1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <mdb/mdb_param.h>
26 #include <mdb/mdb_modapi.h>
27 #include <mdb/mdb_ks.h>
28 #include <mdb/mdb_ctf.h>
29
30 #include <sys/types.h>
31 #include <sys/thread.h>
32 #include <sys/session.h>
33 #include <sys/user.h>
34 #include <sys/proc.h>
35 #include <sys/var.h>
36 #include <sys/t_lock.h>
37 #include <sys/callo.h>
38 #include <sys/priocntl.h>
39 #include <sys/class.h>
40 #include <sys/regset.h>
41 #include <sys/stack.h>
42 #include <sys/cpuvar.h>
43 #include <sys/vnode.h>
44 #include <sys/vfs.h>
45 #include <sys/flock_impl.h>
46 #include <sys/kmem_impl.h>
47 #include <sys/vmem_impl.h>
48 #include <sys/kstat.h>
49 #include <sys/dditypes.h>
50 #include <sys/ddi_impldefs.h>
51 #include <sys/sysmacros.h>
52 #include <sys/sysconf.h>
53 #include <sys/task.h>
54 #include <sys/project.h>
55 #include <sys/errorq_impl.h>
56 #include <sys/cred_impl.h>
57 #include <sys/zone.h>
58 #include <sys/panic.h>
59 #include <regex.h>
60 #include <sys/port_impl.h>
61
62 #include "avl.h"
63 #include "bio.h"
64 #include "bitset.h"
65 #include "combined.h"
66 #include "contract.h"
67 #include "cpupart_mdb.h"
68 #include "ctxop.h"
69 #include "cyclic.h"
70 #include "damap.h"
71 #include "devinfo.h"
72 #include "findstack.h"
73 #include "fm.h"
74 #include "group.h"
75 #include "irm.h"
76 #include "kgrep.h"
77 #include "kmem.h"
78 #include "ldi.h"
79 #include "leaky.h"
80 #include "lgrp.h"
81 #include "list.h"
82 #include "log.h"
83 #include "mdi.h"
84 #include "memory.h"
85 #include "mmd.h"
86 #include "modhash.h"
87 #include "ndievents.h"
88 #include "net.h"
89 #include "netstack.h"
90 #include "nvpair.h"
91 #include "pg.h"
92 #include "rctl.h"
93 #include "sobj.h"
94 #include "streams.h"
95 #include "sysevent.h"
96 #include "taskq.h"
97 #include "thread.h"
98 #include "tsd.h"
99 #include "tsol.h"
100 #include "typegraph.h"
101 #include "vfs.h"
102 #include "zone.h"
103 #include "hotplug.h"
104
105 /*
106 * Surely this is defined somewhere...
107 */
108 #define NINTR 16
109
110 #define KILOS 10
111 #define MEGS 20
112 #define GIGS 30
113
114 #ifndef STACK_BIAS
115 #define STACK_BIAS 0
116 #endif
117
118 static char
pstat2ch(uchar_t state)119 pstat2ch(uchar_t state)
120 {
121 switch (state) {
122 case SSLEEP: return ('S');
123 case SRUN: return ('R');
124 case SZOMB: return ('Z');
125 case SIDL: return ('I');
126 case SONPROC: return ('O');
127 case SSTOP: return ('T');
128 case SWAIT: return ('W');
129 default: return ('?');
130 }
131 }
132
133 #define PS_PRTTHREADS 0x1
134 #define PS_PRTLWPS 0x2
135 #define PS_PSARGS 0x4
136 #define PS_TASKS 0x8
137 #define PS_PROJECTS 0x10
138 #define PS_ZONES 0x20
139
140 static int
ps_threadprint(uintptr_t addr,const void * data,void * private)141 ps_threadprint(uintptr_t addr, const void *data, void *private)
142 {
143 const kthread_t *t = (const kthread_t *)data;
144 uint_t prt_flags = *((uint_t *)private);
145
146 static const mdb_bitmask_t t_state_bits[] = {
147 { "TS_FREE", UINT_MAX, TS_FREE },
148 { "TS_SLEEP", TS_SLEEP, TS_SLEEP },
149 { "TS_RUN", TS_RUN, TS_RUN },
150 { "TS_ONPROC", TS_ONPROC, TS_ONPROC },
151 { "TS_ZOMB", TS_ZOMB, TS_ZOMB },
152 { "TS_STOPPED", TS_STOPPED, TS_STOPPED },
153 { "TS_WAIT", TS_WAIT, TS_WAIT },
154 { NULL, 0, 0 }
155 };
156
157 if (prt_flags & PS_PRTTHREADS)
158 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits);
159
160 if (prt_flags & PS_PRTLWPS)
161 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid);
162
163 return (WALK_NEXT);
164 }
165
166 int
ps(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)167 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
168 {
169 uint_t prt_flags = 0;
170 proc_t pr;
171 struct pid pid, pgid, sid;
172 sess_t session;
173 cred_t cred;
174 task_t tk;
175 kproject_t pj;
176 zone_t zn;
177
178 if (!(flags & DCMD_ADDRSPEC)) {
179 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) {
180 mdb_warn("can't walk 'proc'");
181 return (DCMD_ERR);
182 }
183 return (DCMD_OK);
184 }
185
186 if (mdb_getopts(argc, argv,
187 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags,
188 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags,
189 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags,
190 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags,
191 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags,
192 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc)
193 return (DCMD_USAGE);
194
195 if (DCMD_HDRSPEC(flags)) {
196 mdb_printf("%<u>%1s %6s %6s %6s %6s ",
197 "S", "PID", "PPID", "PGID", "SID");
198 if (prt_flags & PS_TASKS)
199 mdb_printf("%5s ", "TASK");
200 if (prt_flags & PS_PROJECTS)
201 mdb_printf("%5s ", "PROJ");
202 if (prt_flags & PS_ZONES)
203 mdb_printf("%5s ", "ZONE");
204 mdb_printf("%6s %10s %?s %s%</u>\n",
205 "UID", "FLAGS", "ADDR", "NAME");
206 }
207
208 mdb_vread(&pr, sizeof (pr), addr);
209 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp);
210 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp);
211 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred);
212 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp);
213 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp);
214 if (prt_flags & (PS_TASKS | PS_PROJECTS))
215 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task);
216 if (prt_flags & PS_PROJECTS)
217 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj);
218 if (prt_flags & PS_ZONES)
219 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone);
220
221 mdb_printf("%c %6d %6d %6d %6d ",
222 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id,
223 sid.pid_id);
224 if (prt_flags & PS_TASKS)
225 mdb_printf("%5d ", tk.tk_tkid);
226 if (prt_flags & PS_PROJECTS)
227 mdb_printf("%5d ", pj.kpj_id);
228 if (prt_flags & PS_ZONES)
229 mdb_printf("%5d ", zn.zone_id);
230 mdb_printf("%6d 0x%08x %0?p %s\n",
231 cred.cr_uid, pr.p_flag, addr,
232 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm);
233
234 if (prt_flags & ~PS_PSARGS)
235 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr);
236
237 return (DCMD_OK);
238 }
239
240 #define PG_NEWEST 0x0001
241 #define PG_OLDEST 0x0002
242 #define PG_PIPE_OUT 0x0004
243 #define PG_EXACT_MATCH 0x0008
244
245 typedef struct pgrep_data {
246 uint_t pg_flags;
247 uint_t pg_psflags;
248 uintptr_t pg_xaddr;
249 hrtime_t pg_xstart;
250 const char *pg_pat;
251 #ifndef _KMDB
252 regex_t pg_reg;
253 #endif
254 } pgrep_data_t;
255
256 /*ARGSUSED*/
257 static int
pgrep_cb(uintptr_t addr,const void * pdata,void * data)258 pgrep_cb(uintptr_t addr, const void *pdata, void *data)
259 {
260 const proc_t *prp = pdata;
261 pgrep_data_t *pgp = data;
262 #ifndef _KMDB
263 regmatch_t pmatch;
264 #endif
265
266 /*
267 * kmdb doesn't have access to the reg* functions, so we fall back
268 * to strstr/strcmp.
269 */
270 #ifdef _KMDB
271 if ((pgp->pg_flags & PG_EXACT_MATCH) ?
272 (strcmp(prp->p_user.u_comm, pgp->pg_pat) != 0) :
273 (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL))
274 return (WALK_NEXT);
275 #else
276 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0)
277 return (WALK_NEXT);
278
279 if ((pgp->pg_flags & PG_EXACT_MATCH) &&
280 (pmatch.rm_so != 0 || prp->p_user.u_comm[pmatch.rm_eo] != '\0'))
281 return (WALK_NEXT);
282 #endif
283
284 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) {
285 hrtime_t start;
286
287 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC +
288 prp->p_user.u_start.tv_nsec;
289
290 if (pgp->pg_flags & PG_NEWEST) {
291 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) {
292 pgp->pg_xaddr = addr;
293 pgp->pg_xstart = start;
294 }
295 } else {
296 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) {
297 pgp->pg_xaddr = addr;
298 pgp->pg_xstart = start;
299 }
300 }
301
302 } else if (pgp->pg_flags & PG_PIPE_OUT) {
303 mdb_printf("%p\n", addr);
304
305 } else {
306 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) {
307 mdb_warn("can't invoke 'ps'");
308 return (WALK_DONE);
309 }
310 pgp->pg_psflags &= ~DCMD_LOOPFIRST;
311 }
312
313 return (WALK_NEXT);
314 }
315
316 /*ARGSUSED*/
317 int
pgrep(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)318 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
319 {
320 pgrep_data_t pg;
321 int i;
322 #ifndef _KMDB
323 int err;
324 #endif
325
326 if (flags & DCMD_ADDRSPEC)
327 return (DCMD_USAGE);
328
329 pg.pg_flags = 0;
330 pg.pg_xaddr = 0;
331
332 i = mdb_getopts(argc, argv,
333 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags,
334 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags,
335 'x', MDB_OPT_SETBITS, PG_EXACT_MATCH, &pg.pg_flags,
336 NULL);
337
338 argc -= i;
339 argv += i;
340
341 if (argc != 1)
342 return (DCMD_USAGE);
343
344 /*
345 * -n and -o are mutually exclusive.
346 */
347 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST))
348 return (DCMD_USAGE);
349
350 if (argv->a_type != MDB_TYPE_STRING)
351 return (DCMD_USAGE);
352
353 if (flags & DCMD_PIPE_OUT)
354 pg.pg_flags |= PG_PIPE_OUT;
355
356 pg.pg_pat = argv->a_un.a_str;
357 if (DCMD_HDRSPEC(flags))
358 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST;
359 else
360 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP;
361
362 #ifndef _KMDB
363 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) {
364 size_t nbytes;
365 char *buf;
366
367 nbytes = regerror(err, &pg.pg_reg, NULL, 0);
368 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC);
369 (void) regerror(err, &pg.pg_reg, buf, nbytes);
370 mdb_warn("%s\n", buf);
371
372 return (DCMD_ERR);
373 }
374 #endif
375
376 if (mdb_walk("proc", pgrep_cb, &pg) != 0) {
377 mdb_warn("can't walk 'proc'");
378 return (DCMD_ERR);
379 }
380
381 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) {
382 if (pg.pg_flags & PG_PIPE_OUT) {
383 mdb_printf("%p\n", pg.pg_xaddr);
384 } else {
385 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags,
386 0, NULL) != 0) {
387 mdb_warn("can't invoke 'ps'");
388 return (DCMD_ERR);
389 }
390 }
391 }
392
393 return (DCMD_OK);
394 }
395
396 int
task(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)397 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
398 {
399 task_t tk;
400 kproject_t pj;
401
402 if (!(flags & DCMD_ADDRSPEC)) {
403 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) {
404 mdb_warn("can't walk task_cache");
405 return (DCMD_ERR);
406 }
407 return (DCMD_OK);
408 }
409 if (DCMD_HDRSPEC(flags)) {
410 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n",
411 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS");
412 }
413 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) {
414 mdb_warn("can't read task_t structure at %p", addr);
415 return (DCMD_ERR);
416 }
417 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) {
418 mdb_warn("can't read project_t structure at %p", addr);
419 return (DCMD_ERR);
420 }
421 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n",
422 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count,
423 tk.tk_flags);
424 return (DCMD_OK);
425 }
426
427 int
project(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)428 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
429 {
430 kproject_t pj;
431
432 if (!(flags & DCMD_ADDRSPEC)) {
433 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) {
434 mdb_warn("can't walk projects");
435 return (DCMD_ERR);
436 }
437 return (DCMD_OK);
438 }
439 if (DCMD_HDRSPEC(flags)) {
440 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n",
441 "ADDR", "PROJID", "ZONEID", "REFCNT");
442 }
443 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
444 mdb_warn("can't read kproject_t structure at %p", addr);
445 return (DCMD_ERR);
446 }
447 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid,
448 pj.kpj_count);
449 return (DCMD_OK);
450 }
451
452 /* walk callouts themselves, either by list or id hash. */
453 int
callout_walk_init(mdb_walk_state_t * wsp)454 callout_walk_init(mdb_walk_state_t *wsp)
455 {
456 if (wsp->walk_addr == NULL) {
457 mdb_warn("callout doesn't support global walk");
458 return (WALK_ERR);
459 }
460 wsp->walk_data = mdb_alloc(sizeof (callout_t), UM_SLEEP);
461 return (WALK_NEXT);
462 }
463
464 #define CALLOUT_WALK_BYLIST 0
465 #define CALLOUT_WALK_BYID 1
466
467 /* the walker arg switches between walking by list (0) and walking by id (1). */
468 int
callout_walk_step(mdb_walk_state_t * wsp)469 callout_walk_step(mdb_walk_state_t *wsp)
470 {
471 int retval;
472
473 if (wsp->walk_addr == NULL) {
474 return (WALK_DONE);
475 }
476 if (mdb_vread(wsp->walk_data, sizeof (callout_t),
477 wsp->walk_addr) == -1) {
478 mdb_warn("failed to read callout at %p", wsp->walk_addr);
479 return (WALK_DONE);
480 }
481 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
482 wsp->walk_cbdata);
483
484 if ((ulong_t)wsp->walk_arg == CALLOUT_WALK_BYID) {
485 wsp->walk_addr =
486 (uintptr_t)(((callout_t *)wsp->walk_data)->c_idnext);
487 } else {
488 wsp->walk_addr =
489 (uintptr_t)(((callout_t *)wsp->walk_data)->c_clnext);
490 }
491
492 return (retval);
493 }
494
495 void
callout_walk_fini(mdb_walk_state_t * wsp)496 callout_walk_fini(mdb_walk_state_t *wsp)
497 {
498 mdb_free(wsp->walk_data, sizeof (callout_t));
499 }
500
501 /*
502 * walker for callout lists. This is different from hashes and callouts.
503 * Thankfully, it's also simpler.
504 */
505 int
callout_list_walk_init(mdb_walk_state_t * wsp)506 callout_list_walk_init(mdb_walk_state_t *wsp)
507 {
508 if (wsp->walk_addr == NULL) {
509 mdb_warn("callout list doesn't support global walk");
510 return (WALK_ERR);
511 }
512 wsp->walk_data = mdb_alloc(sizeof (callout_list_t), UM_SLEEP);
513 return (WALK_NEXT);
514 }
515
516 int
callout_list_walk_step(mdb_walk_state_t * wsp)517 callout_list_walk_step(mdb_walk_state_t *wsp)
518 {
519 int retval;
520
521 if (wsp->walk_addr == NULL) {
522 return (WALK_DONE);
523 }
524 if (mdb_vread(wsp->walk_data, sizeof (callout_list_t),
525 wsp->walk_addr) != sizeof (callout_list_t)) {
526 mdb_warn("failed to read callout_list at %p", wsp->walk_addr);
527 return (WALK_ERR);
528 }
529 retval = wsp->walk_callback(wsp->walk_addr, wsp->walk_data,
530 wsp->walk_cbdata);
531
532 wsp->walk_addr = (uintptr_t)
533 (((callout_list_t *)wsp->walk_data)->cl_next);
534
535 return (retval);
536 }
537
538 void
callout_list_walk_fini(mdb_walk_state_t * wsp)539 callout_list_walk_fini(mdb_walk_state_t *wsp)
540 {
541 mdb_free(wsp->walk_data, sizeof (callout_list_t));
542 }
543
544 /* routines/structs to walk callout table(s) */
545 typedef struct cot_data {
546 callout_table_t *ct0;
547 callout_table_t ct;
548 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
549 callout_hash_t cot_clhash[CALLOUT_BUCKETS];
550 kstat_named_t ct_kstat_data[CALLOUT_NUM_STATS];
551 int cotndx;
552 int cotsize;
553 } cot_data_t;
554
555 int
callout_table_walk_init(mdb_walk_state_t * wsp)556 callout_table_walk_init(mdb_walk_state_t *wsp)
557 {
558 int max_ncpus;
559 cot_data_t *cot_walk_data;
560
561 cot_walk_data = mdb_alloc(sizeof (cot_data_t), UM_SLEEP);
562
563 if (wsp->walk_addr == NULL) {
564 if (mdb_readvar(&cot_walk_data->ct0, "callout_table") == -1) {
565 mdb_warn("failed to read 'callout_table'");
566 return (WALK_ERR);
567 }
568 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
569 mdb_warn("failed to get callout_table array size");
570 return (WALK_ERR);
571 }
572 cot_walk_data->cotsize = CALLOUT_NTYPES * max_ncpus;
573 wsp->walk_addr = (uintptr_t)cot_walk_data->ct0;
574 } else {
575 /* not a global walk */
576 cot_walk_data->cotsize = 1;
577 }
578
579 cot_walk_data->cotndx = 0;
580 wsp->walk_data = cot_walk_data;
581
582 return (WALK_NEXT);
583 }
584
585 int
callout_table_walk_step(mdb_walk_state_t * wsp)586 callout_table_walk_step(mdb_walk_state_t *wsp)
587 {
588 int retval;
589 cot_data_t *cotwd = (cot_data_t *)wsp->walk_data;
590 size_t size;
591
592 if (cotwd->cotndx >= cotwd->cotsize) {
593 return (WALK_DONE);
594 }
595 if (mdb_vread(&(cotwd->ct), sizeof (callout_table_t),
596 wsp->walk_addr) != sizeof (callout_table_t)) {
597 mdb_warn("failed to read callout_table at %p", wsp->walk_addr);
598 return (WALK_ERR);
599 }
600
601 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
602 if (cotwd->ct.ct_idhash != NULL) {
603 if (mdb_vread(cotwd->cot_idhash, size,
604 (uintptr_t)(cotwd->ct.ct_idhash)) != size) {
605 mdb_warn("failed to read id_hash at %p",
606 cotwd->ct.ct_idhash);
607 return (WALK_ERR);
608 }
609 }
610 if (cotwd->ct.ct_clhash != NULL) {
611 if (mdb_vread(&(cotwd->cot_clhash), size,
612 (uintptr_t)cotwd->ct.ct_clhash) == -1) {
613 mdb_warn("failed to read cl_hash at %p",
614 cotwd->ct.ct_clhash);
615 return (WALK_ERR);
616 }
617 }
618 size = sizeof (kstat_named_t) * CALLOUT_NUM_STATS;
619 if (cotwd->ct.ct_kstat_data != NULL) {
620 if (mdb_vread(&(cotwd->ct_kstat_data), size,
621 (uintptr_t)cotwd->ct.ct_kstat_data) == -1) {
622 mdb_warn("failed to read kstats at %p",
623 cotwd->ct.ct_kstat_data);
624 return (WALK_ERR);
625 }
626 }
627 retval = wsp->walk_callback(wsp->walk_addr, (void *)cotwd,
628 wsp->walk_cbdata);
629
630 cotwd->cotndx++;
631 if (cotwd->cotndx >= cotwd->cotsize) {
632 return (WALK_DONE);
633 }
634 wsp->walk_addr = (uintptr_t)((char *)wsp->walk_addr +
635 sizeof (callout_table_t));
636
637 return (retval);
638 }
639
640 void
callout_table_walk_fini(mdb_walk_state_t * wsp)641 callout_table_walk_fini(mdb_walk_state_t *wsp)
642 {
643 mdb_free(wsp->walk_data, sizeof (cot_data_t));
644 }
645
646 static const char *co_typenames[] = { "R", "N" };
647
648 #define CO_PLAIN_ID(xid) ((xid) & CALLOUT_ID_MASK)
649
650 #define TABLE_TO_SEQID(x) ((x) >> CALLOUT_TYPE_BITS)
651
652 /* callout flags, in no particular order */
653 #define COF_REAL 0x00000001
654 #define COF_NORM 0x00000002
655 #define COF_LONG 0x00000004
656 #define COF_SHORT 0x00000008
657 #define COF_EMPTY 0x00000010
658 #define COF_TIME 0x00000020
659 #define COF_BEFORE 0x00000040
660 #define COF_AFTER 0x00000080
661 #define COF_SEQID 0x00000100
662 #define COF_FUNC 0x00000200
663 #define COF_ADDR 0x00000400
664 #define COF_EXEC 0x00000800
665 #define COF_HIRES 0x00001000
666 #define COF_ABS 0x00002000
667 #define COF_TABLE 0x00004000
668 #define COF_BYIDH 0x00008000
669 #define COF_FREE 0x00010000
670 #define COF_LIST 0x00020000
671 #define COF_EXPREL 0x00040000
672 #define COF_HDR 0x00080000
673 #define COF_VERBOSE 0x00100000
674 #define COF_LONGLIST 0x00200000
675 #define COF_THDR 0x00400000
676 #define COF_LHDR 0x00800000
677 #define COF_CHDR 0x01000000
678 #define COF_PARAM 0x02000000
679 #define COF_DECODE 0x04000000
680 #define COF_HEAP 0x08000000
681 #define COF_QUEUE 0x10000000
682
683 /* show real and normal, short and long, expired and unexpired. */
684 #define COF_DEFAULT (COF_REAL | COF_NORM | COF_LONG | COF_SHORT)
685
686 #define COF_LIST_FLAGS \
687 (CALLOUT_LIST_FLAG_HRESTIME | CALLOUT_LIST_FLAG_ABSOLUTE)
688
689 /* private callout data for callback functions */
690 typedef struct callout_data {
691 uint_t flags; /* COF_* */
692 cpu_t *cpu; /* cpu pointer if given */
693 int seqid; /* cpu seqid, or -1 */
694 hrtime_t time; /* expiration time value */
695 hrtime_t atime; /* expiration before value */
696 hrtime_t btime; /* expiration after value */
697 uintptr_t funcaddr; /* function address or NULL */
698 uintptr_t param; /* parameter to function or NULL */
699 hrtime_t now; /* current system time */
700 int nsec_per_tick; /* for conversions */
701 ulong_t ctbits; /* for decoding xid */
702 callout_table_t *co_table; /* top of callout table array */
703 int ndx; /* table index. */
704 int bucket; /* which list/id bucket are we in */
705 hrtime_t exp; /* expire time */
706 int list_flags; /* copy of cl_flags */
707 } callout_data_t;
708
709 /* this callback does the actual callback itself (finally). */
710 /*ARGSUSED*/
711 static int
callouts_cb(uintptr_t addr,const void * data,void * priv)712 callouts_cb(uintptr_t addr, const void *data, void *priv)
713 {
714 callout_data_t *coargs = (callout_data_t *)priv;
715 callout_t *co = (callout_t *)data;
716 int tableid, list_flags;
717 callout_id_t coid;
718
719 if ((coargs == NULL) || (co == NULL)) {
720 return (WALK_ERR);
721 }
722
723 if ((coargs->flags & COF_FREE) && !(co->c_xid & CALLOUT_ID_FREE)) {
724 /*
725 * The callout must have been reallocated. No point in
726 * walking any more.
727 */
728 return (WALK_DONE);
729 }
730 if (!(coargs->flags & COF_FREE) && (co->c_xid & CALLOUT_ID_FREE)) {
731 /*
732 * The callout must have been freed. No point in
733 * walking any more.
734 */
735 return (WALK_DONE);
736 }
737 if ((coargs->flags & COF_FUNC) &&
738 (coargs->funcaddr != (uintptr_t)co->c_func)) {
739 return (WALK_NEXT);
740 }
741 if ((coargs->flags & COF_PARAM) &&
742 (coargs->param != (uintptr_t)co->c_arg)) {
743 return (WALK_NEXT);
744 }
745 if (!(coargs->flags & COF_LONG) && (co->c_xid & CALLOUT_LONGTERM)) {
746 return (WALK_NEXT);
747 }
748 if (!(coargs->flags & COF_SHORT) && !(co->c_xid & CALLOUT_LONGTERM)) {
749 return (WALK_NEXT);
750 }
751 if ((coargs->flags & COF_EXEC) && !(co->c_xid & CALLOUT_EXECUTING)) {
752 return (WALK_NEXT);
753 }
754 /* it is possible we don't have the exp time or flags */
755 if (coargs->flags & COF_BYIDH) {
756 if (!(coargs->flags & COF_FREE)) {
757 /* we have to fetch the expire time ourselves. */
758 if (mdb_vread(&coargs->exp, sizeof (hrtime_t),
759 (uintptr_t)co->c_list + offsetof(callout_list_t,
760 cl_expiration)) == -1) {
761 mdb_warn("failed to read expiration "
762 "time from %p", co->c_list);
763 coargs->exp = 0;
764 }
765 /* and flags. */
766 if (mdb_vread(&coargs->list_flags, sizeof (int),
767 (uintptr_t)co->c_list + offsetof(callout_list_t,
768 cl_flags)) == -1) {
769 mdb_warn("failed to read list flags"
770 "from %p", co->c_list);
771 coargs->list_flags = 0;
772 }
773 } else {
774 /* free callouts can't use list pointer. */
775 coargs->exp = 0;
776 coargs->list_flags = 0;
777 }
778 if (coargs->exp != 0) {
779 if ((coargs->flags & COF_TIME) &&
780 (coargs->exp != coargs->time)) {
781 return (WALK_NEXT);
782 }
783 if ((coargs->flags & COF_BEFORE) &&
784 (coargs->exp > coargs->btime)) {
785 return (WALK_NEXT);
786 }
787 if ((coargs->flags & COF_AFTER) &&
788 (coargs->exp < coargs->atime)) {
789 return (WALK_NEXT);
790 }
791 }
792 /* tricky part, since both HIRES and ABS can be set */
793 list_flags = coargs->list_flags;
794 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
795 /* both flags are set, only skip "regular" ones */
796 if (! (list_flags & COF_LIST_FLAGS)) {
797 return (WALK_NEXT);
798 }
799 } else {
800 /* individual flags, or no flags */
801 if ((coargs->flags & COF_HIRES) &&
802 !(list_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
803 return (WALK_NEXT);
804 }
805 if ((coargs->flags & COF_ABS) &&
806 !(list_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
807 return (WALK_NEXT);
808 }
809 }
810 /*
811 * We do the checks for COF_HEAP and COF_QUEUE here only if we
812 * are traversing BYIDH. If the traversal is by callout list,
813 * we do this check in callout_list_cb() to be more
814 * efficient.
815 */
816 if ((coargs->flags & COF_HEAP) &&
817 !(list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
818 return (WALK_NEXT);
819 }
820
821 if ((coargs->flags & COF_QUEUE) &&
822 !(list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
823 return (WALK_NEXT);
824 }
825 }
826
827 #define callout_table_mask ((1 << coargs->ctbits) - 1)
828 tableid = CALLOUT_ID_TO_TABLE(co->c_xid);
829 #undef callout_table_mask
830 coid = CO_PLAIN_ID(co->c_xid);
831
832 if ((coargs->flags & COF_CHDR) && !(coargs->flags & COF_ADDR)) {
833 /*
834 * We need to print the headers. If walking by id, then
835 * the list header isn't printed, so we must include
836 * that info here.
837 */
838 if (!(coargs->flags & COF_VERBOSE)) {
839 mdb_printf("%<u>%3s %-1s %-14s %</u>",
840 "SEQ", "T", "EXP");
841 } else if (coargs->flags & COF_BYIDH) {
842 mdb_printf("%<u>%-14s %</u>", "EXP");
843 }
844 mdb_printf("%<u>%-4s %-?s %-20s%</u>",
845 "XHAL", "XID", "FUNC(ARG)");
846 if (coargs->flags & COF_LONGLIST) {
847 mdb_printf("%<u> %-?s %-?s %-?s %-?s%</u>",
848 "PREVID", "NEXTID", "PREVL", "NEXTL");
849 mdb_printf("%<u> %-?s %-4s %-?s%</u>",
850 "DONE", "UTOS", "THREAD");
851 }
852 mdb_printf("\n");
853 coargs->flags &= ~COF_CHDR;
854 coargs->flags |= (COF_THDR | COF_LHDR);
855 }
856
857 if (!(coargs->flags & COF_ADDR)) {
858 if (!(coargs->flags & COF_VERBOSE)) {
859 mdb_printf("%-3d %1s %-14llx ",
860 TABLE_TO_SEQID(tableid),
861 co_typenames[tableid & CALLOUT_TYPE_MASK],
862 (coargs->flags & COF_EXPREL) ?
863 coargs->exp - coargs->now : coargs->exp);
864 } else if (coargs->flags & COF_BYIDH) {
865 mdb_printf("%-14x ",
866 (coargs->flags & COF_EXPREL) ?
867 coargs->exp - coargs->now : coargs->exp);
868 }
869 list_flags = coargs->list_flags;
870 mdb_printf("%1s%1s%1s%1s %-?llx %a(%p)",
871 (co->c_xid & CALLOUT_EXECUTING) ? "X" : " ",
872 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ? "H" : " ",
873 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ? "A" : " ",
874 (co->c_xid & CALLOUT_LONGTERM) ? "L" : " ",
875 (long long)coid, co->c_func, co->c_arg);
876 if (coargs->flags & COF_LONGLIST) {
877 mdb_printf(" %-?p %-?p %-?p %-?p",
878 co->c_idprev, co->c_idnext, co->c_clprev,
879 co->c_clnext);
880 mdb_printf(" %-?p %-4d %-0?p",
881 co->c_done, co->c_waiting, co->c_executor);
882 }
883 } else {
884 /* address only */
885 mdb_printf("%-0p", addr);
886 }
887 mdb_printf("\n");
888 return (WALK_NEXT);
889 }
890
891 /* this callback is for callout list handling. idhash is done by callout_t_cb */
892 /*ARGSUSED*/
893 static int
callout_list_cb(uintptr_t addr,const void * data,void * priv)894 callout_list_cb(uintptr_t addr, const void *data, void *priv)
895 {
896 callout_data_t *coargs = (callout_data_t *)priv;
897 callout_list_t *cl = (callout_list_t *)data;
898 callout_t *coptr;
899 int list_flags;
900
901 if ((coargs == NULL) || (cl == NULL)) {
902 return (WALK_ERR);
903 }
904
905 coargs->exp = cl->cl_expiration;
906 coargs->list_flags = cl->cl_flags;
907 if ((coargs->flags & COF_FREE) &&
908 !(cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
909 /*
910 * The callout list must have been reallocated. No point in
911 * walking any more.
912 */
913 return (WALK_DONE);
914 }
915 if (!(coargs->flags & COF_FREE) &&
916 (cl->cl_flags & CALLOUT_LIST_FLAG_FREE)) {
917 /*
918 * The callout list must have been freed. No point in
919 * walking any more.
920 */
921 return (WALK_DONE);
922 }
923 if ((coargs->flags & COF_TIME) &&
924 (cl->cl_expiration != coargs->time)) {
925 return (WALK_NEXT);
926 }
927 if ((coargs->flags & COF_BEFORE) &&
928 (cl->cl_expiration > coargs->btime)) {
929 return (WALK_NEXT);
930 }
931 if ((coargs->flags & COF_AFTER) &&
932 (cl->cl_expiration < coargs->atime)) {
933 return (WALK_NEXT);
934 }
935 if (!(coargs->flags & COF_EMPTY) &&
936 (cl->cl_callouts.ch_head == NULL)) {
937 return (WALK_NEXT);
938 }
939 /* FOUR cases, each different, !A!B, !AB, A!B, AB */
940 if ((coargs->flags & COF_HIRES) && (coargs->flags & COF_ABS)) {
941 /* both flags are set, only skip "regular" ones */
942 if (! (cl->cl_flags & COF_LIST_FLAGS)) {
943 return (WALK_NEXT);
944 }
945 } else {
946 if ((coargs->flags & COF_HIRES) &&
947 !(cl->cl_flags & CALLOUT_LIST_FLAG_HRESTIME)) {
948 return (WALK_NEXT);
949 }
950 if ((coargs->flags & COF_ABS) &&
951 !(cl->cl_flags & CALLOUT_LIST_FLAG_ABSOLUTE)) {
952 return (WALK_NEXT);
953 }
954 }
955
956 if ((coargs->flags & COF_HEAP) &&
957 !(coargs->list_flags & CALLOUT_LIST_FLAG_HEAPED)) {
958 return (WALK_NEXT);
959 }
960
961 if ((coargs->flags & COF_QUEUE) &&
962 !(coargs->list_flags & CALLOUT_LIST_FLAG_QUEUED)) {
963 return (WALK_NEXT);
964 }
965
966 if ((coargs->flags & COF_LHDR) && !(coargs->flags & COF_ADDR) &&
967 (coargs->flags & (COF_LIST | COF_VERBOSE))) {
968 if (!(coargs->flags & COF_VERBOSE)) {
969 /* don't be redundant again */
970 mdb_printf("%<u>SEQ T %</u>");
971 }
972 mdb_printf("%<u>EXP HA BUCKET "
973 "CALLOUTS %</u>");
974
975 if (coargs->flags & COF_LONGLIST) {
976 mdb_printf("%<u> %-?s %-?s%</u>",
977 "PREV", "NEXT");
978 }
979 mdb_printf("\n");
980 coargs->flags &= ~COF_LHDR;
981 coargs->flags |= (COF_THDR | COF_CHDR);
982 }
983 if (coargs->flags & (COF_LIST | COF_VERBOSE)) {
984 if (!(coargs->flags & COF_ADDR)) {
985 if (!(coargs->flags & COF_VERBOSE)) {
986 mdb_printf("%3d %1s ",
987 TABLE_TO_SEQID(coargs->ndx),
988 co_typenames[coargs->ndx &
989 CALLOUT_TYPE_MASK]);
990 }
991
992 list_flags = coargs->list_flags;
993 mdb_printf("%-14llx %1s%1s %-6d %-0?p ",
994 (coargs->flags & COF_EXPREL) ?
995 coargs->exp - coargs->now : coargs->exp,
996 (list_flags & CALLOUT_LIST_FLAG_HRESTIME) ?
997 "H" : " ",
998 (list_flags & CALLOUT_LIST_FLAG_ABSOLUTE) ?
999 "A" : " ",
1000 coargs->bucket, cl->cl_callouts.ch_head);
1001
1002 if (coargs->flags & COF_LONGLIST) {
1003 mdb_printf(" %-?p %-?p",
1004 cl->cl_prev, cl->cl_next);
1005 }
1006 } else {
1007 /* address only */
1008 mdb_printf("%-0p", addr);
1009 }
1010 mdb_printf("\n");
1011 if (coargs->flags & COF_LIST) {
1012 return (WALK_NEXT);
1013 }
1014 }
1015 /* yet another layer as we walk the actual callouts via list. */
1016 if (cl->cl_callouts.ch_head == NULL) {
1017 return (WALK_NEXT);
1018 }
1019 /* free list structures do not have valid callouts off of them. */
1020 if (coargs->flags & COF_FREE) {
1021 return (WALK_NEXT);
1022 }
1023 coptr = (callout_t *)cl->cl_callouts.ch_head;
1024
1025 if (coargs->flags & COF_VERBOSE) {
1026 mdb_inc_indent(4);
1027 }
1028 /*
1029 * walk callouts using yet another callback routine.
1030 * we use callouts_bytime because id hash is handled via
1031 * the callout_t_cb callback.
1032 */
1033 if (mdb_pwalk("callouts_bytime", callouts_cb, coargs,
1034 (uintptr_t)coptr) == -1) {
1035 mdb_warn("cannot walk callouts at %p", coptr);
1036 return (WALK_ERR);
1037 }
1038 if (coargs->flags & COF_VERBOSE) {
1039 mdb_dec_indent(4);
1040 }
1041
1042 return (WALK_NEXT);
1043 }
1044
1045 /* this callback handles the details of callout table walking. */
1046 static int
callout_t_cb(uintptr_t addr,const void * data,void * priv)1047 callout_t_cb(uintptr_t addr, const void *data, void *priv)
1048 {
1049 callout_data_t *coargs = (callout_data_t *)priv;
1050 cot_data_t *cotwd = (cot_data_t *)data;
1051 callout_table_t *ct = &(cotwd->ct);
1052 int index, seqid, cotype;
1053 int i;
1054 callout_list_t *clptr;
1055 callout_t *coptr;
1056
1057 if ((coargs == NULL) || (ct == NULL) || (coargs->co_table == NULL)) {
1058 return (WALK_ERR);
1059 }
1060
1061 index = ((char *)addr - (char *)coargs->co_table) /
1062 sizeof (callout_table_t);
1063 cotype = index & CALLOUT_TYPE_MASK;
1064 seqid = TABLE_TO_SEQID(index);
1065
1066 if ((coargs->flags & COF_SEQID) && (coargs->seqid != seqid)) {
1067 return (WALK_NEXT);
1068 }
1069
1070 if (!(coargs->flags & COF_REAL) && (cotype == CALLOUT_REALTIME)) {
1071 return (WALK_NEXT);
1072 }
1073
1074 if (!(coargs->flags & COF_NORM) && (cotype == CALLOUT_NORMAL)) {
1075 return (WALK_NEXT);
1076 }
1077
1078 if (!(coargs->flags & COF_EMPTY) && (
1079 (ct->ct_heap == NULL) || (ct->ct_cyclic == NULL))) {
1080 return (WALK_NEXT);
1081 }
1082
1083 if ((coargs->flags & COF_THDR) && !(coargs->flags & COF_ADDR) &&
1084 (coargs->flags & (COF_TABLE | COF_VERBOSE))) {
1085 /* print table hdr */
1086 mdb_printf("%<u>%-3s %-1s %-?s %-?s %-?s %-?s%</u>",
1087 "SEQ", "T", "FREE", "LFREE", "CYCLIC", "HEAP");
1088 coargs->flags &= ~COF_THDR;
1089 coargs->flags |= (COF_LHDR | COF_CHDR);
1090 if (coargs->flags & COF_LONGLIST) {
1091 /* more info! */
1092 mdb_printf("%<u> %-T%-7s %-7s %-?s %-?s %-?s"
1093 " %-?s %-?s %-?s%</u>",
1094 "HEAPNUM", "HEAPMAX", "TASKQ", "EXPQ", "QUE",
1095 "PEND", "FREE", "LOCK");
1096 }
1097 mdb_printf("\n");
1098 }
1099 if (coargs->flags & (COF_TABLE | COF_VERBOSE)) {
1100 if (!(coargs->flags & COF_ADDR)) {
1101 mdb_printf("%-3d %-1s %-0?p %-0?p %-0?p %-?p",
1102 seqid, co_typenames[cotype],
1103 ct->ct_free, ct->ct_lfree, ct->ct_cyclic,
1104 ct->ct_heap);
1105 if (coargs->flags & COF_LONGLIST) {
1106 /* more info! */
1107 mdb_printf(" %-7d %-7d %-?p %-?p %-?p"
1108 " %-?lld %-?lld %-?p",
1109 ct->ct_heap_num, ct->ct_heap_max,
1110 ct->ct_taskq, ct->ct_expired.ch_head,
1111 ct->ct_queue.ch_head,
1112 cotwd->ct_timeouts_pending,
1113 cotwd->ct_allocations -
1114 cotwd->ct_timeouts_pending,
1115 ct->ct_mutex);
1116 }
1117 } else {
1118 /* address only */
1119 mdb_printf("%-0?p", addr);
1120 }
1121 mdb_printf("\n");
1122 if (coargs->flags & COF_TABLE) {
1123 return (WALK_NEXT);
1124 }
1125 }
1126
1127 coargs->ndx = index;
1128 if (coargs->flags & COF_VERBOSE) {
1129 mdb_inc_indent(4);
1130 }
1131 /* keep digging. */
1132 if (!(coargs->flags & COF_BYIDH)) {
1133 /* walk the list hash table */
1134 if (coargs->flags & COF_FREE) {
1135 clptr = ct->ct_lfree;
1136 coargs->bucket = 0;
1137 if (clptr == NULL) {
1138 return (WALK_NEXT);
1139 }
1140 if (mdb_pwalk("callout_list", callout_list_cb, coargs,
1141 (uintptr_t)clptr) == -1) {
1142 mdb_warn("cannot walk callout free list at %p",
1143 clptr);
1144 return (WALK_ERR);
1145 }
1146 } else {
1147 /* first print the expired list. */
1148 clptr = (callout_list_t *)ct->ct_expired.ch_head;
1149 if (clptr != NULL) {
1150 coargs->bucket = -1;
1151 if (mdb_pwalk("callout_list", callout_list_cb,
1152 coargs, (uintptr_t)clptr) == -1) {
1153 mdb_warn("cannot walk callout_list"
1154 " at %p", clptr);
1155 return (WALK_ERR);
1156 }
1157 }
1158 /* then, print the callout queue */
1159 clptr = (callout_list_t *)ct->ct_queue.ch_head;
1160 if (clptr != NULL) {
1161 coargs->bucket = -1;
1162 if (mdb_pwalk("callout_list", callout_list_cb,
1163 coargs, (uintptr_t)clptr) == -1) {
1164 mdb_warn("cannot walk callout_list"
1165 " at %p", clptr);
1166 return (WALK_ERR);
1167 }
1168 }
1169 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1170 if (ct->ct_clhash == NULL) {
1171 /* nothing to do */
1172 break;
1173 }
1174 if (cotwd->cot_clhash[i].ch_head == NULL) {
1175 continue;
1176 }
1177 clptr = (callout_list_t *)
1178 cotwd->cot_clhash[i].ch_head;
1179 coargs->bucket = i;
1180 /* walk list with callback routine. */
1181 if (mdb_pwalk("callout_list", callout_list_cb,
1182 coargs, (uintptr_t)clptr) == -1) {
1183 mdb_warn("cannot walk callout_list"
1184 " at %p", clptr);
1185 return (WALK_ERR);
1186 }
1187 }
1188 }
1189 } else {
1190 /* walk the id hash table. */
1191 if (coargs->flags & COF_FREE) {
1192 coptr = ct->ct_free;
1193 coargs->bucket = 0;
1194 if (coptr == NULL) {
1195 return (WALK_NEXT);
1196 }
1197 if (mdb_pwalk("callouts_byid", callouts_cb, coargs,
1198 (uintptr_t)coptr) == -1) {
1199 mdb_warn("cannot walk callout id free list"
1200 " at %p", coptr);
1201 return (WALK_ERR);
1202 }
1203 } else {
1204 for (i = 0; i < CALLOUT_BUCKETS; i++) {
1205 if (ct->ct_idhash == NULL) {
1206 break;
1207 }
1208 coptr = (callout_t *)
1209 cotwd->cot_idhash[i].ch_head;
1210 if (coptr == NULL) {
1211 continue;
1212 }
1213 coargs->bucket = i;
1214
1215 /*
1216 * walk callouts directly by id. For id
1217 * chain, the callout list is just a header,
1218 * so there's no need to walk it.
1219 */
1220 if (mdb_pwalk("callouts_byid", callouts_cb,
1221 coargs, (uintptr_t)coptr) == -1) {
1222 mdb_warn("cannot walk callouts at %p",
1223 coptr);
1224 return (WALK_ERR);
1225 }
1226 }
1227 }
1228 }
1229 if (coargs->flags & COF_VERBOSE) {
1230 mdb_dec_indent(4);
1231 }
1232 return (WALK_NEXT);
1233 }
1234
1235 /*
1236 * initialize some common info for both callout dcmds.
1237 */
1238 int
callout_common_init(callout_data_t * coargs)1239 callout_common_init(callout_data_t *coargs)
1240 {
1241 /* we need a couple of things */
1242 if (mdb_readvar(&(coargs->co_table), "callout_table") == -1) {
1243 mdb_warn("failed to read 'callout_table'");
1244 return (DCMD_ERR);
1245 }
1246 /* need to get now in nsecs. Approximate with hrtime vars */
1247 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t), "hrtime_last") !=
1248 sizeof (hrtime_t)) {
1249 if (mdb_readsym(&(coargs->now), sizeof (hrtime_t),
1250 "hrtime_base") != sizeof (hrtime_t)) {
1251 mdb_warn("Could not determine current system time");
1252 return (DCMD_ERR);
1253 }
1254 }
1255
1256 if (mdb_readvar(&(coargs->ctbits), "callout_table_bits") == -1) {
1257 mdb_warn("failed to read 'callout_table_bits'");
1258 return (DCMD_ERR);
1259 }
1260 if (mdb_readvar(&(coargs->nsec_per_tick), "nsec_per_tick") == -1) {
1261 mdb_warn("failed to read 'nsec_per_tick'");
1262 return (DCMD_ERR);
1263 }
1264 return (DCMD_OK);
1265 }
1266
1267 /*
1268 * dcmd to print callouts. Optional addr limits to specific table.
1269 * Parses lots of options that get passed to callbacks for walkers.
1270 * Has it's own help function.
1271 */
1272 /*ARGSUSED*/
1273 int
callout(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1274 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1275 {
1276 callout_data_t coargs;
1277 /* getopts doesn't help much with stuff like this */
1278 boolean_t Sflag, Cflag, tflag, aflag, bflag, dflag, kflag;
1279 char *funcname = NULL;
1280 char *paramstr = NULL;
1281 uintptr_t Stmp, Ctmp; /* for getopt. */
1282 int retval;
1283
1284 coargs.flags = COF_DEFAULT;
1285 Sflag = Cflag = tflag = bflag = aflag = dflag = kflag = FALSE;
1286 coargs.seqid = -1;
1287
1288 if (mdb_getopts(argc, argv,
1289 'r', MDB_OPT_CLRBITS, COF_NORM, &coargs.flags,
1290 'n', MDB_OPT_CLRBITS, COF_REAL, &coargs.flags,
1291 'l', MDB_OPT_CLRBITS, COF_SHORT, &coargs.flags,
1292 's', MDB_OPT_CLRBITS, COF_LONG, &coargs.flags,
1293 'x', MDB_OPT_SETBITS, COF_EXEC, &coargs.flags,
1294 'h', MDB_OPT_SETBITS, COF_HIRES, &coargs.flags,
1295 'B', MDB_OPT_SETBITS, COF_ABS, &coargs.flags,
1296 'E', MDB_OPT_SETBITS, COF_EMPTY, &coargs.flags,
1297 'd', MDB_OPT_SETBITS, 1, &dflag,
1298 'C', MDB_OPT_UINTPTR_SET, &Cflag, &Ctmp,
1299 'S', MDB_OPT_UINTPTR_SET, &Sflag, &Stmp,
1300 't', MDB_OPT_UINTPTR_SET, &tflag, (uintptr_t *)&coargs.time,
1301 'a', MDB_OPT_UINTPTR_SET, &aflag, (uintptr_t *)&coargs.atime,
1302 'b', MDB_OPT_UINTPTR_SET, &bflag, (uintptr_t *)&coargs.btime,
1303 'k', MDB_OPT_SETBITS, 1, &kflag,
1304 'f', MDB_OPT_STR, &funcname,
1305 'p', MDB_OPT_STR, ¶mstr,
1306 'T', MDB_OPT_SETBITS, COF_TABLE, &coargs.flags,
1307 'D', MDB_OPT_SETBITS, COF_EXPREL, &coargs.flags,
1308 'L', MDB_OPT_SETBITS, COF_LIST, &coargs.flags,
1309 'V', MDB_OPT_SETBITS, COF_VERBOSE, &coargs.flags,
1310 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1311 'i', MDB_OPT_SETBITS, COF_BYIDH, &coargs.flags,
1312 'F', MDB_OPT_SETBITS, COF_FREE, &coargs.flags,
1313 'H', MDB_OPT_SETBITS, COF_HEAP, &coargs.flags,
1314 'Q', MDB_OPT_SETBITS, COF_QUEUE, &coargs.flags,
1315 'A', MDB_OPT_SETBITS, COF_ADDR, &coargs.flags,
1316 NULL) != argc) {
1317 return (DCMD_USAGE);
1318 }
1319
1320 /* initialize from kernel variables */
1321 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1322 return (retval);
1323 }
1324
1325 /* do some option post-processing */
1326 if (kflag) {
1327 coargs.time *= coargs.nsec_per_tick;
1328 coargs.atime *= coargs.nsec_per_tick;
1329 coargs.btime *= coargs.nsec_per_tick;
1330 }
1331
1332 if (dflag) {
1333 coargs.time += coargs.now;
1334 coargs.atime += coargs.now;
1335 coargs.btime += coargs.now;
1336 }
1337 if (Sflag) {
1338 if (flags & DCMD_ADDRSPEC) {
1339 mdb_printf("-S option conflicts with explicit"
1340 " address\n");
1341 return (DCMD_USAGE);
1342 }
1343 coargs.flags |= COF_SEQID;
1344 coargs.seqid = (int)Stmp;
1345 }
1346 if (Cflag) {
1347 if (flags & DCMD_ADDRSPEC) {
1348 mdb_printf("-C option conflicts with explicit"
1349 " address\n");
1350 return (DCMD_USAGE);
1351 }
1352 if (coargs.flags & COF_SEQID) {
1353 mdb_printf("-C and -S are mutually exclusive\n");
1354 return (DCMD_USAGE);
1355 }
1356 coargs.cpu = (cpu_t *)Ctmp;
1357 if (mdb_vread(&coargs.seqid, sizeof (processorid_t),
1358 (uintptr_t)&(coargs.cpu->cpu_seqid)) == -1) {
1359 mdb_warn("failed to read cpu_t at %p", Ctmp);
1360 return (DCMD_ERR);
1361 }
1362 coargs.flags |= COF_SEQID;
1363 }
1364 /* avoid null outputs. */
1365 if (!(coargs.flags & (COF_REAL | COF_NORM))) {
1366 coargs.flags |= COF_REAL | COF_NORM;
1367 }
1368 if (!(coargs.flags & (COF_LONG | COF_SHORT))) {
1369 coargs.flags |= COF_LONG | COF_SHORT;
1370 }
1371 if (tflag) {
1372 if (aflag || bflag) {
1373 mdb_printf("-t and -a|b are mutually exclusive\n");
1374 return (DCMD_USAGE);
1375 }
1376 coargs.flags |= COF_TIME;
1377 }
1378 if (aflag) {
1379 coargs.flags |= COF_AFTER;
1380 }
1381 if (bflag) {
1382 coargs.flags |= COF_BEFORE;
1383 }
1384 if ((aflag && bflag) && (coargs.btime <= coargs.atime)) {
1385 mdb_printf("value for -a must be earlier than the value"
1386 " for -b.\n");
1387 return (DCMD_USAGE);
1388 }
1389
1390 if ((coargs.flags & COF_HEAP) && (coargs.flags & COF_QUEUE)) {
1391 mdb_printf("-H and -Q are mutually exclusive\n");
1392 return (DCMD_USAGE);
1393 }
1394
1395 if (funcname != NULL) {
1396 GElf_Sym sym;
1397
1398 if (mdb_lookup_by_name(funcname, &sym) != 0) {
1399 coargs.funcaddr = mdb_strtoull(funcname);
1400 } else {
1401 coargs.funcaddr = sym.st_value;
1402 }
1403 coargs.flags |= COF_FUNC;
1404 }
1405
1406 if (paramstr != NULL) {
1407 GElf_Sym sym;
1408
1409 if (mdb_lookup_by_name(paramstr, &sym) != 0) {
1410 coargs.param = mdb_strtoull(paramstr);
1411 } else {
1412 coargs.param = sym.st_value;
1413 }
1414 coargs.flags |= COF_PARAM;
1415 }
1416
1417 if (!(flags & DCMD_ADDRSPEC)) {
1418 /* don't pass "dot" if no addr. */
1419 addr = NULL;
1420 }
1421 if (addr != NULL) {
1422 /*
1423 * a callout table was specified. Ignore -r|n option
1424 * to avoid null output.
1425 */
1426 coargs.flags |= (COF_REAL | COF_NORM);
1427 }
1428
1429 if (DCMD_HDRSPEC(flags) || (coargs.flags & COF_VERBOSE)) {
1430 coargs.flags |= COF_THDR | COF_LHDR | COF_CHDR;
1431 }
1432 if (coargs.flags & COF_FREE) {
1433 coargs.flags |= COF_EMPTY;
1434 /* -F = free callouts, -FL = free lists */
1435 if (!(coargs.flags & COF_LIST)) {
1436 coargs.flags |= COF_BYIDH;
1437 }
1438 }
1439
1440 /* walk table, using specialized callback routine. */
1441 if (mdb_pwalk("callout_table", callout_t_cb, &coargs, addr) == -1) {
1442 mdb_warn("cannot walk callout_table");
1443 return (DCMD_ERR);
1444 }
1445 return (DCMD_OK);
1446 }
1447
1448
1449 /*
1450 * Given an extended callout id, dump its information.
1451 */
1452 /*ARGSUSED*/
1453 int
calloutid(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1454 calloutid(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1455 {
1456 callout_data_t coargs;
1457 callout_table_t *ctptr;
1458 callout_table_t ct;
1459 callout_id_t coid;
1460 callout_t *coptr;
1461 int tableid;
1462 callout_id_t xid;
1463 ulong_t idhash;
1464 int i, retval;
1465 const mdb_arg_t *arg;
1466 size_t size;
1467 callout_hash_t cot_idhash[CALLOUT_BUCKETS];
1468
1469 coargs.flags = COF_DEFAULT | COF_BYIDH;
1470 i = mdb_getopts(argc, argv,
1471 'd', MDB_OPT_SETBITS, COF_DECODE, &coargs.flags,
1472 'v', MDB_OPT_SETBITS, COF_LONGLIST, &coargs.flags,
1473 NULL);
1474 argc -= i;
1475 argv += i;
1476
1477 if (argc != 1) {
1478 return (DCMD_USAGE);
1479 }
1480 arg = &argv[0];
1481
1482 if (arg->a_type == MDB_TYPE_IMMEDIATE) {
1483 xid = arg->a_un.a_val;
1484 } else {
1485 xid = (callout_id_t)mdb_strtoull(arg->a_un.a_str);
1486 }
1487
1488 if (DCMD_HDRSPEC(flags)) {
1489 coargs.flags |= COF_CHDR;
1490 }
1491
1492
1493 /* initialize from kernel variables */
1494 if ((retval = callout_common_init(&coargs)) != DCMD_OK) {
1495 return (retval);
1496 }
1497
1498 /* we must massage the environment so that the macros will play nice */
1499 #define callout_table_mask ((1 << coargs.ctbits) - 1)
1500 #define callout_table_bits coargs.ctbits
1501 #define nsec_per_tick coargs.nsec_per_tick
1502 tableid = CALLOUT_ID_TO_TABLE(xid);
1503 idhash = CALLOUT_IDHASH(xid);
1504 #undef callouts_table_bits
1505 #undef callout_table_mask
1506 #undef nsec_per_tick
1507 coid = CO_PLAIN_ID(xid);
1508
1509 if (flags & DCMD_ADDRSPEC) {
1510 mdb_printf("calloutid does not accept explicit address.\n");
1511 return (DCMD_USAGE);
1512 }
1513
1514 if (coargs.flags & COF_DECODE) {
1515 if (DCMD_HDRSPEC(flags)) {
1516 mdb_printf("%<u>%3s %1s %2s %-?s %-6s %</u>\n",
1517 "SEQ", "T", "XL", "XID", "IDHASH");
1518 }
1519 mdb_printf("%-3d %1s %1s%1s %-?llx %-6d\n",
1520 TABLE_TO_SEQID(tableid),
1521 co_typenames[tableid & CALLOUT_TYPE_MASK],
1522 (xid & CALLOUT_EXECUTING) ? "X" : " ",
1523 (xid & CALLOUT_LONGTERM) ? "L" : " ",
1524 (long long)coid, idhash);
1525 return (DCMD_OK);
1526 }
1527
1528 /* get our table. Note this relies on the types being correct */
1529 ctptr = coargs.co_table + tableid;
1530 if (mdb_vread(&ct, sizeof (callout_table_t), (uintptr_t)ctptr) == -1) {
1531 mdb_warn("failed to read callout_table at %p", ctptr);
1532 return (DCMD_ERR);
1533 }
1534 size = sizeof (callout_hash_t) * CALLOUT_BUCKETS;
1535 if (ct.ct_idhash != NULL) {
1536 if (mdb_vread(&(cot_idhash), size,
1537 (uintptr_t)ct.ct_idhash) == -1) {
1538 mdb_warn("failed to read id_hash at %p",
1539 ct.ct_idhash);
1540 return (WALK_ERR);
1541 }
1542 }
1543
1544 /* callout at beginning of hash chain */
1545 if (ct.ct_idhash == NULL) {
1546 mdb_printf("id hash chain for this xid is empty\n");
1547 return (DCMD_ERR);
1548 }
1549 coptr = (callout_t *)cot_idhash[idhash].ch_head;
1550 if (coptr == NULL) {
1551 mdb_printf("id hash chain for this xid is empty\n");
1552 return (DCMD_ERR);
1553 }
1554
1555 coargs.ndx = tableid;
1556 coargs.bucket = idhash;
1557
1558 /* use the walker, luke */
1559 if (mdb_pwalk("callouts_byid", callouts_cb, &coargs,
1560 (uintptr_t)coptr) == -1) {
1561 mdb_warn("cannot walk callouts at %p", coptr);
1562 return (WALK_ERR);
1563 }
1564
1565 return (DCMD_OK);
1566 }
1567
1568 void
callout_help(void)1569 callout_help(void)
1570 {
1571 mdb_printf("callout: display callouts.\n"
1572 "Given a callout table address, display callouts from table.\n"
1573 "Without an address, display callouts from all tables.\n"
1574 "options:\n"
1575 " -r|n : limit display to (r)ealtime or (n)ormal type callouts\n"
1576 " -s|l : limit display to (s)hort-term ids or (l)ong-term ids\n"
1577 " -x : limit display to callouts which are executing\n"
1578 " -h : limit display to callouts based on hrestime\n"
1579 " -B : limit display to callouts based on absolute time\n"
1580 " -t|a|b nsec: limit display to callouts that expire a(t) time,"
1581 " (a)fter time,\n or (b)efore time. Use -a and -b together "
1582 " to specify a range.\n For \"now\", use -d[t|a|b] 0.\n"
1583 " -d : interpret time option to -t|a|b as delta from current time\n"
1584 " -k : use ticks instead of nanoseconds as arguments to"
1585 " -t|a|b. Note that\n ticks are less accurate and may not"
1586 " match other tick times (ie: lbolt).\n"
1587 " -D : display exiration time as delta from current time\n"
1588 " -S seqid : limit display to callouts for this cpu sequence id\n"
1589 " -C addr : limit display to callouts for this cpu pointer\n"
1590 " -f name|addr : limit display to callouts with this function\n"
1591 " -p name|addr : limit display to callouts functions with this"
1592 " parameter\n"
1593 " -T : display the callout table itself, instead of callouts\n"
1594 " -L : display callout lists instead of callouts\n"
1595 " -E : with -T or L, display empty data structures.\n"
1596 " -i : traverse callouts by id hash instead of list hash\n"
1597 " -F : walk free callout list (free list with -i) instead\n"
1598 " -v : display more info for each item\n"
1599 " -V : show details of each level of info as it is traversed\n"
1600 " -H : limit display to callouts in the callout heap\n"
1601 " -Q : limit display to callouts in the callout queue\n"
1602 " -A : show only addresses. Useful for pipelines.\n");
1603 }
1604
1605 void
calloutid_help(void)1606 calloutid_help(void)
1607 {
1608 mdb_printf("calloutid: display callout by id.\n"
1609 "Given an extended callout id, display the callout infomation.\n"
1610 "options:\n"
1611 " -d : do not dereference callout, just decode the id.\n"
1612 " -v : verbose display more info about the callout\n");
1613 }
1614
1615 /*ARGSUSED*/
1616 int
class(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1617 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1618 {
1619 long num_classes, i;
1620 sclass_t *class_tbl;
1621 GElf_Sym g_sclass;
1622 char class_name[PC_CLNMSZ];
1623 size_t tbl_size;
1624
1625 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) {
1626 mdb_warn("failed to find symbol sclass\n");
1627 return (DCMD_ERR);
1628 }
1629
1630 tbl_size = (size_t)g_sclass.st_size;
1631 num_classes = tbl_size / (sizeof (sclass_t));
1632 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC);
1633
1634 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) {
1635 mdb_warn("failed to read sclass");
1636 return (DCMD_ERR);
1637 }
1638
1639 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME",
1640 "INIT FCN", "CLASS FCN");
1641
1642 for (i = 0; i < num_classes; i++) {
1643 if (mdb_vread(class_name, sizeof (class_name),
1644 (uintptr_t)class_tbl[i].cl_name) == -1)
1645 (void) strcpy(class_name, "???");
1646
1647 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name,
1648 class_tbl[i].cl_init, class_tbl[i].cl_funcs);
1649 }
1650
1651 return (DCMD_OK);
1652 }
1653
1654 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */
1655
1656 int
vnode2path(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1657 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1658 {
1659 uintptr_t rootdir;
1660 vnode_t vn;
1661 char buf[MAXPATHLEN];
1662
1663 uint_t opt_F = FALSE;
1664
1665 if (mdb_getopts(argc, argv,
1666 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc)
1667 return (DCMD_USAGE);
1668
1669 if (!(flags & DCMD_ADDRSPEC)) {
1670 mdb_warn("expected explicit vnode_t address before ::\n");
1671 return (DCMD_USAGE);
1672 }
1673
1674 if (mdb_readvar(&rootdir, "rootdir") == -1) {
1675 mdb_warn("failed to read rootdir");
1676 return (DCMD_ERR);
1677 }
1678
1679 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1)
1680 return (DCMD_ERR);
1681
1682 if (*buf == '\0') {
1683 mdb_printf("??\n");
1684 return (DCMD_OK);
1685 }
1686
1687 mdb_printf("%s", buf);
1688 if (opt_F && buf[strlen(buf)-1] != '/' &&
1689 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn))
1690 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0));
1691 mdb_printf("\n");
1692
1693 return (DCMD_OK);
1694 }
1695
1696 int
ld_walk_init(mdb_walk_state_t * wsp)1697 ld_walk_init(mdb_walk_state_t *wsp)
1698 {
1699 wsp->walk_data = (void *)wsp->walk_addr;
1700 return (WALK_NEXT);
1701 }
1702
1703 int
ld_walk_step(mdb_walk_state_t * wsp)1704 ld_walk_step(mdb_walk_state_t *wsp)
1705 {
1706 int status;
1707 lock_descriptor_t ld;
1708
1709 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) {
1710 mdb_warn("couldn't read lock_descriptor_t at %p\n",
1711 wsp->walk_addr);
1712 return (WALK_ERR);
1713 }
1714
1715 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata);
1716 if (status == WALK_ERR)
1717 return (WALK_ERR);
1718
1719 wsp->walk_addr = (uintptr_t)ld.l_next;
1720 if (wsp->walk_addr == (uintptr_t)wsp->walk_data)
1721 return (WALK_DONE);
1722
1723 return (status);
1724 }
1725
1726 int
lg_walk_init(mdb_walk_state_t * wsp)1727 lg_walk_init(mdb_walk_state_t *wsp)
1728 {
1729 GElf_Sym sym;
1730
1731 if (mdb_lookup_by_name("lock_graph", &sym) == -1) {
1732 mdb_warn("failed to find symbol 'lock_graph'\n");
1733 return (WALK_ERR);
1734 }
1735
1736 wsp->walk_addr = (uintptr_t)sym.st_value;
1737 wsp->walk_data = (void *)(uintptr_t)(sym.st_value + sym.st_size);
1738
1739 return (WALK_NEXT);
1740 }
1741
1742 typedef struct lg_walk_data {
1743 uintptr_t startaddr;
1744 mdb_walk_cb_t callback;
1745 void *data;
1746 } lg_walk_data_t;
1747
1748 /*
1749 * We can't use ::walk lock_descriptor directly, because the head of each graph
1750 * is really a dummy lock. Rather than trying to dynamically determine if this
1751 * is a dummy node or not, we just filter out the initial element of the
1752 * list.
1753 */
1754 static int
lg_walk_cb(uintptr_t addr,const void * data,void * priv)1755 lg_walk_cb(uintptr_t addr, const void *data, void *priv)
1756 {
1757 lg_walk_data_t *lw = priv;
1758
1759 if (addr != lw->startaddr)
1760 return (lw->callback(addr, data, lw->data));
1761
1762 return (WALK_NEXT);
1763 }
1764
1765 int
lg_walk_step(mdb_walk_state_t * wsp)1766 lg_walk_step(mdb_walk_state_t *wsp)
1767 {
1768 graph_t *graph;
1769 lg_walk_data_t lw;
1770
1771 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data)
1772 return (WALK_DONE);
1773
1774 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) {
1775 mdb_warn("failed to read graph_t at %p", wsp->walk_addr);
1776 return (WALK_ERR);
1777 }
1778
1779 wsp->walk_addr += sizeof (graph);
1780
1781 if (graph == NULL)
1782 return (WALK_NEXT);
1783
1784 lw.callback = wsp->walk_callback;
1785 lw.data = wsp->walk_cbdata;
1786
1787 lw.startaddr = (uintptr_t)&(graph->active_locks);
1788 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1789 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1790 return (WALK_ERR);
1791 }
1792
1793 lw.startaddr = (uintptr_t)&(graph->sleeping_locks);
1794 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) {
1795 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr);
1796 return (WALK_ERR);
1797 }
1798
1799 return (WALK_NEXT);
1800 }
1801
1802 /*
1803 * The space available for the path corresponding to the locked vnode depends
1804 * on whether we are printing 32- or 64-bit addresses.
1805 */
1806 #ifdef _LP64
1807 #define LM_VNPATHLEN 20
1808 #else
1809 #define LM_VNPATHLEN 30
1810 #endif
1811
1812 /*ARGSUSED*/
1813 static int
lminfo_cb(uintptr_t addr,const void * data,void * priv)1814 lminfo_cb(uintptr_t addr, const void *data, void *priv)
1815 {
1816 const lock_descriptor_t *ld = data;
1817 char buf[LM_VNPATHLEN];
1818 proc_t p;
1819
1820 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ",
1821 addr, ld->l_type == F_RDLCK ? "RD" :
1822 ld->l_type == F_WRLCK ? "WR" : "??",
1823 ld->l_state, ld->l_flock.l_pid,
1824 ld->l_flock.l_pid == 0 ? "<kernel>" :
1825 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ?
1826 "<defunct>" : p.p_user.u_comm,
1827 ld->l_vnode);
1828
1829 mdb_vnode2path((uintptr_t)ld->l_vnode, buf,
1830 sizeof (buf));
1831 mdb_printf("%s\n", buf);
1832
1833 return (WALK_NEXT);
1834 }
1835
1836 /*ARGSUSED*/
1837 int
lminfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1838 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1839 {
1840 if (DCMD_HDRSPEC(flags))
1841 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n",
1842 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH");
1843
1844 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL));
1845 }
1846
1847 /*ARGSUSED*/
1848 int
whereopen_fwalk(uintptr_t addr,struct file * f,uintptr_t * target)1849 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target)
1850 {
1851 if ((uintptr_t)f->f_vnode == *target) {
1852 mdb_printf("file %p\n", addr);
1853 *target = NULL;
1854 }
1855
1856 return (WALK_NEXT);
1857 }
1858
1859 /*ARGSUSED*/
1860 int
whereopen_pwalk(uintptr_t addr,void * ignored,uintptr_t * target)1861 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target)
1862 {
1863 uintptr_t t = *target;
1864
1865 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) {
1866 mdb_warn("couldn't file walk proc %p", addr);
1867 return (WALK_ERR);
1868 }
1869
1870 if (t == NULL)
1871 mdb_printf("%p\n", addr);
1872
1873 return (WALK_NEXT);
1874 }
1875
1876 /*ARGSUSED*/
1877 int
whereopen(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)1878 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1879 {
1880 uintptr_t target = addr;
1881
1882 if (!(flags & DCMD_ADDRSPEC) || addr == NULL)
1883 return (DCMD_USAGE);
1884
1885 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) {
1886 mdb_warn("can't proc walk");
1887 return (DCMD_ERR);
1888 }
1889
1890 return (DCMD_OK);
1891 }
1892
1893 typedef struct datafmt {
1894 char *hdr1;
1895 char *hdr2;
1896 char *dashes;
1897 char *fmt;
1898 } datafmt_t;
1899
1900 static datafmt_t kmemfmt[] = {
1901 { "cache ", "name ",
1902 "-------------------------", "%-25s " },
1903 { " buf", " size", "------", "%6u " },
1904 { " buf", "in use", "------", "%6u " },
1905 { " buf", " total", "------", "%6u " },
1906 { " memory", " in use", "----------", "%10lu%c " },
1907 { " alloc", " succeed", "---------", "%9u " },
1908 { "alloc", " fail", "-----", "%5u " },
1909 { NULL, NULL, NULL, NULL }
1910 };
1911
1912 static datafmt_t vmemfmt[] = {
1913 { "vmem ", "name ",
1914 "-------------------------", "%-*s " },
1915 { " memory", " in use", "----------", "%9llu%c " },
1916 { " memory", " total", "-----------", "%10llu%c " },
1917 { " memory", " import", "----------", "%9llu%c " },
1918 { " alloc", " succeed", "---------", "%9llu " },
1919 { "alloc", " fail", "-----", "%5llu " },
1920 { NULL, NULL, NULL, NULL }
1921 };
1922
1923 /*ARGSUSED*/
1924 static int
kmastat_cpu_avail(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * avail)1925 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail)
1926 {
1927 short rounds, prounds;
1928
1929 if (KMEM_DUMPCC(ccp)) {
1930 rounds = ccp->cc_dump_rounds;
1931 prounds = ccp->cc_dump_prounds;
1932 } else {
1933 rounds = ccp->cc_rounds;
1934 prounds = ccp->cc_prounds;
1935 }
1936 if (rounds > 0)
1937 *avail += rounds;
1938 if (prounds > 0)
1939 *avail += prounds;
1940
1941 return (WALK_NEXT);
1942 }
1943
1944 /*ARGSUSED*/
1945 static int
kmastat_cpu_alloc(uintptr_t addr,const kmem_cpu_cache_t * ccp,int * alloc)1946 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc)
1947 {
1948 *alloc += ccp->cc_alloc;
1949
1950 return (WALK_NEXT);
1951 }
1952
1953 /*ARGSUSED*/
1954 static int
kmastat_slab_avail(uintptr_t addr,const kmem_slab_t * sp,int * avail)1955 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail)
1956 {
1957 *avail += sp->slab_chunks - sp->slab_refcnt;
1958
1959 return (WALK_NEXT);
1960 }
1961
1962 typedef struct kmastat_vmem {
1963 uintptr_t kv_addr;
1964 struct kmastat_vmem *kv_next;
1965 size_t kv_meminuse;
1966 int kv_alloc;
1967 int kv_fail;
1968 } kmastat_vmem_t;
1969
1970 typedef struct kmastat_args {
1971 kmastat_vmem_t **ka_kvpp;
1972 uint_t ka_shift;
1973 } kmastat_args_t;
1974
1975 static int
kmastat_cache(uintptr_t addr,const kmem_cache_t * cp,kmastat_args_t * kap)1976 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_args_t *kap)
1977 {
1978 kmastat_vmem_t **kvpp = kap->ka_kvpp;
1979 kmastat_vmem_t *kv;
1980 datafmt_t *dfp = kmemfmt;
1981 int magsize;
1982
1983 int avail, alloc, total;
1984 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) *
1985 cp->cache_slabsize;
1986
1987 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail;
1988 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc;
1989 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail;
1990
1991 magsize = kmem_get_magsize(cp);
1992
1993 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc;
1994 avail = cp->cache_full.ml_total * magsize;
1995 total = cp->cache_buftotal;
1996
1997 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr);
1998 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr);
1999 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr);
2000
2001 for (kv = *kvpp; kv != NULL; kv = kv->kv_next) {
2002 if (kv->kv_addr == (uintptr_t)cp->cache_arena)
2003 goto out;
2004 }
2005
2006 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC);
2007 kv->kv_next = *kvpp;
2008 kv->kv_addr = (uintptr_t)cp->cache_arena;
2009 *kvpp = kv;
2010 out:
2011 kv->kv_meminuse += meminuse;
2012 kv->kv_alloc += alloc;
2013 kv->kv_fail += cp->cache_alloc_fail;
2014
2015 mdb_printf((dfp++)->fmt, cp->cache_name);
2016 mdb_printf((dfp++)->fmt, cp->cache_bufsize);
2017 mdb_printf((dfp++)->fmt, total - avail);
2018 mdb_printf((dfp++)->fmt, total);
2019 mdb_printf((dfp++)->fmt, meminuse >> kap->ka_shift,
2020 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2021 kap->ka_shift == KILOS ? 'K' : 'B');
2022 mdb_printf((dfp++)->fmt, alloc);
2023 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail);
2024 mdb_printf("\n");
2025
2026 return (WALK_NEXT);
2027 }
2028
2029 static int
kmastat_vmem_totals(uintptr_t addr,const vmem_t * v,kmastat_args_t * kap)2030 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_args_t *kap)
2031 {
2032 kmastat_vmem_t *kv = *kap->ka_kvpp;
2033 size_t len;
2034
2035 while (kv != NULL && kv->kv_addr != addr)
2036 kv = kv->kv_next;
2037
2038 if (kv == NULL || kv->kv_alloc == 0)
2039 return (WALK_NEXT);
2040
2041 len = MIN(17, strlen(v->vm_name));
2042
2043 mdb_printf("Total [%s]%*s %6s %6s %6s %10lu%c %9u %5u\n", v->vm_name,
2044 17 - len, "", "", "", "",
2045 kv->kv_meminuse >> kap->ka_shift,
2046 kap->ka_shift == GIGS ? 'G' : kap->ka_shift == MEGS ? 'M' :
2047 kap->ka_shift == KILOS ? 'K' : 'B', kv->kv_alloc, kv->kv_fail);
2048
2049 return (WALK_NEXT);
2050 }
2051
2052 /*ARGSUSED*/
2053 static int
kmastat_vmem(uintptr_t addr,const vmem_t * v,const uint_t * shiftp)2054 kmastat_vmem(uintptr_t addr, const vmem_t *v, const uint_t *shiftp)
2055 {
2056 datafmt_t *dfp = vmemfmt;
2057 const vmem_kstat_t *vkp = &v->vm_kstat;
2058 uintptr_t paddr;
2059 vmem_t parent;
2060 int ident = 0;
2061
2062 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) {
2063 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) {
2064 mdb_warn("couldn't trace %p's ancestry", addr);
2065 ident = 0;
2066 break;
2067 }
2068 paddr = (uintptr_t)parent.vm_source;
2069 }
2070
2071 mdb_printf("%*s", ident, "");
2072 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name);
2073 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64 >> *shiftp,
2074 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2075 *shiftp == KILOS ? 'K' : 'B');
2076 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64 >> *shiftp,
2077 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2078 *shiftp == KILOS ? 'K' : 'B');
2079 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64 >> *shiftp,
2080 *shiftp == GIGS ? 'G' : *shiftp == MEGS ? 'M' :
2081 *shiftp == KILOS ? 'K' : 'B');
2082 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64);
2083 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64);
2084
2085 mdb_printf("\n");
2086
2087 return (WALK_NEXT);
2088 }
2089
2090 /*ARGSUSED*/
2091 int
kmastat(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)2092 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
2093 {
2094 kmastat_vmem_t *kv = NULL;
2095 datafmt_t *dfp;
2096 kmastat_args_t ka;
2097
2098 ka.ka_shift = 0;
2099 if (mdb_getopts(argc, argv,
2100 'k', MDB_OPT_SETBITS, KILOS, &ka.ka_shift,
2101 'm', MDB_OPT_SETBITS, MEGS, &ka.ka_shift,
2102 'g', MDB_OPT_SETBITS, GIGS, &ka.ka_shift, NULL) != argc)
2103 return (DCMD_USAGE);
2104
2105 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2106 mdb_printf("%s ", dfp->hdr1);
2107 mdb_printf("\n");
2108
2109 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2110 mdb_printf("%s ", dfp->hdr2);
2111 mdb_printf("\n");
2112
2113 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2114 mdb_printf("%s ", dfp->dashes);
2115 mdb_printf("\n");
2116
2117 ka.ka_kvpp = &kv;
2118 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &ka) == -1) {
2119 mdb_warn("can't walk 'kmem_cache'");
2120 return (DCMD_ERR);
2121 }
2122
2123 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2124 mdb_printf("%s ", dfp->dashes);
2125 mdb_printf("\n");
2126
2127 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, &ka) == -1) {
2128 mdb_warn("can't walk 'vmem'");
2129 return (DCMD_ERR);
2130 }
2131
2132 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++)
2133 mdb_printf("%s ", dfp->dashes);
2134 mdb_printf("\n");
2135
2136 mdb_printf("\n");
2137
2138 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2139 mdb_printf("%s ", dfp->hdr1);
2140 mdb_printf("\n");
2141
2142 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2143 mdb_printf("%s ", dfp->hdr2);
2144 mdb_printf("\n");
2145
2146 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2147 mdb_printf("%s ", dfp->dashes);
2148 mdb_printf("\n");
2149
2150 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, &ka.ka_shift) == -1) {
2151 mdb_warn("can't walk 'vmem'");
2152 return (DCMD_ERR);
2153 }
2154
2155 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++)
2156 mdb_printf("%s ", dfp->dashes);
2157 mdb_printf("\n");
2158 return (DCMD_OK);
2159 }
2160
2161 /*
2162 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made
2163 * up of a set of 'struct seg's. We could just scan each seg en masse, but
2164 * unfortunately, a few of the segs are both large and sparse, so we could
2165 * spend quite a bit of time scanning VAs which have no backing pages.
2166 *
2167 * So for the few very sparse segs, we skip the segment itself, and scan
2168 * the allocated vmem_segs in the vmem arena which manages that part of kas.
2169 * Currently, we do this for:
2170 *
2171 * SEG VMEM ARENA
2172 * kvseg heap_arena
2173 * kvseg32 heap32_arena
2174 * kvseg_core heap_core_arena
2175 *
2176 * In addition, we skip the segkpm segment in its entirety, since it is very
2177 * sparse, and contains no new kernel data.
2178 */
2179 typedef struct kgrep_walk_data {
2180 kgrep_cb_func *kg_cb;
2181 void *kg_cbdata;
2182 uintptr_t kg_kvseg;
2183 uintptr_t kg_kvseg32;
2184 uintptr_t kg_kvseg_core;
2185 uintptr_t kg_segkpm;
2186 uintptr_t kg_heap_lp_base;
2187 uintptr_t kg_heap_lp_end;
2188 } kgrep_walk_data_t;
2189
2190 static int
kgrep_walk_seg(uintptr_t addr,const struct seg * seg,kgrep_walk_data_t * kg)2191 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg)
2192 {
2193 uintptr_t base = (uintptr_t)seg->s_base;
2194
2195 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 ||
2196 addr == kg->kg_kvseg_core)
2197 return (WALK_NEXT);
2198
2199 if ((uintptr_t)seg->s_ops == kg->kg_segkpm)
2200 return (WALK_NEXT);
2201
2202 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata));
2203 }
2204
2205 /*ARGSUSED*/
2206 static int
kgrep_walk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2207 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2208 {
2209 /*
2210 * skip large page heap address range - it is scanned by walking
2211 * allocated vmem_segs in the heap_lp_arena
2212 */
2213 if (seg->vs_start == kg->kg_heap_lp_base &&
2214 seg->vs_end == kg->kg_heap_lp_end)
2215 return (WALK_NEXT);
2216
2217 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2218 }
2219
2220 /*ARGSUSED*/
2221 static int
kgrep_xwalk_vseg(uintptr_t addr,const vmem_seg_t * seg,kgrep_walk_data_t * kg)2222 kgrep_xwalk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg)
2223 {
2224 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata));
2225 }
2226
2227 static int
kgrep_walk_vmem(uintptr_t addr,const vmem_t * vmem,kgrep_walk_data_t * kg)2228 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg)
2229 {
2230 mdb_walk_cb_t walk_vseg = (mdb_walk_cb_t)kgrep_walk_vseg;
2231
2232 if (strcmp(vmem->vm_name, "heap") != 0 &&
2233 strcmp(vmem->vm_name, "heap32") != 0 &&
2234 strcmp(vmem->vm_name, "heap_core") != 0 &&
2235 strcmp(vmem->vm_name, "heap_lp") != 0)
2236 return (WALK_NEXT);
2237
2238 if (strcmp(vmem->vm_name, "heap_lp") == 0)
2239 walk_vseg = (mdb_walk_cb_t)kgrep_xwalk_vseg;
2240
2241 if (mdb_pwalk("vmem_alloc", walk_vseg, kg, addr) == -1) {
2242 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr);
2243 return (WALK_ERR);
2244 }
2245
2246 return (WALK_NEXT);
2247 }
2248
2249 int
kgrep_subr(kgrep_cb_func * cb,void * cbdata)2250 kgrep_subr(kgrep_cb_func *cb, void *cbdata)
2251 {
2252 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm;
2253 kgrep_walk_data_t kg;
2254
2255 if (mdb_get_state() == MDB_STATE_RUNNING) {
2256 mdb_warn("kgrep can only be run on a system "
2257 "dump or under kmdb; see dumpadm(1M)\n");
2258 return (DCMD_ERR);
2259 }
2260
2261 if (mdb_lookup_by_name("kas", &kas) == -1) {
2262 mdb_warn("failed to locate 'kas' symbol\n");
2263 return (DCMD_ERR);
2264 }
2265
2266 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) {
2267 mdb_warn("failed to locate 'kvseg' symbol\n");
2268 return (DCMD_ERR);
2269 }
2270
2271 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) {
2272 mdb_warn("failed to locate 'kvseg32' symbol\n");
2273 return (DCMD_ERR);
2274 }
2275
2276 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) {
2277 mdb_warn("failed to locate 'kvseg_core' symbol\n");
2278 return (DCMD_ERR);
2279 }
2280
2281 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) {
2282 mdb_warn("failed to locate 'segkpm_ops' symbol\n");
2283 return (DCMD_ERR);
2284 }
2285
2286 if (mdb_readvar(&kg.kg_heap_lp_base, "heap_lp_base") == -1) {
2287 mdb_warn("failed to read 'heap_lp_base'\n");
2288 return (DCMD_ERR);
2289 }
2290
2291 if (mdb_readvar(&kg.kg_heap_lp_end, "heap_lp_end") == -1) {
2292 mdb_warn("failed to read 'heap_lp_end'\n");
2293 return (DCMD_ERR);
2294 }
2295
2296 kg.kg_cb = cb;
2297 kg.kg_cbdata = cbdata;
2298 kg.kg_kvseg = (uintptr_t)kvseg.st_value;
2299 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value;
2300 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value;
2301 kg.kg_segkpm = (uintptr_t)segkpm.st_value;
2302
2303 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg,
2304 &kg, kas.st_value) == -1) {
2305 mdb_warn("failed to walk kas segments");
2306 return (DCMD_ERR);
2307 }
2308
2309 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) {
2310 mdb_warn("failed to walk heap/heap32 vmem arenas");
2311 return (DCMD_ERR);
2312 }
2313
2314 return (DCMD_OK);
2315 }
2316
2317 size_t
kgrep_subr_pagesize(void)2318 kgrep_subr_pagesize(void)
2319 {
2320 return (PAGESIZE);
2321 }
2322
2323 typedef struct file_walk_data {
2324 struct uf_entry *fw_flist;
2325 int fw_flistsz;
2326 int fw_ndx;
2327 int fw_nofiles;
2328 } file_walk_data_t;
2329
2330 int
file_walk_init(mdb_walk_state_t * wsp)2331 file_walk_init(mdb_walk_state_t *wsp)
2332 {
2333 file_walk_data_t *fw;
2334 proc_t p;
2335
2336 if (wsp->walk_addr == NULL) {
2337 mdb_warn("file walk doesn't support global walks\n");
2338 return (WALK_ERR);
2339 }
2340
2341 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP);
2342
2343 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) {
2344 mdb_free(fw, sizeof (file_walk_data_t));
2345 mdb_warn("failed to read proc structure at %p", wsp->walk_addr);
2346 return (WALK_ERR);
2347 }
2348
2349 if (p.p_user.u_finfo.fi_nfiles == 0) {
2350 mdb_free(fw, sizeof (file_walk_data_t));
2351 return (WALK_DONE);
2352 }
2353
2354 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles;
2355 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles;
2356 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP);
2357
2358 if (mdb_vread(fw->fw_flist, fw->fw_flistsz,
2359 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) {
2360 mdb_warn("failed to read file array at %p",
2361 p.p_user.u_finfo.fi_list);
2362 mdb_free(fw->fw_flist, fw->fw_flistsz);
2363 mdb_free(fw, sizeof (file_walk_data_t));
2364 return (WALK_ERR);
2365 }
2366
2367 fw->fw_ndx = 0;
2368 wsp->walk_data = fw;
2369
2370 return (WALK_NEXT);
2371 }
2372
2373 int
file_walk_step(mdb_walk_state_t * wsp)2374 file_walk_step(mdb_walk_state_t *wsp)
2375 {
2376 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2377 struct file file;
2378 uintptr_t fp;
2379
2380 again:
2381 if (fw->fw_ndx == fw->fw_nofiles)
2382 return (WALK_DONE);
2383
2384 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL)
2385 goto again;
2386
2387 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2388 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2389 }
2390
2391 int
allfile_walk_step(mdb_walk_state_t * wsp)2392 allfile_walk_step(mdb_walk_state_t *wsp)
2393 {
2394 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2395 struct file file;
2396 uintptr_t fp;
2397
2398 if (fw->fw_ndx == fw->fw_nofiles)
2399 return (WALK_DONE);
2400
2401 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL)
2402 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp);
2403 else
2404 bzero(&file, sizeof (file));
2405
2406 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata));
2407 }
2408
2409 void
file_walk_fini(mdb_walk_state_t * wsp)2410 file_walk_fini(mdb_walk_state_t *wsp)
2411 {
2412 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data;
2413
2414 mdb_free(fw->fw_flist, fw->fw_flistsz);
2415 mdb_free(fw, sizeof (file_walk_data_t));
2416 }
2417
2418 int
port_walk_init(mdb_walk_state_t * wsp)2419 port_walk_init(mdb_walk_state_t *wsp)
2420 {
2421 if (wsp->walk_addr == NULL) {
2422 mdb_warn("port walk doesn't support global walks\n");
2423 return (WALK_ERR);
2424 }
2425
2426 if (mdb_layered_walk("file", wsp) == -1) {
2427 mdb_warn("couldn't walk 'file'");
2428 return (WALK_ERR);
2429 }
2430 return (WALK_NEXT);
2431 }
2432
2433 int
port_walk_step(mdb_walk_state_t * wsp)2434 port_walk_step(mdb_walk_state_t *wsp)
2435 {
2436 struct vnode vn;
2437 uintptr_t vp;
2438 uintptr_t pp;
2439 struct port port;
2440
2441 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode;
2442 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2443 mdb_warn("failed to read vnode_t at %p", vp);
2444 return (WALK_ERR);
2445 }
2446 if (vn.v_type != VPORT)
2447 return (WALK_NEXT);
2448
2449 pp = (uintptr_t)vn.v_data;
2450 if (mdb_vread(&port, sizeof (port), pp) == -1) {
2451 mdb_warn("failed to read port_t at %p", pp);
2452 return (WALK_ERR);
2453 }
2454 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata));
2455 }
2456
2457 typedef struct portev_walk_data {
2458 list_node_t *pev_node;
2459 list_node_t *pev_last;
2460 size_t pev_offset;
2461 } portev_walk_data_t;
2462
2463 int
portev_walk_init(mdb_walk_state_t * wsp)2464 portev_walk_init(mdb_walk_state_t *wsp)
2465 {
2466 portev_walk_data_t *pevd;
2467 struct port port;
2468 struct vnode vn;
2469 struct list *list;
2470 uintptr_t vp;
2471
2472 if (wsp->walk_addr == NULL) {
2473 mdb_warn("portev walk doesn't support global walks\n");
2474 return (WALK_ERR);
2475 }
2476
2477 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP);
2478
2479 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) {
2480 mdb_free(pevd, sizeof (portev_walk_data_t));
2481 mdb_warn("failed to read port structure at %p", wsp->walk_addr);
2482 return (WALK_ERR);
2483 }
2484
2485 vp = (uintptr_t)port.port_vnode;
2486 if (mdb_vread(&vn, sizeof (vn), vp) == -1) {
2487 mdb_free(pevd, sizeof (portev_walk_data_t));
2488 mdb_warn("failed to read vnode_t at %p", vp);
2489 return (WALK_ERR);
2490 }
2491
2492 if (vn.v_type != VPORT) {
2493 mdb_free(pevd, sizeof (portev_walk_data_t));
2494 mdb_warn("input address (%p) does not point to an event port",
2495 wsp->walk_addr);
2496 return (WALK_ERR);
2497 }
2498
2499 if (port.port_queue.portq_nent == 0) {
2500 mdb_free(pevd, sizeof (portev_walk_data_t));
2501 return (WALK_DONE);
2502 }
2503 list = &port.port_queue.portq_list;
2504 pevd->pev_offset = list->list_offset;
2505 pevd->pev_last = list->list_head.list_prev;
2506 pevd->pev_node = list->list_head.list_next;
2507 wsp->walk_data = pevd;
2508 return (WALK_NEXT);
2509 }
2510
2511 int
portev_walk_step(mdb_walk_state_t * wsp)2512 portev_walk_step(mdb_walk_state_t *wsp)
2513 {
2514 portev_walk_data_t *pevd;
2515 struct port_kevent ev;
2516 uintptr_t evp;
2517
2518 pevd = (portev_walk_data_t *)wsp->walk_data;
2519
2520 if (pevd->pev_last == NULL)
2521 return (WALK_DONE);
2522 if (pevd->pev_node == pevd->pev_last)
2523 pevd->pev_last = NULL; /* last round */
2524
2525 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset));
2526 if (mdb_vread(&ev, sizeof (ev), evp) == -1) {
2527 mdb_warn("failed to read port_kevent at %p", evp);
2528 return (WALK_DONE);
2529 }
2530 pevd->pev_node = ev.portkev_node.list_next;
2531 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata));
2532 }
2533
2534 void
portev_walk_fini(mdb_walk_state_t * wsp)2535 portev_walk_fini(mdb_walk_state_t *wsp)
2536 {
2537 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data;
2538
2539 if (pevd != NULL)
2540 mdb_free(pevd, sizeof (portev_walk_data_t));
2541 }
2542
2543 typedef struct proc_walk_data {
2544 uintptr_t *pw_stack;
2545 int pw_depth;
2546 int pw_max;
2547 } proc_walk_data_t;
2548
2549 int
proc_walk_init(mdb_walk_state_t * wsp)2550 proc_walk_init(mdb_walk_state_t *wsp)
2551 {
2552 GElf_Sym sym;
2553 proc_walk_data_t *pw;
2554
2555 if (wsp->walk_addr == NULL) {
2556 if (mdb_lookup_by_name("p0", &sym) == -1) {
2557 mdb_warn("failed to read 'practive'");
2558 return (WALK_ERR);
2559 }
2560 wsp->walk_addr = (uintptr_t)sym.st_value;
2561 }
2562
2563 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP);
2564
2565 if (mdb_readvar(&pw->pw_max, "nproc") == -1) {
2566 mdb_warn("failed to read 'nproc'");
2567 mdb_free(pw, sizeof (pw));
2568 return (WALK_ERR);
2569 }
2570
2571 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP);
2572 wsp->walk_data = pw;
2573
2574 return (WALK_NEXT);
2575 }
2576
2577 int
proc_walk_step(mdb_walk_state_t * wsp)2578 proc_walk_step(mdb_walk_state_t *wsp)
2579 {
2580 proc_walk_data_t *pw = wsp->walk_data;
2581 uintptr_t addr = wsp->walk_addr;
2582 uintptr_t cld, sib;
2583
2584 int status;
2585 proc_t pr;
2586
2587 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) {
2588 mdb_warn("failed to read proc at %p", addr);
2589 return (WALK_DONE);
2590 }
2591
2592 cld = (uintptr_t)pr.p_child;
2593 sib = (uintptr_t)pr.p_sibling;
2594
2595 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) {
2596 pw->pw_depth--;
2597 goto sib;
2598 }
2599
2600 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata);
2601
2602 if (status != WALK_NEXT)
2603 return (status);
2604
2605 if ((wsp->walk_addr = cld) != NULL) {
2606 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) {
2607 mdb_warn("proc %p has invalid p_child %p; skipping\n",
2608 addr, cld);
2609 goto sib;
2610 }
2611
2612 pw->pw_stack[pw->pw_depth++] = addr;
2613
2614 if (pw->pw_depth == pw->pw_max) {
2615 mdb_warn("depth %d exceeds max depth; try again\n",
2616 pw->pw_depth);
2617 return (WALK_DONE);
2618 }
2619 return (WALK_NEXT);
2620 }
2621
2622 sib:
2623 /*
2624 * We know that p0 has no siblings, and if another starting proc
2625 * was given, we don't want to walk its siblings anyway.
2626 */
2627 if (pw->pw_depth == 0)
2628 return (WALK_DONE);
2629
2630 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) {
2631 mdb_warn("proc %p has invalid p_sibling %p; skipping\n",
2632 addr, sib);
2633 sib = NULL;
2634 }
2635
2636 if ((wsp->walk_addr = sib) == NULL) {
2637 if (pw->pw_depth > 0) {
2638 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1];
2639 return (WALK_NEXT);
2640 }
2641 return (WALK_DONE);
2642 }
2643
2644 return (WALK_NEXT);
2645 }
2646
2647 void
proc_walk_fini(mdb_walk_state_t * wsp)2648 proc_walk_fini(mdb_walk_state_t *wsp)
2649 {
2650 proc_walk_data_t *pw = wsp->walk_data;
2651
2652 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t));
2653 mdb_free(pw, sizeof (proc_walk_data_t));
2654 }
2655
2656 int
task_walk_init(mdb_walk_state_t * wsp)2657 task_walk_init(mdb_walk_state_t *wsp)
2658 {
2659 task_t task;
2660
2661 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) {
2662 mdb_warn("failed to read task at %p", wsp->walk_addr);
2663 return (WALK_ERR);
2664 }
2665 wsp->walk_addr = (uintptr_t)task.tk_memb_list;
2666 wsp->walk_data = task.tk_memb_list;
2667 return (WALK_NEXT);
2668 }
2669
2670 int
task_walk_step(mdb_walk_state_t * wsp)2671 task_walk_step(mdb_walk_state_t *wsp)
2672 {
2673 proc_t proc;
2674 int status;
2675
2676 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) {
2677 mdb_warn("failed to read proc at %p", wsp->walk_addr);
2678 return (WALK_DONE);
2679 }
2680
2681 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata);
2682
2683 if (proc.p_tasknext == wsp->walk_data)
2684 return (WALK_DONE);
2685
2686 wsp->walk_addr = (uintptr_t)proc.p_tasknext;
2687 return (status);
2688 }
2689
2690 int
project_walk_init(mdb_walk_state_t * wsp)2691 project_walk_init(mdb_walk_state_t *wsp)
2692 {
2693 if (wsp->walk_addr == NULL) {
2694 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) {
2695 mdb_warn("failed to read 'proj0p'");
2696 return (WALK_ERR);
2697 }
2698 }
2699 wsp->walk_data = (void *)wsp->walk_addr;
2700 return (WALK_NEXT);
2701 }
2702
2703 int
project_walk_step(mdb_walk_state_t * wsp)2704 project_walk_step(mdb_walk_state_t *wsp)
2705 {
2706 uintptr_t addr = wsp->walk_addr;
2707 kproject_t pj;
2708 int status;
2709
2710 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) {
2711 mdb_warn("failed to read project at %p", addr);
2712 return (WALK_DONE);
2713 }
2714 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata);
2715 if (status != WALK_NEXT)
2716 return (status);
2717 wsp->walk_addr = (uintptr_t)pj.kpj_next;
2718 if ((void *)wsp->walk_addr == wsp->walk_data)
2719 return (WALK_DONE);
2720 return (WALK_NEXT);
2721 }
2722
2723 static int
generic_walk_step(mdb_walk_state_t * wsp)2724 generic_walk_step(mdb_walk_state_t *wsp)
2725 {
2726 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer,
2727 wsp->walk_cbdata));
2728 }
2729
2730 static int
cpu_walk_cmp(const void * l,const void * r)2731 cpu_walk_cmp(const void *l, const void *r)
2732 {
2733 uintptr_t lhs = *((uintptr_t *)l);
2734 uintptr_t rhs = *((uintptr_t *)r);
2735 cpu_t lcpu, rcpu;
2736
2737 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs);
2738 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs);
2739
2740 if (lcpu.cpu_id < rcpu.cpu_id)
2741 return (-1);
2742
2743 if (lcpu.cpu_id > rcpu.cpu_id)
2744 return (1);
2745
2746 return (0);
2747 }
2748
2749 typedef struct cpu_walk {
2750 uintptr_t *cw_array;
2751 int cw_ndx;
2752 } cpu_walk_t;
2753
2754 int
cpu_walk_init(mdb_walk_state_t * wsp)2755 cpu_walk_init(mdb_walk_state_t *wsp)
2756 {
2757 cpu_walk_t *cw;
2758 int max_ncpus, i = 0;
2759 uintptr_t current, first;
2760 cpu_t cpu, panic_cpu;
2761 uintptr_t panicstr, addr;
2762 GElf_Sym sym;
2763
2764 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC);
2765
2766 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) {
2767 mdb_warn("failed to read 'max_ncpus'");
2768 return (WALK_ERR);
2769 }
2770
2771 if (mdb_readvar(&panicstr, "panicstr") == -1) {
2772 mdb_warn("failed to read 'panicstr'");
2773 return (WALK_ERR);
2774 }
2775
2776 if (panicstr != NULL) {
2777 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) {
2778 mdb_warn("failed to find 'panic_cpu'");
2779 return (WALK_ERR);
2780 }
2781
2782 addr = (uintptr_t)sym.st_value;
2783
2784 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) {
2785 mdb_warn("failed to read 'panic_cpu'");
2786 return (WALK_ERR);
2787 }
2788 }
2789
2790 /*
2791 * Unfortunately, there is no platform-independent way to walk
2792 * CPUs in ID order. We therefore loop through in cpu_next order,
2793 * building an array of CPU pointers which will subsequently be
2794 * sorted.
2795 */
2796 cw->cw_array =
2797 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC);
2798
2799 if (mdb_readvar(&first, "cpu_list") == -1) {
2800 mdb_warn("failed to read 'cpu_list'");
2801 return (WALK_ERR);
2802 }
2803
2804 current = first;
2805 do {
2806 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) {
2807 mdb_warn("failed to read cpu at %p", current);
2808 return (WALK_ERR);
2809 }
2810
2811 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) {
2812 cw->cw_array[i++] = addr;
2813 } else {
2814 cw->cw_array[i++] = current;
2815 }
2816 } while ((current = (uintptr_t)cpu.cpu_next) != first);
2817
2818 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp);
2819 wsp->walk_data = cw;
2820
2821 return (WALK_NEXT);
2822 }
2823
2824 int
cpu_walk_step(mdb_walk_state_t * wsp)2825 cpu_walk_step(mdb_walk_state_t *wsp)
2826 {
2827 cpu_walk_t *cw = wsp->walk_data;
2828 cpu_t cpu;
2829 uintptr_t addr = cw->cw_array[cw->cw_ndx++];
2830
2831 if (addr == NULL)
2832 return (WALK_DONE);
2833
2834 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) {
2835 mdb_warn("failed to read cpu at %p", addr);
2836 return (WALK_DONE);
2837 }
2838
2839 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata));
2840 }
2841
2842 typedef struct cpuinfo_data {
2843 intptr_t cid_cpu;
2844 uintptr_t **cid_ithr;
2845 char cid_print_head;
2846 char cid_print_thr;
2847 char cid_print_ithr;
2848 char cid_print_flags;
2849 } cpuinfo_data_t;
2850
2851 int
cpuinfo_walk_ithread(uintptr_t addr,const kthread_t * thr,cpuinfo_data_t * cid)2852 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid)
2853 {
2854 cpu_t c;
2855 int id;
2856 uint8_t pil;
2857
2858 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE)
2859 return (WALK_NEXT);
2860
2861 if (thr->t_bound_cpu == NULL) {
2862 mdb_warn("thr %p is intr thread w/out a CPU\n", addr);
2863 return (WALK_NEXT);
2864 }
2865
2866 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu);
2867
2868 if ((id = c.cpu_id) >= NCPU) {
2869 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n",
2870 thr->t_bound_cpu, id, NCPU);
2871 return (WALK_NEXT);
2872 }
2873
2874 if ((pil = thr->t_pil) >= NINTR) {
2875 mdb_warn("thread %p has pil (%d) greater than %d\n",
2876 addr, pil, NINTR);
2877 return (WALK_NEXT);
2878 }
2879
2880 if (cid->cid_ithr[id][pil] != NULL) {
2881 mdb_warn("CPU %d has multiple threads at pil %d (at least "
2882 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]);
2883 return (WALK_NEXT);
2884 }
2885
2886 cid->cid_ithr[id][pil] = addr;
2887
2888 return (WALK_NEXT);
2889 }
2890
2891 #define CPUINFO_IDWIDTH 3
2892 #define CPUINFO_FLAGWIDTH 9
2893
2894 #ifdef _LP64
2895 #if defined(__amd64)
2896 #define CPUINFO_TWIDTH 16
2897 #define CPUINFO_CPUWIDTH 16
2898 #else
2899 #define CPUINFO_CPUWIDTH 11
2900 #define CPUINFO_TWIDTH 11
2901 #endif
2902 #else
2903 #define CPUINFO_CPUWIDTH 8
2904 #define CPUINFO_TWIDTH 8
2905 #endif
2906
2907 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9)
2908 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4)
2909 #define CPUINFO_ITHRDELT 4
2910
2911 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \
2912 flagline < nflaglines ? flagbuf[flagline++] : "")
2913
2914 int
cpuinfo_walk_cpu(uintptr_t addr,const cpu_t * cpu,cpuinfo_data_t * cid)2915 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid)
2916 {
2917 kthread_t t;
2918 disp_t disp;
2919 proc_t p;
2920 uintptr_t pinned;
2921 char **flagbuf;
2922 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT;
2923
2924 const char *flags[] = {
2925 "RUNNING", "READY", "QUIESCED", "EXISTS",
2926 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN",
2927 "SPARE", "FAULTED", NULL
2928 };
2929
2930 if (cid->cid_cpu != -1) {
2931 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu)
2932 return (WALK_NEXT);
2933
2934 /*
2935 * Set cid_cpu to -1 to indicate that we found a matching CPU.
2936 */
2937 cid->cid_cpu = -1;
2938 rval = WALK_DONE;
2939 }
2940
2941 if (cid->cid_print_head) {
2942 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n",
2943 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL",
2944 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD",
2945 "PROC");
2946 cid->cid_print_head = FALSE;
2947 }
2948
2949 bspl = cpu->cpu_base_spl;
2950
2951 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) {
2952 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp);
2953 return (WALK_ERR);
2954 }
2955
2956 mdb_printf("%3d %0*p %3x %4d %4d ",
2957 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags,
2958 disp.disp_nrunnable, bspl);
2959
2960 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) {
2961 mdb_printf("%3d ", t.t_pri);
2962 } else {
2963 mdb_printf("%3s ", "-");
2964 }
2965
2966 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no",
2967 cpu->cpu_kprunrun ? "yes" : "no");
2968
2969 if (cpu->cpu_last_swtch) {
2970 mdb_printf("t-%-4d ",
2971 (clock_t)mdb_get_lbolt() - cpu->cpu_last_swtch);
2972 } else {
2973 mdb_printf("%-6s ", "-");
2974 }
2975
2976 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread);
2977
2978 if (cpu->cpu_thread == cpu->cpu_idle_thread)
2979 mdb_printf(" (idle)\n");
2980 else if (cpu->cpu_thread == NULL)
2981 mdb_printf(" -\n");
2982 else {
2983 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) {
2984 mdb_printf(" %s\n", p.p_user.u_comm);
2985 } else {
2986 mdb_printf(" ?\n");
2987 }
2988 }
2989
2990 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC);
2991
2992 if (cid->cid_print_flags) {
2993 int first = 1, i, j, k;
2994 char *s;
2995
2996 cid->cid_print_head = TRUE;
2997
2998 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) {
2999 if (!(cpu->cpu_flags & i))
3000 continue;
3001
3002 if (first) {
3003 s = mdb_alloc(CPUINFO_THRDELT + 1,
3004 UM_GC | UM_SLEEP);
3005
3006 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1,
3007 "%*s|%*s", CPUINFO_FLAGDELT, "",
3008 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, "");
3009 flagbuf[nflaglines++] = s;
3010 }
3011
3012 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP);
3013 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s",
3014 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH -
3015 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j],
3016 first ? "<--+" : "");
3017
3018 for (k = strlen(s); k < CPUINFO_THRDELT; k++)
3019 s[k] = ' ';
3020 s[k] = '\0';
3021
3022 flagbuf[nflaglines++] = s;
3023 first = 0;
3024 }
3025 }
3026
3027 if (cid->cid_print_ithr) {
3028 int i, found_one = FALSE;
3029 int print_thr = disp.disp_nrunnable && cid->cid_print_thr;
3030
3031 for (i = NINTR - 1; i >= 0; i--) {
3032 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i];
3033
3034 if (iaddr == NULL)
3035 continue;
3036
3037 if (!found_one) {
3038 found_one = TRUE;
3039
3040 CPUINFO_INDENT;
3041 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ',
3042 CPUINFO_ITHRDELT, "");
3043
3044 CPUINFO_INDENT;
3045 mdb_printf("%c%*s+--> %3s %s\n",
3046 print_thr ? '|' : ' ', CPUINFO_ITHRDELT,
3047 "", "PIL", "THREAD");
3048 }
3049
3050 if (mdb_vread(&t, sizeof (t), iaddr) == -1) {
3051 mdb_warn("failed to read kthread_t at %p",
3052 iaddr);
3053 return (WALK_ERR);
3054 }
3055
3056 CPUINFO_INDENT;
3057 mdb_printf("%c%*s %3d %0*p\n",
3058 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "",
3059 t.t_pil, CPUINFO_TWIDTH, iaddr);
3060
3061 pinned = (uintptr_t)t.t_intr;
3062 }
3063
3064 if (found_one && pinned != NULL) {
3065 cid->cid_print_head = TRUE;
3066 (void) strcpy(p.p_user.u_comm, "?");
3067
3068 if (mdb_vread(&t, sizeof (t),
3069 (uintptr_t)pinned) == -1) {
3070 mdb_warn("failed to read kthread_t at %p",
3071 pinned);
3072 return (WALK_ERR);
3073 }
3074 if (mdb_vread(&p, sizeof (p),
3075 (uintptr_t)t.t_procp) == -1) {
3076 mdb_warn("failed to read proc_t at %p",
3077 t.t_procp);
3078 return (WALK_ERR);
3079 }
3080
3081 CPUINFO_INDENT;
3082 mdb_printf("%c%*s %3s %0*p %s\n",
3083 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-",
3084 CPUINFO_TWIDTH, pinned,
3085 pinned == (uintptr_t)cpu->cpu_idle_thread ?
3086 "(idle)" : p.p_user.u_comm);
3087 }
3088 }
3089
3090 if (disp.disp_nrunnable && cid->cid_print_thr) {
3091 dispq_t *dq;
3092
3093 int i, npri = disp.disp_npri;
3094
3095 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC);
3096
3097 if (mdb_vread(dq, sizeof (dispq_t) * npri,
3098 (uintptr_t)disp.disp_q) == -1) {
3099 mdb_warn("failed to read dispq_t at %p", disp.disp_q);
3100 return (WALK_ERR);
3101 }
3102
3103 CPUINFO_INDENT;
3104 mdb_printf("|\n");
3105
3106 CPUINFO_INDENT;
3107 mdb_printf("+--> %3s %-*s %s\n", "PRI",
3108 CPUINFO_TWIDTH, "THREAD", "PROC");
3109
3110 for (i = npri - 1; i >= 0; i--) {
3111 uintptr_t taddr = (uintptr_t)dq[i].dq_first;
3112
3113 while (taddr != NULL) {
3114 if (mdb_vread(&t, sizeof (t), taddr) == -1) {
3115 mdb_warn("failed to read kthread_t "
3116 "at %p", taddr);
3117 return (WALK_ERR);
3118 }
3119 if (mdb_vread(&p, sizeof (p),
3120 (uintptr_t)t.t_procp) == -1) {
3121 mdb_warn("failed to read proc_t at %p",
3122 t.t_procp);
3123 return (WALK_ERR);
3124 }
3125
3126 CPUINFO_INDENT;
3127 mdb_printf(" %3d %0*p %s\n", t.t_pri,
3128 CPUINFO_TWIDTH, taddr, p.p_user.u_comm);
3129
3130 taddr = (uintptr_t)t.t_link;
3131 }
3132 }
3133 cid->cid_print_head = TRUE;
3134 }
3135
3136 while (flagline < nflaglines)
3137 mdb_printf("%s\n", flagbuf[flagline++]);
3138
3139 if (cid->cid_print_head)
3140 mdb_printf("\n");
3141
3142 return (rval);
3143 }
3144
3145 int
cpuinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3146 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3147 {
3148 uint_t verbose = FALSE;
3149 cpuinfo_data_t cid;
3150
3151 cid.cid_print_ithr = FALSE;
3152 cid.cid_print_thr = FALSE;
3153 cid.cid_print_flags = FALSE;
3154 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE;
3155 cid.cid_cpu = -1;
3156
3157 if (flags & DCMD_ADDRSPEC)
3158 cid.cid_cpu = addr;
3159
3160 if (mdb_getopts(argc, argv,
3161 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc)
3162 return (DCMD_USAGE);
3163
3164 if (verbose) {
3165 cid.cid_print_ithr = TRUE;
3166 cid.cid_print_thr = TRUE;
3167 cid.cid_print_flags = TRUE;
3168 cid.cid_print_head = TRUE;
3169 }
3170
3171 if (cid.cid_print_ithr) {
3172 int i;
3173
3174 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **)
3175 * NCPU, UM_SLEEP | UM_GC);
3176
3177 for (i = 0; i < NCPU; i++)
3178 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) *
3179 NINTR, UM_SLEEP | UM_GC);
3180
3181 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread,
3182 &cid) == -1) {
3183 mdb_warn("couldn't walk thread");
3184 return (DCMD_ERR);
3185 }
3186 }
3187
3188 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) {
3189 mdb_warn("can't walk cpus");
3190 return (DCMD_ERR);
3191 }
3192
3193 if (cid.cid_cpu != -1) {
3194 /*
3195 * We didn't find this CPU when we walked through the CPUs
3196 * (i.e. the address specified doesn't show up in the "cpu"
3197 * walk). However, the specified address may still correspond
3198 * to a valid cpu_t (for example, if the specified address is
3199 * the actual panicking cpu_t and not the cached panic_cpu).
3200 * Point is: even if we didn't find it, we still want to try
3201 * to print the specified address as a cpu_t.
3202 */
3203 cpu_t cpu;
3204
3205 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) {
3206 mdb_warn("%p is neither a valid CPU ID nor a "
3207 "valid cpu_t address\n", cid.cid_cpu);
3208 return (DCMD_ERR);
3209 }
3210
3211 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid);
3212 }
3213
3214 return (DCMD_OK);
3215 }
3216
3217 /*ARGSUSED*/
3218 int
flipone(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3219 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3220 {
3221 int i;
3222
3223 if (!(flags & DCMD_ADDRSPEC))
3224 return (DCMD_USAGE);
3225
3226 for (i = 0; i < sizeof (addr) * NBBY; i++)
3227 mdb_printf("%p\n", addr ^ (1UL << i));
3228
3229 return (DCMD_OK);
3230 }
3231
3232 int
as2proc_walk(uintptr_t addr,const proc_t * p,struct as ** asp)3233 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp)
3234 {
3235 if (p->p_as == *asp)
3236 mdb_printf("%p\n", addr);
3237 return (WALK_NEXT);
3238 }
3239
3240 /*ARGSUSED*/
3241 int
as2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3242 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3243 {
3244 if (!(flags & DCMD_ADDRSPEC) || argc != 0)
3245 return (DCMD_USAGE);
3246
3247 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) {
3248 mdb_warn("failed to walk proc");
3249 return (DCMD_ERR);
3250 }
3251
3252 return (DCMD_OK);
3253 }
3254
3255 /*ARGSUSED*/
3256 int
ptree_walk(uintptr_t addr,const proc_t * p,void * ignored)3257 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored)
3258 {
3259 proc_t parent;
3260 int ident = 0;
3261 uintptr_t paddr;
3262
3263 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) {
3264 mdb_vread(&parent, sizeof (parent), paddr);
3265 paddr = (uintptr_t)parent.p_parent;
3266 }
3267
3268 mdb_inc_indent(ident);
3269 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm);
3270 mdb_dec_indent(ident);
3271
3272 return (WALK_NEXT);
3273 }
3274
3275 void
ptree_ancestors(uintptr_t addr,uintptr_t start)3276 ptree_ancestors(uintptr_t addr, uintptr_t start)
3277 {
3278 proc_t p;
3279
3280 if (mdb_vread(&p, sizeof (p), addr) == -1) {
3281 mdb_warn("couldn't read ancestor at %p", addr);
3282 return;
3283 }
3284
3285 if (p.p_parent != NULL)
3286 ptree_ancestors((uintptr_t)p.p_parent, start);
3287
3288 if (addr != start)
3289 (void) ptree_walk(addr, &p, NULL);
3290 }
3291
3292 /*ARGSUSED*/
3293 int
ptree(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3294 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3295 {
3296 if (!(flags & DCMD_ADDRSPEC))
3297 addr = NULL;
3298 else
3299 ptree_ancestors(addr, addr);
3300
3301 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) {
3302 mdb_warn("couldn't walk 'proc'");
3303 return (DCMD_ERR);
3304 }
3305
3306 return (DCMD_OK);
3307 }
3308
3309 /*ARGSUSED*/
3310 static int
fd(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3311 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3312 {
3313 int fdnum;
3314 const mdb_arg_t *argp = &argv[0];
3315 proc_t p;
3316 uf_entry_t uf;
3317
3318 if ((flags & DCMD_ADDRSPEC) == 0) {
3319 mdb_warn("fd doesn't give global information\n");
3320 return (DCMD_ERR);
3321 }
3322 if (argc != 1)
3323 return (DCMD_USAGE);
3324
3325 if (argp->a_type == MDB_TYPE_IMMEDIATE)
3326 fdnum = argp->a_un.a_val;
3327 else
3328 fdnum = mdb_strtoull(argp->a_un.a_str);
3329
3330 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) {
3331 mdb_warn("couldn't read proc_t at %p", addr);
3332 return (DCMD_ERR);
3333 }
3334 if (fdnum > p.p_user.u_finfo.fi_nfiles) {
3335 mdb_warn("process %p only has %d files open.\n",
3336 addr, p.p_user.u_finfo.fi_nfiles);
3337 return (DCMD_ERR);
3338 }
3339 if (mdb_vread(&uf, sizeof (uf_entry_t),
3340 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) {
3341 mdb_warn("couldn't read uf_entry_t at %p",
3342 &p.p_user.u_finfo.fi_list[fdnum]);
3343 return (DCMD_ERR);
3344 }
3345
3346 mdb_printf("%p\n", uf.uf_file);
3347 return (DCMD_OK);
3348 }
3349
3350 /*ARGSUSED*/
3351 static int
pid2proc(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3352 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3353 {
3354 pid_t pid = (pid_t)addr;
3355
3356 if (argc != 0)
3357 return (DCMD_USAGE);
3358
3359 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) {
3360 mdb_warn("PID 0t%d not found\n", pid);
3361 return (DCMD_ERR);
3362 }
3363
3364 mdb_printf("%p\n", addr);
3365 return (DCMD_OK);
3366 }
3367
3368 static char *sysfile_cmd[] = {
3369 "exclude:",
3370 "include:",
3371 "forceload:",
3372 "rootdev:",
3373 "rootfs:",
3374 "swapdev:",
3375 "swapfs:",
3376 "moddir:",
3377 "set",
3378 "unknown",
3379 };
3380
3381 static char *sysfile_ops[] = { "", "=", "&", "|" };
3382
3383 /*ARGSUSED*/
3384 static int
sysfile_vmem_seg(uintptr_t addr,const vmem_seg_t * vsp,void ** target)3385 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target)
3386 {
3387 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) {
3388 *target = NULL;
3389 return (WALK_DONE);
3390 }
3391 return (WALK_NEXT);
3392 }
3393
3394 /*ARGSUSED*/
3395 static int
sysfile(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3396 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3397 {
3398 struct sysparam *sysp, sys;
3399 char var[256];
3400 char modname[256];
3401 char val[256];
3402 char strval[256];
3403 vmem_t *mod_sysfile_arena;
3404 void *straddr;
3405
3406 if (mdb_readvar(&sysp, "sysparam_hd") == -1) {
3407 mdb_warn("failed to read sysparam_hd");
3408 return (DCMD_ERR);
3409 }
3410
3411 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) {
3412 mdb_warn("failed to read mod_sysfile_arena");
3413 return (DCMD_ERR);
3414 }
3415
3416 while (sysp != NULL) {
3417 var[0] = '\0';
3418 val[0] = '\0';
3419 modname[0] = '\0';
3420 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) {
3421 mdb_warn("couldn't read sysparam %p", sysp);
3422 return (DCMD_ERR);
3423 }
3424 if (sys.sys_modnam != NULL &&
3425 mdb_readstr(modname, 256,
3426 (uintptr_t)sys.sys_modnam) == -1) {
3427 mdb_warn("couldn't read modname in %p", sysp);
3428 return (DCMD_ERR);
3429 }
3430 if (sys.sys_ptr != NULL &&
3431 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) {
3432 mdb_warn("couldn't read ptr in %p", sysp);
3433 return (DCMD_ERR);
3434 }
3435 if (sys.sys_op != SETOP_NONE) {
3436 /*
3437 * Is this an int or a string? We determine this
3438 * by checking whether straddr is contained in
3439 * mod_sysfile_arena. If so, the walker will set
3440 * straddr to NULL.
3441 */
3442 straddr = (void *)(uintptr_t)sys.sys_info;
3443 if (sys.sys_op == SETOP_ASSIGN &&
3444 sys.sys_info != 0 &&
3445 mdb_pwalk("vmem_seg",
3446 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr,
3447 (uintptr_t)mod_sysfile_arena) == 0 &&
3448 straddr == NULL &&
3449 mdb_readstr(strval, 256,
3450 (uintptr_t)sys.sys_info) != -1) {
3451 (void) mdb_snprintf(val, sizeof (val), "\"%s\"",
3452 strval);
3453 } else {
3454 (void) mdb_snprintf(val, sizeof (val),
3455 "0x%llx [0t%llu]", sys.sys_info,
3456 sys.sys_info);
3457 }
3458 }
3459 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type],
3460 modname, modname[0] == '\0' ? "" : ":",
3461 var, sysfile_ops[sys.sys_op], val);
3462
3463 sysp = sys.sys_next;
3464 }
3465
3466 return (DCMD_OK);
3467 }
3468
3469 int
didmatch(uintptr_t addr,const kthread_t * thr,kt_did_t * didp)3470 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp)
3471 {
3472
3473 if (*didp == thr->t_did) {
3474 mdb_printf("%p\n", addr);
3475 return (WALK_DONE);
3476 } else
3477 return (WALK_NEXT);
3478 }
3479
3480 /*ARGSUSED*/
3481 int
did2thread(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3482 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3483 {
3484 const mdb_arg_t *argp = &argv[0];
3485 kt_did_t did;
3486
3487 if (argc != 1)
3488 return (DCMD_USAGE);
3489
3490 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str);
3491
3492 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) {
3493 mdb_warn("failed to walk thread");
3494 return (DCMD_ERR);
3495
3496 }
3497 return (DCMD_OK);
3498
3499 }
3500
3501 static int
errorq_walk_init(mdb_walk_state_t * wsp)3502 errorq_walk_init(mdb_walk_state_t *wsp)
3503 {
3504 if (wsp->walk_addr == NULL &&
3505 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) {
3506 mdb_warn("failed to read errorq_list");
3507 return (WALK_ERR);
3508 }
3509
3510 return (WALK_NEXT);
3511 }
3512
3513 static int
errorq_walk_step(mdb_walk_state_t * wsp)3514 errorq_walk_step(mdb_walk_state_t *wsp)
3515 {
3516 uintptr_t addr = wsp->walk_addr;
3517 errorq_t eq;
3518
3519 if (addr == NULL)
3520 return (WALK_DONE);
3521
3522 if (mdb_vread(&eq, sizeof (eq), addr) == -1) {
3523 mdb_warn("failed to read errorq at %p", addr);
3524 return (WALK_ERR);
3525 }
3526
3527 wsp->walk_addr = (uintptr_t)eq.eq_next;
3528 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata));
3529 }
3530
3531 typedef struct eqd_walk_data {
3532 uintptr_t *eqd_stack;
3533 void *eqd_buf;
3534 ulong_t eqd_qpos;
3535 ulong_t eqd_qlen;
3536 size_t eqd_size;
3537 } eqd_walk_data_t;
3538
3539 /*
3540 * In order to walk the list of pending error queue elements, we push the
3541 * addresses of the corresponding data buffers in to the eqd_stack array.
3542 * The error lists are in reverse chronological order when iterating using
3543 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the
3544 * walker client gets addresses in order from oldest error to newest error.
3545 */
3546 static void
eqd_push_list(eqd_walk_data_t * eqdp,uintptr_t addr)3547 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr)
3548 {
3549 errorq_elem_t eqe;
3550
3551 while (addr != NULL) {
3552 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) {
3553 mdb_warn("failed to read errorq element at %p", addr);
3554 break;
3555 }
3556
3557 if (eqdp->eqd_qpos == eqdp->eqd_qlen) {
3558 mdb_warn("errorq is overfull -- more than %lu "
3559 "elems found\n", eqdp->eqd_qlen);
3560 break;
3561 }
3562
3563 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data;
3564 addr = (uintptr_t)eqe.eqe_prev;
3565 }
3566 }
3567
3568 static int
eqd_walk_init(mdb_walk_state_t * wsp)3569 eqd_walk_init(mdb_walk_state_t *wsp)
3570 {
3571 eqd_walk_data_t *eqdp;
3572 errorq_elem_t eqe, *addr;
3573 errorq_t eq;
3574 ulong_t i;
3575
3576 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) {
3577 mdb_warn("failed to read errorq at %p", wsp->walk_addr);
3578 return (WALK_ERR);
3579 }
3580
3581 if (eq.eq_ptail != NULL &&
3582 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) {
3583 mdb_warn("failed to read errorq element at %p", eq.eq_ptail);
3584 return (WALK_ERR);
3585 }
3586
3587 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP);
3588 wsp->walk_data = eqdp;
3589
3590 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP);
3591 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP);
3592 eqdp->eqd_qlen = eq.eq_qlen;
3593 eqdp->eqd_qpos = 0;
3594 eqdp->eqd_size = eq.eq_size;
3595
3596 /*
3597 * The newest elements in the queue are on the pending list, so we
3598 * push those on to our stack first.
3599 */
3600 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend);
3601
3602 /*
3603 * If eq_ptail is set, it may point to a subset of the errors on the
3604 * pending list in the event a casptr() failed; if ptail's data is
3605 * already in our stack, NULL out eq_ptail and ignore it.
3606 */
3607 if (eq.eq_ptail != NULL) {
3608 for (i = 0; i < eqdp->eqd_qpos; i++) {
3609 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) {
3610 eq.eq_ptail = NULL;
3611 break;
3612 }
3613 }
3614 }
3615
3616 /*
3617 * If eq_phead is set, it has the processing list in order from oldest
3618 * to newest. Use this to recompute eq_ptail as best we can and then
3619 * we nicely fall into eqd_push_list() of eq_ptail below.
3620 */
3621 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe),
3622 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next)
3623 eq.eq_ptail = addr;
3624
3625 /*
3626 * The oldest elements in the queue are on the processing list, subject
3627 * to machinations in the if-clauses above. Push any such elements.
3628 */
3629 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail);
3630 return (WALK_NEXT);
3631 }
3632
3633 static int
eqd_walk_step(mdb_walk_state_t * wsp)3634 eqd_walk_step(mdb_walk_state_t *wsp)
3635 {
3636 eqd_walk_data_t *eqdp = wsp->walk_data;
3637 uintptr_t addr;
3638
3639 if (eqdp->eqd_qpos == 0)
3640 return (WALK_DONE);
3641
3642 addr = eqdp->eqd_stack[--eqdp->eqd_qpos];
3643
3644 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) {
3645 mdb_warn("failed to read errorq data at %p", addr);
3646 return (WALK_ERR);
3647 }
3648
3649 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata));
3650 }
3651
3652 static void
eqd_walk_fini(mdb_walk_state_t * wsp)3653 eqd_walk_fini(mdb_walk_state_t *wsp)
3654 {
3655 eqd_walk_data_t *eqdp = wsp->walk_data;
3656
3657 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen);
3658 mdb_free(eqdp->eqd_buf, eqdp->eqd_size);
3659 mdb_free(eqdp, sizeof (eqd_walk_data_t));
3660 }
3661
3662 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64)
3663
3664 static int
errorq(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3665 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3666 {
3667 int i;
3668 errorq_t eq;
3669 uint_t opt_v = FALSE;
3670
3671 if (!(flags & DCMD_ADDRSPEC)) {
3672 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) {
3673 mdb_warn("can't walk 'errorq'");
3674 return (DCMD_ERR);
3675 }
3676 return (DCMD_OK);
3677 }
3678
3679 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL);
3680 argc -= i;
3681 argv += i;
3682
3683 if (argc != 0)
3684 return (DCMD_USAGE);
3685
3686 if (opt_v || DCMD_HDRSPEC(flags)) {
3687 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ",
3688 "ADDR", "NAME", "S", "V", "N");
3689 if (!opt_v) {
3690 mdb_printf("%7s %7s %7s%</u>\n",
3691 "ACCEPT", "DROP", "LOG");
3692 } else {
3693 mdb_printf("%5s %6s %6s %3s %16s%</u>\n",
3694 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC");
3695 }
3696 }
3697
3698 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) {
3699 mdb_warn("failed to read errorq at %p", addr);
3700 return (DCMD_ERR);
3701 }
3702
3703 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name,
3704 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-',
3705 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ',
3706 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' ');
3707
3708 if (!opt_v) {
3709 mdb_printf("%7llu %7llu %7llu\n",
3710 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed),
3711 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) +
3712 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged));
3713 } else {
3714 mdb_printf("%5s %6lu %6lu %3u %a\n",
3715 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func);
3716 mdb_printf("%38s\n%41s"
3717 "%12s %llu\n"
3718 "%53s %llu\n"
3719 "%53s %llu\n"
3720 "%53s %llu\n"
3721 "%53s %llu\n"
3722 "%53s %llu\n"
3723 "%53s %llu\n"
3724 "%53s %llu\n\n",
3725 "|", "+-> ",
3726 "DISPATCHED", EQKSVAL(eq, eqk_dispatched),
3727 "DROPPED", EQKSVAL(eq, eqk_dropped),
3728 "LOGGED", EQKSVAL(eq, eqk_logged),
3729 "RESERVED", EQKSVAL(eq, eqk_reserved),
3730 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail),
3731 "COMMITTED", EQKSVAL(eq, eqk_committed),
3732 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail),
3733 "CANCELLED", EQKSVAL(eq, eqk_cancelled));
3734 }
3735
3736 return (DCMD_OK);
3737 }
3738
3739 /*ARGSUSED*/
3740 static int
panicinfo(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3741 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3742 {
3743 cpu_t panic_cpu;
3744 kthread_t *panic_thread;
3745 void *buf;
3746 panic_data_t *pd;
3747 int i, n;
3748
3749 if (!mdb_prop_postmortem) {
3750 mdb_warn("panicinfo can only be run on a system "
3751 "dump; see dumpadm(1M)\n");
3752 return (DCMD_ERR);
3753 }
3754
3755 if (flags & DCMD_ADDRSPEC || argc != 0)
3756 return (DCMD_USAGE);
3757
3758 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1)
3759 mdb_warn("failed to read 'panic_cpu'");
3760 else
3761 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id);
3762
3763 if (mdb_readvar(&panic_thread, "panic_thread") == -1)
3764 mdb_warn("failed to read 'panic_thread'");
3765 else
3766 mdb_printf("%16s %?p\n", "thread", panic_thread);
3767
3768 buf = mdb_alloc(PANICBUFSIZE, UM_SLEEP);
3769 pd = (panic_data_t *)buf;
3770
3771 if (mdb_readsym(buf, PANICBUFSIZE, "panicbuf") == -1 ||
3772 pd->pd_version != PANICBUFVERS) {
3773 mdb_warn("failed to read 'panicbuf'");
3774 mdb_free(buf, PANICBUFSIZE);
3775 return (DCMD_ERR);
3776 }
3777
3778 mdb_printf("%16s %s\n", "message", (char *)buf + pd->pd_msgoff);
3779
3780 n = (pd->pd_msgoff - (sizeof (panic_data_t) -
3781 sizeof (panic_nv_t))) / sizeof (panic_nv_t);
3782
3783 for (i = 0; i < n; i++)
3784 mdb_printf("%16s %?llx\n",
3785 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value);
3786
3787 mdb_free(buf, PANICBUFSIZE);
3788 return (DCMD_OK);
3789 }
3790
3791 /*
3792 * ::time dcmd, which will print a hires timestamp of when we entered the
3793 * debugger, or the lbolt value if used with the -l option.
3794 *
3795 */
3796 /*ARGSUSED*/
3797 static int
time(uintptr_t addr,uint_t flags,int argc,const mdb_arg_t * argv)3798 time(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
3799 {
3800 uint_t opt_dec = FALSE;
3801 uint_t opt_lbolt = FALSE;
3802 uint_t opt_hex = FALSE;
3803 const char *fmt;
3804 hrtime_t result;
3805
3806 if (mdb_getopts(argc, argv,
3807 'd', MDB_OPT_SETBITS, TRUE, &opt_dec,
3808 'l', MDB_OPT_SETBITS, TRUE, &opt_lbolt,
3809 'x', MDB_OPT_SETBITS, TRUE, &opt_hex,
3810 NULL) != argc)
3811 return (DCMD_USAGE);
3812
3813 if (opt_dec && opt_hex)
3814 return (DCMD_USAGE);
3815
3816 result = opt_lbolt ? mdb_get_lbolt() : mdb_gethrtime();
3817 fmt =
3818 opt_hex ? "0x%llx\n" :
3819 opt_dec ? "0t%lld\n" : "%#llr\n";
3820
3821 mdb_printf(fmt, result);
3822 return (DCMD_OK);
3823 }
3824
3825 void
time_help(void)3826 time_help(void)
3827 {
3828 mdb_printf("Prints the system time in nanoseconds.\n\n"
3829 "::time will return the timestamp at which we dropped into, \n"
3830 "if called from, kmdb(1); the core dump's high resolution \n"
3831 "time if inspecting one; or the running hires time if we're \n"
3832 "looking at a live system.\n\n"
3833 "Switches:\n"
3834 " -d report times in decimal\n"
3835 " -l prints the number of clock ticks since system boot\n"
3836 " -x report times in hexadecimal\n");
3837 }
3838
3839 static const mdb_dcmd_t dcmds[] = {
3840
3841 /* from genunix.c */
3842 { "as2proc", ":", "convert as to proc_t address", as2proc },
3843 { "binding_hash_entry", ":", "print driver names hash table entry",
3844 binding_hash_entry },
3845 { "callout", "?[-r|n] [-s|l] [-xhB] [-t | -ab nsec [-dkD]]"
3846 " [-C addr | -S seqid] [-f name|addr] [-p name| addr] [-T|L [-E]]"
3847 " [-FivVA]",
3848 "display callouts", callout, callout_help },
3849 { "calloutid", "[-d|v] xid", "print callout by extended id",
3850 calloutid, calloutid_help },
3851 { "class", NULL, "print process scheduler classes", class },
3852 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo },
3853 { "did2thread", "? kt_did", "find kernel thread for this id",
3854 did2thread },
3855 { "errorq", "?[-v]", "display kernel error queues", errorq },
3856 { "fd", ":[fd num]", "get a file pointer from an fd", fd },
3857 { "flipone", ":", "the vik_rev_level 2 special", flipone },
3858 { "lminfo", NULL, "print lock manager information", lminfo },
3859 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl },
3860 { "panicinfo", NULL, "print panic information", panicinfo },
3861 { "pid2proc", "?", "convert PID to proc_t address", pid2proc },
3862 { "project", NULL, "display kernel project(s)", project },
3863 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps },
3864 { "pgrep", "[-x] [-n | -o] pattern",
3865 "pattern match against all processes", pgrep },
3866 { "ptree", NULL, "print process tree", ptree },
3867 { "sysevent", "?[-sv]", "print sysevent pending or sent queue",
3868 sysevent},
3869 { "sysevent_channel", "?", "print sysevent channel database",
3870 sysevent_channel},
3871 { "sysevent_class_list", ":", "print sysevent class list",
3872 sysevent_class_list},
3873 { "sysevent_subclass_list", ":",
3874 "print sysevent subclass list", sysevent_subclass_list},
3875 { "system", NULL, "print contents of /etc/system file", sysfile },
3876 { "task", NULL, "display kernel task(s)", task },
3877 { "time", "[-dlx]", "display system time", time, time_help },
3878 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path },
3879 { "whereopen", ":", "given a vnode, dumps procs which have it open",
3880 whereopen },
3881
3882 /* from bio.c */
3883 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind },
3884
3885 /* from bitset.c */
3886 { "bitset", ":", "display a bitset", bitset, bitset_help },
3887
3888 /* from contract.c */
3889 { "contract", "?", "display a contract", cmd_contract },
3890 { "ctevent", ":", "display a contract event", cmd_ctevent },
3891 { "ctid", ":", "convert id to a contract pointer", cmd_ctid },
3892
3893 /* from cpupart.c */
3894 { "cpupart", "?[-v]", "print cpu partition info", cpupart },
3895
3896 /* from cyclic.c */
3897 { "cyccover", NULL, "dump cyclic coverage information", cyccover },
3898 { "cycid", "?", "dump a cyclic id", cycid },
3899 { "cycinfo", "?", "dump cyc_cpu info", cycinfo },
3900 { "cyclic", ":", "developer information", cyclic },
3901 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace },
3902
3903 /* from damap.c */
3904 { "damap", ":", "display a damap_t", damap, damap_help },
3905
3906 /* from devinfo.c */
3907 { "devbindings", "?[-qs] [device-name | major-num]",
3908 "print devinfo nodes bound to device-name or major-num",
3909 devbindings, devinfo_help },
3910 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo,
3911 devinfo_help },
3912 { "devinfo_audit", ":[-v]", "devinfo configuration audit record",
3913 devinfo_audit },
3914 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log",
3915 devinfo_audit_log },
3916 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history",
3917 devinfo_audit_node },
3918 { "devinfo2driver", ":", "find driver name for this devinfo node",
3919 devinfo2driver },
3920 { "devnames", "?[-vm] [num]", "print devnames array", devnames },
3921 { "dev2major", "?<dev_t>", "convert dev_t to a major number",
3922 dev2major },
3923 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number",
3924 dev2minor },
3925 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers",
3926 devt },
3927 { "major2name", "?<major-num>", "convert major number to dev name",
3928 major2name },
3929 { "minornodes", ":", "given a devinfo node, print its minor nodes",
3930 minornodes },
3931 { "modctl2devinfo", ":", "given a modctl, list its devinfos",
3932 modctl2devinfo },
3933 { "name2major", "<dev-name>", "convert dev name to major number",
3934 name2major },
3935 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help },
3936 { "softstate", ":<instance>", "retrieve soft-state pointer",
3937 softstate },
3938 { "devinfo_fm", ":", "devinfo fault managment configuration",
3939 devinfo_fm },
3940 { "devinfo_fmce", ":", "devinfo fault managment cache entry",
3941 devinfo_fmce},
3942
3943 /* from findstack.c */
3944 { "findstack", ":[-v]", "find kernel thread stack", findstack },
3945 { "findstack_debug", NULL, "toggle findstack debugging",
3946 findstack_debug },
3947 { "stacks", "?[-afiv] [-c func] [-C func] [-m module] [-M module] "
3948 "[-s sobj | -S sobj] [-t tstate | -T tstate]",
3949 "print unique kernel thread stacks",
3950 stacks, stacks_help },
3951
3952 /* from fm.c */
3953 { "ereport", "[-v]", "print ereports logged in dump",
3954 ereport },
3955
3956 /* from group.c */
3957 { "group", "?[-q]", "display a group", group},
3958
3959 /* from hotplug.c */
3960 { "hotplug", "?[-p]", "display a registered hotplug attachment",
3961 hotplug, hotplug_help },
3962
3963 /* from irm.c */
3964 { "irmpools", NULL, "display interrupt pools", irmpools_dcmd },
3965 { "irmreqs", NULL, "display interrupt requests in an interrupt pool",
3966 irmreqs_dcmd },
3967 { "irmreq", NULL, "display an interrupt request", irmreq_dcmd },
3968
3969 /* from kgrep.c + genunix.c */
3970 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep,
3971 kgrep_help },
3972
3973 /* from kmem.c */
3974 { "allocdby", ":", "given a thread, print its allocated buffers",
3975 allocdby },
3976 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] "
3977 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help },
3978 { "freedby", ":", "given a thread, print its freed buffers", freedby },
3979 { "kmalog", "?[ fail | slab ]",
3980 "display kmem transaction log and stack traces", kmalog },
3981 { "kmastat", "[-kmg]", "kernel memory allocator stats",
3982 kmastat },
3983 { "kmausers", "?[-ef] [cache ...]", "current medium and large users "
3984 "of the kmem allocator", kmausers, kmausers_help },
3985 { "kmem_cache", "?[-n name]",
3986 "print kernel memory caches", kmem_cache, kmem_cache_help},
3987 { "kmem_slabs", "?[-v] [-n cache] [-N cache] [-b maxbins] "
3988 "[-B minbinsize]", "display slab usage per kmem cache",
3989 kmem_slabs, kmem_slabs_help },
3990 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug },
3991 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log },
3992 { "kmem_verify", "?", "check integrity of kmem-managed memory",
3993 kmem_verify },
3994 { "vmem", "?", "print a vmem_t", vmem },
3995 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] "
3996 "[-m minsize] [-M maxsize] [-t thread] [-T type]",
3997 "print or filter a vmem_seg", vmem_seg, vmem_seg_help },
3998 { "whatthread", ":[-v]", "print threads whose stack contains the "
3999 "given address", whatthread },
4000
4001 /* from ldi.c */
4002 { "ldi_handle", "?[-i]", "display a layered driver handle",
4003 ldi_handle, ldi_handle_help },
4004 { "ldi_ident", NULL, "display a layered driver identifier",
4005 ldi_ident, ldi_ident_help },
4006
4007 /* from leaky.c + leaky_subr.c */
4008 { "findleaks", FINDLEAKS_USAGE,
4009 "search for potential kernel memory leaks", findleaks,
4010 findleaks_help },
4011
4012 /* from lgrp.c */
4013 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp},
4014 { "lgrp_set", "", "display bitmask of lgroups as a list", lgrp_set},
4015
4016 /* from log.c */
4017 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf },
4018
4019 /* from mdi.c */
4020 { "mdipi", NULL, "given a path, dump mdi_pathinfo "
4021 "and detailed pi_prop list", mdipi },
4022 { "mdiprops", NULL, "given a pi_prop, dump the pi_prop list",
4023 mdiprops },
4024 { "mdiphci", NULL, "given a phci, dump mdi_phci and "
4025 "list all paths", mdiphci },
4026 { "mdivhci", NULL, "given a vhci, dump mdi_vhci and list "
4027 "all phcis", mdivhci },
4028 { "mdiclient_paths", NULL, "given a path, walk mdi_pathinfo "
4029 "client links", mdiclient_paths },
4030 { "mdiphci_paths", NULL, "given a path, walk through mdi_pathinfo "
4031 "phci links", mdiphci_paths },
4032 { "mdiphcis", NULL, "given a phci, walk through mdi_phci ph_next links",
4033 mdiphcis },
4034
4035 /* from memory.c */
4036 { "addr2smap", ":[offset]", "translate address to smap", addr2smap },
4037 { "memlist", "?[-iav]", "display a struct memlist", memlist },
4038 { "memstat", NULL, "display memory usage summary", memstat },
4039 { "page", "?", "display a summarized page_t", page },
4040 { "pagelookup", "?[-v vp] [-o offset]",
4041 "find the page_t with the name {vp, offset}",
4042 pagelookup, pagelookup_help },
4043 { "page_num2pp", ":", "find the page_t for a given page frame number",
4044 page_num2pp },
4045 { "pmap", ":[-q]", "print process memory map", pmap },
4046 { "seg", ":", "print address space segment", seg },
4047 { "swapinfo", "?", "display a struct swapinfo", swapinfof },
4048 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap },
4049
4050 /* from mmd.c */
4051 { "multidata", ":[-sv]", "display a summarized multidata_t",
4052 multidata },
4053 { "pattbl", ":", "display a summarized multidata attribute table",
4054 pattbl },
4055 { "pattr2multidata", ":", "print multidata pointer from pattr_t",
4056 pattr2multidata },
4057 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t",
4058 pdesc2slab },
4059 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify },
4060 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t",
4061 slab2multidata },
4062
4063 /* from modhash.c */
4064 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]",
4065 "display information about one or all mod_hash structures",
4066 modhash, modhash_help },
4067 { "modent", ":[-k | -v | -t type]",
4068 "display information about a mod_hash_entry", modent,
4069 modent_help },
4070
4071 /* from net.c */
4072 { "dladm", "?<sub-command> [flags]", "show data link information",
4073 dladm, dladm_help },
4074 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload",
4075 mi },
4076 { "netstat", "[-arv] [-f inet | inet6 | unix] [-P tcp | udp | icmp]",
4077 "show network statistics", netstat },
4078 { "sonode", "?[-f inet | inet6 | unix | #] "
4079 "[-t stream | dgram | raw | #] [-p #]",
4080 "filter and display sonode", sonode },
4081
4082 /* from netstack.c */
4083 { "netstack", "", "show stack instances", netstack },
4084
4085 /* from nvpair.c */
4086 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR,
4087 nvpair_print },
4088 { NVLIST_DCMD_NAME, NVLIST_DCMD_USAGE, NVLIST_DCMD_DESCR,
4089 print_nvlist },
4090
4091 /* from pg.c */
4092 { "pg", "?[-q]", "display a pg", pg},
4093
4094 /* from rctl.c */
4095 { "rctl_dict", "?", "print systemwide default rctl definitions",
4096 rctl_dict },
4097 { "rctl_list", ":[handle]", "print rctls for the given proc",
4098 rctl_list },
4099 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle",
4100 rctl },
4101 { "rctl_validate", ":[-v] [-n #]", "test resource control value "
4102 "sequence", rctl_validate },
4103
4104 /* from sobj.c */
4105 { "rwlock", ":", "dump out a readers/writer lock", rwlock },
4106 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex,
4107 mutex_help },
4108 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts },
4109 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo },
4110 { "turnstile", "?", "display a turnstile", turnstile },
4111
4112 /* from stream.c */
4113 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]",
4114 "print an mblk", mblk_prt, mblk_help },
4115 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify },
4116 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address",
4117 mblk2dblk },
4118 { "q2otherq", ":", "print peer queue for a given queue", q2otherq },
4119 { "q2rdq", ":", "print read queue for a given queue", q2rdq },
4120 { "q2syncq", ":", "print syncq for a given queue", q2syncq },
4121 { "q2stream", ":", "print stream pointer for a given queue", q2stream },
4122 { "q2wrq", ":", "print write queue for a given queue", q2wrq },
4123 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]",
4124 "filter and display STREAM queue", queue, queue_help },
4125 { "stdata", ":[-q|v] [-f flag] [-F flag]",
4126 "filter and display STREAM head", stdata, stdata_help },
4127 { "str2mate", ":", "print mate of this stream", str2mate },
4128 { "str2wrq", ":", "print write queue of this stream", str2wrq },
4129 { "stream", ":", "display STREAM", stream },
4130 { "strftevent", ":", "print STREAMS flow trace event", strftevent },
4131 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]",
4132 "filter and display STREAM sync queue", syncq, syncq_help },
4133 { "syncq2q", ":", "print queue for a given syncq", syncq2q },
4134
4135 /* from taskq.c */
4136 { "taskq", ":[-atT] [-m min_maxq] [-n name]",
4137 "display a taskq", taskq, taskq_help },
4138 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent },
4139
4140 /* from thread.c */
4141 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread,
4142 thread_help },
4143 { "threadlist", "?[-t] [-v [count]]",
4144 "display threads and associated C stack traces", threadlist,
4145 threadlist_help },
4146 { "stackinfo", "?[-h|-a]", "display kthread_t stack usage", stackinfo,
4147 stackinfo_help },
4148
4149 /* from tsd.c */
4150 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd },
4151 { "tsdtot", ":", "find thread with this tsd", tsdtot },
4152
4153 /*
4154 * typegraph does not work under kmdb, as it requires too much memory
4155 * for its internal data structures.
4156 */
4157 #ifndef _KMDB
4158 /* from typegraph.c */
4159 { "findlocks", ":", "find locks held by specified thread", findlocks },
4160 { "findfalse", "?[-v]", "find potentially falsely shared structures",
4161 findfalse },
4162 { "typegraph", NULL, "build type graph", typegraph },
4163 { "istype", ":type", "manually set object type", istype },
4164 { "notype", ":", "manually clear object type", notype },
4165 { "whattype", ":", "determine object type", whattype },
4166 #endif
4167
4168 /* from vfs.c */
4169 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo },
4170 { "pfiles", ":[-fp]", "print process file information", pfiles,
4171 pfiles_help },
4172
4173 /* from zone.c */
4174 { "zone", "?[-r [-v]]", "display kernel zone(s)", zoneprt },
4175 { "zsd", ":[-v] [zsd_key]", "display zone-specific-data entries for "
4176 "selected zones", zsd },
4177
4178 { NULL }
4179 };
4180
4181 static const mdb_walker_t walkers[] = {
4182
4183 /* from genunix.c */
4184 { "callouts_bytime", "walk callouts by list chain (expiration time)",
4185 callout_walk_init, callout_walk_step, callout_walk_fini,
4186 (void *)CALLOUT_WALK_BYLIST },
4187 { "callouts_byid", "walk callouts by id hash chain",
4188 callout_walk_init, callout_walk_step, callout_walk_fini,
4189 (void *)CALLOUT_WALK_BYID },
4190 { "callout_list", "walk a callout list", callout_list_walk_init,
4191 callout_list_walk_step, callout_list_walk_fini },
4192 { "callout_table", "walk callout table array", callout_table_walk_init,
4193 callout_table_walk_step, callout_table_walk_fini },
4194 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step },
4195 { "ereportq_dump", "walk list of ereports in dump error queue",
4196 ereportq_dump_walk_init, ereportq_dump_walk_step, NULL },
4197 { "ereportq_pend", "walk list of ereports in pending error queue",
4198 ereportq_pend_walk_init, ereportq_pend_walk_step, NULL },
4199 { "errorq", "walk list of system error queues",
4200 errorq_walk_init, errorq_walk_step, NULL },
4201 { "errorq_data", "walk pending error queue data buffers",
4202 eqd_walk_init, eqd_walk_step, eqd_walk_fini },
4203 { "allfile", "given a proc pointer, list all file pointers",
4204 file_walk_init, allfile_walk_step, file_walk_fini },
4205 { "file", "given a proc pointer, list of open file pointers",
4206 file_walk_init, file_walk_step, file_walk_fini },
4207 { "lock_descriptor", "walk lock_descriptor_t structures",
4208 ld_walk_init, ld_walk_step, NULL },
4209 { "lock_graph", "walk lock graph",
4210 lg_walk_init, lg_walk_step, NULL },
4211 { "port", "given a proc pointer, list of created event ports",
4212 port_walk_init, port_walk_step, NULL },
4213 { "portev", "given a port pointer, list of events in the queue",
4214 portev_walk_init, portev_walk_step, portev_walk_fini },
4215 { "proc", "list of active proc_t structures",
4216 proc_walk_init, proc_walk_step, proc_walk_fini },
4217 { "projects", "walk a list of kernel projects",
4218 project_walk_init, project_walk_step, NULL },
4219 { "sysevent_pend", "walk sysevent pending queue",
4220 sysevent_pend_walk_init, sysevent_walk_step,
4221 sysevent_walk_fini},
4222 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init,
4223 sysevent_walk_step, sysevent_walk_fini},
4224 { "sysevent_channel", "walk sysevent channel subscriptions",
4225 sysevent_channel_walk_init, sysevent_channel_walk_step,
4226 sysevent_channel_walk_fini},
4227 { "sysevent_class_list", "walk sysevent subscription's class list",
4228 sysevent_class_list_walk_init, sysevent_class_list_walk_step,
4229 sysevent_class_list_walk_fini},
4230 { "sysevent_subclass_list",
4231 "walk sysevent subscription's subclass list",
4232 sysevent_subclass_list_walk_init,
4233 sysevent_subclass_list_walk_step,
4234 sysevent_subclass_list_walk_fini},
4235 { "task", "given a task pointer, walk its processes",
4236 task_walk_init, task_walk_step, NULL },
4237
4238 /* from avl.c */
4239 { AVL_WALK_NAME, AVL_WALK_DESC,
4240 avl_walk_init, avl_walk_step, avl_walk_fini },
4241
4242 /* from bio.c */
4243 { "buf", "walk the bio buf hash",
4244 buf_walk_init, buf_walk_step, buf_walk_fini },
4245
4246 /* from contract.c */
4247 { "contract", "walk all contracts, or those of the specified type",
4248 ct_walk_init, generic_walk_step, NULL },
4249 { "ct_event", "walk events on a contract event queue",
4250 ct_event_walk_init, generic_walk_step, NULL },
4251 { "ct_listener", "walk contract event queue listeners",
4252 ct_listener_walk_init, generic_walk_step, NULL },
4253
4254 /* from cpupart.c */
4255 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition",
4256 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step,
4257 NULL },
4258 { "cpupart_walk", "walk the set of cpu partitions",
4259 cpupart_walk_init, cpupart_walk_step, NULL },
4260
4261 /* from ctxop.c */
4262 { "ctxop", "walk list of context ops on a thread",
4263 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini },
4264
4265 /* from cyclic.c */
4266 { "cyccpu", "walk per-CPU cyc_cpu structures",
4267 cyccpu_walk_init, cyccpu_walk_step, NULL },
4268 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list",
4269 cycomni_walk_init, cycomni_walk_step, NULL },
4270 { "cyctrace", "walk cyclic trace buffer",
4271 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini },
4272
4273 /* from devinfo.c */
4274 { "binding_hash", "walk all entries in binding hash table",
4275 binding_hash_walk_init, binding_hash_walk_step, NULL },
4276 { "devinfo", "walk devinfo tree or subtree",
4277 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini },
4278 { "devinfo_audit_log", "walk devinfo audit system-wide log",
4279 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step,
4280 devinfo_audit_log_walk_fini},
4281 { "devinfo_audit_node", "walk per-devinfo audit history",
4282 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step,
4283 devinfo_audit_node_walk_fini},
4284 { "devinfo_children", "walk children of devinfo node",
4285 devinfo_children_walk_init, devinfo_children_walk_step,
4286 devinfo_children_walk_fini },
4287 { "devinfo_parents", "walk ancestors of devinfo node",
4288 devinfo_parents_walk_init, devinfo_parents_walk_step,
4289 devinfo_parents_walk_fini },
4290 { "devinfo_siblings", "walk siblings of devinfo node",
4291 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL },
4292 { "devi_next", "walk devinfo list",
4293 NULL, devi_next_walk_step, NULL },
4294 { "devnames", "walk devnames array",
4295 devnames_walk_init, devnames_walk_step, devnames_walk_fini },
4296 { "minornode", "given a devinfo node, walk minor nodes",
4297 minornode_walk_init, minornode_walk_step, NULL },
4298 { "softstate",
4299 "given an i_ddi_soft_state*, list all in-use driver stateps",
4300 soft_state_walk_init, soft_state_walk_step,
4301 NULL, NULL },
4302 { "softstate_all",
4303 "given an i_ddi_soft_state*, list all driver stateps",
4304 soft_state_walk_init, soft_state_all_walk_step,
4305 NULL, NULL },
4306 { "devinfo_fmc",
4307 "walk a fault management handle cache active list",
4308 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL },
4309
4310 /* from group.c */
4311 { "group", "walk all elements of a group",
4312 group_walk_init, group_walk_step, NULL },
4313
4314 /* from irm.c */
4315 { "irmpools", "walk global list of interrupt pools",
4316 irmpools_walk_init, list_walk_step, list_walk_fini },
4317 { "irmreqs", "walk list of interrupt requests in an interrupt pool",
4318 irmreqs_walk_init, list_walk_step, list_walk_fini },
4319
4320 /* from kmem.c */
4321 { "allocdby", "given a thread, walk its allocated bufctls",
4322 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4323 { "bufctl", "walk a kmem cache's bufctls",
4324 bufctl_walk_init, kmem_walk_step, kmem_walk_fini },
4325 { "bufctl_history", "walk the available history of a bufctl",
4326 bufctl_history_walk_init, bufctl_history_walk_step,
4327 bufctl_history_walk_fini },
4328 { "freedby", "given a thread, walk its freed bufctls",
4329 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini },
4330 { "freectl", "walk a kmem cache's free bufctls",
4331 freectl_walk_init, kmem_walk_step, kmem_walk_fini },
4332 { "freectl_constructed", "walk a kmem cache's constructed free bufctls",
4333 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4334 { "freemem", "walk a kmem cache's free memory",
4335 freemem_walk_init, kmem_walk_step, kmem_walk_fini },
4336 { "freemem_constructed", "walk a kmem cache's constructed free memory",
4337 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini },
4338 { "kmem", "walk a kmem cache",
4339 kmem_walk_init, kmem_walk_step, kmem_walk_fini },
4340 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches",
4341 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL },
4342 { "kmem_hash", "given a kmem cache, walk its allocated hash table",
4343 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini },
4344 { "kmem_log", "walk the kmem transaction log",
4345 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini },
4346 { "kmem_slab", "given a kmem cache, walk its slabs",
4347 kmem_slab_walk_init, combined_walk_step, combined_walk_fini },
4348 { "kmem_slab_partial",
4349 "given a kmem cache, walk its partially allocated slabs (min 1)",
4350 kmem_slab_walk_partial_init, combined_walk_step,
4351 combined_walk_fini },
4352 { "vmem", "walk vmem structures in pre-fix, depth-first order",
4353 vmem_walk_init, vmem_walk_step, vmem_walk_fini },
4354 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs",
4355 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4356 { "vmem_free", "given a vmem_t, walk its free vmem_segs",
4357 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4358 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order",
4359 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini },
4360 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs",
4361 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4362 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs",
4363 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini },
4364
4365 /* from ldi.c */
4366 { "ldi_handle", "walk the layered driver handle hash",
4367 ldi_handle_walk_init, ldi_handle_walk_step, NULL },
4368 { "ldi_ident", "walk the layered driver identifier hash",
4369 ldi_ident_walk_init, ldi_ident_walk_step, NULL },
4370
4371 /* from leaky.c + leaky_subr.c */
4372 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same "
4373 "stack trace",
4374 leaky_walk_init, leaky_walk_step, leaky_walk_fini },
4375 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for "
4376 "leaks w/ same stack trace",
4377 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini },
4378
4379 /* from lgrp.c */
4380 { "lgrp_cpulist", "walk CPUs in a given lgroup",
4381 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, NULL },
4382 { "lgrptbl", "walk lgroup table",
4383 lgrp_walk_init, lgrp_walk_step, NULL },
4384 { "lgrp_parents", "walk up lgroup lineage from given lgroup",
4385 lgrp_parents_walk_init, lgrp_parents_walk_step, NULL },
4386 { "lgrp_rsrc_mem", "walk lgroup memory resources of given lgroup",
4387 lgrp_rsrc_mem_walk_init, lgrp_set_walk_step, NULL },
4388 { "lgrp_rsrc_cpu", "walk lgroup CPU resources of given lgroup",
4389 lgrp_rsrc_cpu_walk_init, lgrp_set_walk_step, NULL },
4390
4391 /* from list.c */
4392 { LIST_WALK_NAME, LIST_WALK_DESC,
4393 list_walk_init, list_walk_step, list_walk_fini },
4394
4395 /* from mdi.c */
4396 { "mdipi_client_list", "Walker for mdi_pathinfo pi_client_link",
4397 mdi_pi_client_link_walk_init,
4398 mdi_pi_client_link_walk_step,
4399 mdi_pi_client_link_walk_fini },
4400 { "mdipi_phci_list", "Walker for mdi_pathinfo pi_phci_link",
4401 mdi_pi_phci_link_walk_init,
4402 mdi_pi_phci_link_walk_step,
4403 mdi_pi_phci_link_walk_fini },
4404 { "mdiphci_list", "Walker for mdi_phci ph_next link",
4405 mdi_phci_ph_next_walk_init,
4406 mdi_phci_ph_next_walk_step,
4407 mdi_phci_ph_next_walk_fini },
4408
4409 /* from memory.c */
4410 { "allpages", "walk all pages, including free pages",
4411 allpages_walk_init, allpages_walk_step, allpages_walk_fini },
4412 { "anon", "given an amp, list allocated anon structures",
4413 anon_walk_init, anon_walk_step, anon_walk_fini,
4414 ANON_WALK_ALLOC },
4415 { "anon_all", "given an amp, list contents of all anon slots",
4416 anon_walk_init, anon_walk_step, anon_walk_fini,
4417 ANON_WALK_ALL },
4418 { "memlist", "walk specified memlist",
4419 NULL, memlist_walk_step, NULL },
4420 { "page", "walk all pages, or those from the specified vnode",
4421 page_walk_init, page_walk_step, page_walk_fini },
4422 { "seg", "given an as, list of segments",
4423 seg_walk_init, avl_walk_step, avl_walk_fini },
4424 { "segvn_anon",
4425 "given a struct segvn_data, list allocated anon structures",
4426 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4427 ANON_WALK_ALLOC },
4428 { "segvn_anon_all",
4429 "given a struct segvn_data, list contents of all anon slots",
4430 segvn_anon_walk_init, anon_walk_step, anon_walk_fini,
4431 ANON_WALK_ALL },
4432 { "segvn_pages",
4433 "given a struct segvn_data, list resident pages in "
4434 "offset order",
4435 segvn_pages_walk_init, segvn_pages_walk_step,
4436 segvn_pages_walk_fini, SEGVN_PAGES_RESIDENT },
4437 { "segvn_pages_all",
4438 "for each offset in a struct segvn_data, give page_t pointer "
4439 "(if resident), or NULL.",
4440 segvn_pages_walk_init, segvn_pages_walk_step,
4441 segvn_pages_walk_fini, SEGVN_PAGES_ALL },
4442 { "swapinfo", "walk swapinfo structures",
4443 swap_walk_init, swap_walk_step, NULL },
4444
4445 /* from mmd.c */
4446 { "pattr", "walk pattr_t structures", pattr_walk_init,
4447 mmdq_walk_step, mmdq_walk_fini },
4448 { "pdesc", "walk pdesc_t structures",
4449 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini },
4450 { "pdesc_slab", "walk pdesc_slab_t structures",
4451 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini },
4452
4453 /* from modhash.c */
4454 { "modhash", "walk list of mod_hash structures", modhash_walk_init,
4455 modhash_walk_step, NULL },
4456 { "modent", "walk list of entries in a given mod_hash",
4457 modent_walk_init, modent_walk_step, modent_walk_fini },
4458 { "modchain", "walk list of entries in a given mod_hash_entry",
4459 NULL, modchain_walk_step, NULL },
4460
4461 /* from net.c */
4462 { "icmp", "walk ICMP control structures using MI for all stacks",
4463 mi_payload_walk_init, mi_payload_walk_step, NULL,
4464 &mi_icmp_arg },
4465 { "mi", "given a MI_O, walk the MI",
4466 mi_walk_init, mi_walk_step, mi_walk_fini, NULL },
4467 { "sonode", "given a sonode, walk its children",
4468 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL },
4469 { "icmp_stacks", "walk all the icmp_stack_t",
4470 icmp_stacks_walk_init, icmp_stacks_walk_step, NULL },
4471 { "tcp_stacks", "walk all the tcp_stack_t",
4472 tcp_stacks_walk_init, tcp_stacks_walk_step, NULL },
4473 { "udp_stacks", "walk all the udp_stack_t",
4474 udp_stacks_walk_init, udp_stacks_walk_step, NULL },
4475
4476 /* from netstack.c */
4477 { "netstack", "walk a list of kernel netstacks",
4478 netstack_walk_init, netstack_walk_step, NULL },
4479
4480 /* from nvpair.c */
4481 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR,
4482 nvpair_walk_init, nvpair_walk_step, NULL },
4483
4484 /* from rctl.c */
4485 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists",
4486 rctl_dict_walk_init, rctl_dict_walk_step, NULL },
4487 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init,
4488 rctl_set_walk_step, NULL },
4489 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated",
4490 rctl_val_walk_init, rctl_val_walk_step },
4491
4492 /* from sobj.c */
4493 { "blocked", "walk threads blocked on a given sobj",
4494 blocked_walk_init, blocked_walk_step, NULL },
4495 { "wchan", "given a wchan, list of blocked threads",
4496 wchan_walk_init, wchan_walk_step, wchan_walk_fini },
4497
4498 /* from stream.c */
4499 { "b_cont", "walk mblk_t list using b_cont",
4500 mblk_walk_init, b_cont_step, mblk_walk_fini },
4501 { "b_next", "walk mblk_t list using b_next",
4502 mblk_walk_init, b_next_step, mblk_walk_fini },
4503 { "qlink", "walk queue_t list using q_link",
4504 queue_walk_init, queue_link_step, queue_walk_fini },
4505 { "qnext", "walk queue_t list using q_next",
4506 queue_walk_init, queue_next_step, queue_walk_fini },
4507 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list",
4508 strftblk_walk_init, strftblk_step, strftblk_walk_fini },
4509 { "readq", "walk read queue side of stdata",
4510 str_walk_init, strr_walk_step, str_walk_fini },
4511 { "writeq", "walk write queue side of stdata",
4512 str_walk_init, strw_walk_step, str_walk_fini },
4513
4514 /* from taskq.c */
4515 { "taskq_thread", "given a taskq_t, list all of its threads",
4516 taskq_thread_walk_init,
4517 taskq_thread_walk_step,
4518 taskq_thread_walk_fini },
4519 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list",
4520 taskq_ent_walk_init, taskq_ent_walk_step, NULL },
4521
4522 /* from thread.c */
4523 { "deathrow", "walk threads on both lwp_ and thread_deathrow",
4524 deathrow_walk_init, deathrow_walk_step, NULL },
4525 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues",
4526 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4527 { "cpupart_dispq",
4528 "given a cpupart_t, walk threads in dispatcher queues",
4529 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini },
4530 { "lwp_deathrow", "walk lwp_deathrow",
4531 lwp_deathrow_walk_init, deathrow_walk_step, NULL },
4532 { "thread", "global or per-process kthread_t structures",
4533 thread_walk_init, thread_walk_step, thread_walk_fini },
4534 { "thread_deathrow", "walk threads on thread_deathrow",
4535 thread_deathrow_walk_init, deathrow_walk_step, NULL },
4536
4537 /* from tsd.c */
4538 { "tsd", "walk list of thread-specific data",
4539 tsd_walk_init, tsd_walk_step, tsd_walk_fini },
4540
4541 /* from tsol.c */
4542 { "tnrh", "walk remote host cache structures",
4543 tnrh_walk_init, tnrh_walk_step, tnrh_walk_fini },
4544 { "tnrhtp", "walk remote host template structures",
4545 tnrhtp_walk_init, tnrhtp_walk_step, tnrhtp_walk_fini },
4546
4547 /*
4548 * typegraph does not work under kmdb, as it requires too much memory
4549 * for its internal data structures.
4550 */
4551 #ifndef _KMDB
4552 /* from typegraph.c */
4553 { "typeconflict", "walk buffers with conflicting type inferences",
4554 typegraph_walk_init, typeconflict_walk_step },
4555 { "typeunknown", "walk buffers with unknown types",
4556 typegraph_walk_init, typeunknown_walk_step },
4557 #endif
4558
4559 /* from vfs.c */
4560 { "vfs", "walk file system list",
4561 vfs_walk_init, vfs_walk_step },
4562
4563 /* from zone.c */
4564 { "zone", "walk a list of kernel zones",
4565 zone_walk_init, zone_walk_step, NULL },
4566 { "zsd", "walk list of zsd entries for a zone",
4567 zsd_walk_init, zsd_walk_step, NULL },
4568
4569 { NULL }
4570 };
4571
4572 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers };
4573
4574 /*ARGSUSED*/
4575 static void
genunix_statechange_cb(void * ignored)4576 genunix_statechange_cb(void *ignored)
4577 {
4578 /*
4579 * Force ::findleaks and ::stacks to let go any cached state.
4580 */
4581 leaky_cleanup(1);
4582 stacks_cleanup(1);
4583
4584 kmem_statechange(); /* notify kmem */
4585 }
4586
4587 const mdb_modinfo_t *
_mdb_init(void)4588 _mdb_init(void)
4589 {
4590 kmem_init();
4591
4592 (void) mdb_callback_add(MDB_CALLBACK_STCHG,
4593 genunix_statechange_cb, NULL);
4594
4595 return (&modinfo);
4596 }
4597
4598 void
_mdb_fini(void)4599 _mdb_fini(void)
4600 {
4601 leaky_cleanup(1);
4602 stacks_cleanup(1);
4603 }
4604