1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26
27 /*
28 * AVL - generic AVL tree implementation for FileBench use.
29 * -Adapted from the avl.c open source code used in the Solaris Kernel-
30 *
31 * A complete description of AVL trees can be found in many CS textbooks.
32 *
33 * Here is a very brief overview. An AVL tree is a binary search tree that is
34 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
35 * any given node, the left and right subtrees are allowed to differ in height
36 * by at most 1 level.
37 *
38 * This relaxation from a perfectly balanced binary tree allows doing
39 * insertion and deletion relatively efficiently. Searching the tree is
40 * still a fast operation, roughly O(log(N)).
41 *
42 * The key to insertion and deletion is a set of tree maniuplations called
43 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
44 *
45 * This implementation of AVL trees has the following peculiarities:
46 *
47 * - The AVL specific data structures are physically embedded as fields
48 * in the "using" data structures. To maintain generality the code
49 * must constantly translate between "avl_node_t *" and containing
50 * data structure "void *"s by adding/subracting the avl_offset.
51 *
52 * - Since the AVL data is always embedded in other structures, there is
53 * no locking or memory allocation in the AVL routines. This must be
54 * provided for by the enclosing data structure's semantics. Typically,
55 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
56 * exclusive write lock. Other operations require a read lock.
57 *
58 * - The implementation uses iteration instead of explicit recursion,
59 * since it is intended to run on limited size kernel stacks. Since
60 * there is no recursion stack present to move "up" in the tree,
61 * there is an explicit "parent" link in the avl_node_t.
62 *
63 * - The left/right children pointers of a node are in an array.
64 * In the code, variables (instead of constants) are used to represent
65 * left and right indices. The implementation is written as if it only
66 * dealt with left handed manipulations. By changing the value assigned
67 * to "left", the code also works for right handed trees. The
68 * following variables/terms are frequently used:
69 *
70 * int left; // 0 when dealing with left children,
71 * // 1 for dealing with right children
72 *
73 * int left_heavy; // -1 when left subtree is taller at some node,
74 * // +1 when right subtree is taller
75 *
76 * int right; // will be the opposite of left (0 or 1)
77 * int right_heavy;// will be the opposite of left_heavy (-1 or 1)
78 *
79 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right)
80 *
81 * Though it is a little more confusing to read the code, the approach
82 * allows using half as much code (and hence cache footprint) for tree
83 * manipulations and eliminates many conditional branches.
84 *
85 * - The avl_index_t is an opaque "cookie" used to find nodes at or
86 * adjacent to where a new value would be inserted in the tree. The value
87 * is a modified "avl_node_t *". The bottom bit (normally 0 for a
88 * pointer) is set to indicate if that the new node has a value greater
89 * than the value of the indicated "avl_node_t *".
90 */
91
92 #include "filebench.h"
93 #include "fb_avl.h"
94
95 /*
96 * Small arrays to translate between balance (or diff) values and child indeces.
97 *
98 * Code that deals with binary tree data structures will randomly use
99 * left and right children when examining a tree. C "if()" statements
100 * which evaluate randomly suffer from very poor hardware branch prediction.
101 * In this code we avoid some of the branch mispredictions by using the
102 * following translation arrays. They replace random branches with an
103 * additional memory reference. Since the translation arrays are both very
104 * small the data should remain efficiently in cache.
105 */
106 static const int avl_child2balance[2] = {-1, 1};
107 static const int avl_balance2child[] = {0, 0, 1};
108
109
110 /*
111 * Walk from one node to the previous valued node (ie. an infix walk
112 * towards the left). At any given node we do one of 2 things:
113 *
114 * - If there is a left child, go to it, then to it's rightmost descendant.
115 *
116 * - otherwise we return thru parent nodes until we've come from a right child.
117 *
118 * Return Value:
119 * NULL - if at the end of the nodes
120 * otherwise next node
121 */
122 void *
avl_walk(avl_tree_t * tree,void * oldnode,int left)123 avl_walk(avl_tree_t *tree, void *oldnode, int left)
124 {
125 size_t off = tree->avl_offset;
126 avl_node_t *node = AVL_DATA2NODE(oldnode, off);
127 int right = 1 - left;
128 int was_child;
129
130
131 /*
132 * nowhere to walk to if tree is empty
133 */
134 if (node == NULL)
135 return (NULL);
136
137 /*
138 * Visit the previous valued node. There are two possibilities:
139 *
140 * If this node has a left child, go down one left, then all
141 * the way right.
142 */
143 if (node->avl_child[left] != NULL) {
144 for (node = node->avl_child[left];
145 node->avl_child[right] != NULL;
146 node = node->avl_child[right])
147 ;
148 /*
149 * Otherwise, return thru left children as far as we can.
150 */
151 } else {
152 for (;;) {
153 was_child = AVL_XCHILD(node);
154 node = AVL_XPARENT(node);
155 if (node == NULL)
156 return (NULL);
157 if (was_child == right)
158 break;
159 }
160 }
161
162 return (AVL_NODE2DATA(node, off));
163 }
164
165 /*
166 * Return the lowest valued node in a tree or NULL.
167 * (leftmost child from root of tree)
168 */
169 void *
avl_first(avl_tree_t * tree)170 avl_first(avl_tree_t *tree)
171 {
172 avl_node_t *node;
173 avl_node_t *prev = NULL;
174 size_t off = tree->avl_offset;
175
176 for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
177 prev = node;
178
179 if (prev != NULL)
180 return (AVL_NODE2DATA(prev, off));
181 return (NULL);
182 }
183
184 /*
185 * Return the highest valued node in a tree or NULL.
186 * (rightmost child from root of tree)
187 */
188 void *
avl_last(avl_tree_t * tree)189 avl_last(avl_tree_t *tree)
190 {
191 avl_node_t *node;
192 avl_node_t *prev = NULL;
193 size_t off = tree->avl_offset;
194
195 for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
196 prev = node;
197
198 if (prev != NULL)
199 return (AVL_NODE2DATA(prev, off));
200 return (NULL);
201 }
202
203 /*
204 * Access the node immediately before or after an insertion point.
205 *
206 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
207 *
208 * Return value:
209 * NULL: no node in the given direction
210 * "void *" of the found tree node
211 */
212 void *
avl_nearest(avl_tree_t * tree,avl_index_t where,int direction)213 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
214 {
215 int child = AVL_INDEX2CHILD(where);
216 avl_node_t *node = AVL_INDEX2NODE(where);
217 void *data;
218 size_t off = tree->avl_offset;
219
220 if (node == NULL) {
221 if (tree->avl_root != NULL)
222 filebench_log(LOG_ERROR,
223 "Null Node Pointer Supplied");
224 return (NULL);
225 }
226 data = AVL_NODE2DATA(node, off);
227 if (child != direction)
228 return (data);
229
230 return (avl_walk(tree, data, direction));
231 }
232
233
234 /*
235 * Search for the node which contains "value". The algorithm is a
236 * simple binary tree search.
237 *
238 * return value:
239 * NULL: the value is not in the AVL tree
240 * *where (if not NULL) is set to indicate the insertion point
241 * "void *" of the found tree node
242 */
243 void *
avl_find(avl_tree_t * tree,void * value,avl_index_t * where)244 avl_find(avl_tree_t *tree, void *value, avl_index_t *where)
245 {
246 avl_node_t *node;
247 avl_node_t *prev = NULL;
248 int child = 0;
249 int diff;
250 size_t off = tree->avl_offset;
251
252 for (node = tree->avl_root; node != NULL;
253 node = node->avl_child[child]) {
254
255 prev = node;
256
257 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
258 if (!((-1 <= diff) && (diff <= 1))) {
259 filebench_log(LOG_ERROR, "avl compare error");
260 return (NULL);
261 }
262 if (diff == 0) {
263 if (where != NULL)
264 *where = 0;
265
266 return (AVL_NODE2DATA(node, off));
267 }
268 child = avl_balance2child[1 + diff];
269
270 }
271
272 if (where != NULL)
273 *where = AVL_MKINDEX(prev, child);
274
275 return (NULL);
276 }
277
278
279 /*
280 * Perform a rotation to restore balance at the subtree given by depth.
281 *
282 * This routine is used by both insertion and deletion. The return value
283 * indicates:
284 * 0 : subtree did not change height
285 * !0 : subtree was reduced in height
286 *
287 * The code is written as if handling left rotations, right rotations are
288 * symmetric and handled by swapping values of variables right/left[_heavy]
289 *
290 * On input balance is the "new" balance at "node". This value is either
291 * -2 or +2.
292 */
293 static int
avl_rotation(avl_tree_t * tree,avl_node_t * node,int balance)294 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
295 {
296 int left = !(balance < 0); /* when balance = -2, left will be 0 */
297 int right = 1 - left;
298 int left_heavy = balance >> 1;
299 int right_heavy = -left_heavy;
300 avl_node_t *parent = AVL_XPARENT(node);
301 avl_node_t *child = node->avl_child[left];
302 avl_node_t *cright;
303 avl_node_t *gchild;
304 avl_node_t *gright;
305 avl_node_t *gleft;
306 int which_child = AVL_XCHILD(node);
307 int child_bal = AVL_XBALANCE(child);
308
309 /* BEGIN CSTYLED */
310 /*
311 * case 1 : node is overly left heavy, the left child is balanced or
312 * also left heavy. This requires the following rotation.
313 *
314 * (node bal:-2)
315 * / \
316 * / \
317 * (child bal:0 or -1)
318 * / \
319 * / \
320 * cright
321 *
322 * becomes:
323 *
324 * (child bal:1 or 0)
325 * / \
326 * / \
327 * (node bal:-1 or 0)
328 * / \
329 * / \
330 * cright
331 *
332 * we detect this situation by noting that child's balance is not
333 * right_heavy.
334 */
335 /* END CSTYLED */
336 if (child_bal != right_heavy) {
337
338 /*
339 * compute new balance of nodes
340 *
341 * If child used to be left heavy (now balanced) we reduced
342 * the height of this sub-tree -- used in "return...;" below
343 */
344 child_bal += right_heavy; /* adjust towards right */
345
346 /*
347 * move "cright" to be node's left child
348 */
349 cright = child->avl_child[right];
350 node->avl_child[left] = cright;
351 if (cright != NULL) {
352 AVL_SETPARENT(cright, node);
353 AVL_SETCHILD(cright, left);
354 }
355
356 /*
357 * move node to be child's right child
358 */
359 child->avl_child[right] = node;
360 AVL_SETBALANCE(node, -child_bal);
361 AVL_SETCHILD(node, right);
362 AVL_SETPARENT(node, child);
363
364 /*
365 * update the pointer into this subtree
366 */
367 AVL_SETBALANCE(child, child_bal);
368 AVL_SETCHILD(child, which_child);
369 AVL_SETPARENT(child, parent);
370 if (parent != NULL)
371 parent->avl_child[which_child] = child;
372 else
373 tree->avl_root = child;
374
375 return (child_bal == 0);
376 }
377
378 /* BEGIN CSTYLED */
379 /*
380 * case 2 : When node is left heavy, but child is right heavy we use
381 * a different rotation.
382 *
383 * (node b:-2)
384 * / \
385 * / \
386 * / \
387 * (child b:+1)
388 * / \
389 * / \
390 * (gchild b: != 0)
391 * / \
392 * / \
393 * gleft gright
394 *
395 * becomes:
396 *
397 * (gchild b:0)
398 * / \
399 * / \
400 * / \
401 * (child b:?) (node b:?)
402 * / \ / \
403 * / \ / \
404 * gleft gright
405 *
406 * computing the new balances is more complicated. As an example:
407 * if gchild was right_heavy, then child is now left heavy
408 * else it is balanced
409 */
410 /* END CSTYLED */
411 gchild = child->avl_child[right];
412 gleft = gchild->avl_child[left];
413 gright = gchild->avl_child[right];
414
415 /*
416 * move gright to left child of node and
417 *
418 * move gleft to right child of node
419 */
420 node->avl_child[left] = gright;
421 if (gright != NULL) {
422 AVL_SETPARENT(gright, node);
423 AVL_SETCHILD(gright, left);
424 }
425
426 child->avl_child[right] = gleft;
427 if (gleft != NULL) {
428 AVL_SETPARENT(gleft, child);
429 AVL_SETCHILD(gleft, right);
430 }
431
432 /*
433 * move child to left child of gchild and
434 *
435 * move node to right child of gchild and
436 *
437 * fixup parent of all this to point to gchild
438 */
439 balance = AVL_XBALANCE(gchild);
440 gchild->avl_child[left] = child;
441 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
442 AVL_SETPARENT(child, gchild);
443 AVL_SETCHILD(child, left);
444
445 gchild->avl_child[right] = node;
446 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
447 AVL_SETPARENT(node, gchild);
448 AVL_SETCHILD(node, right);
449
450 AVL_SETBALANCE(gchild, 0);
451 AVL_SETPARENT(gchild, parent);
452 AVL_SETCHILD(gchild, which_child);
453 if (parent != NULL)
454 parent->avl_child[which_child] = gchild;
455 else
456 tree->avl_root = gchild;
457
458 return (1); /* the new tree is always shorter */
459 }
460
461
462 /*
463 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
464 *
465 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
466 * searches out to the leaf positions. The avl_index_t indicates the node
467 * which will be the parent of the new node.
468 *
469 * After the node is inserted, a single rotation further up the tree may
470 * be necessary to maintain an acceptable AVL balance.
471 */
472 void
avl_insert(avl_tree_t * tree,void * new_data,avl_index_t where)473 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
474 {
475 avl_node_t *node;
476 avl_node_t *parent = AVL_INDEX2NODE(where);
477 int old_balance;
478 int new_balance;
479 int which_child = AVL_INDEX2CHILD(where);
480 size_t off = tree->avl_offset;
481
482 if (tree == NULL) {
483 filebench_log(LOG_ERROR, "No Tree Supplied");
484 return;
485 }
486 #ifdef _LP64
487 if (((uintptr_t)new_data & 0x7) != 0) {
488 filebench_log(LOG_ERROR, "Missaligned pointer to new data");
489 return;
490 }
491 #endif
492
493 node = AVL_DATA2NODE(new_data, off);
494
495 /*
496 * First, add the node to the tree at the indicated position.
497 */
498 ++tree->avl_numnodes;
499
500 node->avl_child[0] = NULL;
501 node->avl_child[1] = NULL;
502
503 AVL_SETCHILD(node, which_child);
504 AVL_SETBALANCE(node, 0);
505 AVL_SETPARENT(node, parent);
506 if (parent != NULL) {
507 if (parent->avl_child[which_child] != NULL)
508 filebench_log(LOG_DEBUG_IMPL,
509 "Overwriting existing pointer");
510
511 parent->avl_child[which_child] = node;
512 } else {
513 if (tree->avl_root != NULL)
514 filebench_log(LOG_DEBUG_IMPL,
515 "Overwriting existing pointer");
516
517 tree->avl_root = node;
518 }
519 /*
520 * Now, back up the tree modifying the balance of all nodes above the
521 * insertion point. If we get to a highly unbalanced ancestor, we
522 * need to do a rotation. If we back out of the tree we are done.
523 * If we brought any subtree into perfect balance (0), we are also done.
524 */
525 for (;;) {
526 node = parent;
527 if (node == NULL)
528 return;
529
530 /*
531 * Compute the new balance
532 */
533 old_balance = AVL_XBALANCE(node);
534 new_balance = old_balance + avl_child2balance[which_child];
535
536 /*
537 * If we introduced equal balance, then we are done immediately
538 */
539 if (new_balance == 0) {
540 AVL_SETBALANCE(node, 0);
541 return;
542 }
543
544 /*
545 * If both old and new are not zero we went
546 * from -1 to -2 balance, do a rotation.
547 */
548 if (old_balance != 0)
549 break;
550
551 AVL_SETBALANCE(node, new_balance);
552 parent = AVL_XPARENT(node);
553 which_child = AVL_XCHILD(node);
554 }
555
556 /*
557 * perform a rotation to fix the tree and return
558 */
559 (void) avl_rotation(tree, node, new_balance);
560 }
561
562 /*
563 * Insert "new_data" in "tree" in the given "direction" either after or
564 * before (AVL_AFTER, AVL_BEFORE) the data "here".
565 *
566 * Insertions can only be done at empty leaf points in the tree, therefore
567 * if the given child of the node is already present we move to either
568 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
569 * every other node in the tree is a leaf, this always works.
570 *
571 * To help developers using this interface, we assert that the new node
572 * is correctly ordered at every step of the way in DEBUG kernels.
573 */
574 void
avl_insert_here(avl_tree_t * tree,void * new_data,void * here,int direction)575 avl_insert_here(
576 avl_tree_t *tree,
577 void *new_data,
578 void *here,
579 int direction)
580 {
581 avl_node_t *node;
582 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
583
584 if ((tree == NULL) || (new_data == NULL) || (here == NULL) ||
585 !((direction == AVL_BEFORE) || (direction == AVL_AFTER))) {
586 filebench_log(LOG_ERROR,
587 "avl_insert_here: Bad Parameters Passed");
588 return;
589 }
590
591 /*
592 * If corresponding child of node is not NULL, go to the neighboring
593 * node and reverse the insertion direction.
594 */
595 node = AVL_DATA2NODE(here, tree->avl_offset);
596
597 if (node->avl_child[child] != NULL) {
598 node = node->avl_child[child];
599 child = 1 - child;
600 while (node->avl_child[child] != NULL)
601 node = node->avl_child[child];
602
603 }
604 if (node->avl_child[child] != NULL)
605 filebench_log(LOG_DEBUG_IMPL, "Overwriting existing pointer");
606
607 avl_insert(tree, new_data, AVL_MKINDEX(node, child));
608 }
609
610 /*
611 * Add a new node to an AVL tree.
612 */
613 void
avl_add(avl_tree_t * tree,void * new_node)614 avl_add(avl_tree_t *tree, void *new_node)
615 {
616 avl_index_t where;
617
618 /*
619 * This is unfortunate. Give up.
620 */
621 if (avl_find(tree, new_node, &where) != NULL) {
622 filebench_log(LOG_ERROR,
623 "Attempting to insert already inserted node");
624 return;
625 }
626 avl_insert(tree, new_node, where);
627 }
628
629 /*
630 * Delete a node from the AVL tree. Deletion is similar to insertion, but
631 * with 2 complications.
632 *
633 * First, we may be deleting an interior node. Consider the following subtree:
634 *
635 * d c c
636 * / \ / \ / \
637 * b e b e b e
638 * / \ / \ /
639 * a c a a
640 *
641 * When we are deleting node (d), we find and bring up an adjacent valued leaf
642 * node, say (c), to take the interior node's place. In the code this is
643 * handled by temporarily swapping (d) and (c) in the tree and then using
644 * common code to delete (d) from the leaf position.
645 *
646 * Secondly, an interior deletion from a deep tree may require more than one
647 * rotation to fix the balance. This is handled by moving up the tree through
648 * parents and applying rotations as needed. The return value from
649 * avl_rotation() is used to detect when a subtree did not change overall
650 * height due to a rotation.
651 */
652 void
avl_remove(avl_tree_t * tree,void * data)653 avl_remove(avl_tree_t *tree, void *data)
654 {
655 avl_node_t *delete;
656 avl_node_t *parent;
657 avl_node_t *node;
658 avl_node_t tmp;
659 int old_balance;
660 int new_balance;
661 int left;
662 int right;
663 int which_child;
664 size_t off = tree->avl_offset;
665
666 if (tree == NULL) {
667 filebench_log(LOG_ERROR, "No Tree Supplied");
668 return;
669 }
670
671 delete = AVL_DATA2NODE(data, off);
672
673 /*
674 * Deletion is easiest with a node that has at most 1 child.
675 * We swap a node with 2 children with a sequentially valued
676 * neighbor node. That node will have at most 1 child. Note this
677 * has no effect on the ordering of the remaining nodes.
678 *
679 * As an optimization, we choose the greater neighbor if the tree
680 * is right heavy, otherwise the left neighbor. This reduces the
681 * number of rotations needed.
682 */
683 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
684
685 /*
686 * choose node to swap from whichever side is taller
687 */
688 old_balance = AVL_XBALANCE(delete);
689 left = avl_balance2child[old_balance + 1];
690 right = 1 - left;
691
692 /*
693 * get to the previous value'd node
694 * (down 1 left, as far as possible right)
695 */
696 for (node = delete->avl_child[left];
697 node->avl_child[right] != NULL;
698 node = node->avl_child[right])
699 ;
700
701 /*
702 * create a temp placeholder for 'node'
703 * move 'node' to delete's spot in the tree
704 */
705 tmp = *node;
706
707 *node = *delete;
708 if (node->avl_child[left] == node)
709 node->avl_child[left] = &tmp;
710
711 parent = AVL_XPARENT(node);
712 if (parent != NULL)
713 parent->avl_child[AVL_XCHILD(node)] = node;
714 else
715 tree->avl_root = node;
716 AVL_SETPARENT(node->avl_child[left], node);
717 AVL_SETPARENT(node->avl_child[right], node);
718
719 /*
720 * Put tmp where node used to be (just temporary).
721 * It always has a parent and at most 1 child.
722 */
723 delete = &tmp;
724 parent = AVL_XPARENT(delete);
725 parent->avl_child[AVL_XCHILD(delete)] = delete;
726 which_child = (delete->avl_child[1] != 0);
727 if (delete->avl_child[which_child] != NULL)
728 AVL_SETPARENT(delete->avl_child[which_child], delete);
729 }
730
731
732 /*
733 * Here we know "delete" is at least partially a leaf node. It can
734 * be easily removed from the tree.
735 */
736 if (tree->avl_numnodes == 0) {
737 filebench_log(LOG_ERROR,
738 "Deleting Node from already empty tree");
739 return;
740 }
741
742 --tree->avl_numnodes;
743 parent = AVL_XPARENT(delete);
744 which_child = AVL_XCHILD(delete);
745 if (delete->avl_child[0] != NULL)
746 node = delete->avl_child[0];
747 else
748 node = delete->avl_child[1];
749
750 /*
751 * Connect parent directly to node (leaving out delete).
752 */
753 if (node != NULL) {
754 AVL_SETPARENT(node, parent);
755 AVL_SETCHILD(node, which_child);
756 }
757 if (parent == NULL) {
758 tree->avl_root = node;
759 return;
760 }
761 parent->avl_child[which_child] = node;
762
763
764 /*
765 * Since the subtree is now shorter, begin adjusting parent balances
766 * and performing any needed rotations.
767 */
768 do {
769
770 /*
771 * Move up the tree and adjust the balance
772 *
773 * Capture the parent and which_child values for the next
774 * iteration before any rotations occur.
775 */
776 node = parent;
777 old_balance = AVL_XBALANCE(node);
778 new_balance = old_balance - avl_child2balance[which_child];
779 parent = AVL_XPARENT(node);
780 which_child = AVL_XCHILD(node);
781
782 /*
783 * If a node was in perfect balance but isn't anymore then
784 * we can stop, since the height didn't change above this point
785 * due to a deletion.
786 */
787 if (old_balance == 0) {
788 AVL_SETBALANCE(node, new_balance);
789 break;
790 }
791
792 /*
793 * If the new balance is zero, we don't need to rotate
794 * else
795 * need a rotation to fix the balance.
796 * If the rotation doesn't change the height
797 * of the sub-tree we have finished adjusting.
798 */
799 if (new_balance == 0)
800 AVL_SETBALANCE(node, new_balance);
801 else if (!avl_rotation(tree, node, new_balance))
802 break;
803 } while (parent != NULL);
804 }
805
806 #define AVL_REINSERT(tree, obj) \
807 avl_remove((tree), (obj)); \
808 avl_add((tree), (obj))
809
810 boolean_t
avl_update_lt(avl_tree_t * t,void * obj)811 avl_update_lt(avl_tree_t *t, void *obj)
812 {
813 void *neighbor;
814
815 if (!(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
816 (t->avl_compar(obj, neighbor) <= 0))) {
817 filebench_log(LOG_ERROR,
818 "avl_update_lt: Neighbor miss compare");
819 return (B_FALSE);
820 }
821
822 neighbor = AVL_PREV(t, obj);
823 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
824 AVL_REINSERT(t, obj);
825 return (B_TRUE);
826 }
827
828 return (B_FALSE);
829 }
830
831 boolean_t
avl_update_gt(avl_tree_t * t,void * obj)832 avl_update_gt(avl_tree_t *t, void *obj)
833 {
834 void *neighbor;
835
836 if (!(((neighbor = AVL_PREV(t, obj)) == NULL) ||
837 (t->avl_compar(obj, neighbor) >= 0))) {
838 filebench_log(LOG_ERROR,
839 "avl_update_gt: Neighbor miss compare");
840 return (B_FALSE);
841 }
842
843 neighbor = AVL_NEXT(t, obj);
844 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
845 AVL_REINSERT(t, obj);
846 return (B_TRUE);
847 }
848
849 return (B_FALSE);
850 }
851
852 boolean_t
avl_update(avl_tree_t * t,void * obj)853 avl_update(avl_tree_t *t, void *obj)
854 {
855 void *neighbor;
856
857 neighbor = AVL_PREV(t, obj);
858 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
859 AVL_REINSERT(t, obj);
860 return (B_TRUE);
861 }
862
863 neighbor = AVL_NEXT(t, obj);
864 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
865 AVL_REINSERT(t, obj);
866 return (B_TRUE);
867 }
868
869 return (B_FALSE);
870 }
871
872 /*
873 * initialize a new AVL tree
874 */
875 void
avl_create(avl_tree_t * tree,int (* compar)(const void *,const void *),size_t size,size_t offset)876 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
877 size_t size, size_t offset)
878 {
879 if ((tree == NULL) || (compar == NULL) || (size == 0) ||
880 (size < (offset + sizeof (avl_node_t)))) {
881 filebench_log(LOG_ERROR,
882 "avl_create: Bad Parameters Passed");
883 return;
884 }
885 ;
886 #ifdef _LP64
887 if ((offset & 0x7) != 0) {
888 filebench_log(LOG_ERROR, "Missaligned pointer to new data");
889 return;
890 }
891 #endif
892
893 tree->avl_compar = compar;
894 tree->avl_root = NULL;
895 tree->avl_numnodes = 0;
896 tree->avl_size = size;
897 tree->avl_offset = offset;
898 }
899
900 /*
901 * Delete a tree.
902 */
903 /* ARGSUSED */
904 void
avl_destroy(avl_tree_t * tree)905 avl_destroy(avl_tree_t *tree)
906 {
907 if ((tree == NULL) || (tree->avl_numnodes != 0) ||
908 (tree->avl_root != NULL))
909 filebench_log(LOG_DEBUG_IMPL, "avl_tree: Tree not destroyed");
910 }
911
912
913 /*
914 * Return the number of nodes in an AVL tree.
915 */
916 unsigned long
avl_numnodes(avl_tree_t * tree)917 avl_numnodes(avl_tree_t *tree)
918 {
919 if (tree == NULL) {
920 filebench_log(LOG_ERROR, "avl_numnodes: Null tree pointer");
921 return (0);
922 }
923 return (tree->avl_numnodes);
924 }
925
926 boolean_t
avl_is_empty(avl_tree_t * tree)927 avl_is_empty(avl_tree_t *tree)
928 {
929 if (tree == NULL) {
930 filebench_log(LOG_ERROR, "avl_is_empty: Null tree pointer");
931 return (0);
932 }
933 return (tree->avl_numnodes == 0);
934 }
935
936 #define CHILDBIT (1L)
937
938 /*
939 * Post-order tree walk used to visit all tree nodes and destroy the tree
940 * in post order. This is used for destroying a tree w/o paying any cost
941 * for rebalancing it.
942 *
943 * example:
944 *
945 * void *cookie = NULL;
946 * my_data_t *node;
947 *
948 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
949 * free(node);
950 * avl_destroy(tree);
951 *
952 * The cookie is really an avl_node_t to the current node's parent and
953 * an indication of which child you looked at last.
954 *
955 * On input, a cookie value of CHILDBIT indicates the tree is done.
956 */
957 void *
avl_destroy_nodes(avl_tree_t * tree,void ** cookie)958 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
959 {
960 avl_node_t *node;
961 avl_node_t *parent;
962 int child;
963 void *first;
964 size_t off = tree->avl_offset;
965
966 /*
967 * Initial calls go to the first node or it's right descendant.
968 */
969 if (*cookie == NULL) {
970 first = avl_first(tree);
971
972 /*
973 * deal with an empty tree
974 */
975 if (first == NULL) {
976 *cookie = (void *)CHILDBIT;
977 return (NULL);
978 }
979
980 node = AVL_DATA2NODE(first, off);
981 parent = AVL_XPARENT(node);
982 goto check_right_side;
983 }
984
985 /*
986 * If there is no parent to return to we are done.
987 */
988 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
989 if (parent == NULL) {
990 if (tree->avl_root != NULL) {
991 if (tree->avl_numnodes != 1) {
992 filebench_log(LOG_DEBUG_IMPL,
993 "avl_destroy_nodes:"
994 " number of nodes wrong");
995 }
996 tree->avl_root = NULL;
997 tree->avl_numnodes = 0;
998 }
999 return (NULL);
1000 }
1001
1002 /*
1003 * Remove the child pointer we just visited from the parent and tree.
1004 */
1005 child = (uintptr_t)(*cookie) & CHILDBIT;
1006 parent->avl_child[child] = NULL;
1007 if (tree->avl_numnodes <= 1)
1008 filebench_log(LOG_DEBUG_IMPL,
1009 "avl_destroy_nodes: number of nodes wrong");
1010
1011 --tree->avl_numnodes;
1012
1013 /*
1014 * If we just did a right child or there isn't one, go up to parent.
1015 */
1016 if (child == 1 || parent->avl_child[1] == NULL) {
1017 node = parent;
1018 parent = AVL_XPARENT(parent);
1019 goto done;
1020 }
1021
1022 /*
1023 * Do parent's right child, then leftmost descendent.
1024 */
1025 node = parent->avl_child[1];
1026 while (node->avl_child[0] != NULL) {
1027 parent = node;
1028 node = node->avl_child[0];
1029 }
1030
1031 /*
1032 * If here, we moved to a left child. It may have one
1033 * child on the right (when balance == +1).
1034 */
1035 check_right_side:
1036 if (node->avl_child[1] != NULL) {
1037 if (AVL_XBALANCE(node) != 1)
1038 filebench_log(LOG_DEBUG_IMPL,
1039 "avl_destroy_nodes: Tree inconsistency");
1040 parent = node;
1041 node = node->avl_child[1];
1042 if (node->avl_child[0] != NULL ||
1043 node->avl_child[1] != NULL)
1044 filebench_log(LOG_DEBUG_IMPL,
1045 "avl_destroy_nodes: Destroying non leaf node");
1046 } else {
1047
1048 if (AVL_XBALANCE(node) > 0)
1049 filebench_log(LOG_DEBUG_IMPL,
1050 "avl_destroy_nodes: Tree inconsistency");
1051 }
1052
1053 done:
1054 if (parent == NULL) {
1055 *cookie = (void *)CHILDBIT;
1056 if (node != tree->avl_root)
1057 filebench_log(LOG_DEBUG_IMPL,
1058 "avl_destroy_nodes: Dangling last node");
1059 } else {
1060 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1061 }
1062
1063 return (AVL_NODE2DATA(node, off));
1064 }
1065