1 /* $NetBSD: mkfs.c,v 1.42 2023/01/07 19:41:30 chs Exp $ */
2
3 /*
4 * Copyright (c) 2002 Networks Associates Technology, Inc.
5 * All rights reserved.
6 *
7 * This software was developed for the FreeBSD Project by Marshall
8 * Kirk McKusick and Network Associates Laboratories, the Security
9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11 * research program
12 *
13 * Copyright (c) 1980, 1989, 1993
14 * The Regents of the University of California. All rights reserved.
15 *
16 * Redistribution and use in source and binary forms, with or without
17 * modification, are permitted provided that the following conditions
18 * are met:
19 * 1. Redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. Neither the name of the University nor the names of its contributors
25 * may be used to endorse or promote products derived from this software
26 * without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38 * SUCH DAMAGE.
39 */
40
41 #if HAVE_NBTOOL_CONFIG_H
42 #include "nbtool_config.h"
43 #endif
44
45 #include <sys/cdefs.h>
46 #ifndef lint
47 #if 0
48 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95";
49 #else
50 #ifdef __RCSID
51 __RCSID("$NetBSD: mkfs.c,v 1.42 2023/01/07 19:41:30 chs Exp $");
52 #endif
53 #endif
54 #endif /* not lint */
55
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/resource.h>
59
60 #include <stdio.h>
61 #include <stdlib.h>
62 #include <string.h>
63 #include <unistd.h>
64 #include <errno.h>
65 #include <util.h>
66
67 #include "makefs.h"
68 #include "ffs.h"
69
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ufs/ufs_bswap.h>
72 #include <ufs/ffs/fs.h>
73
74 #include "ffs/ufs_inode.h"
75 #include "ffs/ffs_extern.h"
76 #include "ffs/newfs_extern.h"
77
78 static void initcg(uint32_t, time_t, const fsinfo_t *);
79 static int ilog2(int);
80
81 static int count_digits(int);
82
83 /*
84 * make file system for cylinder-group style file systems
85 */
86 #define UMASK 0755
87 #define POWEROF2(num) (((num) & ((num) - 1)) == 0)
88
89 union {
90 struct fs fs;
91 char pad[SBLOCKSIZE];
92 } fsun;
93 #define sblock fsun.fs
94 struct csum *fscs;
95
96 union {
97 struct cg cg;
98 char pad[FFS_MAXBSIZE];
99 } cgun;
100 #define acg cgun.cg
101
102 char *iobuf;
103 int iobufsize;
104
105 union {
106 struct fs fs;
107 char pad[FFS_MAXBSIZE];
108 } wb;
109 #define writebuf wb.pad
110
111 static int Oflag; /* format as an 4.3BSD file system */
112 static int extattr; /* use UFS2ea magic */
113 static int64_t fssize; /* file system size */
114 static int sectorsize; /* bytes/sector */
115 static int fsize; /* fragment size */
116 static int bsize; /* block size */
117 static int maxbsize; /* maximum clustering */
118 static int maxblkspercg;
119 static int minfree; /* free space threshold */
120 static int opt; /* optimization preference (space or time) */
121 static int density; /* number of bytes per inode */
122 static int maxcontig; /* max contiguous blocks to allocate */
123 static int maxbpg; /* maximum blocks per file in a cyl group */
124 static int bbsize; /* boot block size */
125 static int sbsize; /* superblock size */
126 static int avgfilesize; /* expected average file size */
127 static int avgfpdir; /* expected number of files per directory */
128
129 static void
ffs_sb_copy(struct fs * o,const struct fs * i,size_t l,const fsinfo_t * fsopts)130 ffs_sb_copy(struct fs *o, const struct fs *i, size_t l, const fsinfo_t *fsopts)
131 {
132 memcpy(o, i, l);
133 /* Zero out pointers */
134 o->fs_csp = NULL;
135 o->fs_maxcluster = NULL;
136 if (fsopts->needswap)
137 ffs_sb_swap(i, o);
138 }
139
140 struct fs *
ffs_mkfs(const char * fsys,const fsinfo_t * fsopts,time_t tstamp)141 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp)
142 {
143 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
144 uint32_t cylno, i;
145 int32_t csfrags;
146 long long sizepb;
147 void *space;
148 int size;
149 int nprintcols, printcolwidth;
150 ffs_opt_t *ffs_opts = fsopts->fs_specific;
151
152 Oflag = ffs_opts->version;
153 extattr = ffs_opts->extattr;
154 fssize = fsopts->size / fsopts->sectorsize;
155 sectorsize = fsopts->sectorsize;
156 fsize = ffs_opts->fsize;
157 bsize = ffs_opts->bsize;
158 maxbsize = ffs_opts->maxbsize;
159 maxblkspercg = ffs_opts->maxblkspercg;
160 minfree = ffs_opts->minfree;
161 opt = ffs_opts->optimization;
162 density = ffs_opts->density;
163 maxcontig = ffs_opts->maxcontig;
164 maxbpg = ffs_opts->maxbpg;
165 avgfilesize = ffs_opts->avgfilesize;
166 avgfpdir = ffs_opts->avgfpdir;
167 bbsize = BBSIZE;
168 sbsize = SBLOCKSIZE;
169
170 strlcpy((char *)sblock.fs_volname, ffs_opts->label,
171 sizeof(sblock.fs_volname));
172
173 if (Oflag == 0) {
174 sblock.fs_old_inodefmt = FS_42INODEFMT;
175 sblock.fs_maxsymlinklen = 0;
176 sblock.fs_old_flags = 0;
177 } else {
178 sblock.fs_old_inodefmt = FS_44INODEFMT;
179 sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN :
180 UFS2_MAXSYMLINKLEN);
181 sblock.fs_old_flags = FS_FLAGS_UPDATED;
182 sblock.fs_flags = 0;
183 }
184 /*
185 * Validate the given file system size.
186 * Verify that its last block can actually be accessed.
187 * Convert to file system fragment sized units.
188 */
189 if (fssize <= 0) {
190 printf("preposterous size %lld\n", (long long)fssize);
191 exit(13);
192 }
193 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
194
195 /*
196 * collect and verify the filesystem density info
197 */
198 sblock.fs_avgfilesize = avgfilesize;
199 sblock.fs_avgfpdir = avgfpdir;
200 if (sblock.fs_avgfilesize <= 0)
201 printf("illegal expected average file size %d\n",
202 sblock.fs_avgfilesize), exit(14);
203 if (sblock.fs_avgfpdir <= 0)
204 printf("illegal expected number of files per directory %d\n",
205 sblock.fs_avgfpdir), exit(15);
206 /*
207 * collect and verify the block and fragment sizes
208 */
209 sblock.fs_bsize = bsize;
210 sblock.fs_fsize = fsize;
211 if (!POWEROF2(sblock.fs_bsize)) {
212 printf("block size must be a power of 2, not %d\n",
213 sblock.fs_bsize);
214 exit(16);
215 }
216 if (!POWEROF2(sblock.fs_fsize)) {
217 printf("fragment size must be a power of 2, not %d\n",
218 sblock.fs_fsize);
219 exit(17);
220 }
221 if (sblock.fs_fsize < sectorsize) {
222 printf("fragment size %d is too small, minimum is %d\n",
223 sblock.fs_fsize, sectorsize);
224 exit(18);
225 }
226 if (sblock.fs_bsize < MINBSIZE) {
227 printf("block size %d is too small, minimum is %d\n",
228 sblock.fs_bsize, MINBSIZE);
229 exit(19);
230 }
231 if (sblock.fs_bsize > FFS_MAXBSIZE) {
232 printf("block size %d is too large, maximum is %d\n",
233 sblock.fs_bsize, FFS_MAXBSIZE);
234 exit(19);
235 }
236 if (sblock.fs_bsize < sblock.fs_fsize) {
237 printf("block size (%d) cannot be smaller than fragment size (%d)\n",
238 sblock.fs_bsize, sblock.fs_fsize);
239 exit(20);
240 }
241
242 if (maxbsize < bsize || !POWEROF2(maxbsize)) {
243 sblock.fs_maxbsize = sblock.fs_bsize;
244 printf("Extent size set to %d\n", sblock.fs_maxbsize);
245 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
246 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
247 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
248 } else {
249 sblock.fs_maxbsize = maxbsize;
250 }
251 sblock.fs_maxcontig = maxcontig;
252 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
253 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
254 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
255 }
256
257 if (sblock.fs_maxcontig > 1)
258 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
259
260 sblock.fs_bmask = ~(sblock.fs_bsize - 1);
261 sblock.fs_fmask = ~(sblock.fs_fsize - 1);
262 sblock.fs_qbmask = ~sblock.fs_bmask;
263 sblock.fs_qfmask = ~sblock.fs_fmask;
264 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
265 sblock.fs_bshift++;
266 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
267 sblock.fs_fshift++;
268 sblock.fs_frag = ffs_numfrags(&sblock, sblock.fs_bsize);
269 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
270 sblock.fs_fragshift++;
271 if (sblock.fs_frag > MAXFRAG) {
272 printf("fragment size %d is too small, "
273 "minimum with block size %d is %d\n",
274 sblock.fs_fsize, sblock.fs_bsize,
275 sblock.fs_bsize / MAXFRAG);
276 exit(21);
277 }
278 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
279 sblock.fs_size = fssize = FFS_DBTOFSB(&sblock, fssize);
280
281 if (Oflag <= 1) {
282 sblock.fs_magic = FS_UFS1_MAGIC;
283 sblock.fs_sblockloc = SBLOCK_UFS1;
284 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
285 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
286 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
287 sizeof (int32_t));
288 sblock.fs_old_inodefmt = FS_44INODEFMT;
289 sblock.fs_old_cgoffset = 0;
290 sblock.fs_old_cgmask = 0xffffffff;
291 sblock.fs_old_size = sblock.fs_size;
292 sblock.fs_old_rotdelay = 0;
293 sblock.fs_old_rps = 60;
294 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
295 sblock.fs_old_cpg = 1;
296 sblock.fs_old_interleave = 1;
297 sblock.fs_old_trackskew = 0;
298 sblock.fs_old_cpc = 0;
299 sblock.fs_old_postblformat = 1;
300 sblock.fs_old_nrpos = 1;
301 } else {
302 if (extattr)
303 sblock.fs_magic = FS_UFS2EA_MAGIC;
304 else
305 sblock.fs_magic = FS_UFS2_MAGIC;
306 #if 0 /* XXX makefs is used for small filesystems. */
307 sblock.fs_sblockloc = SBLOCK_UFS2;
308 #else
309 sblock.fs_sblockloc = SBLOCK_UFS1;
310 #endif
311 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
312 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
313 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
314 sizeof (int64_t));
315 }
316
317 sblock.fs_sblkno =
318 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
319 sblock.fs_frag);
320 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
321 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
322 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
323 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
324 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
325 sizepb *= FFS_NINDIR(&sblock);
326 sblock.fs_maxfilesize += sizepb;
327 }
328
329 /*
330 * Calculate the number of blocks to put into each cylinder group.
331 *
332 * This algorithm selects the number of blocks per cylinder
333 * group. The first goal is to have at least enough data blocks
334 * in each cylinder group to meet the density requirement. Once
335 * this goal is achieved we try to expand to have at least
336 * 1 cylinder group. Once this goal is achieved, we pack as
337 * many blocks into each cylinder group map as will fit.
338 *
339 * We start by calculating the smallest number of blocks that we
340 * can put into each cylinder group. If this is too big, we reduce
341 * the density until it fits.
342 */
343 origdensity = density;
344 for (;;) {
345 fragsperinode = MAX(ffs_numfrags(&sblock, density), 1);
346 minfpg = fragsperinode * FFS_INOPB(&sblock);
347 if (minfpg > sblock.fs_size)
348 minfpg = sblock.fs_size;
349 sblock.fs_ipg = FFS_INOPB(&sblock);
350 sblock.fs_fpg = roundup(sblock.fs_iblkno +
351 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
352 if (sblock.fs_fpg < minfpg)
353 sblock.fs_fpg = minfpg;
354 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
355 FFS_INOPB(&sblock));
356 sblock.fs_fpg = roundup(sblock.fs_iblkno +
357 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
358 if (sblock.fs_fpg < minfpg)
359 sblock.fs_fpg = minfpg;
360 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
361 FFS_INOPB(&sblock));
362 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
363 break;
364 density -= sblock.fs_fsize;
365 }
366 if (density != origdensity)
367 printf("density reduced from %d to %d\n", origdensity, density);
368
369 if (maxblkspercg <= 0 || maxblkspercg >= fssize)
370 maxblkspercg = fssize - 1;
371 /*
372 * Start packing more blocks into the cylinder group until
373 * it cannot grow any larger, the number of cylinder groups
374 * drops below 1, or we reach the size requested.
375 */
376 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
377 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
378 FFS_INOPB(&sblock));
379 if (sblock.fs_size / sblock.fs_fpg < 1)
380 break;
381 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
382 continue;
383 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
384 break;
385 sblock.fs_fpg -= sblock.fs_frag;
386 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
387 FFS_INOPB(&sblock));
388 break;
389 }
390 /*
391 * Check to be sure that the last cylinder group has enough blocks
392 * to be viable. If it is too small, reduce the number of blocks
393 * per cylinder group which will have the effect of moving more
394 * blocks into the last cylinder group.
395 */
396 optimalfpg = sblock.fs_fpg;
397 for (;;) {
398 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
399 lastminfpg = roundup(sblock.fs_iblkno +
400 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
401 if (sblock.fs_size < lastminfpg) {
402 printf("Filesystem size %lld < minimum size of %d\n",
403 (long long)sblock.fs_size, lastminfpg);
404 exit(28);
405 }
406 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
407 sblock.fs_size % sblock.fs_fpg == 0)
408 break;
409 sblock.fs_fpg -= sblock.fs_frag;
410 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
411 FFS_INOPB(&sblock));
412 }
413 if (optimalfpg != sblock.fs_fpg)
414 printf("Reduced frags per cylinder group from %d to %d %s\n",
415 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
416 sblock.fs_cgsize = ffs_fragroundup(&sblock, CGSIZE(&sblock));
417 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / FFS_INOPF(&sblock);
418 if (Oflag <= 1) {
419 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
420 sblock.fs_old_nsect = sblock.fs_old_spc;
421 sblock.fs_old_npsect = sblock.fs_old_spc;
422 sblock.fs_old_ncyl = sblock.fs_ncg;
423 }
424
425 /*
426 * fill in remaining fields of the super block
427 */
428 sblock.fs_csaddr = cgdmin(&sblock, 0);
429 sblock.fs_cssize =
430 ffs_fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
431
432 /*
433 * Setup memory for temporary in-core cylgroup summaries.
434 * Cribbed from ffs_mountfs().
435 */
436 size = sblock.fs_cssize;
437 if (sblock.fs_contigsumsize > 0)
438 size += sblock.fs_ncg * sizeof(int32_t);
439 space = ecalloc(1, size);
440 sblock.fs_csp = space;
441 space = (char *)space + sblock.fs_cssize;
442 if (sblock.fs_contigsumsize > 0) {
443 int32_t *lp;
444
445 sblock.fs_maxcluster = lp = space;
446 for (i = 0; i < sblock.fs_ncg; i++)
447 *lp++ = sblock.fs_contigsumsize;
448 }
449
450 sblock.fs_sbsize = ffs_fragroundup(&sblock, sizeof(struct fs));
451 if (sblock.fs_sbsize > SBLOCKSIZE)
452 sblock.fs_sbsize = SBLOCKSIZE;
453 sblock.fs_minfree = minfree;
454 sblock.fs_maxcontig = maxcontig;
455 sblock.fs_maxbpg = maxbpg;
456 sblock.fs_optim = opt;
457 sblock.fs_cgrotor = 0;
458 sblock.fs_pendingblocks = 0;
459 sblock.fs_pendinginodes = 0;
460 sblock.fs_cstotal.cs_ndir = 0;
461 sblock.fs_cstotal.cs_nbfree = 0;
462 sblock.fs_cstotal.cs_nifree = 0;
463 sblock.fs_cstotal.cs_nffree = 0;
464 sblock.fs_fmod = 0;
465 sblock.fs_ronly = 0;
466 sblock.fs_state = 0;
467 sblock.fs_clean = FS_ISCLEAN;
468 sblock.fs_ronly = 0;
469 sblock.fs_id[0] = tstamp;
470 sblock.fs_id[1] = random();
471 sblock.fs_fsmnt[0] = '\0';
472 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
473 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
474 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
475 sblock.fs_cstotal.cs_nbfree =
476 ffs_fragstoblks(&sblock, sblock.fs_dsize) -
477 howmany(csfrags, sblock.fs_frag);
478 sblock.fs_cstotal.cs_nffree =
479 ffs_fragnum(&sblock, sblock.fs_size) +
480 (ffs_fragnum(&sblock, csfrags) > 0 ?
481 sblock.fs_frag - ffs_fragnum(&sblock, csfrags) : 0);
482 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
483 sblock.fs_cstotal.cs_ndir = 0;
484 sblock.fs_dsize -= csfrags;
485 sblock.fs_time = tstamp;
486 if (Oflag <= 1) {
487 sblock.fs_old_time = tstamp;
488 sblock.fs_old_dsize = sblock.fs_dsize;
489 sblock.fs_old_csaddr = sblock.fs_csaddr;
490 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
491 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
492 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
493 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
494 }
495 /*
496 * Dump out summary information about file system.
497 */
498 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
499 printf("%s: %.1fMB (%lld sectors) block size %d, "
500 "fragment size %d\n",
501 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
502 (long long)FFS_FSBTODB(&sblock, sblock.fs_size),
503 sblock.fs_bsize, sblock.fs_fsize);
504 printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
505 "%d inodes.\n",
506 sblock.fs_ncg,
507 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
508 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
509 #undef B2MBFACTOR
510 /*
511 * Now determine how wide each column will be, and calculate how
512 * many columns will fit in a 76 char line. 76 is the width of the
513 * subwindows in sysinst.
514 */
515 printcolwidth = count_digits(
516 FFS_FSBTODB(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
517 nprintcols = 76 / (printcolwidth + 2);
518
519 /*
520 * allocate space for superblock, cylinder group map, and
521 * two sets of inode blocks.
522 */
523 if (sblock.fs_bsize < SBLOCKSIZE)
524 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
525 else
526 iobufsize = 4 * sblock.fs_bsize;
527 iobuf = ecalloc(1, iobufsize);
528 /*
529 * Make a copy of the superblock into the buffer that we will be
530 * writing out in each cylinder group.
531 */
532 ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts);
533 memcpy(iobuf, writebuf, SBLOCKSIZE);
534
535 printf("super-block backups (for fsck -b #) at:");
536 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
537 initcg(cylno, tstamp, fsopts);
538 if (cylno % nprintcols == 0)
539 printf("\n");
540 printf(" %*lld,", printcolwidth,
541 (long long)FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno)));
542 fflush(stdout);
543 }
544 printf("\n");
545
546 /*
547 * Now construct the initial file system,
548 * then write out the super-block.
549 */
550 sblock.fs_time = tstamp;
551 if (Oflag <= 1) {
552 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
553 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
554 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
555 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
556 }
557 if (fsopts->needswap)
558 sblock.fs_flags |= FS_SWAPPED;
559 ffs_write_superblock(&sblock, fsopts);
560 return (&sblock);
561 }
562
563 /*
564 * Write out the superblock and its duplicates,
565 * and the cylinder group summaries
566 */
567 void
ffs_write_superblock(struct fs * fs,const fsinfo_t * fsopts)568 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
569 {
570 int size, blks, i, saveflag;
571 uint32_t cylno;
572 void *space;
573 char *wrbuf;
574
575 saveflag = fs->fs_flags & FS_INTERNAL;
576 fs->fs_flags &= ~FS_INTERNAL;
577
578 ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts);
579 ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts);
580
581 /* Write out the duplicate super blocks */
582 for (cylno = 0; cylno < fs->fs_ncg; cylno++)
583 ffs_wtfs(FFS_FSBTODB(fs, cgsblock(fs, cylno)),
584 sbsize, writebuf, fsopts);
585
586 /* Write out the cylinder group summaries */
587 size = fs->fs_cssize;
588 blks = howmany(size, fs->fs_fsize);
589 space = (void *)fs->fs_csp;
590 wrbuf = emalloc(size);
591 for (i = 0; i < blks; i+= fs->fs_frag) {
592 size = fs->fs_bsize;
593 if (i + fs->fs_frag > blks)
594 size = (blks - i) * fs->fs_fsize;
595 if (fsopts->needswap)
596 ffs_csum_swap((struct csum *)space,
597 (struct csum *)wrbuf, size);
598 else
599 memcpy(wrbuf, space, (u_int)size);
600 ffs_wtfs(FFS_FSBTODB(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
601 space = (char *)space + size;
602 }
603 free(wrbuf);
604 fs->fs_flags |= saveflag;
605 }
606
607 /*
608 * Initialize a cylinder group.
609 */
610 static void
initcg(uint32_t cylno,time_t utime,const fsinfo_t * fsopts)611 initcg(uint32_t cylno, time_t utime, const fsinfo_t *fsopts)
612 {
613 daddr_t cbase, dmax;
614 uint32_t i, j, d, dlower, dupper, blkno;
615 struct ufs1_dinode *dp1;
616 struct ufs2_dinode *dp2;
617 int start;
618
619 /*
620 * Determine block bounds for cylinder group.
621 * Allow space for super block summary information in first
622 * cylinder group.
623 */
624 cbase = cgbase(&sblock, cylno);
625 dmax = cbase + sblock.fs_fpg;
626 if (dmax > sblock.fs_size)
627 dmax = sblock.fs_size;
628 dlower = cgsblock(&sblock, cylno) - cbase;
629 dupper = cgdmin(&sblock, cylno) - cbase;
630 if (cylno == 0)
631 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
632 memset(&acg, 0, sblock.fs_cgsize);
633 acg.cg_time = utime;
634 acg.cg_magic = CG_MAGIC;
635 acg.cg_cgx = cylno;
636 acg.cg_niblk = sblock.fs_ipg;
637 acg.cg_initediblk = sblock.fs_ipg < 2 * FFS_INOPB(&sblock) ?
638 sblock.fs_ipg : 2 * FFS_INOPB(&sblock);
639 acg.cg_ndblk = dmax - cbase;
640 if (sblock.fs_contigsumsize > 0)
641 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
642 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
643 if (Oflag == 2) {
644 acg.cg_iusedoff = start;
645 } else {
646 if (cylno == sblock.fs_ncg - 1)
647 acg.cg_old_ncyl = howmany(acg.cg_ndblk,
648 sblock.fs_fpg / sblock.fs_old_cpg);
649 else
650 acg.cg_old_ncyl = sblock.fs_old_cpg;
651 acg.cg_old_time = acg.cg_time;
652 acg.cg_time = 0;
653 acg.cg_old_niblk = acg.cg_niblk;
654 acg.cg_niblk = 0;
655 acg.cg_initediblk = 0;
656 acg.cg_old_btotoff = start;
657 acg.cg_old_boff = acg.cg_old_btotoff +
658 sblock.fs_old_cpg * sizeof(int32_t);
659 acg.cg_iusedoff = acg.cg_old_boff +
660 sblock.fs_old_cpg * sizeof(u_int16_t);
661 }
662 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
663 if (sblock.fs_contigsumsize <= 0) {
664 acg.cg_nextfreeoff = acg.cg_freeoff +
665 howmany(sblock.fs_fpg, CHAR_BIT);
666 } else {
667 acg.cg_clustersumoff = acg.cg_freeoff +
668 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
669 acg.cg_clustersumoff =
670 roundup(acg.cg_clustersumoff, sizeof(int32_t));
671 acg.cg_clusteroff = acg.cg_clustersumoff +
672 (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
673 acg.cg_nextfreeoff = acg.cg_clusteroff +
674 howmany(ffs_fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
675 }
676 if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
677 printf("Panic: cylinder group too big\n");
678 exit(37);
679 }
680 acg.cg_cs.cs_nifree += sblock.fs_ipg;
681 if (cylno == 0) {
682 size_t r;
683
684 for (r = 0; r < UFS_ROOTINO; r++) {
685 setbit(cg_inosused(&acg, 0), r);
686 acg.cg_cs.cs_nifree--;
687 }
688 }
689 if (cylno > 0) {
690 /*
691 * In cylno 0, beginning space is reserved
692 * for boot and super blocks.
693 */
694 for (d = 0, blkno = 0; d < dlower;) {
695 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
696 if (sblock.fs_contigsumsize > 0)
697 setbit(cg_clustersfree(&acg, 0), blkno);
698 acg.cg_cs.cs_nbfree++;
699 d += sblock.fs_frag;
700 blkno++;
701 }
702 }
703 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
704 acg.cg_frsum[sblock.fs_frag - i]++;
705 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
706 setbit(cg_blksfree(&acg, 0), dupper);
707 acg.cg_cs.cs_nffree++;
708 }
709 }
710 for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
711 d + sblock.fs_frag <= acg.cg_ndblk; ) {
712 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
713 if (sblock.fs_contigsumsize > 0)
714 setbit(cg_clustersfree(&acg, 0), blkno);
715 acg.cg_cs.cs_nbfree++;
716 d += sblock.fs_frag;
717 blkno++;
718 }
719 if (d < acg.cg_ndblk) {
720 acg.cg_frsum[acg.cg_ndblk - d]++;
721 for (; d < acg.cg_ndblk; d++) {
722 setbit(cg_blksfree(&acg, 0), d);
723 acg.cg_cs.cs_nffree++;
724 }
725 }
726 if (sblock.fs_contigsumsize > 0) {
727 int32_t *sump = cg_clustersum(&acg, 0);
728 u_char *mapp = cg_clustersfree(&acg, 0);
729 int map = *mapp++;
730 int bit = 1;
731 int run = 0;
732
733 for (i = 0; i < acg.cg_nclusterblks; i++) {
734 if ((map & bit) != 0) {
735 run++;
736 } else if (run != 0) {
737 if (run > sblock.fs_contigsumsize)
738 run = sblock.fs_contigsumsize;
739 sump[run]++;
740 run = 0;
741 }
742 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
743 bit <<= 1;
744 } else {
745 map = *mapp++;
746 bit = 1;
747 }
748 }
749 if (run != 0) {
750 if (run > sblock.fs_contigsumsize)
751 run = sblock.fs_contigsumsize;
752 sump[run]++;
753 }
754 }
755 sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
756 /*
757 * Write out the duplicate super block, the cylinder group map
758 * and two blocks worth of inodes in a single write.
759 */
760 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
761 memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
762 if (fsopts->needswap)
763 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
764 start += sblock.fs_bsize;
765 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
766 dp2 = (struct ufs2_dinode *)(&iobuf[start]);
767 for (i = 0; i < acg.cg_initediblk; i++) {
768 if (sblock.fs_magic == FS_UFS1_MAGIC) {
769 /* No need to swap, it'll stay random */
770 dp1->di_gen = random();
771 dp1++;
772 } else {
773 dp2->di_gen = random();
774 dp2++;
775 }
776 }
777 ffs_wtfs(FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf,
778 fsopts);
779 /*
780 * For the old file system, we have to initialize all the inodes.
781 */
782 if (Oflag <= 1) {
783 for (i = 2 * sblock.fs_frag;
784 i < sblock.fs_ipg / FFS_INOPF(&sblock);
785 i += sblock.fs_frag) {
786 dp1 = (struct ufs1_dinode *)(&iobuf[start]);
787 for (j = 0; j < FFS_INOPB(&sblock); j++) {
788 dp1->di_gen = random();
789 dp1++;
790 }
791 ffs_wtfs(FFS_FSBTODB(&sblock, cgimin(&sblock, cylno) + i),
792 sblock.fs_bsize, &iobuf[start], fsopts);
793 }
794 }
795 }
796
797 /*
798 * read a block from the file system
799 */
800 void
ffs_rdfs(daddr_t bno,int size,void * bf,const fsinfo_t * fsopts)801 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
802 {
803 int n;
804 off_t offset;
805
806 offset = bno * (off_t)fsopts->sectorsize + fsopts->offset;
807 if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
808 err(EXIT_FAILURE, "%s: seek error for sector %lld", __func__,
809 (long long)bno);
810 n = read(fsopts->fd, bf, size);
811 if (n == -1) {
812 err(EXIT_FAILURE, "%s: read error bno %lld size %d", __func__,
813 (long long)bno, size);
814 }
815 else if (n != size)
816 errx(EXIT_FAILURE, "%s: short read error for sector %lld", __func__,
817 (long long)bno);
818 }
819
820 /*
821 * write a block to the file system
822 */
823 void
ffs_wtfs(daddr_t bno,int size,void * bf,const fsinfo_t * fsopts)824 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
825 {
826 int n;
827 off_t offset;
828
829 offset = bno * (off_t)fsopts->sectorsize + fsopts->offset;
830 if (lseek(fsopts->fd, offset, SEEK_SET) == -1)
831 err(EXIT_FAILURE, "%s: seek error @%jd for sector %jd",
832 __func__, (intmax_t)offset, (intmax_t)bno);
833 n = write(fsopts->fd, bf, size);
834 if (n == -1)
835 err(EXIT_FAILURE, "%s: write error for sector %jd", __func__,
836 (intmax_t)bno);
837 else if (n != size)
838 errx(EXIT_FAILURE, "%s: short write error for sector %jd",
839 __func__, (intmax_t)bno);
840 }
841
842
843 /* Determine how many digits are needed to print a given integer */
844 static int
count_digits(int num)845 count_digits(int num)
846 {
847 int ndig;
848
849 for(ndig = 1; num > 9; num /=10, ndig++);
850
851 return (ndig);
852 }
853
854 static int
ilog2(int val)855 ilog2(int val)
856 {
857 u_int n;
858
859 for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
860 if (1 << n == val)
861 return (n);
862 errx(EXIT_FAILURE, "%s: %d is not a power of 2", __func__, val);
863 }
864