xref: /netbsd-src/usr.bin/moduli/qsieve/qsieve.c (revision 6d5539de9c26da0fdb02fb301f829d5528cd7024)
1 /* $NetBSD: qsieve.c,v 1.3 2011/09/04 20:55:43 joerg Exp $ */
2 
3 /*-
4  * Copyright 1994 Phil Karn <karn@qualcomm.com>
5  * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
6  * Copyright 2000 Niels Provos <provos@citi.umich.edu>
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 /*
31  * Sieve candidates for "safe" primes,
32  *  suitable for use as Diffie-Hellman moduli;
33  *  that is, where q = (p-1)/2 is also prime.
34  *
35  * This is the first of two steps.
36  * This step is memory intensive.
37  *
38  * 1996 May     William Allen Simpson
39  *              extracted from earlier code by Phil Karn, April 1994.
40  *              save large primes list for later processing.
41  * 1998 May     William Allen Simpson
42  *              parameterized.
43  * 2000 Dec     Niels Provos
44  *              convert from GMP to openssl BN.
45  * 2003 Jun     William Allen Simpson
46  *              change outfile definition slightly to match openssh mistake.
47  *              move common file i/o to own file for better documentation.
48  *              redo memory again.
49  */
50 
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <time.h>
54 #include <openssl/bn.h>
55 #include <string.h>
56 #include <err.h>
57 #include "qfile.h"
58 
59 /* define DEBUG_LARGE 1 */
60 /* define DEBUG_SMALL 1 */
61 
62 /*
63  * Using virtual memory can cause thrashing.  This should be the largest
64  * number that is supported without a large amount of disk activity --
65  * that would increase the run time from hours to days or weeks!
66  */
67 #define LARGE_MINIMUM   (8UL)	/* megabytes */
68 
69 /*
70  * Do not increase this number beyond the unsigned integer bit size.
71  * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
72  */
73 #define LARGE_MAXIMUM   (127UL)	/* megabytes */
74 
75 /*
76  * Constant: assuming 8 bit bytes and 32 bit words
77  */
78 #define SHIFT_BIT       (3)
79 #define SHIFT_BYTE      (2)
80 #define SHIFT_WORD      (SHIFT_BIT+SHIFT_BYTE)
81 #define SHIFT_MEGABYTE  (20)
82 #define SHIFT_MEGAWORD  (SHIFT_MEGABYTE-SHIFT_BYTE)
83 
84 /*
85  * Constant: when used with 32-bit integers, the largest sieve prime
86  * has to be less than 2**32.
87  */
88 #define SMALL_MAXIMUM   (0xffffffffUL)
89 
90 /*
91  * Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1.
92  */
93 #define TINY_NUMBER     (1UL<<16)
94 
95 /*
96  * Ensure enough bit space for testing 2*q.
97  */
98 #define TEST_MAXIMUM    (1UL<<16)
99 #define TEST_MINIMUM    (QSIZE_MINIMUM + 1)
100 /* real TEST_MINIMUM    (1UL << (SHIFT_WORD - TEST_POWER)) */
101 #define TEST_POWER      (3)	/* 2**n, n < SHIFT_WORD */
102 
103 /*
104  * bit operations on 32-bit words
105  */
106 #define BIT_CLEAR(a,n)  ((a)[(n)>>SHIFT_WORD] &= ~(1U << ((n) & 31)))
107 #define BIT_SET(a,n)    ((a)[(n)>>SHIFT_WORD] |= (1U << ((n) & 31)))
108 #define BIT_TEST(a,n)   ((a)[(n)>>SHIFT_WORD] & (1U << ((n) & 31)))
109 
110 /*
111  * sieve relative to the initial value
112  */
113 static uint32_t       *LargeSieve;
114 static uint32_t        largewords;
115 static uint32_t        largetries;
116 static uint32_t        largenumbers;
117 static uint32_t        largememory;	/* megabytes */
118 static uint32_t        largebits;
119 static BIGNUM         *largebase;
120 
121 /*
122  * sieve 2**30 in 2**16 parts
123  */
124 static uint32_t       *SmallSieve;
125 static uint32_t        smallbits;
126 static uint32_t        smallbase;
127 
128 /*
129  * sieve 2**16
130  */
131 static uint32_t       *TinySieve;
132 static uint32_t        tinybits;
133 
134 __dead static void     usage(void);
135 static void            sieve_large(uint32_t);
136 
137 /*
138  * Sieve p's and q's with small factors
139  */
140 static void
sieve_large(uint32_t s)141 sieve_large(uint32_t s)
142 {
143 	BN_ULONG        r;
144 	BN_ULONG        u;
145 
146 #ifdef  DEBUG_SMALL
147 	(void)fprintf(stderr, "%lu\n", s);
148 #endif
149 	largetries++;
150 	/* r = largebase mod s */
151 	r = BN_mod_word(largebase, (BN_ULONG) s);
152 	if (r == 0) {
153 		/* s divides into largebase exactly */
154 		u = 0;
155 	} else {
156 		/* largebase+u is first entry divisible by s */
157 		u = s - r;
158 	}
159 
160 	if (u < largebits * 2) {
161 		/*
162 		 * The sieve omits p's and q's divisible by 2, so ensure that
163 		 * largebase+u is odd. Then, step through the sieve in
164 		 * increments of 2*s
165 		 */
166 		if (u & 0x1) {
167 			/* Make largebase+u odd, and u even */
168 			u += s;
169 		}
170 
171 		/* Mark all multiples of 2*s */
172 		for (u /= 2; u < largebits; u += s) {
173 			BIT_SET(LargeSieve, (uint32_t)u);
174 		}
175 	}
176 
177 	/* r = p mod s */
178 	r = (2 * r + 1) % s;
179 
180 	if (r == 0) {
181 		/* s divides p exactly */
182 		u = 0;
183 	} else {
184 		/* p+u is first entry divisible by s */
185 		u = s - r;
186 	}
187 
188 	if (u < largebits * 4) {
189 		/*
190 		 * The sieve omits p's divisible by 4, so ensure that
191 		 * largebase+u is not. Then, step through the sieve in
192 		 * increments of 4*s
193 		 */
194 		while (u & 0x3) {
195 			if (SMALL_MAXIMUM - u < s) {
196 				return;
197 			}
198 
199 			u += s;
200 		}
201 
202 		/* Mark all multiples of 4*s */
203 		for (u /= 4; u < largebits; u += s) {
204 			BIT_SET(LargeSieve, (uint32_t)u);
205 		}
206 	}
207 }
208 
209 /*
210  * list candidates for Sophie-Germaine primes
211  * (where q = (p-1)/2)
212  * to standard output.
213  * The list is checked against small known primes
214  * (less than 2**30).
215  */
216 int
main(int argc,char * argv[])217 main(int argc, char *argv[])
218 {
219 	BIGNUM         *q;
220 	uint32_t        j;
221 	int             power;
222 	uint32_t        r;
223 	uint32_t        s;
224 	uint32_t        smallwords = TINY_NUMBER >> 6;
225 	uint32_t        t;
226 	time_t          time_start;
227 	time_t          time_stop;
228 	uint32_t        tinywords = TINY_NUMBER >> 6;
229 	unsigned int    i;
230 
231 	setprogname(argv[0]);
232 
233 	if (argc < 3) {
234 		usage();
235 	}
236 
237 	/*
238          * Set power to the length in bits of the prime to be generated.
239          * This is changed to 1 less than the desired safe prime moduli p.
240          */
241 	power = (int) strtoul(argv[2], NULL, 10);
242 	if ((unsigned)power > TEST_MAXIMUM) {
243 		errx(1, "Too many bits: %d > %lu.", power,
244 		     (unsigned long)TEST_MAXIMUM);
245 	} else if (power < TEST_MINIMUM) {
246 		errx(1, "Too few bits: %d < %lu.", power,
247 		     (unsigned long)TEST_MINIMUM);
248 	}
249 
250 	power--;		/* decrement before squaring */
251 
252 	/*
253          * The density of ordinary primes is on the order of 1/bits, so the
254          * density of safe primes should be about (1/bits)**2. Set test range
255          * to something well above bits**2 to be reasonably sure (but not
256          * guaranteed) of catching at least one safe prime.
257 	 */
258 	largewords = (uint32_t)((unsigned long)
259 			(power * power) >> (SHIFT_WORD - TEST_POWER));
260 
261 	/*
262          * Need idea of how much memory is available. We don't have to use all
263          * of it.
264 	 */
265 	largememory = (uint32_t)strtoul(argv[1], NULL, 10);
266 	if (largememory > LARGE_MAXIMUM) {
267 		warnx("Limited memory: %u MB; limit %lu MB.", largememory,
268 		      LARGE_MAXIMUM);
269 		largememory = LARGE_MAXIMUM;
270 	}
271 
272 	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
273 		warnx("Increased memory: %u MB; need %u bytes.",
274 		      largememory, (largewords << SHIFT_BYTE));
275 		largewords = (largememory << SHIFT_MEGAWORD);
276 	} else if (largememory > 0) {
277 		warnx("Decreased memory: %u MB; want %u bytes.",
278 		      largememory, (largewords << SHIFT_BYTE));
279 		largewords = (largememory << SHIFT_MEGAWORD);
280 	}
281 
282 	if ((TinySieve = (uint32_t *) calloc((size_t) tinywords, sizeof(uint32_t))) == NULL) {
283 		errx(1, "Insufficient memory for tiny sieve: need %u byts.",
284 		     tinywords << SHIFT_BYTE);
285 	}
286 	tinybits = tinywords << SHIFT_WORD;
287 
288 	if ((SmallSieve = (uint32_t *) calloc((size_t) smallwords, sizeof(uint32_t))) == NULL) {
289 		errx(1, "Insufficient memory for small sieve: need %u bytes.",
290 		     smallwords << SHIFT_BYTE);
291 	}
292 	smallbits = smallwords << SHIFT_WORD;
293 
294 	/*
295 	 * dynamically determine available memory
296 	 */
297 	while ((LargeSieve = (uint32_t *)calloc((size_t)largewords,
298 						sizeof(uint32_t))) == NULL) {
299 		/* 1/4 MB chunks */
300 		largewords -= (1L << (SHIFT_MEGAWORD - 2));
301 	}
302 	largebits = largewords << SHIFT_WORD;
303 	largenumbers = largebits * 2;	/* even numbers excluded */
304 
305 	/* validation check: count the number of primes tried */
306 	largetries = 0;
307 
308 	q = BN_new();
309 	largebase = BN_new();
310 
311 	/*
312          * Generate random starting point for subprime search, or use
313          * specified parameter.
314 	 */
315 	if (argc < 4) {
316 		BN_rand(largebase, power, 1, 1);
317 	} else {
318 		BIGNUM         *a;
319 
320 		a = largebase;
321 		BN_hex2bn(&a, argv[2]);
322 	}
323 
324 	/* ensure odd */
325 	if (!BN_is_odd(largebase)) {
326 		BN_set_bit(largebase, 0);
327 	}
328 
329 	time(&time_start);
330 	(void)fprintf(stderr,
331 		"%.24s Sieve next %u plus %d-bit start point:\n# ",
332 		ctime(&time_start), largenumbers, power);
333 	BN_print_fp(stderr, largebase);
334 	(void)fprintf(stderr, "\n");
335 
336 	/*
337          * TinySieve
338          */
339 	for (i = 0; i < tinybits; i++) {
340 		if (BIT_TEST(TinySieve, i)) {
341 			/* 2*i+3 is composite */
342 			continue;
343 		}
344 
345 		/* The next tiny prime */
346 		t = 2 * i + 3;
347 
348 		/* Mark all multiples of t */
349 		for (j = i + t; j < tinybits; j += t) {
350 			BIT_SET(TinySieve, j);
351 		}
352 
353 		sieve_large(t);
354 	}
355 
356 	/*
357          * Start the small block search at the next possible prime. To avoid
358          * fencepost errors, the last pass is skipped.
359          */
360 	for (smallbase = TINY_NUMBER + 3;
361 	     smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
362 	     smallbase += TINY_NUMBER) {
363 		for (i = 0; i < tinybits; i++) {
364 			if (BIT_TEST(TinySieve, i)) {
365 				/* 2*i+3 is composite */
366 				continue;
367 			}
368 
369 			/* The next tiny prime */
370 			t = 2 * i + 3;
371 			r = smallbase % t;
372 
373 			if (r == 0) {
374 				/* t divides into smallbase exactly */
375 				s = 0;
376 			} else {
377 				/* smallbase+s is first entry divisible by t */
378 				s = t - r;
379 			}
380 
381 			/*
382 			 * The sieve omits even numbers, so ensure that
383 			 * smallbase+s is odd. Then, step through the sieve in
384 			 * increments of 2*t
385 			 */
386 			if (s & 1) {
387 				/* Make smallbase+s odd, and s even */
388 				s += t;
389 			}
390 
391 			/* Mark all multiples of 2*t */
392 			for (s /= 2; s < smallbits; s += t) {
393 				BIT_SET(SmallSieve, s);
394 			}
395 		}
396 
397 		/*
398                  * SmallSieve
399                  */
400 		for (i = 0; i < smallbits; i++) {
401 			if (BIT_TEST(SmallSieve, i)) {
402 				/* 2*i+smallbase is composite */
403 				continue;
404 			}
405 
406 			/* The next small prime */
407 			sieve_large((2 * i) + smallbase);
408 		}
409 
410 		memset(SmallSieve, 0, (size_t)(smallwords << SHIFT_BYTE));
411 	}
412 
413 	time(&time_stop);
414 	(void)fprintf(stderr,
415 		"%.24s Sieved with %u small primes in %lu seconds\n",
416 		ctime(&time_stop), largetries,
417 		(long) (time_stop - time_start));
418 
419 	for (j = r = 0; j < largebits; j++) {
420 		if (BIT_TEST(LargeSieve, j)) {
421 			/* Definitely composite, skip */
422 			continue;
423 		}
424 
425 #ifdef  DEBUG_LARGE
426 		(void)fprintf(stderr, "test q = largebase+%lu\n", 2 * j);
427 #endif
428 
429 		BN_set_word(q, (unsigned long)(2 * j));
430 		BN_add(q, q, largebase);
431 
432 		if (0 > qfileout(stdout,
433 				 (uint32_t) QTYPE_SOPHIE_GERMAINE,
434 				 (uint32_t) QTEST_SIEVE,
435 				 largetries,
436 				 (uint32_t) (power - 1), /* MSB */
437 				 (uint32_t) (0), /* generator unknown */
438 				 q)) {
439 			break;
440 		}
441 
442 		r++;		/* count q */
443 	}
444 
445 	time(&time_stop);
446 
447 	free(LargeSieve);
448 	free(SmallSieve);
449 	free(TinySieve);
450 
451 	fflush(stdout);
452 	/* fclose(stdout); */
453 
454 	(void) fprintf(stderr, "%.24s Found %u candidates\n",
455 	    ctime(&time_stop), r);
456 
457 	return (0);
458 }
459 
460 static void
usage(void)461 usage(void)
462 {
463 	(void)fprintf(stderr, "Usage: %s <megabytes> <bits> [initial]\n"
464 		"Possible values for <megabytes>: 0, %lu to %lu\n"
465 		"Possible values for <bits>: %lu to %lu\n",
466 		getprogname(),
467 		LARGE_MINIMUM,
468 		LARGE_MAXIMUM,
469 		(unsigned long) TEST_MINIMUM,
470 		(unsigned long) TEST_MAXIMUM);
471 
472 	exit(1);
473 }
474