */
1990 base_addr = Pgetauxval(P, AT_BASE);
1991
1992 /*
1993 * In order to get librtld_db initialized, we'll need to identify
1994 * and name the mapping corresponding to the run-time linker. The
1995 * AT_BASE auxv element tells us the address where it was mapped,
1996 * and the .interp section of the executable tells us its path.
1997 * If for some reason that doesn't pan out, just use ld.so.1.
1998 */
1999 if (intp_scn != NULL && (dp = elf_getdata(intp_scn, NULL)) != NULL &&
2000 dp->d_size != 0) {
2001 dprintf(".interp = <%s>\n", (char *)dp->d_buf);
2002 interp = dp->d_buf;
2003
2004 } else if (base_addr != (uintptr_t)-1L) {
2005 if (P->core->core_dmodel == PR_MODEL_LP64)
2006 interp = "/usr/lib/64/ld.so.1";
2007 else
2008 interp = "/usr/lib/ld.so.1";
2009
2010 dprintf(".interp section is missing or could not be read; "
2011 "defaulting to %s\n", interp);
2012 } else
2013 dprintf("detected statically linked executable\n");
2014
2015 /*
2016 * If we have an AT_BASE element, name the mapping at that address
2017 * using the interpreter pathname. Name the corresponding data
2018 * mapping after the interpreter as well.
2019 */
2020 if (base_addr != (uintptr_t)-1L) {
2021 elf_file_t intf;
2022
2023 P->map_ldso = core_name_mapping(P, base_addr, interp);
2024
2025 if (core_elf_open(&intf, interp, ET_DYN, NULL) == 0) {
2026 rd_loadobj_t rl;
2027 map_info_t *dmp;
2028
2029 rl.rl_base = base_addr;
2030 dmp = core_find_data(P, intf.e_elf, &rl);
2031
2032 if (dmp != NULL) {
2033 dprintf("renamed data at %p to %s\n",
2034 (void *)rl.rl_data_base, interp);
2035 (void) strncpy(dmp->map_pmap.pr_mapname,
2036 interp, PRMAPSZ);
2037 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2038 }
2039 }
2040
2041 core_elf_close(&intf);
2042 }
2043
2044 /*
2045 * If we have an AT_ENTRY element, name the mapping at that address
2046 * using the special name "a.out" just like /proc does.
2047 */
2048 if ((addr = Pgetauxval(P, AT_ENTRY)) != (uintptr_t)-1L)
2049 P->map_exec = core_name_mapping(P, addr, "a.out");
2050
2051 /*
2052 * If we're a statically linked executable, then just locate the
2053 * executable's text and data and name them after the executable.
2054 */
2055 if (base_addr == (uintptr_t)-1L) {
2056 map_info_t *tmp, *dmp;
2057 file_info_t *fp;
2058 rd_loadobj_t rl;
2059
2060 if ((tmp = core_find_text(P, aout.e_elf, &rl)) != NULL &&
2061 (dmp = core_find_data(P, aout.e_elf, &rl)) != NULL) {
2062 (void) strncpy(tmp->map_pmap.pr_mapname,
2063 execname, PRMAPSZ);
2064 tmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2065 (void) strncpy(dmp->map_pmap.pr_mapname,
2066 execname, PRMAPSZ);
2067 dmp->map_pmap.pr_mapname[PRMAPSZ - 1] = '\0';
2068 }
2069
2070 if ((P->map_exec = tmp) != NULL &&
2071 (fp = malloc(sizeof (file_info_t))) != NULL) {
2072
2073 (void) memset(fp, 0, sizeof (file_info_t));
2074
2075 list_link(fp, &P->file_head);
2076 tmp->map_file = fp;
2077 P->num_files++;
2078
2079 fp->file_ref = 1;
2080 fp->file_fd = -1;
2081
2082 fp->file_lo = malloc(sizeof (rd_loadobj_t));
2083 fp->file_lname = strdup(execname);
2084
2085 if (fp->file_lo)
2086 *fp->file_lo = rl;
2087 if (fp->file_lname)
2088 fp->file_lbase = basename(fp->file_lname);
2089 if (fp->file_rname)
2090 fp->file_rbase = basename(fp->file_rname);
2091
2092 (void) strcpy(fp->file_pname,
2093 P->mappings[0].map_pmap.pr_mapname);
2094 fp->file_map = tmp;
2095
2096 Pbuild_file_symtab(P, fp);
2097
2098 if (dmp != NULL) {
2099 dmp->map_file = fp;
2100 fp->file_ref++;
2101 }
2102 }
2103 }
2104
2105 core_elf_close(&aout);
2106
2107 /*
2108 * We now have enough information to initialize librtld_db.
2109 * After it warms up, we can iterate through the load object chain
2110 * in the core, which will allow us to construct the file info
2111 * we need to provide symbol information for the other shared
2112 * libraries, and also to fill in the missing mapping names.
2113 */
2114 rd_log(_libproc_debug);
2115
2116 if ((P->rap = rd_new(P)) != NULL) {
2117 (void) rd_loadobj_iter(P->rap, (rl_iter_f *)
2118 core_iter_mapping, P);
2119
2120 if (P->core->core_errno != 0) {
2121 errno = P->core->core_errno;
2122 *perr = G_STRANGE;
2123 goto err;
2124 }
2125 } else
2126 dprintf("failed to initialize rtld_db agent\n");
2127
2128 /*
2129 * If there are sections, load them and process the data from any
2130 * sections that we can use to annotate the file_info_t's.
2131 */
2132 core_load_shdrs(P, &core);
2133
2134 /*
2135 * If we previously located a stack or break mapping, and they are
2136 * still anonymous, we now assume that they were MAP_ANON mappings.
2137 * If brk_mp turns out to now have a name, then the heap is still
2138 * sitting at the end of the executable's data+bss mapping: remove
2139 * the previous MA_BREAK setting to be consistent with /proc.
2140 */
2141 if (stk_mp != NULL && stk_mp->map_pmap.pr_mapname[0] == '\0')
2142 stk_mp->map_pmap.pr_mflags |= MA_ANON;
2143 if (brk_mp != NULL && brk_mp->map_pmap.pr_mapname[0] == '\0')
2144 brk_mp->map_pmap.pr_mflags |= MA_ANON;
2145 else if (brk_mp != NULL)
2146 brk_mp->map_pmap.pr_mflags &= ~MA_BREAK;
2147
2148 *perr = 0;
2149 return (P);
2150
2151 err:
2152 Pfree(P);
2153 core_elf_close(&aout);
2154 return (NULL);
2155 }
2156
2157 /*
2158 * Grab a core file using a pathname. We just open it and call Pfgrab_core().
2159 */
2160 struct ps_prochandle *
Pgrab_core(const char * core,const char * aout,int gflag,int * perr)2161 Pgrab_core(const char *core, const char *aout, int gflag, int *perr)
2162 {
2163 int fd, oflag = (gflag & PGRAB_RDONLY) ? O_RDONLY : O_RDWR;
2164
2165 if ((fd = open64(core, oflag)) >= 0)
2166 return (Pfgrab_core(fd, aout, perr));
2167
2168 if (errno != ENOENT)
2169 *perr = G_STRANGE;
2170 else
2171 *perr = G_NOCORE;
2172
2173 return (NULL);
2174 }
2175