1 /* $NetBSD: hammer2_disk.h,v 1.4 2022/04/04 19:33:46 andvar Exp $ */ 2 3 /* 4 * Copyright (c) 2011-2019 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@dragonflybsd.org> 8 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org> 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in 18 * the documentation and/or other materials provided with the 19 * distribution. 20 * 3. Neither the name of The DragonFly Project nor the names of its 21 * contributors may be used to endorse or promote products derived 22 * from this software without specific, prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.4 2022/04/04 19:33:46 andvar Exp $"); 39 40 #ifndef _VFS_HAMMER2_DISK_H_ 41 #define _VFS_HAMMER2_DISK_H_ 42 43 #ifndef _SYS_UUID_H_ 44 #include <sys/uuid.h> 45 #endif 46 #if 0 47 #ifndef _SYS_DMSG_H_ 48 #include <sys/dmsg.h> 49 #endif 50 #endif 51 52 /* 53 * The structures below represent the on-disk media structures for the HAMMER2 54 * filesystem. Note that all fields for on-disk structures are naturally 55 * aligned. The host endian format is typically used - compatibility is 56 * possible if the implementation detects reversed endian and adjusts accesses 57 * accordingly. 58 * 59 * HAMMER2 primarily revolves around the directory topology: inodes, 60 * directory entries, and block tables. Block device buffer cache buffers 61 * are always 64KB. Logical file buffers are typically 16KB. All data 62 * references utilize 64-bit byte offsets. 63 * 64 * Free block management is handled independently using blocks reserved by 65 * the media topology. 66 */ 67 68 /* 69 * The data at the end of a file or directory may be a fragment in order 70 * to optimize storage efficiency. The minimum fragment size is 1KB. 71 * Since allocations are in powers of 2 fragments must also be sized in 72 * powers of 2 (1024, 2048, ... 65536). 73 * 74 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K), 75 * which is 2^16. Larger extents may be supported in the future. Smaller 76 * fragments might be supported in the future (down to 64 bytes is possible), 77 * but probably will not be. 78 * 79 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB 80 * buffer. Indirect blocks down to 1KB are supported to keep small 81 * directories small. 82 * 83 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels 84 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk). 85 * 86 * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70. 87 * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk) 88 * 89 * The actual depth depends on copies redundancy and whether the filesystem 90 * has chosen to use a smaller indirect block size at the top level or not. 91 */ 92 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */ 93 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */ 94 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */ 95 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */ 96 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */ 97 98 /* 99 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups. 100 * 101 * HAMMER2_PBUFSIZE - Topological block size used by files for all 102 * blocks except the block straddling EOF. 103 * 104 * HAMMER2_SEGSIZE - Allocation map segment size, typically 4MB 105 * (space represented by a level0 bitmap). 106 */ 107 108 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX) 109 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX 110 111 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */ 112 #define HAMMER2_PBUFSIZE 65536 113 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */ 114 #define HAMMER2_LBUFSIZE 16384 115 116 #define HAMMER2_IND_BYTES_MIN 4096 117 #define HAMMER2_IND_BYTES_NOM HAMMER2_LBUFSIZE 118 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE 119 #define HAMMER2_IND_RADIX_MIN 12 120 #define HAMMER2_IND_RADIX_NOM HAMMER2_LBUFRADIX 121 #define HAMMER2_IND_RADIX_MAX HAMMER2_PBUFRADIX 122 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \ 123 sizeof(hammer2_blockref_t)) 124 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \ 125 sizeof(hammer2_blockref_t)) 126 127 /* 128 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that 129 * any element can occur at any index and holes can be anywhere. 130 * 131 * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs, 132 * resulting in highly efficient storage for files <= 512 bytes and for files 133 * <= 512KB. Up to 4 directory entries can be referenced from a directory 134 * without requiring an indirect block. 135 */ 136 #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */ 137 #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX) 138 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */ 139 #define HAMMER2_EMBEDDED_RADIX 9 140 141 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1) 142 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1) 143 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1) 144 145 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK) 146 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE) 147 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK) 148 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE) 149 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK) 150 151 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5" 152 153 /* 154 * A 4MB segment is reserved at the beginning of each 1GB. This segment 155 * contains the volume header (or backup volume header), the free block 156 * table, and possibly other information in the future. 157 * 158 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows: 159 * 160 * ========== 161 * 0 volume header (for the first four 2GB zones) 162 * 1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB) 163 * 2 level2 FREEMAP_NODE (256 x 128B indirect block per 256GB) 164 * 3 level3 FREEMAP_NODE (256 x 128B indirect block per 64TB) 165 * 4 level4 FREEMAP_NODE (256 x 128B indirect block per 16PB) 166 * 5 level5 FREEMAP_NODE (256 x 128B indirect block per 4EB) 167 * 6 freemap01 level1 (rotation) 168 * 7 level2 169 * 8 level3 170 * 9 level4 171 * 10 level5 172 * 11 freemap02 level1 (rotation) 173 * 12 level2 174 * 13 level3 175 * 14 level4 176 * 15 level5 177 * 16 freemap03 level1 (rotation) 178 * 17 level2 179 * 18 level3 180 * 19 level4 181 * 20 level5 182 * 21 freemap04 level1 (rotation) 183 * 22 level2 184 * 23 level3 185 * 24 level4 186 * 25 level5 187 * 26 freemap05 level1 (rotation) 188 * 27 level2 189 * 28 level3 190 * 29 level4 191 * 30 level5 192 * 31 freemap06 level1 (rotation) 193 * 32 level2 194 * 33 level3 195 * 34 level4 196 * 35 level5 197 * 36 freemap07 level1 (rotation) 198 * 37 level2 199 * 38 level3 200 * 39 level4 201 * 40 level5 202 * 41 unused 203 * .. unused 204 * 63 unused 205 * ========== 206 * 207 * The first four 2GB zones contain volume headers and volume header backups. 208 * After that the volume header block# is reserved for future use. Similarly, 209 * there are many blocks related to various Freemap levels which are not 210 * used in every segment and those are also reserved for future use. 211 * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot. 212 * 213 * Freemap (see the FREEMAP document) 214 * 215 * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks. Each block in 216 * a set represents a level of depth in the freemap topology. Eight sets 217 * exist to prevent live updates from disturbing the state of the freemap 218 * were a crash/reboot to occur. That is, a live update is not committed 219 * until the update's flush reaches the volume root. There are FOUR volume 220 * roots representing the last four synchronization points, so the freemap 221 * must be consistent no matter which volume root is chosen by the mount 222 * code. 223 * 224 * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB, 225 * 16PB and 4EB indirect map. The volume header itself has a set of 4 freemap 226 * blockrefs representing another 2 bits, giving us a total 64 bits of 227 * representable address space. 228 * 229 * The Level 0 64KB block represents 1GB of storage represented by 32KB 230 * (256 x struct hammer2_bmap_data). Each structure represents 4MB of storage 231 * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of 232 * storage. These 2 bits represent the following states: 233 * 234 * 00 Free 235 * 01 (reserved) (Possibly partially allocated) 236 * 10 Possibly free 237 * 11 Allocated 238 * 239 * One important thing to note here is that the freemap resolution is 16KB, 240 * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps 241 * track of sub-allocations in memory, which means that on a unmount or reboot 242 * the entire 16KB of a partially allocated block will be considered fully 243 * allocated. It is possible for fragmentation to build up over time, but 244 * defragmentation is fairly easy to accomplish since all modifications 245 * allocate a new block. 246 * 247 * The Second thing to note is that due to the way snapshots and inode 248 * replication works, deleting a file cannot immediately free the related 249 * space. Furthermore, deletions often do not bother to traverse the 250 * block subhierarchy being deleted. And to go even further, whole 251 * sub-directory trees can be deleted simply by deleting the directory inode 252 * at the top. So even though we have a symbol to represent a 'possibly free' 253 * block (binary 10), only the bulk free scanning code can actually use it. 254 * Normal 'rm's or other deletions do not. 255 * 256 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX 257 * (i.e. a multiple of 4MB). VOLUME_ALIGN must be >= ZONE_SEG. 258 * 259 * In Summary: 260 * 261 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block 262 * from the next set). The new copy is reused until a flush occurs at 263 * which point the next modification will then rotate to the next set. 264 */ 265 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024) 266 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 267 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 268 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK) 269 270 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN) 271 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 272 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 273 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK) 274 275 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024) 276 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1) 277 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024) 278 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG) 279 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE) 280 281 #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */ 282 283 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */ 284 #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */ 285 #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */ 286 #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */ 287 #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */ 288 #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */ 289 #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */ 290 #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */ 291 #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */ 292 #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */ 293 294 #define HAMMER2_ZONE_UNUSED41 41 295 #define HAMMER2_ZONE_UNUSED42 42 296 #define HAMMER2_ZONE_UNUSED43 43 297 #define HAMMER2_ZONE_UNUSED44 44 298 #define HAMMER2_ZONE_UNUSED45 45 299 #define HAMMER2_ZONE_UNUSED46 46 300 #define HAMMER2_ZONE_UNUSED47 47 301 #define HAMMER2_ZONE_UNUSED48 48 302 #define HAMMER2_ZONE_UNUSED49 49 303 #define HAMMER2_ZONE_UNUSED50 50 304 #define HAMMER2_ZONE_UNUSED51 51 305 #define HAMMER2_ZONE_UNUSED52 52 306 #define HAMMER2_ZONE_UNUSED53 53 307 #define HAMMER2_ZONE_UNUSED54 54 308 #define HAMMER2_ZONE_UNUSED55 55 309 #define HAMMER2_ZONE_UNUSED56 56 310 #define HAMMER2_ZONE_UNUSED57 57 311 #define HAMMER2_ZONE_UNUSED58 58 312 #define HAMMER2_ZONE_UNUSED59 59 313 #define HAMMER2_ZONE_UNUSED60 60 314 #define HAMMER2_ZONE_UNUSED61 61 315 #define HAMMER2_ZONE_UNUSED62 62 316 #define HAMMER2_ZONE_UNUSED63 63 317 #define HAMMER2_ZONE_END 64 /* non-inclusive */ 318 319 #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */ 320 321 /* relative to FREEMAP_x */ 322 #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */ 323 #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */ 324 #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */ 325 #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */ 326 #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */ 327 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */ 328 329 /* 330 * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs, 331 * 32KB indirect block for freemap (LEVELN_PSIZE below). 332 * 333 * Leaf entry represents 4MB of storage broken down into a 512-bit 334 * bitmap, 2-bits per entry. So course bitmap item represents 16KB. 335 */ 336 #if HAMMER2_SET_COUNT != 4 337 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4" 338 #endif 339 #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */ 340 #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */ 341 #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */ 342 #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */ 343 #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */ 344 #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */ 345 #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (x 256 in l-1 leaf) */ 346 347 #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */ 348 349 #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \ 350 HAMMER2_FREEMAP_LEVEL5_RADIX) 351 #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \ 352 HAMMER2_FREEMAP_LEVEL4_RADIX) 353 #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \ 354 HAMMER2_FREEMAP_LEVEL3_RADIX) 355 #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \ 356 HAMMER2_FREEMAP_LEVEL2_RADIX) 357 #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \ 358 HAMMER2_FREEMAP_LEVEL1_RADIX) 359 #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \ 360 HAMMER2_FREEMAP_LEVEL0_RADIX) 361 362 #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1) 363 #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1) 364 #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1) 365 #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1) 366 #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1) 367 #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1) 368 369 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \ 370 sizeof(hammer2_bmap_data_t)) 371 372 /* 373 * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone, 374 * which is on a 1GB demark. This will eat a little more space but for 375 * now we retain compatibility and make FMZONEBASE every 1GB 376 */ 377 #define H2FMZONEBASE(key) ((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK) 378 #define H2FMBASE(key, radix) rounddown2(key, (hammer2_off_t)1 << (radix)) 379 380 /* 381 * 16KB bitmap granularity (x2 bits per entry). 382 */ 383 #define HAMMER2_FREEMAP_BLOCK_RADIX 14 384 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX) 385 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1) 386 387 /* 388 * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE. 389 * 390 * 8 x 64-bit elements, 2 bits per block. 391 * 32 blocks (radix 5) per element. 392 * representing INDEX_SIZE bytes worth of storage per element. 393 */ 394 395 typedef uint64_t hammer2_bitmap_t; 396 397 #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1) 398 #define HAMMER2_BMAP_ELEMENTS 8 399 #define HAMMER2_BMAP_BITS_PER_ELEMENT 64 400 #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */ 401 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX) 402 403 #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \ 404 HAMMER2_BMAP_BLOCKS_PER_ELEMENT) 405 #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1) 406 407 #define HAMMER2_BMAP_SIZE (HAMMER2_BMAP_INDEX_SIZE * \ 408 HAMMER2_BMAP_ELEMENTS) 409 #define HAMMER2_BMAP_MASK (HAMMER2_BMAP_SIZE - 1) 410 411 /* 412 * Two linear areas can be reserved after the initial 4MB segment in the base 413 * zone (the one starting at offset 0). These areas are NOT managed by the 414 * block allocator and do not fall under HAMMER2 crc checking rules based 415 * at the volume header (but can be self-CRCd internally, depending). 416 */ 417 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN 418 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024) 419 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024) 420 421 #define HAMMER2_AUX_MIN_BYTES HAMMER2_VOLUME_ALIGN 422 #define HAMMER2_AUX_NOM_BYTES (256*1024*1024) 423 #define HAMMER2_AUX_MAX_BYTES (1024*1024*1024) 424 425 /* 426 * Most HAMMER2 types are implemented as unsigned 64-bit integers. 427 * Transaction ids are monotonic. 428 * 429 * We utilize 32-bit iSCSI CRCs. 430 */ 431 typedef uint64_t hammer2_tid_t; 432 typedef uint64_t hammer2_off_t; 433 typedef uint64_t hammer2_key_t; 434 typedef uint32_t hammer2_crc32_t; 435 436 /* 437 * Miscellaneous ranges (all are unsigned). 438 */ 439 #define HAMMER2_TID_MIN 1ULL 440 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL 441 #define HAMMER2_KEY_MIN 0ULL 442 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL 443 #define HAMMER2_OFFSET_MIN 0ULL 444 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL 445 446 /* 447 * HAMMER2 data offset special cases and masking. 448 * 449 * All HAMMER2 data offsets have to be broken down into a 64K buffer base 450 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO). 451 * 452 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits 453 * of the data offset field specifies how large the data chunk being pointed 454 * to as a power of 2. The theoretical minimum radix is thus 6 (The space 455 * needed in the low bits of the data offset field). However, the practical 456 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets 457 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but 458 * we fully intend to support larger extents in the future. 459 * 460 * WARNING! A radix of 0 (such as when data_off is all 0's) is a special 461 * case which means no data associated with the blockref, and 462 * not the '1 byte' it would otherwise calculate to. 463 */ 464 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL 465 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64) 466 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64) 467 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL 468 469 /* 470 * HAMMER2 directory support and pre-defined keys 471 */ 472 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL 473 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL 474 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL 475 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL 476 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */ 477 478 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */ 479 #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */ 480 481 /************************************************************************ 482 * DMSG SUPPORT * 483 ************************************************************************ 484 * LNK_VOLCONF 485 * 486 * All HAMMER2 directories directly under the super-root on your local 487 * media can be mounted separately, even if they share the same physical 488 * device. 489 * 490 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2 491 * cluster via local media. The local media does not have to participate 492 * in the cluster, other than to provide the hammer2_volconf[] array and 493 * root inode for the mount. 494 * 495 * This is important: The mount device path you specify serves to bootstrap 496 * your entry into the cluster, but your mount will make active connections 497 * to ALL copy elements in the hammer2_volconf[] array which match the 498 * PFSID of the directory in the super-root that you specified. The local 499 * media path does not have to be mentioned in this array but becomes part 500 * of the cluster based on its type and access rights. ALL ELEMENTS ARE 501 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM. 502 * 503 * The actual cluster may be far larger than the elements you list in the 504 * hammer2_volconf[] array. You list only the elements you wish to 505 * directly connect to and you are able to access the rest of the cluster 506 * indirectly through those connections. 507 * 508 * WARNING! This structure must be exactly 128 bytes long for its config 509 * array to fit in the volume header. 510 */ 511 struct hammer2_volconf { 512 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */ 513 uint8_t inprog; /* 01 operation in progress, or 0 */ 514 uint8_t chain_to; /* 02 operation chaining to, or 0 */ 515 uint8_t chain_from; /* 03 operation chaining from, or 0 */ 516 uint16_t flags; /* 04-05 flags field */ 517 uint8_t error; /* 06 last operational error */ 518 uint8_t priority; /* 07 priority and round-robin flag */ 519 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */ 520 uint8_t reserved08[23]; /* 09-1F */ 521 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */ 522 uint8_t label[16]; /* 30-3F import/export label */ 523 uint8_t path[64]; /* 40-7F target specification string or key */ 524 } __packed; 525 526 typedef struct hammer2_volconf hammer2_volconf_t; 527 528 #define DMSG_VOLF_ENABLED 0x0001 529 #define DMSG_VOLF_INPROG 0x0002 530 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */ 531 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */ 532 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */ 533 534 #if 0 535 struct dmsg_lnk_hammer2_volconf { 536 dmsg_hdr_t head; 537 hammer2_volconf_t copy; /* copy spec */ 538 int32_t index; 539 int32_t unused01; 540 uuid_t mediaid; 541 int64_t reserved02[32]; 542 } __packed; 543 #endif 544 545 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t; 546 547 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \ 548 dmsg_lnk_hammer2_volconf) 549 550 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf) 551 552 /* 553 * HAMMER2 directory entry header (embedded in blockref) exactly 16 bytes 554 */ 555 struct hammer2_dirent_head { 556 hammer2_tid_t inum; /* inode number */ 557 uint16_t namlen; /* name length */ 558 uint8_t type; /* OBJTYPE_* */ 559 uint8_t unused0B; 560 uint8_t unused0C[4]; 561 } __packed; 562 563 typedef struct hammer2_dirent_head hammer2_dirent_head_t; 564 565 /* 566 * The media block reference structure. This forms the core of the HAMMER2 567 * media topology recursion. This 128-byte data structure is embedded in the 568 * volume header, in inodes (which are also directory entries), and in 569 * indirect blocks. 570 * 571 * A blockref references a single media item, which typically can be a 572 * directory entry (aka inode), indirect block, or data block. 573 * 574 * The primary feature a blockref represents is the ability to validate 575 * the entire tree underneath it via its check code. Any modification to 576 * anything propagates up the blockref tree all the way to the root, replacing 577 * the related blocks and compounding the generated check code. 578 * 579 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as 580 * complex as a 512 bit cryptographic hash. I originally used a 64-byte 581 * blockref but later expanded it to 128 bytes to be able to support the 582 * larger check code as well as to embed statistics for quota operation. 583 * 584 * Simple check codes are not sufficient for unverified dedup. Even with 585 * a maximally-sized check code unverified dedup should only be used in 586 * in subdirectory trees where you do not need 100% data integrity. 587 * 588 * Unverified dedup is deduping based on meta-data only without verifying 589 * that the data blocks are actually identical. Verified dedup guarantees 590 * integrity but is a far more I/O-expensive operation. 591 * 592 * -- 593 * 594 * mirror_tid - per cluster node modified (propagated upward by flush) 595 * modify_tid - clc record modified (not propagated). 596 * update_tid - clc record updated (propagated upward on verification) 597 * 598 * CLC - Stands for 'Cluster Level Change', identifiers which are identical 599 * within the topology across all cluster nodes (when fully 600 * synchronized). 601 * 602 * NOTE: The range of keys represented by the blockref is (key) to 603 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates 604 * blocks bottom-up, inserting a new root when radix expansion 605 * is required. 606 * 607 * leaf_count - Helps manage leaf collapse calculations when indirect 608 * blocks become mostly empty. This value caps out at 609 * HAMMER2_BLOCKREF_LEAF_MAX (65535). 610 * 611 * Used by the chain code to determine when to pull leafs up 612 * from nearly empty indirect blocks. For the purposes of this 613 * calculation, BREF_TYPE_INODE is considered a leaf, along 614 * with DIRENT and DATA. 615 * 616 * RESERVED FIELDS 617 * 618 * A number of blockref fields are reserved and should generally be set to 619 * 0 for future compatibility. 620 * 621 * FUTURE BLOCKREF EXPANSION 622 * 623 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code. 624 */ 625 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */ 626 uint8_t type; /* type of underlying item */ 627 uint8_t methods; /* check method & compression method */ 628 uint8_t copyid; /* specify which copy this is */ 629 uint8_t keybits; /* #of keybits masked off 0=leaf */ 630 uint8_t vradix; /* virtual data/meta-data size */ 631 uint8_t flags; /* blockref flags */ 632 uint16_t leaf_count; /* leaf aggregation count */ 633 hammer2_key_t key; /* key specification */ 634 hammer2_tid_t mirror_tid; /* media flush topology & freemap */ 635 hammer2_tid_t modify_tid; /* clc modify (not propagated) */ 636 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/ 637 hammer2_tid_t update_tid; /* clc modify (propagated upward) */ 638 union { 639 char buf[16]; 640 641 /* 642 * Directory entry header (BREF_TYPE_DIRENT) 643 * 644 * NOTE: check.buf contains filename if <= 64 bytes. Longer 645 * filenames are stored in a data reference of size 646 * HAMMER2_ALLOC_MIN (at least 256, typically 1024). 647 * 648 * NOTE: inode structure may contain a copy of a recently 649 * associated filename, for recovery purposes. 650 * 651 * NOTE: Superroot entries are INODEs, not DIRENTs. Code 652 * allows both cases. 653 */ 654 hammer2_dirent_head_t dirent; 655 656 /* 657 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT) 658 */ 659 struct { 660 hammer2_key_t data_count; 661 hammer2_key_t inode_count; 662 } stats; 663 } embed; 664 union { /* check info */ 665 char buf[64]; 666 struct { 667 uint32_t value; 668 uint32_t reserved[15]; 669 } iscsi32; 670 struct { 671 uint64_t value; 672 uint64_t reserved[7]; 673 } xxhash64; 674 struct { 675 char data[24]; 676 char reserved[40]; 677 } sha192; 678 struct { 679 char data[32]; 680 char reserved[32]; 681 } sha256; 682 struct { 683 char data[64]; 684 } sha512; 685 686 /* 687 * Freemap hints are embedded in addition to the icrc32. 688 * 689 * bigmask - Radixes available for allocation (0-31). 690 * Heuristical (may be permissive but not 691 * restrictive). Typically only radix values 692 * 10-16 are used (i.e. (1<<10) through (1<<16)). 693 * 694 * avail - Total available space remaining, in bytes 695 */ 696 struct { 697 uint32_t icrc32; 698 uint32_t bigmask; /* available radixes */ 699 uint64_t avail; /* total available bytes */ 700 char reserved[48]; 701 } freemap; 702 } check; 703 } __packed; 704 705 typedef struct hammer2_blockref hammer2_blockref_t; 706 707 #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */ 708 #define HAMMER2_BLOCKREF_RADIX 7 709 710 #define HAMMER2_BLOCKREF_LEAF_MAX 65535 711 712 /* 713 * On-media and off-media blockref types. 714 * 715 * types >= 128 are pseudo values that should never be present on-media. 716 */ 717 #define HAMMER2_BREF_TYPE_EMPTY 0 718 #define HAMMER2_BREF_TYPE_INODE 1 719 #define HAMMER2_BREF_TYPE_INDIRECT 2 720 #define HAMMER2_BREF_TYPE_DATA 3 721 #define HAMMER2_BREF_TYPE_DIRENT 4 722 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5 723 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6 724 #define HAMMER2_BREF_TYPE_INVALID 7 725 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */ 726 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */ 727 728 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */ 729 #define HAMMER2_BREF_FLAG_ZERO 0x02 /* NO LONGER USED */ 730 #define HAMMER2_BREF_FLAG_EMERG_MIP 0x04 /* emerg modified-in-place */ 731 732 /* 733 * Encode/decode check mode and compression mode for 734 * bref.methods. The compression level is not encoded in 735 * bref.methods. 736 */ 737 #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4) 738 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15) 739 #define HAMMER2_ENC_COMP(n) ((n) & 15) 740 #define HAMMER2_DEC_COMP(n) ((n) & 15) 741 742 #define HAMMER2_CHECK_NONE 0 743 #define HAMMER2_CHECK_DISABLED 1 744 #define HAMMER2_CHECK_ISCSI32 2 745 #define HAMMER2_CHECK_XXHASH64 3 746 #define HAMMER2_CHECK_SHA192 4 747 #define HAMMER2_CHECK_FREEMAP 5 748 749 #define HAMMER2_CHECK_DEFAULT HAMMER2_CHECK_XXHASH64 750 751 /* user-specifiable check modes only */ 752 #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \ 753 "xxhash64", "sha192" } 754 #define HAMMER2_CHECK_STRINGS_COUNT 5 755 756 /* 757 * Encode/decode check or compression algorithm request in 758 * ipdata->meta.check_algo and ipdata->meta.comp_algo. 759 */ 760 #define HAMMER2_ENC_ALGO(n) (n) 761 #define HAMMER2_DEC_ALGO(n) ((n) & 15) 762 #define HAMMER2_ENC_LEVEL(n) ((n) << 4) 763 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15) 764 765 #define HAMMER2_COMP_NONE 0 766 #define HAMMER2_COMP_AUTOZERO 1 767 #define HAMMER2_COMP_LZ4 2 768 #define HAMMER2_COMP_ZLIB 3 769 770 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4 771 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" } 772 #define HAMMER2_COMP_STRINGS_COUNT 4 773 774 /* 775 * Passed to hammer2_chain_create(), causes methods to be inherited from 776 * parent. 777 */ 778 #define HAMMER2_METH_DEFAULT -1 779 780 /* 781 * HAMMER2 block references are collected into sets of 4 blockrefs. These 782 * sets are fully associative, meaning the elements making up a set may 783 * contain duplicate entries, holes, but valid elements are always sorted. 784 * 785 * When redundancy is desired a set may contain several duplicate 786 * entries pointing to different copies of the same data. Up to 4 copies 787 * are supported. Not implemented. 788 * 789 * When a set fills up another level of indirection is inserted, moving 790 * some or all of the set's contents into indirect blocks placed under the 791 * set. This is a top-down approach in that indirect blocks are not created 792 * until the set actually becomes full (that is, the entries in the set can 793 * shortcut the indirect blocks when the set is not full). Depending on how 794 * things are filled multiple indirect blocks will eventually be created. 795 */ 796 struct hammer2_blockset { 797 hammer2_blockref_t blockref[HAMMER2_SET_COUNT]; 798 }; 799 800 typedef struct hammer2_blockset hammer2_blockset_t; 801 802 /* 803 * Catch programmer snafus 804 */ 805 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT 806 #error "hammer2 direct radix is incorrect" 807 #endif 808 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE 809 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent" 810 #endif 811 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN 812 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent" 813 #endif 814 815 /* 816 * hammer2_bmap_data - A freemap entry in the LEVEL1 block. 817 * 818 * Each 128-byte entry contains the bitmap and meta-data required to manage 819 * a LEVEL0 (4MB) block of storage. The storage is managed in 256 x 16KB 820 * chunks. 821 * 822 * A smaller allocation granularity is supported via a linear iterator and/or 823 * must otherwise be tracked in ram. 824 * 825 * (data structure must be 128 bytes exactly) 826 * 827 * linear - A BYTE linear allocation offset used for sub-16KB allocations 828 * only. May contain values between 0 and 4MB. Must be ignored 829 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be 830 * used to sub-allocate within the 16KB block (which is already 831 * marked as allocated in the bitmap). 832 * 833 * Sub-allocations need only be 1KB-aligned and do not have to be 834 * size-aligned, and 16KB or larger allocations do not update this 835 * field, resulting in pretty good packing. 836 * 837 * Please note that file data granularity may be limited by 838 * other issues such as buffer cache direct-mapping and the 839 * desire to support sector sizes up to 16KB (so H2 only issues 840 * I/O's in multiples of 16KB anyway). 841 * 842 * class - Clustering class. Cleared to 0 only if the entire leaf becomes 843 * free. Used to cluster device buffers so all elements must have 844 * the same device block size, but may mix logical sizes. 845 * 846 * Typically integrated with the blockref type in the upper 8 bits 847 * to localize inodes and indrect blocks, improving bulk free scans 848 * and directory scans. 849 * 850 * bitmap - Two bits per 16KB allocation block arranged in arrays of 851 * 64-bit elements, 256x2 bits representing ~4MB worth of media 852 * storage. Bit patterns are as follows: 853 * 854 * 00 Unallocated 855 * 01 (reserved) 856 * 10 Possibly free 857 * 11 Allocated 858 * 859 * ========== 860 * level6 freemap 861 * blockref[0] : 4EB 862 * blockref[1] : 4EB 863 * blockref[2] : 4EB 864 * blockref[3] : 4EB 865 * ----------------------------------------------------------------------- 866 * 4 x 128B = 512B : 4 x 4EB = 16EB 867 * 868 * level2-5 FREEMAP_NODE 869 * blockref[0] : 1GB,256GB,64TB,16PB 870 * blockref[1] : 1GB,256GB,64TB,16PB 871 * ... 872 * blockref[255] : 1GB,256GB,64TB,16PB 873 * ----------------------------------------------------------------------- 874 * 256 x 128B = 32KB : 256 x 1GB,256GB,64TB,16PB = 256GB,64TB,16PB,4EB 875 * 876 * level1 FREEMAP_LEAF 877 * bmap_data[0] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB 878 * bmap_data[1] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB 879 * ... 880 * bmap_data[255] : 8 x 8B = 512bits = 256 x 2bits -> 256 x 16KB = 4MB 881 * ----------------------------------------------------------------------- 882 * 256 x 128B = 32KB : 256 x 4MB = 1GB 883 * ========== 884 */ 885 struct hammer2_bmap_data { 886 int32_t linear; /* 00 linear sub-granular allocation offset */ 887 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */ 888 uint8_t reserved06; /* 06 */ 889 uint8_t reserved07; /* 07 */ 890 uint32_t reserved08; /* 08 */ 891 uint32_t reserved0C; /* 0C */ 892 uint32_t reserved10; /* 10 */ 893 uint32_t reserved14; /* 14 */ 894 uint32_t reserved18; /* 18 */ 895 uint32_t avail; /* 1C */ 896 uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */ 897 /* 40-7F 512 bits manages 4MB of storage */ 898 hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS]; 899 } __packed; 900 901 typedef struct hammer2_bmap_data hammer2_bmap_data_t; 902 903 /* 904 * The inode number is stored in the inode rather than being 905 * based on the location of the inode (since the location moves every time 906 * the inode or anything underneath the inode is modified). 907 * 908 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes 909 * for the filename, and 512 bytes worth of direct file data OR an embedded 910 * blockset. The in-memory hammer2_inode structure contains only the mostly- 911 * node-independent meta-data portion (some flags are node-specific and will 912 * not be synchronized). The rest of the inode is node-specific and chain I/O 913 * is required to obtain it. 914 * 915 * Directories represent one inode per blockref. Inodes are not laid out 916 * as a file but instead are represented by the related blockrefs. The 917 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember 918 * that blocksets are fully associative, so a certain degree efficiency is 919 * achieved just from that. 920 * 921 * Up to 512 bytes of direct data can be embedded in an inode, and since 922 * inodes are essentially directory entries this also means that small data 923 * files end up simply being laid out linearly in the directory, resulting 924 * in fewer seeks and highly optimal access. 925 * 926 * The compression mode can be changed at any time in the inode and is 927 * recorded on a blockref-by-blockref basis. 928 */ 929 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */ 930 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */ 931 #define HAMMER2_INODE_VERSION_ONE 1 932 933 #define HAMMER2_INODE_START 1024 /* dynamically allocated */ 934 935 struct hammer2_inode_meta { 936 uint16_t version; /* 0000 inode data version */ 937 uint8_t reserved02; /* 0002 */ 938 uint8_t pfs_subtype; /* 0003 pfs sub-type */ 939 940 /* 941 * core inode attributes, inode type, misc flags 942 */ 943 uint32_t uflags; /* 0004 chflags */ 944 uint32_t rmajor; /* 0008 available for device nodes */ 945 uint32_t rminor; /* 000C available for device nodes */ 946 uint64_t ctime; /* 0010 inode change time */ 947 uint64_t mtime; /* 0018 modified time */ 948 uint64_t atime; /* 0020 access time (unsupported) */ 949 uint64_t btime; /* 0028 birth time */ 950 uuid_t uid; /* 0030 uid / degenerate unix uid */ 951 uuid_t gid; /* 0040 gid / degenerate unix gid */ 952 953 uint8_t type; /* 0050 object type */ 954 uint8_t op_flags; /* 0051 operational flags */ 955 uint16_t cap_flags; /* 0052 capability flags */ 956 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */ 957 958 /* 959 * inode size, identification, localized recursive configuration 960 * for compression and backup copies. 961 * 962 * NOTE: Nominal parent inode number (iparent) is only applicable 963 * for directories but can also help for files during 964 * catastrophic recovery. 965 */ 966 hammer2_tid_t inum; /* 0058 inode number */ 967 hammer2_off_t size; /* 0060 size of file */ 968 uint64_t nlinks; /* 0068 hard links (typ only dirs) */ 969 hammer2_tid_t iparent; /* 0070 nominal parent inum */ 970 hammer2_key_t name_key; /* 0078 full filename key */ 971 uint16_t name_len; /* 0080 filename length */ 972 uint8_t ncopies; /* 0082 ncopies to local media */ 973 uint8_t comp_algo; /* 0083 compression request & algo */ 974 975 /* 976 * These fields are currently only applicable to PFSROOTs. 977 * 978 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely 979 * identify an instance of a PFS in the cluster because 980 * a mount may contain more than one copy of the PFS as 981 * a separate node. {pfs_clid, pfs_fsid} must be used for 982 * registration in the cluster. 983 */ 984 uint8_t target_type; /* 0084 hardlink target type */ 985 uint8_t check_algo; /* 0085 check code request & algo */ 986 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */ 987 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */ 988 hammer2_tid_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */ 989 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */ 990 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */ 991 992 /* 993 * Quotas and aggregate sub-tree inode and data counters. Note that 994 * quotas are not replicated downward, they are explicitly set by 995 * the sysop and in-memory structures keep track of inheritance. 996 */ 997 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */ 998 hammer2_key_t unusedB8; /* 00B8 subtree byte count */ 999 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */ 1000 hammer2_key_t unusedC8; /* 00C8 subtree inode count */ 1001 1002 /* 1003 * The last snapshot tid is tested against modify_tid to determine 1004 * when a copy must be made of a data block whos check mode has been 1005 * disabled (a disabled check mode allows data blocks to be updated 1006 * in place instead of copy-on-write). 1007 */ 1008 hammer2_tid_t pfs_lsnap_tid; /* 00D0 last snapshot tid */ 1009 hammer2_tid_t reservedD8; /* 00D8 (avail) */ 1010 1011 /* 1012 * Tracks (possibly degenerate) free areas covering all sub-tree 1013 * allocations under inode, not counting the inode itself. 1014 * 0/0 indicates empty entry. fully set-associative. 1015 * 1016 * (not yet implemented) 1017 */ 1018 uint64_t decrypt_check; /* 00E0 decryption validator */ 1019 hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */ 1020 } __packed; 1021 1022 typedef struct hammer2_inode_meta hammer2_inode_meta_t; 1023 1024 struct hammer2_inode_data { 1025 hammer2_inode_meta_t meta; /* 0000-00FF */ 1026 unsigned char filename[HAMMER2_INODE_MAXNAME]; 1027 /* 0100-01FF (256 char, unterminated) */ 1028 union { /* 0200-03FF (64x8 = 512 bytes) */ 1029 hammer2_blockset_t blockset; 1030 char data[HAMMER2_EMBEDDED_BYTES]; 1031 } u; 1032 } __packed; 1033 1034 typedef struct hammer2_inode_data hammer2_inode_data_t; 1035 1036 #define HAMMER2_OPFLAG_DIRECTDATA 0x01 1037 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */ 1038 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */ 1039 1040 #define HAMMER2_OBJTYPE_UNKNOWN 0 1041 #define HAMMER2_OBJTYPE_DIRECTORY 1 1042 #define HAMMER2_OBJTYPE_REGFILE 2 1043 #define HAMMER2_OBJTYPE_FIFO 4 1044 #define HAMMER2_OBJTYPE_CDEV 5 1045 #define HAMMER2_OBJTYPE_BDEV 6 1046 #define HAMMER2_OBJTYPE_SOFTLINK 7 1047 #define HAMMER2_OBJTYPE_UNUSED08 8 1048 #define HAMMER2_OBJTYPE_SOCKET 9 1049 #define HAMMER2_OBJTYPE_WHITEOUT 10 1050 1051 #define HAMMER2_COPYID_NONE 0 1052 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1) 1053 1054 #define HAMMER2_COPYID_COUNT 256 1055 1056 /* 1057 * PFS types identify the role of a PFS within a cluster. The PFS types 1058 * is stored on media and in LNK_SPAN messages and used in other places. 1059 * 1060 * The low 4 bits specify the current active type while the high 4 bits 1061 * specify the transition target if the PFS is being upgraded or downgraded, 1062 * If the upper 4 bits are not zero it may effect how a PFS is used during 1063 * the transition. 1064 * 1065 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until 1066 * at least all MASTERs have updated their pfs_nmasters field. And upgrading 1067 * a SLAVE to a MASTER cannot complete until the new prospective master has 1068 * been fully synchronized (though theoretically full synchronization is 1069 * not required if a (new) quorum of other masters are fully synchronized). 1070 * 1071 * It generally does not matter which PFS element you actually mount, you 1072 * are mounting 'the cluster'. So, for example, a network mount will mount 1073 * a DUMMY PFS type on a memory filesystem. However, there are two exceptions. 1074 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs 1075 * must be directly mounted. 1076 */ 1077 #define HAMMER2_PFSTYPE_NONE 0x00 1078 #define HAMMER2_PFSTYPE_CACHE 0x01 1079 #define HAMMER2_PFSTYPE_UNUSED02 0x02 1080 #define HAMMER2_PFSTYPE_SLAVE 0x03 1081 #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04 1082 #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05 1083 #define HAMMER2_PFSTYPE_MASTER 0x06 1084 #define HAMMER2_PFSTYPE_UNUSED07 0x07 1085 #define HAMMER2_PFSTYPE_SUPROOT 0x08 1086 #define HAMMER2_PFSTYPE_DUMMY 0x09 1087 #define HAMMER2_PFSTYPE_MAX 16 1088 1089 #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */ 1090 #define HAMMER2_PFSTRAN_CACHE 0x10 1091 #define HAMMER2_PFSTRAN_UNMUSED20 0x20 1092 #define HAMMER2_PFSTRAN_SLAVE 0x30 1093 #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40 1094 #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50 1095 #define HAMMER2_PFSTRAN_MASTER 0x60 1096 #define HAMMER2_PFSTRAN_UNUSED70 0x70 1097 #define HAMMER2_PFSTRAN_SUPROOT 0x80 1098 #define HAMMER2_PFSTRAN_DUMMY 0x90 1099 1100 #define HAMMER2_PFS_DEC(n) ((n) & 0x0F) 1101 #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F) 1102 #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4) 1103 1104 #define HAMMER2_PFSSUBTYPE_NONE 0 1105 #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */ 1106 #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */ 1107 1108 /* 1109 * PFS mode of operation is a bitmask. This is typically not stored 1110 * on-media, but defined here because the field may be used in dmsgs. 1111 */ 1112 #define HAMMER2_PFSMODE_QUORUM 0x01 1113 #define HAMMER2_PFSMODE_RW 0x02 1114 1115 /* 1116 * The volume header eats a 64K block at the beginning of each 2GB zone 1117 * up to four copies. 1118 * 1119 * All information is stored in host byte order. The volume header's magic 1120 * number may be checked to determine the byte order. If you wish to mount 1121 * between machines w/ different endian modes you'll need filesystem code 1122 * which acts on the media data consistently (either all one way or all the 1123 * other). Our code currently does not do that. 1124 * 1125 * A read-write mount may have to recover missing allocations by doing an 1126 * incremental mirror scan looking for modifications made after alloc_tid. 1127 * If alloc_tid == last_tid then no recovery operation is needed. Recovery 1128 * operations are usually very, very fast. 1129 * 1130 * Read-only mounts do not need to do any recovery, access to the filesystem 1131 * topology is always consistent after a crash (is always consistent, period). 1132 * However, there may be shortcutted blockref updates present from deep in 1133 * the tree which are stored in the volumeh eader and must be tracked on 1134 * the fly. 1135 * 1136 * NOTE: The copyinfo[] array contains the configuration for both the 1137 * cluster connections and any local media copies. The volume 1138 * header will be replicated for each local media copy. 1139 * 1140 * The mount command may specify multiple medias or just one and 1141 * allow HAMMER2 to pick up the others when it checks the copyinfo[] 1142 * array on mount. 1143 * 1144 * NOTE: sroot_blockset points to the super-root directory, not the root 1145 * directory. The root directory will be a subdirectory under the 1146 * super-root. 1147 * 1148 * The super-root directory contains all root directories and all 1149 * snapshots (readonly or writable). It is possible to do a 1150 * null-mount of the super-root using special path constructions 1151 * relative to your mounted root. 1152 */ 1153 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU 1154 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU 1155 1156 /* 1157 * If volume version is HAMMER2_VOL_VERSION_MULTI_VOLUMES or above, max 1158 * HAMMER2_MAX_VOLUMES volumes are supported. There must be 1 (and only 1) 1159 * volume with volume id HAMMER2_ROOT_VOLUME. 1160 * Otherwise filesystem only supports 1 volume, and that volume must have 1161 * volume id HAMMER2_ROOT_VOLUME(0) which was a reserved field then. 1162 */ 1163 #define HAMMER2_MAX_VOLUMES 64 1164 #define HAMMER2_ROOT_VOLUME 0 1165 1166 struct hammer2_volume_data { 1167 /* 1168 * sector #0 - 512 bytes 1169 */ 1170 uint64_t magic; /* 0000 Signature */ 1171 hammer2_off_t boot_beg; /* 0008 Boot area (future) */ 1172 hammer2_off_t boot_end; /* 0010 (size = end - beg) */ 1173 hammer2_off_t aux_beg; /* 0018 Aux area (future) */ 1174 hammer2_off_t aux_end; /* 0020 (size = end - beg) */ 1175 hammer2_off_t volu_size; /* 0028 Volume size, bytes */ 1176 1177 uint32_t version; /* 0030 */ 1178 uint32_t flags; /* 0034 */ 1179 uint8_t copyid; /* 0038 copyid of phys vol */ 1180 uint8_t freemap_version; /* 0039 freemap algorithm */ 1181 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */ 1182 uint8_t volu_id; /* 003B */ 1183 uint8_t nvolumes; /* 003C */ 1184 uint8_t reserved003D; /* 003D */ 1185 uint16_t reserved003E; /* 003E */ 1186 1187 uuid_t fsid; /* 0040 */ 1188 uuid_t fstype; /* 0050 */ 1189 1190 /* 1191 * allocator_size is precalculated at newfs time and does not include 1192 * reserved blocks, boot, or aux areas. 1193 * 1194 * Initial non-reserved-area allocations do not use the freemap 1195 * but instead adjust alloc_iterator. Dynamic allocations take 1196 * over starting at (allocator_beg). This makes newfs_hammer2's 1197 * job a lot easier and can also serve as a testing jig. 1198 */ 1199 hammer2_off_t allocator_size; /* 0060 Total data space */ 1200 hammer2_off_t allocator_free; /* 0068 Free space */ 1201 hammer2_off_t allocator_beg; /* 0070 Initial allocations */ 1202 1203 /* 1204 * mirror_tid reflects the highest committed change for this 1205 * block device regardless of whether it is to the super-root 1206 * or to a PFS or whatever. 1207 * 1208 * freemap_tid reflects the highest committed freemap change for 1209 * this block device. 1210 */ 1211 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */ 1212 hammer2_tid_t reserved0080; /* 0080 */ 1213 hammer2_tid_t reserved0088; /* 0088 */ 1214 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */ 1215 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */ 1216 hammer2_tid_t reserved00A0[4]; /* 00A0-00BF */ 1217 1218 hammer2_off_t total_size; /* 00C0 Total volume size, bytes */ 1219 1220 /* 1221 * Copyids are allocated dynamically from the copyexists bitmap. 1222 * An id from the active copies set (up to 8, see copyinfo later on) 1223 * may still exist after the copy set has been removed from the 1224 * volume header and its bit will remain active in the bitmap and 1225 * cannot be reused until it is 100% removed from the hierarchy. 1226 */ 1227 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */ 1228 char reserved0140[248]; /* 00E8-01DF */ 1229 1230 /* 1231 * 32 bit CRC array at the end of the first 512 byte sector. 1232 * 1233 * icrc_sects[7] - First 512-4 bytes of volume header (including all 1234 * the other icrc's except this one). 1235 * 1236 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is 1237 * the blockset for the root. 1238 * 1239 * icrc_sects[5] - Sector 2 1240 * icrc_sects[4] - Sector 3 1241 * icrc_sects[3] - Sector 4 (the freemap blockset) 1242 */ 1243 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */ 1244 1245 /* 1246 * sector #1 - 512 bytes 1247 * 1248 * The entire sector is used by a blockset, but currently only first 1249 * blockref is used. 1250 */ 1251 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */ 1252 1253 /* 1254 * sector #2-6 1255 */ 1256 char sector2[512]; /* 0400-05FF reserved */ 1257 char sector3[512]; /* 0600-07FF reserved */ 1258 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */ 1259 char sector5[512]; /* 0A00-0BFF reserved */ 1260 char sector6[512]; /* 0C00-0DFF reserved */ 1261 1262 /* 1263 * sector #7 - 512 bytes 1264 * Maximum 64 volume offsets within logical offset. 1265 */ 1266 hammer2_off_t volu_loff[HAMMER2_MAX_VOLUMES]; 1267 1268 /* 1269 * sector #8-71 - 32768 bytes 1270 * 1271 * Contains the configuration for up to 256 copyinfo targets. These 1272 * specify local and remote copies operating as masters or slaves. 1273 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255 1274 * indicates the local media). 1275 */ 1276 /* 1000-8FFF copyinfo config */ 1277 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT]; 1278 1279 /* 1280 * Remaining sections are reserved for future use. 1281 */ 1282 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */ 1283 1284 /* 1285 * icrc on entire volume header 1286 */ 1287 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/ 1288 } __packed; 1289 1290 typedef struct hammer2_volume_data hammer2_volume_data_t; 1291 1292 /* 1293 * Various parts of the volume header have their own iCRCs. 1294 * 1295 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes 1296 * and not included the icrc calculation. 1297 * 1298 * The second 512 bytes also has its own iCRC but it is stored in the first 1299 * 512 bytes so it covers the entire second 512 bytes. 1300 * 1301 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes, 1302 * which is where the iCRC for the whole volume is stored. This is currently 1303 * a catch-all for anything not individually iCRCd. 1304 */ 1305 #define HAMMER2_VOL_ICRC_SECT0 7 1306 #define HAMMER2_VOL_ICRC_SECT1 6 1307 1308 #define HAMMER2_VOLUME_BYTES 65536 1309 1310 #define HAMMER2_VOLUME_ICRC0_OFF 0 1311 #define HAMMER2_VOLUME_ICRC1_OFF 512 1312 #define HAMMER2_VOLUME_ICRCVH_OFF 0 1313 1314 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4) 1315 #define HAMMER2_VOLUME_ICRC1_SIZE (512) 1316 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4) 1317 1318 #define HAMMER2_VOL_VERSION_MULTI_VOLUMES 2 1319 1320 #define HAMMER2_VOL_VERSION_MIN 1 1321 #define HAMMER2_VOL_VERSION_DEFAULT HAMMER2_VOL_VERSION_MULTI_VOLUMES 1322 #define HAMMER2_VOL_VERSION_WIP (HAMMER2_VOL_VERSION_MULTI_VOLUMES + 1) 1323 1324 #define HAMMER2_NUM_VOLHDRS 4 1325 1326 union hammer2_media_data { 1327 hammer2_volume_data_t voldata; 1328 hammer2_inode_data_t ipdata; 1329 hammer2_blockset_t blkset; 1330 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX]; 1331 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT]; 1332 char buf[HAMMER2_PBUFSIZE]; 1333 } __packed; 1334 1335 typedef union hammer2_media_data hammer2_media_data_t; 1336 1337 #endif /* !_VFS_HAMMER2_DISK_H_ */ 1338