xref: /onnv-gate/usr/src/cmd/filebench/common/fb_avl.c (revision 9513:5dc53d16bc1b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 
27 /*
28  * AVL - generic AVL tree implementation for FileBench use.
29  * -Adapted from the avl.c open source code used in the Solaris Kernel-
30  *
31  * A complete description of AVL trees can be found in many CS textbooks.
32  *
33  * Here is a very brief overview. An AVL tree is a binary search tree that is
34  * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
35  * any given node, the left and right subtrees are allowed to differ in height
36  * by at most 1 level.
37  *
38  * This relaxation from a perfectly balanced binary tree allows doing
39  * insertion and deletion relatively efficiently. Searching the tree is
40  * still a fast operation, roughly O(log(N)).
41  *
42  * The key to insertion and deletion is a set of tree maniuplations called
43  * rotations, which bring unbalanced subtrees back into the semi-balanced state.
44  *
45  * This implementation of AVL trees has the following peculiarities:
46  *
47  *	- The AVL specific data structures are physically embedded as fields
48  *	  in the "using" data structures.  To maintain generality the code
49  *	  must constantly translate between "avl_node_t *" and containing
50  *	  data structure "void *"s by adding/subracting the avl_offset.
51  *
52  *	- Since the AVL data is always embedded in other structures, there is
53  *	  no locking or memory allocation in the AVL routines. This must be
54  *	  provided for by the enclosing data structure's semantics. Typically,
55  *	  avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
56  *	  exclusive write lock. Other operations require a read lock.
57  *
58  *      - The implementation uses iteration instead of explicit recursion,
59  *	  since it is intended to run on limited size kernel stacks. Since
60  *	  there is no recursion stack present to move "up" in the tree,
61  *	  there is an explicit "parent" link in the avl_node_t.
62  *
63  *      - The left/right children pointers of a node are in an array.
64  *	  In the code, variables (instead of constants) are used to represent
65  *	  left and right indices.  The implementation is written as if it only
66  *	  dealt with left handed manipulations.  By changing the value assigned
67  *	  to "left", the code also works for right handed trees.  The
68  *	  following variables/terms are frequently used:
69  *
70  *		int left;	// 0 when dealing with left children,
71  *				// 1 for dealing with right children
72  *
73  *		int left_heavy;	// -1 when left subtree is taller at some node,
74  *				// +1 when right subtree is taller
75  *
76  *		int right;	// will be the opposite of left (0 or 1)
77  *		int right_heavy;// will be the opposite of left_heavy (-1 or 1)
78  *
79  *		int direction;  // 0 for "<" (ie. left child); 1 for ">" (right)
80  *
81  *	  Though it is a little more confusing to read the code, the approach
82  *	  allows using half as much code (and hence cache footprint) for tree
83  *	  manipulations and eliminates many conditional branches.
84  *
85  *	- The avl_index_t is an opaque "cookie" used to find nodes at or
86  *	  adjacent to where a new value would be inserted in the tree. The value
87  *	  is a modified "avl_node_t *".  The bottom bit (normally 0 for a
88  *	  pointer) is set to indicate if that the new node has a value greater
89  *	  than the value of the indicated "avl_node_t *".
90  */
91 
92 #include "filebench.h"
93 #include "fb_avl.h"
94 
95 /*
96  * Small arrays to translate between balance (or diff) values and child indeces.
97  *
98  * Code that deals with binary tree data structures will randomly use
99  * left and right children when examining a tree.  C "if()" statements
100  * which evaluate randomly suffer from very poor hardware branch prediction.
101  * In this code we avoid some of the branch mispredictions by using the
102  * following translation arrays. They replace random branches with an
103  * additional memory reference. Since the translation arrays are both very
104  * small the data should remain efficiently in cache.
105  */
106 static const int  avl_child2balance[2]	= {-1, 1};
107 static const int  avl_balance2child[]	= {0, 0, 1};
108 
109 
110 /*
111  * Walk from one node to the previous valued node (ie. an infix walk
112  * towards the left). At any given node we do one of 2 things:
113  *
114  * - If there is a left child, go to it, then to it's rightmost descendant.
115  *
116  * - otherwise we return thru parent nodes until we've come from a right child.
117  *
118  * Return Value:
119  * NULL - if at the end of the nodes
120  * otherwise next node
121  */
122 void *
avl_walk(avl_tree_t * tree,void * oldnode,int left)123 avl_walk(avl_tree_t *tree, void	*oldnode, int left)
124 {
125 	size_t off = tree->avl_offset;
126 	avl_node_t *node = AVL_DATA2NODE(oldnode, off);
127 	int right = 1 - left;
128 	int was_child;
129 
130 
131 	/*
132 	 * nowhere to walk to if tree is empty
133 	 */
134 	if (node == NULL)
135 		return (NULL);
136 
137 	/*
138 	 * Visit the previous valued node. There are two possibilities:
139 	 *
140 	 * If this node has a left child, go down one left, then all
141 	 * the way right.
142 	 */
143 	if (node->avl_child[left] != NULL) {
144 		for (node = node->avl_child[left];
145 		    node->avl_child[right] != NULL;
146 		    node = node->avl_child[right])
147 			;
148 	/*
149 	 * Otherwise, return thru left children as far as we can.
150 	 */
151 	} else {
152 		for (;;) {
153 			was_child = AVL_XCHILD(node);
154 			node = AVL_XPARENT(node);
155 			if (node == NULL)
156 				return (NULL);
157 			if (was_child == right)
158 				break;
159 		}
160 	}
161 
162 	return (AVL_NODE2DATA(node, off));
163 }
164 
165 /*
166  * Return the lowest valued node in a tree or NULL.
167  * (leftmost child from root of tree)
168  */
169 void *
avl_first(avl_tree_t * tree)170 avl_first(avl_tree_t *tree)
171 {
172 	avl_node_t *node;
173 	avl_node_t *prev = NULL;
174 	size_t off = tree->avl_offset;
175 
176 	for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
177 		prev = node;
178 
179 	if (prev != NULL)
180 		return (AVL_NODE2DATA(prev, off));
181 	return (NULL);
182 }
183 
184 /*
185  * Return the highest valued node in a tree or NULL.
186  * (rightmost child from root of tree)
187  */
188 void *
avl_last(avl_tree_t * tree)189 avl_last(avl_tree_t *tree)
190 {
191 	avl_node_t *node;
192 	avl_node_t *prev = NULL;
193 	size_t off = tree->avl_offset;
194 
195 	for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
196 		prev = node;
197 
198 	if (prev != NULL)
199 		return (AVL_NODE2DATA(prev, off));
200 	return (NULL);
201 }
202 
203 /*
204  * Access the node immediately before or after an insertion point.
205  *
206  * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
207  *
208  * Return value:
209  *	NULL: no node in the given direction
210  *	"void *"  of the found tree node
211  */
212 void *
avl_nearest(avl_tree_t * tree,avl_index_t where,int direction)213 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
214 {
215 	int child = AVL_INDEX2CHILD(where);
216 	avl_node_t *node = AVL_INDEX2NODE(where);
217 	void *data;
218 	size_t off = tree->avl_offset;
219 
220 	if (node == NULL) {
221 		if (tree->avl_root != NULL)
222 			filebench_log(LOG_ERROR,
223 			    "Null Node Pointer Supplied");
224 		return (NULL);
225 	}
226 	data = AVL_NODE2DATA(node, off);
227 	if (child != direction)
228 		return (data);
229 
230 	return (avl_walk(tree, data, direction));
231 }
232 
233 
234 /*
235  * Search for the node which contains "value".  The algorithm is a
236  * simple binary tree search.
237  *
238  * return value:
239  *	NULL: the value is not in the AVL tree
240  *		*where (if not NULL)  is set to indicate the insertion point
241  *	"void *"  of the found tree node
242  */
243 void *
avl_find(avl_tree_t * tree,void * value,avl_index_t * where)244 avl_find(avl_tree_t *tree, void *value, avl_index_t *where)
245 {
246 	avl_node_t *node;
247 	avl_node_t *prev = NULL;
248 	int child = 0;
249 	int diff;
250 	size_t off = tree->avl_offset;
251 
252 	for (node = tree->avl_root; node != NULL;
253 	    node = node->avl_child[child]) {
254 
255 		prev = node;
256 
257 		diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
258 		if (!((-1 <= diff) && (diff <= 1))) {
259 			filebench_log(LOG_ERROR, "avl compare error");
260 			return (NULL);
261 		}
262 		if (diff == 0) {
263 			if (where != NULL)
264 				*where = 0;
265 
266 			return (AVL_NODE2DATA(node, off));
267 		}
268 		child = avl_balance2child[1 + diff];
269 
270 	}
271 
272 	if (where != NULL)
273 		*where = AVL_MKINDEX(prev, child);
274 
275 	return (NULL);
276 }
277 
278 
279 /*
280  * Perform a rotation to restore balance at the subtree given by depth.
281  *
282  * This routine is used by both insertion and deletion. The return value
283  * indicates:
284  *	 0 : subtree did not change height
285  *	!0 : subtree was reduced in height
286  *
287  * The code is written as if handling left rotations, right rotations are
288  * symmetric and handled by swapping values of variables right/left[_heavy]
289  *
290  * On input balance is the "new" balance at "node". This value is either
291  * -2 or +2.
292  */
293 static int
avl_rotation(avl_tree_t * tree,avl_node_t * node,int balance)294 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
295 {
296 	int left = !(balance < 0);	/* when balance = -2, left will be 0 */
297 	int right = 1 - left;
298 	int left_heavy = balance >> 1;
299 	int right_heavy = -left_heavy;
300 	avl_node_t *parent = AVL_XPARENT(node);
301 	avl_node_t *child = node->avl_child[left];
302 	avl_node_t *cright;
303 	avl_node_t *gchild;
304 	avl_node_t *gright;
305 	avl_node_t *gleft;
306 	int which_child = AVL_XCHILD(node);
307 	int child_bal = AVL_XBALANCE(child);
308 
309 	/* BEGIN CSTYLED */
310 	/*
311 	 * case 1 : node is overly left heavy, the left child is balanced or
312 	 * also left heavy. This requires the following rotation.
313 	 *
314 	 *                   (node bal:-2)
315 	 *                    /           \
316 	 *                   /             \
317 	 *              (child bal:0 or -1)
318 	 *              /    \
319 	 *             /      \
320 	 *                     cright
321 	 *
322 	 * becomes:
323 	 *
324 	 *              (child bal:1 or 0)
325 	 *              /        \
326 	 *             /          \
327 	 *                        (node bal:-1 or 0)
328 	 *                         /     \
329 	 *                        /       \
330 	 *                     cright
331 	 *
332 	 * we detect this situation by noting that child's balance is not
333 	 * right_heavy.
334 	 */
335 	/* END CSTYLED */
336 	if (child_bal != right_heavy) {
337 
338 		/*
339 		 * compute new balance of nodes
340 		 *
341 		 * If child used to be left heavy (now balanced) we reduced
342 		 * the height of this sub-tree -- used in "return...;" below
343 		 */
344 		child_bal += right_heavy; /* adjust towards right */
345 
346 		/*
347 		 * move "cright" to be node's left child
348 		 */
349 		cright = child->avl_child[right];
350 		node->avl_child[left] = cright;
351 		if (cright != NULL) {
352 			AVL_SETPARENT(cright, node);
353 			AVL_SETCHILD(cright, left);
354 		}
355 
356 		/*
357 		 * move node to be child's right child
358 		 */
359 		child->avl_child[right] = node;
360 		AVL_SETBALANCE(node, -child_bal);
361 		AVL_SETCHILD(node, right);
362 		AVL_SETPARENT(node, child);
363 
364 		/*
365 		 * update the pointer into this subtree
366 		 */
367 		AVL_SETBALANCE(child, child_bal);
368 		AVL_SETCHILD(child, which_child);
369 		AVL_SETPARENT(child, parent);
370 		if (parent != NULL)
371 			parent->avl_child[which_child] = child;
372 		else
373 			tree->avl_root = child;
374 
375 		return (child_bal == 0);
376 	}
377 
378 	/* BEGIN CSTYLED */
379 	/*
380 	 * case 2 : When node is left heavy, but child is right heavy we use
381 	 * a different rotation.
382 	 *
383 	 *                   (node b:-2)
384 	 *                    /   \
385 	 *                   /     \
386 	 *                  /       \
387 	 *             (child b:+1)
388 	 *              /     \
389 	 *             /       \
390 	 *                   (gchild b: != 0)
391 	 *                     /  \
392 	 *                    /    \
393 	 *                 gleft   gright
394 	 *
395 	 * becomes:
396 	 *
397 	 *              (gchild b:0)
398 	 *              /       \
399 	 *             /         \
400 	 *            /           \
401 	 *        (child b:?)   (node b:?)
402 	 *         /  \          /   \
403 	 *        /    \        /     \
404 	 *            gleft   gright
405 	 *
406 	 * computing the new balances is more complicated. As an example:
407 	 *	 if gchild was right_heavy, then child is now left heavy
408 	 *		else it is balanced
409 	 */
410 	/* END CSTYLED */
411 	gchild = child->avl_child[right];
412 	gleft = gchild->avl_child[left];
413 	gright = gchild->avl_child[right];
414 
415 	/*
416 	 * move gright to left child of node and
417 	 *
418 	 * move gleft to right child of node
419 	 */
420 	node->avl_child[left] = gright;
421 	if (gright != NULL) {
422 		AVL_SETPARENT(gright, node);
423 		AVL_SETCHILD(gright, left);
424 	}
425 
426 	child->avl_child[right] = gleft;
427 	if (gleft != NULL) {
428 		AVL_SETPARENT(gleft, child);
429 		AVL_SETCHILD(gleft, right);
430 	}
431 
432 	/*
433 	 * move child to left child of gchild and
434 	 *
435 	 * move node to right child of gchild and
436 	 *
437 	 * fixup parent of all this to point to gchild
438 	 */
439 	balance = AVL_XBALANCE(gchild);
440 	gchild->avl_child[left] = child;
441 	AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
442 	AVL_SETPARENT(child, gchild);
443 	AVL_SETCHILD(child, left);
444 
445 	gchild->avl_child[right] = node;
446 	AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
447 	AVL_SETPARENT(node, gchild);
448 	AVL_SETCHILD(node, right);
449 
450 	AVL_SETBALANCE(gchild, 0);
451 	AVL_SETPARENT(gchild, parent);
452 	AVL_SETCHILD(gchild, which_child);
453 	if (parent != NULL)
454 		parent->avl_child[which_child] = gchild;
455 	else
456 		tree->avl_root = gchild;
457 
458 	return (1);	/* the new tree is always shorter */
459 }
460 
461 
462 /*
463  * Insert a new node into an AVL tree at the specified (from avl_find()) place.
464  *
465  * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
466  * searches out to the leaf positions.  The avl_index_t indicates the node
467  * which will be the parent of the new node.
468  *
469  * After the node is inserted, a single rotation further up the tree may
470  * be necessary to maintain an acceptable AVL balance.
471  */
472 void
avl_insert(avl_tree_t * tree,void * new_data,avl_index_t where)473 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
474 {
475 	avl_node_t *node;
476 	avl_node_t *parent = AVL_INDEX2NODE(where);
477 	int old_balance;
478 	int new_balance;
479 	int which_child = AVL_INDEX2CHILD(where);
480 	size_t off = tree->avl_offset;
481 
482 	if (tree == NULL) {
483 		filebench_log(LOG_ERROR, "No Tree Supplied");
484 		return;
485 	}
486 #ifdef _LP64
487 	if (((uintptr_t)new_data & 0x7) != 0) {
488 		filebench_log(LOG_ERROR, "Missaligned pointer to new data");
489 		return;
490 	}
491 #endif
492 
493 	node = AVL_DATA2NODE(new_data, off);
494 
495 	/*
496 	 * First, add the node to the tree at the indicated position.
497 	 */
498 	++tree->avl_numnodes;
499 
500 	node->avl_child[0] = NULL;
501 	node->avl_child[1] = NULL;
502 
503 	AVL_SETCHILD(node, which_child);
504 	AVL_SETBALANCE(node, 0);
505 	AVL_SETPARENT(node, parent);
506 	if (parent != NULL) {
507 		if (parent->avl_child[which_child] != NULL)
508 			filebench_log(LOG_DEBUG_IMPL,
509 			    "Overwriting existing pointer");
510 
511 		parent->avl_child[which_child] = node;
512 	} else {
513 		if (tree->avl_root != NULL)
514 			filebench_log(LOG_DEBUG_IMPL,
515 			    "Overwriting existing pointer");
516 
517 		tree->avl_root = node;
518 	}
519 	/*
520 	 * Now, back up the tree modifying the balance of all nodes above the
521 	 * insertion point. If we get to a highly unbalanced ancestor, we
522 	 * need to do a rotation.  If we back out of the tree we are done.
523 	 * If we brought any subtree into perfect balance (0), we are also done.
524 	 */
525 	for (;;) {
526 		node = parent;
527 		if (node == NULL)
528 			return;
529 
530 		/*
531 		 * Compute the new balance
532 		 */
533 		old_balance = AVL_XBALANCE(node);
534 		new_balance = old_balance + avl_child2balance[which_child];
535 
536 		/*
537 		 * If we introduced equal balance, then we are done immediately
538 		 */
539 		if (new_balance == 0) {
540 			AVL_SETBALANCE(node, 0);
541 			return;
542 		}
543 
544 		/*
545 		 * If both old and new are not zero we went
546 		 * from -1 to -2 balance, do a rotation.
547 		 */
548 		if (old_balance != 0)
549 			break;
550 
551 		AVL_SETBALANCE(node, new_balance);
552 		parent = AVL_XPARENT(node);
553 		which_child = AVL_XCHILD(node);
554 	}
555 
556 	/*
557 	 * perform a rotation to fix the tree and return
558 	 */
559 	(void) avl_rotation(tree, node, new_balance);
560 }
561 
562 /*
563  * Insert "new_data" in "tree" in the given "direction" either after or
564  * before (AVL_AFTER, AVL_BEFORE) the data "here".
565  *
566  * Insertions can only be done at empty leaf points in the tree, therefore
567  * if the given child of the node is already present we move to either
568  * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
569  * every other node in the tree is a leaf, this always works.
570  *
571  * To help developers using this interface, we assert that the new node
572  * is correctly ordered at every step of the way in DEBUG kernels.
573  */
574 void
avl_insert_here(avl_tree_t * tree,void * new_data,void * here,int direction)575 avl_insert_here(
576 	avl_tree_t *tree,
577 	void *new_data,
578 	void *here,
579 	int direction)
580 {
581 	avl_node_t *node;
582 	int child = direction;	/* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
583 
584 	if ((tree == NULL) || (new_data == NULL) || (here == NULL) ||
585 	    !((direction == AVL_BEFORE) || (direction == AVL_AFTER))) {
586 		filebench_log(LOG_ERROR,
587 		    "avl_insert_here: Bad Parameters Passed");
588 		return;
589 	}
590 
591 	/*
592 	 * If corresponding child of node is not NULL, go to the neighboring
593 	 * node and reverse the insertion direction.
594 	 */
595 	node = AVL_DATA2NODE(here, tree->avl_offset);
596 
597 	if (node->avl_child[child] != NULL) {
598 		node = node->avl_child[child];
599 		child = 1 - child;
600 		while (node->avl_child[child] != NULL)
601 			node = node->avl_child[child];
602 
603 	}
604 	if (node->avl_child[child] != NULL)
605 		filebench_log(LOG_DEBUG_IMPL, "Overwriting existing pointer");
606 
607 	avl_insert(tree, new_data, AVL_MKINDEX(node, child));
608 }
609 
610 /*
611  * Add a new node to an AVL tree.
612  */
613 void
avl_add(avl_tree_t * tree,void * new_node)614 avl_add(avl_tree_t *tree, void *new_node)
615 {
616 	avl_index_t where;
617 
618 	/*
619 	 * This is unfortunate. Give up.
620 	 */
621 	if (avl_find(tree, new_node, &where) != NULL) {
622 		filebench_log(LOG_ERROR,
623 		    "Attempting to insert already inserted node");
624 		return;
625 	}
626 	avl_insert(tree, new_node, where);
627 }
628 
629 /*
630  * Delete a node from the AVL tree.  Deletion is similar to insertion, but
631  * with 2 complications.
632  *
633  * First, we may be deleting an interior node. Consider the following subtree:
634  *
635  *     d           c            c
636  *    / \         / \          / \
637  *   b   e       b   e        b   e
638  *  / \	        / \          /
639  * a   c       a            a
640  *
641  * When we are deleting node (d), we find and bring up an adjacent valued leaf
642  * node, say (c), to take the interior node's place. In the code this is
643  * handled by temporarily swapping (d) and (c) in the tree and then using
644  * common code to delete (d) from the leaf position.
645  *
646  * Secondly, an interior deletion from a deep tree may require more than one
647  * rotation to fix the balance. This is handled by moving up the tree through
648  * parents and applying rotations as needed. The return value from
649  * avl_rotation() is used to detect when a subtree did not change overall
650  * height due to a rotation.
651  */
652 void
avl_remove(avl_tree_t * tree,void * data)653 avl_remove(avl_tree_t *tree, void *data)
654 {
655 	avl_node_t *delete;
656 	avl_node_t *parent;
657 	avl_node_t *node;
658 	avl_node_t tmp;
659 	int old_balance;
660 	int new_balance;
661 	int left;
662 	int right;
663 	int which_child;
664 	size_t off = tree->avl_offset;
665 
666 	if (tree == NULL) {
667 		filebench_log(LOG_ERROR, "No Tree Supplied");
668 		return;
669 	}
670 
671 	delete = AVL_DATA2NODE(data, off);
672 
673 	/*
674 	 * Deletion is easiest with a node that has at most 1 child.
675 	 * We swap a node with 2 children with a sequentially valued
676 	 * neighbor node. That node will have at most 1 child. Note this
677 	 * has no effect on the ordering of the remaining nodes.
678 	 *
679 	 * As an optimization, we choose the greater neighbor if the tree
680 	 * is right heavy, otherwise the left neighbor. This reduces the
681 	 * number of rotations needed.
682 	 */
683 	if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
684 
685 		/*
686 		 * choose node to swap from whichever side is taller
687 		 */
688 		old_balance = AVL_XBALANCE(delete);
689 		left = avl_balance2child[old_balance + 1];
690 		right = 1 - left;
691 
692 		/*
693 		 * get to the previous value'd node
694 		 * (down 1 left, as far as possible right)
695 		 */
696 		for (node = delete->avl_child[left];
697 		    node->avl_child[right] != NULL;
698 		    node = node->avl_child[right])
699 			;
700 
701 		/*
702 		 * create a temp placeholder for 'node'
703 		 * move 'node' to delete's spot in the tree
704 		 */
705 		tmp = *node;
706 
707 		*node = *delete;
708 		if (node->avl_child[left] == node)
709 			node->avl_child[left] = &tmp;
710 
711 		parent = AVL_XPARENT(node);
712 		if (parent != NULL)
713 			parent->avl_child[AVL_XCHILD(node)] = node;
714 		else
715 			tree->avl_root = node;
716 		AVL_SETPARENT(node->avl_child[left], node);
717 		AVL_SETPARENT(node->avl_child[right], node);
718 
719 		/*
720 		 * Put tmp where node used to be (just temporary).
721 		 * It always has a parent and at most 1 child.
722 		 */
723 		delete = &tmp;
724 		parent = AVL_XPARENT(delete);
725 		parent->avl_child[AVL_XCHILD(delete)] = delete;
726 		which_child = (delete->avl_child[1] != 0);
727 		if (delete->avl_child[which_child] != NULL)
728 			AVL_SETPARENT(delete->avl_child[which_child], delete);
729 	}
730 
731 
732 	/*
733 	 * Here we know "delete" is at least partially a leaf node. It can
734 	 * be easily removed from the tree.
735 	 */
736 	if (tree->avl_numnodes == 0) {
737 		filebench_log(LOG_ERROR,
738 		    "Deleting Node from already empty tree");
739 		return;
740 	}
741 
742 	--tree->avl_numnodes;
743 	parent = AVL_XPARENT(delete);
744 	which_child = AVL_XCHILD(delete);
745 	if (delete->avl_child[0] != NULL)
746 		node = delete->avl_child[0];
747 	else
748 		node = delete->avl_child[1];
749 
750 	/*
751 	 * Connect parent directly to node (leaving out delete).
752 	 */
753 	if (node != NULL) {
754 		AVL_SETPARENT(node, parent);
755 		AVL_SETCHILD(node, which_child);
756 	}
757 	if (parent == NULL) {
758 		tree->avl_root = node;
759 		return;
760 	}
761 	parent->avl_child[which_child] = node;
762 
763 
764 	/*
765 	 * Since the subtree is now shorter, begin adjusting parent balances
766 	 * and performing any needed rotations.
767 	 */
768 	do {
769 
770 		/*
771 		 * Move up the tree and adjust the balance
772 		 *
773 		 * Capture the parent and which_child values for the next
774 		 * iteration before any rotations occur.
775 		 */
776 		node = parent;
777 		old_balance = AVL_XBALANCE(node);
778 		new_balance = old_balance - avl_child2balance[which_child];
779 		parent = AVL_XPARENT(node);
780 		which_child = AVL_XCHILD(node);
781 
782 		/*
783 		 * If a node was in perfect balance but isn't anymore then
784 		 * we can stop, since the height didn't change above this point
785 		 * due to a deletion.
786 		 */
787 		if (old_balance == 0) {
788 			AVL_SETBALANCE(node, new_balance);
789 			break;
790 		}
791 
792 		/*
793 		 * If the new balance is zero, we don't need to rotate
794 		 * else
795 		 * need a rotation to fix the balance.
796 		 * If the rotation doesn't change the height
797 		 * of the sub-tree we have finished adjusting.
798 		 */
799 		if (new_balance == 0)
800 			AVL_SETBALANCE(node, new_balance);
801 		else if (!avl_rotation(tree, node, new_balance))
802 			break;
803 	} while (parent != NULL);
804 }
805 
806 #define	AVL_REINSERT(tree, obj)		\
807 	avl_remove((tree), (obj));	\
808 	avl_add((tree), (obj))
809 
810 boolean_t
avl_update_lt(avl_tree_t * t,void * obj)811 avl_update_lt(avl_tree_t *t, void *obj)
812 {
813 	void *neighbor;
814 
815 	if (!(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
816 	    (t->avl_compar(obj, neighbor) <= 0))) {
817 		filebench_log(LOG_ERROR,
818 		    "avl_update_lt: Neighbor miss compare");
819 		return (B_FALSE);
820 	}
821 
822 	neighbor = AVL_PREV(t, obj);
823 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
824 		AVL_REINSERT(t, obj);
825 		return (B_TRUE);
826 	}
827 
828 	return (B_FALSE);
829 }
830 
831 boolean_t
avl_update_gt(avl_tree_t * t,void * obj)832 avl_update_gt(avl_tree_t *t, void *obj)
833 {
834 	void *neighbor;
835 
836 	if (!(((neighbor = AVL_PREV(t, obj)) == NULL) ||
837 	    (t->avl_compar(obj, neighbor) >= 0))) {
838 		filebench_log(LOG_ERROR,
839 		    "avl_update_gt: Neighbor miss compare");
840 		return (B_FALSE);
841 	}
842 
843 	neighbor = AVL_NEXT(t, obj);
844 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
845 		AVL_REINSERT(t, obj);
846 		return (B_TRUE);
847 	}
848 
849 	return (B_FALSE);
850 }
851 
852 boolean_t
avl_update(avl_tree_t * t,void * obj)853 avl_update(avl_tree_t *t, void *obj)
854 {
855 	void *neighbor;
856 
857 	neighbor = AVL_PREV(t, obj);
858 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
859 		AVL_REINSERT(t, obj);
860 		return (B_TRUE);
861 	}
862 
863 	neighbor = AVL_NEXT(t, obj);
864 	if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
865 		AVL_REINSERT(t, obj);
866 		return (B_TRUE);
867 	}
868 
869 	return (B_FALSE);
870 }
871 
872 /*
873  * initialize a new AVL tree
874  */
875 void
avl_create(avl_tree_t * tree,int (* compar)(const void *,const void *),size_t size,size_t offset)876 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
877     size_t size, size_t offset)
878 {
879 	if ((tree == NULL) || (compar == NULL) || (size == 0) ||
880 	    (size < (offset + sizeof (avl_node_t)))) {
881 		filebench_log(LOG_ERROR,
882 		    "avl_create: Bad Parameters Passed");
883 		return;
884 	}
885 ;
886 #ifdef _LP64
887 	if ((offset & 0x7) != 0) {
888 		filebench_log(LOG_ERROR, "Missaligned pointer to new data");
889 		return;
890 	}
891 #endif
892 
893 	tree->avl_compar = compar;
894 	tree->avl_root = NULL;
895 	tree->avl_numnodes = 0;
896 	tree->avl_size = size;
897 	tree->avl_offset = offset;
898 }
899 
900 /*
901  * Delete a tree.
902  */
903 /* ARGSUSED */
904 void
avl_destroy(avl_tree_t * tree)905 avl_destroy(avl_tree_t *tree)
906 {
907 	if ((tree == NULL) || (tree->avl_numnodes != 0) ||
908 	    (tree->avl_root != NULL))
909 		filebench_log(LOG_DEBUG_IMPL, "avl_tree: Tree not destroyed");
910 }
911 
912 
913 /*
914  * Return the number of nodes in an AVL tree.
915  */
916 unsigned long
avl_numnodes(avl_tree_t * tree)917 avl_numnodes(avl_tree_t *tree)
918 {
919 	if (tree == NULL) {
920 		filebench_log(LOG_ERROR, "avl_numnodes: Null tree pointer");
921 		return (0);
922 	}
923 	return (tree->avl_numnodes);
924 }
925 
926 boolean_t
avl_is_empty(avl_tree_t * tree)927 avl_is_empty(avl_tree_t *tree)
928 {
929 	if (tree == NULL) {
930 		filebench_log(LOG_ERROR, "avl_is_empty: Null tree pointer");
931 		return (0);
932 	}
933 	return (tree->avl_numnodes == 0);
934 }
935 
936 #define	CHILDBIT	(1L)
937 
938 /*
939  * Post-order tree walk used to visit all tree nodes and destroy the tree
940  * in post order. This is used for destroying a tree w/o paying any cost
941  * for rebalancing it.
942  *
943  * example:
944  *
945  *	void *cookie = NULL;
946  *	my_data_t *node;
947  *
948  *	while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
949  *		free(node);
950  *	avl_destroy(tree);
951  *
952  * The cookie is really an avl_node_t to the current node's parent and
953  * an indication of which child you looked at last.
954  *
955  * On input, a cookie value of CHILDBIT indicates the tree is done.
956  */
957 void *
avl_destroy_nodes(avl_tree_t * tree,void ** cookie)958 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
959 {
960 	avl_node_t	*node;
961 	avl_node_t	*parent;
962 	int		child;
963 	void		*first;
964 	size_t		off = tree->avl_offset;
965 
966 	/*
967 	 * Initial calls go to the first node or it's right descendant.
968 	 */
969 	if (*cookie == NULL) {
970 		first = avl_first(tree);
971 
972 		/*
973 		 * deal with an empty tree
974 		 */
975 		if (first == NULL) {
976 			*cookie = (void *)CHILDBIT;
977 			return (NULL);
978 		}
979 
980 		node = AVL_DATA2NODE(first, off);
981 		parent = AVL_XPARENT(node);
982 		goto check_right_side;
983 	}
984 
985 	/*
986 	 * If there is no parent to return to we are done.
987 	 */
988 	parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
989 	if (parent == NULL) {
990 		if (tree->avl_root != NULL) {
991 			if (tree->avl_numnodes != 1) {
992 				filebench_log(LOG_DEBUG_IMPL,
993 				    "avl_destroy_nodes:"
994 				    " number of nodes wrong");
995 			}
996 			tree->avl_root = NULL;
997 			tree->avl_numnodes = 0;
998 		}
999 		return (NULL);
1000 	}
1001 
1002 	/*
1003 	 * Remove the child pointer we just visited from the parent and tree.
1004 	 */
1005 	child = (uintptr_t)(*cookie) & CHILDBIT;
1006 	parent->avl_child[child] = NULL;
1007 	if (tree->avl_numnodes <= 1)
1008 		filebench_log(LOG_DEBUG_IMPL,
1009 		    "avl_destroy_nodes: number of nodes wrong");
1010 
1011 	--tree->avl_numnodes;
1012 
1013 	/*
1014 	 * If we just did a right child or there isn't one, go up to parent.
1015 	 */
1016 	if (child == 1 || parent->avl_child[1] == NULL) {
1017 		node = parent;
1018 		parent = AVL_XPARENT(parent);
1019 		goto done;
1020 	}
1021 
1022 	/*
1023 	 * Do parent's right child, then leftmost descendent.
1024 	 */
1025 	node = parent->avl_child[1];
1026 	while (node->avl_child[0] != NULL) {
1027 		parent = node;
1028 		node = node->avl_child[0];
1029 	}
1030 
1031 	/*
1032 	 * If here, we moved to a left child. It may have one
1033 	 * child on the right (when balance == +1).
1034 	 */
1035 check_right_side:
1036 	if (node->avl_child[1] != NULL) {
1037 		if (AVL_XBALANCE(node) != 1)
1038 			filebench_log(LOG_DEBUG_IMPL,
1039 			    "avl_destroy_nodes: Tree inconsistency");
1040 		parent = node;
1041 		node = node->avl_child[1];
1042 		if (node->avl_child[0] != NULL ||
1043 		    node->avl_child[1] != NULL)
1044 			filebench_log(LOG_DEBUG_IMPL,
1045 			    "avl_destroy_nodes: Destroying non leaf node");
1046 	} else {
1047 
1048 		if (AVL_XBALANCE(node) > 0)
1049 			filebench_log(LOG_DEBUG_IMPL,
1050 			    "avl_destroy_nodes: Tree inconsistency");
1051 	}
1052 
1053 done:
1054 	if (parent == NULL) {
1055 		*cookie = (void *)CHILDBIT;
1056 		if (node != tree->avl_root)
1057 			filebench_log(LOG_DEBUG_IMPL,
1058 			    "avl_destroy_nodes: Dangling last node");
1059 	} else {
1060 		*cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1061 	}
1062 
1063 	return (AVL_NODE2DATA(node, off));
1064 }
1065