xref: /netbsd-src/usr.bin/compress/zopen.c (revision adbc140349d08baf4a6f1f4987c4efa589854cf5)
1 /*	$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $	*/
2 
3 /*-
4  * Copyright (c) 1985, 1986, 1992, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Diomidis Spinellis and James A. Woods, derived from original
9  * work by Spencer Thomas and Joseph Orost.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  * 3. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  */
35 
36 #if defined(LIBC_SCCS) && !defined(lint)
37 #if 0
38 static char sccsid[] = "@(#)zopen.c	8.1 (Berkeley) 6/27/93";
39 #else
40 static char rcsid[] = "$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $";
41 #endif
42 #endif /* LIBC_SCCS and not lint */
43 
44 /*-
45  * fcompress.c - File compression ala IEEE Computer, June 1984.
46  *
47  * Compress authors:
48  *		Spencer W. Thomas	(decvax!utah-cs!thomas)
49  *		Jim McKie		(decvax!mcvax!jim)
50  *		Steve Davies		(decvax!vax135!petsd!peora!srd)
51  *		Ken Turkowski		(decvax!decwrl!turtlevax!ken)
52  *		James A. Woods		(decvax!ihnp4!ames!jaw)
53  *		Joe Orost		(decvax!vax135!petsd!joe)
54  *
55  * Cleaned up and converted to library returning I/O streams by
56  * Diomidis Spinellis <dds@doc.ic.ac.uk>.
57  *
58  * zopen(filename, mode, bits)
59  *	Returns a FILE * that can be used for read or write.  The modes
60  *	supported are only "r" and "w".  Seeking is not allowed.  On
61  *	reading the file is decompressed, on writing it is compressed.
62  *	The output is compatible with compress(1) with 16 bit tables.
63  *	Any file produced by compress(1) can be read.
64  */
65 
66 #include <sys/param.h>
67 #include <sys/stat.h>
68 
69 #include <errno.h>
70 #include <signal.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <string.h>
74 #include <unistd.h>
75 
76 #define	BITS		16		/* Default bits. */
77 #define	HSIZE		69001		/* 95% occupancy */
78 
79 /* A code_int must be able to hold 2**BITS values of type int, and also -1. */
80 typedef long code_int;
81 typedef long count_int;
82 
83 typedef u_char char_type;
84 static char_type magic_header[] =
85 	{'\037', '\235'};		/* 1F 9D */
86 
87 #define	BIT_MASK	0x1f		/* Defines for third byte of header. */
88 #define	BLOCK_MASK	0x80
89 
90 /*
91  * Masks 0x40 and 0x20 are free.  I think 0x20 should mean that there is
92  * a fourth header byte (for expansion).
93  */
94 #define	INIT_BITS 9			/* Initial number of bits/code. */
95 
96 #define	MAXCODE(n_bits)	((1 << (n_bits)) - 1)
97 
98 struct s_zstate {
99 	FILE *zs_fp;			/* File stream for I/O */
100 	char zs_mode;			/* r or w */
101 	enum {
102 		S_START, S_MIDDLE, S_EOF
103 	} zs_state;			/* State of computation */
104 	int zs_n_bits;			/* Number of bits/code. */
105 	int zs_maxbits;			/* User settable max # bits/code. */
106 	code_int zs_maxcode;		/* Maximum code, given n_bits. */
107 	code_int zs_maxmaxcode;		/* Should NEVER generate this code. */
108 	count_int zs_htab [HSIZE];
109 	u_short zs_codetab [HSIZE];
110 	code_int zs_hsize;		/* For dynamic table sizing. */
111 	code_int zs_free_ent;		/* First unused entry. */
112 	/*
113 	 * Block compression parameters -- after all codes are used up,
114 	 * and compression rate changes, start over.
115 	 */
116 	int zs_block_compress;
117 	int zs_clear_flg;
118 	long zs_ratio;
119 	count_int zs_checkpoint;
120 	int zs_offset;
121 	long zs_in_count;		/* Length of input. */
122 	long zs_bytes_out;		/* Length of compressed output. */
123 	long zs_out_count;		/* # of codes output (for debugging). */
124 	char_type zs_buf[BITS];
125 	union {
126 		struct {
127 			long zs_fcode;
128 			code_int zs_ent;
129 			code_int zs_hsize_reg;
130 			int zs_hshift;
131 		} w;			/* Write parameters */
132 		struct {
133 			char_type *zs_stackp;
134 			int zs_finchar;
135 			code_int zs_code, zs_oldcode, zs_incode;
136 			int zs_roffset, zs_size;
137 			char_type zs_gbuf[BITS];
138 		} r;			/* Read parameters */
139 	} u;
140 };
141 
142 /* Definitions to retain old variable names */
143 #define	fp		zs->zs_fp
144 #define	zmode		zs->zs_mode
145 #define	state		zs->zs_state
146 #define	n_bits		zs->zs_n_bits
147 #define	maxbits		zs->zs_maxbits
148 #define	maxcode		zs->zs_maxcode
149 #define	maxmaxcode	zs->zs_maxmaxcode
150 #define	htab		zs->zs_htab
151 #define	codetab		zs->zs_codetab
152 #define	hsize		zs->zs_hsize
153 #define	free_ent	zs->zs_free_ent
154 #define	block_compress	zs->zs_block_compress
155 #define	clear_flg	zs->zs_clear_flg
156 #define	ratio		zs->zs_ratio
157 #define	checkpoint	zs->zs_checkpoint
158 #define	offset		zs->zs_offset
159 #define	in_count	zs->zs_in_count
160 #define	bytes_out	zs->zs_bytes_out
161 #define	out_count	zs->zs_out_count
162 #define	buf		zs->zs_buf
163 #define	fcode		zs->u.w.zs_fcode
164 #define	hsize_reg	zs->u.w.zs_hsize_reg
165 #define	ent		zs->u.w.zs_ent
166 #define	hshift		zs->u.w.zs_hshift
167 #define	stackp		zs->u.r.zs_stackp
168 #define	finchar		zs->u.r.zs_finchar
169 #define	code		zs->u.r.zs_code
170 #define	oldcode		zs->u.r.zs_oldcode
171 #define	incode		zs->u.r.zs_incode
172 #define	roffset		zs->u.r.zs_roffset
173 #define	size		zs->u.r.zs_size
174 #define	gbuf		zs->u.r.zs_gbuf
175 
176 /*
177  * To save much memory, we overlay the table used by compress() with those
178  * used by decompress().  The tab_prefix table is the same size and type as
179  * the codetab.  The tab_suffix table needs 2**BITS characters.  We get this
180  * from the beginning of htab.  The output stack uses the rest of htab, and
181  * contains characters.  There is plenty of room for any possible stack
182  * (stack used to be 8000 characters).
183  */
184 
185 #define	htabof(i)	htab[i]
186 #define	codetabof(i)	codetab[i]
187 
188 #define	tab_prefixof(i)	codetabof(i)
189 #define	tab_suffixof(i)	((char_type *)(htab))[i]
190 #define	de_stack	((char_type *)&tab_suffixof(1 << BITS))
191 
192 #define	CHECK_GAP 10000		/* Ratio check interval. */
193 
194 /*
195  * the next two codes should not be changed lightly, as they must not
196  * lie within the contiguous general code space.
197  */
198 #define	FIRST	257		/* First free entry. */
199 #define	CLEAR	256		/* Table clear output code. */
200 
201 static int	cl_block(struct s_zstate *);
202 static code_int	getcode(struct s_zstate *);
203 static int	output(struct s_zstate *, code_int);
204 static int	zclose(void *);
205 FILE	       *zopen(const char *, const char *, int);
206 static int	zread(void *, char *, int);
207 static int	zwrite(void *, const char *, int);
208 
209 /*-
210  * Algorithm from "A Technique for High Performance Data Compression",
211  * Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
212  *
213  * Algorithm:
214  * 	Modified Lempel-Ziv method (LZW).  Basically finds common
215  * substrings and replaces them with a variable size code.  This is
216  * deterministic, and can be done on the fly.  Thus, the decompression
217  * procedure needs no input table, but tracks the way the table was built.
218  */
219 
220 /*-
221  * compress write
222  *
223  * Algorithm:  use open addressing double hashing (no chaining) on the
224  * prefix code / next character combination.  We do a variant of Knuth's
225  * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
226  * secondary probe.  Here, the modular division first probe is gives way
227  * to a faster exclusive-or manipulation.  Also do block compression with
228  * an adaptive reset, whereby the code table is cleared when the compression
229  * ratio decreases, but after the table fills.  The variable-length output
230  * codes are re-sized at this point, and a special CLEAR code is generated
231  * for the decompressor.  Late addition:  construct the table according to
232  * file size for noticeable speed improvement on small files.  Please direct
233  * questions about this implementation to ames!jaw.
234  */
235 static int
zwrite(void * cookie,const char * wbp,int num)236 zwrite(void *cookie, const char *wbp, int num)
237 {
238 	code_int i;
239 	int c, disp;
240 	struct s_zstate *zs;
241 	const u_char *bp;
242 	u_char tmp;
243 	int count;
244 
245 	if (num == 0)
246 		return (0);
247 
248 	zs = cookie;
249 	count = num;
250 	bp = (const u_char *)wbp;
251 	if (state == S_MIDDLE)
252 		goto middle;
253 	state = S_MIDDLE;
254 
255 	maxmaxcode = 1L << maxbits;
256 	if (fwrite(magic_header,
257 	    sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
258 		return (-1);
259 	tmp = (u_char)(maxbits | block_compress);
260 	if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
261 		return (-1);
262 
263 	offset = 0;
264 	bytes_out = 3;		/* Includes 3-byte header mojo. */
265 	out_count = 0;
266 	clear_flg = 0;
267 	ratio = 0;
268 	in_count = 1;
269 	checkpoint = CHECK_GAP;
270 	maxcode = MAXCODE(n_bits = INIT_BITS);
271 	free_ent = ((block_compress) ? FIRST : 256);
272 
273 	ent = *bp++;
274 	--count;
275 
276 	hshift = 0;
277 	for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
278 		hshift++;
279 	hshift = 8 - hshift;	/* Set hash code range bound. */
280 
281 	hsize_reg = hsize;
282 	memset(htab, 0xff, hsize_reg * sizeof(count_int));
283 
284 middle:	while (count--) {
285 		c = *bp++;
286 		in_count++;
287 		fcode = (long)(((long)c << maxbits) + ent);
288 		i = ((c << hshift) ^ ent);	/* Xor hashing. */
289 
290 		if (htabof(i) == fcode) {
291 			ent = codetabof(i);
292 			continue;
293 		} else if ((long)htabof(i) < 0)	/* Empty slot. */
294 			goto nomatch;
295 		disp = hsize_reg - i;	/* Secondary hash (after G. Knott). */
296 		if (i == 0)
297 			disp = 1;
298 probe:		if ((i -= disp) < 0)
299 			i += hsize_reg;
300 
301 		if (htabof(i) == fcode) {
302 			ent = codetabof(i);
303 			continue;
304 		}
305 		if ((long)htabof(i) >= 0)
306 			goto probe;
307 nomatch:	if (output(zs, (code_int) ent) == -1)
308 			return (-1);
309 		out_count++;
310 		ent = c;
311 		if (free_ent < maxmaxcode) {
312 			codetabof(i) = free_ent++;	/* code -> hashtable */
313 			htabof(i) = fcode;
314 		} else if ((count_int)in_count >=
315 		    checkpoint && block_compress) {
316 			if (cl_block(zs) == -1)
317 				return (-1);
318 		}
319 	}
320 	return (num);
321 }
322 
323 static int
zclose(void * cookie)324 zclose(void *cookie)
325 {
326 	struct s_zstate *zs;
327 	int rval;
328 
329 	zs = cookie;
330 	if (zmode == 'w') {		/* Put out the final code. */
331 		if (output(zs, (code_int) ent) == -1) {
332 			(void)fclose(fp);
333 			free(zs);
334 			return (-1);
335 		}
336 		out_count++;
337 		if (output(zs, (code_int) - 1) == -1) {
338 			(void)fclose(fp);
339 			free(zs);
340 			return (-1);
341 		}
342 	}
343 	rval = fclose(fp) == EOF ? -1 : 0;
344 	free(zs);
345 	return (rval);
346 }
347 
348 /*-
349  * Output the given code.
350  * Inputs:
351  * 	code:	A n_bits-bit integer.  If == -1, then EOF.  This assumes
352  *		that n_bits =< (long)wordsize - 1.
353  * Outputs:
354  * 	Outputs code to the file.
355  * Assumptions:
356  *	Chars are 8 bits long.
357  * Algorithm:
358  * 	Maintain a BITS character long buffer (so that 8 codes will
359  * fit in it exactly).  Use the VAX insv instruction to insert each
360  * code in turn.  When the buffer fills up empty it and start over.
361  */
362 
363 static char_type lmask[9] =
364 	{0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
365 static char_type rmask[9] =
366 	{0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};
367 
368 static int
output(struct s_zstate * zs,code_int ocode)369 output(struct s_zstate *zs, code_int ocode)
370 {
371 	int bits, r_off;
372 	char_type *bp;
373 
374 	r_off = offset;
375 	bits = n_bits;
376 	bp = buf;
377 	if (ocode >= 0) {
378 		/* Get to the first byte. */
379 		bp += (r_off >> 3);
380 		r_off &= 7;
381 		/*
382 		 * Since ocode is always >= 8 bits, only need to mask the first
383 		 * hunk on the left.
384 		 */
385 		*bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
386 		bp++;
387 		bits -= (8 - r_off);
388 		ocode >>= 8 - r_off;
389 		/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
390 		if (bits >= 8) {
391 			*bp++ = ocode;
392 			ocode >>= 8;
393 			bits -= 8;
394 		}
395 		/* Last bits. */
396 		if (bits)
397 			*bp = ocode;
398 		offset += n_bits;
399 		if (offset == (n_bits << 3)) {
400 			bp = buf;
401 			bits = n_bits;
402 			bytes_out += bits;
403 			if (fwrite(bp, sizeof(char), bits, fp) != (size_t)bits)
404 				return (-1);
405 			bp += bits;
406 			bits = 0;
407 			offset = 0;
408 		}
409 		/*
410 		 * If the next entry is going to be too big for the ocode size,
411 		 * then increase it, if possible.
412 		 */
413 		if (free_ent > maxcode || (clear_flg > 0)) {
414 		       /*
415 			* Write the whole buffer, because the input side won't
416 			* discover the size increase until after it has read it.
417 			*/
418 			if (offset > 0) {
419 				if (fwrite(buf, 1, n_bits, fp) != (size_t)n_bits)
420 					return (-1);
421 				bytes_out += n_bits;
422 			}
423 			offset = 0;
424 
425 			if (clear_flg) {
426 				maxcode = MAXCODE(n_bits = INIT_BITS);
427 				clear_flg = 0;
428 			} else {
429 				n_bits++;
430 				if (n_bits == maxbits)
431 					maxcode = maxmaxcode;
432 				else
433 					maxcode = MAXCODE(n_bits);
434 			}
435 		}
436 	} else {
437 		/* At EOF, write the rest of the buffer. */
438 		if (offset > 0) {
439 			offset = (offset + 7) / 8;
440 			if (fwrite(buf, 1, offset, fp) != (size_t)offset)
441 				return (-1);
442 			bytes_out += offset;
443 		}
444 		offset = 0;
445 	}
446 	return (0);
447 }
448 
449 /*
450  * Decompress read.  This routine adapts to the codes in the file building
451  * the "string" table on-the-fly; requiring no table to be stored in the
452  * compressed file.  The tables used herein are shared with those of the
453  * compress() routine.  See the definitions above.
454  */
455 static int
zread(void * cookie,char * rbp,int num)456 zread(void *cookie, char *rbp, int num)
457 {
458 	u_int count;
459 	struct s_zstate *zs;
460 	u_char *bp, header[3];
461 
462 	if (num == 0)
463 		return (0);
464 
465 	zs = cookie;
466 	count = num;
467 	bp = (u_char *)rbp;
468 	switch (state) {
469 	case S_START:
470 		state = S_MIDDLE;
471 		break;
472 	case S_MIDDLE:
473 		goto middle;
474 	case S_EOF:
475 		goto eof;
476 	}
477 
478 	/* Check the magic number */
479 	if (fread(header,
480 	    sizeof(char), sizeof(header), fp) != sizeof(header) ||
481 	    memcmp(header, magic_header, sizeof(magic_header)) != 0) {
482 		errno = EFTYPE;
483 		return (-1);
484 	}
485 	maxbits = header[2];	/* Set -b from file. */
486 	block_compress = maxbits & BLOCK_MASK;
487 	maxbits &= BIT_MASK;
488 	maxmaxcode = 1L << maxbits;
489 	if (maxbits > BITS || maxbits < 12) {
490 		errno = EFTYPE;
491 		return (-1);
492 	}
493 	/* As above, initialize the first 256 entries in the table. */
494 	maxcode = MAXCODE(n_bits = INIT_BITS);
495 	for (code = 255; code >= 0; code--) {
496 		tab_prefixof(code) = 0;
497 		tab_suffixof(code) = (char_type) code;
498 	}
499 	free_ent = block_compress ? FIRST : 256;
500 	oldcode = -1;
501 	stackp = de_stack;
502 
503 	while ((code = getcode(zs)) > -1) {
504 
505 		if ((code == CLEAR) && block_compress) {
506 			for (code = 255; code >= 0; code--)
507 				tab_prefixof(code) = 0;
508 			clear_flg = 1;
509 			free_ent = FIRST;
510 			oldcode = -1;
511 			continue;
512 		}
513 		incode = code;
514 
515 		/* Special case for kWkWk string. */
516 		if (code >= free_ent) {
517 			if (code > free_ent || oldcode == -1) {
518 				/* Bad stream. */
519 				errno = EINVAL;
520 				return (-1);
521 			}
522 			*stackp++ = finchar;
523 			code = oldcode;
524 		}
525 		/*
526 		 * The above condition ensures that code < free_ent.
527 		 * The construction of tab_prefixof in turn guarantees that
528 		 * each iteration decreases code and therefore stack usage is
529 		 * bound by 1 << BITS - 256.
530 		 */
531 
532 		/* Generate output characters in reverse order. */
533 		while (code >= 256) {
534 			*stackp++ = tab_suffixof(code);
535 			code = tab_prefixof(code);
536 		}
537 		*stackp++ = finchar = tab_suffixof(code);
538 
539 		/* And put them out in forward order.  */
540 middle:		do {
541 			if (count-- == 0)
542 				return (num);
543 			*bp++ = *--stackp;
544 		} while (stackp > de_stack);
545 
546 		/* Generate the new entry. */
547 		if ((code = free_ent) < maxmaxcode && oldcode != -1) {
548 			tab_prefixof(code) = (u_short) oldcode;
549 			tab_suffixof(code) = finchar;
550 			free_ent = code + 1;
551 		}
552 
553 		/* Remember previous code. */
554 		oldcode = incode;
555 	}
556 	state = S_EOF;
557 eof:	return (num - count);
558 }
559 
560 /*-
561  * Read one code from the standard input.  If EOF, return -1.
562  * Inputs:
563  * 	stdin
564  * Outputs:
565  * 	code or -1 is returned.
566  */
567 static code_int
getcode(struct s_zstate * zs)568 getcode(struct s_zstate *zs)
569 {
570 	code_int gcode;
571 	int r_off, bits;
572 	char_type *bp;
573 
574 	bp = gbuf;
575 	if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
576 		/*
577 		 * If the next entry will be too big for the current gcode
578 		 * size, then we must increase the size.  This implies reading
579 		 * a new buffer full, too.
580 		 */
581 		if (free_ent > maxcode) {
582 			n_bits++;
583 			if (n_bits == maxbits)	/* Won't get any bigger now. */
584 				maxcode = maxmaxcode;
585 			else
586 				maxcode = MAXCODE(n_bits);
587 		}
588 		if (clear_flg > 0) {
589 			maxcode = MAXCODE(n_bits = INIT_BITS);
590 			clear_flg = 0;
591 		}
592 		size = fread(gbuf, 1, n_bits, fp);
593 		if (size <= 0)			/* End of file. */
594 			return (-1);
595 		roffset = 0;
596 		/* Round size down to integral number of codes. */
597 		size = (size << 3) - (n_bits - 1);
598 	}
599 	r_off = roffset;
600 	bits = n_bits;
601 
602 	/* Get to the first byte. */
603 	bp += (r_off >> 3);
604 	r_off &= 7;
605 
606 	/* Get first part (low order bits). */
607 	gcode = (*bp++ >> r_off);
608 	bits -= (8 - r_off);
609 	r_off = 8 - r_off;	/* Now, roffset into gcode word. */
610 
611 	/* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
612 	if (bits >= 8) {
613 		gcode |= *bp++ << r_off;
614 		r_off += 8;
615 		bits -= 8;
616 	}
617 
618 	/* High order bits. */
619 	gcode |= (*bp & rmask[bits]) << r_off;
620 	roffset += n_bits;
621 
622 	return (gcode);
623 }
624 
625 static int
cl_block(struct s_zstate * zs)626 cl_block(struct s_zstate *zs)		/* Table clear for block compress. */
627 {
628 	long rat;
629 
630 	checkpoint = in_count + CHECK_GAP;
631 
632 	if (in_count > 0x007fffff) {	/* Shift will overflow. */
633 		rat = bytes_out >> 8;
634 		if (rat == 0)		/* Don't divide by zero. */
635 			rat = 0x7fffffff;
636 		else
637 			rat = in_count / rat;
638 	} else
639 		rat = (in_count << 8) / bytes_out;	/* 8 fractional bits. */
640 	if (rat > ratio)
641 		ratio = rat;
642 	else {
643 		ratio = 0;
644 		memset(htab, 0xff, hsize * sizeof(count_int));
645 		free_ent = FIRST;
646 		clear_flg = 1;
647 		if (output(zs, (code_int) CLEAR) == -1)
648 			return (-1);
649 	}
650 	return (0);
651 }
652 
653 FILE *
zopen(const char * fname,const char * mode,int bits)654 zopen(const char *fname, const char *mode, int bits)
655 {
656 	struct s_zstate *zs;
657 
658 	if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
659 	    bits < 0 || bits > BITS) {
660 		errno = EINVAL;
661 		return (NULL);
662 	}
663 
664 	if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
665 		return (NULL);
666 
667 	maxbits = bits ? bits : BITS;	/* User settable max # bits/code. */
668 	maxmaxcode = 1 << maxbits;	/* Should NEVER generate this code. */
669 	hsize = HSIZE;			/* For dynamic table sizing. */
670 	free_ent = 0;			/* First unused entry. */
671 	block_compress = BLOCK_MASK;
672 	clear_flg = 0;
673 	ratio = 0;
674 	checkpoint = CHECK_GAP;
675 	in_count = 1;			/* Length of input. */
676 	out_count = 0;			/* # of codes output (for debugging). */
677 	state = S_START;
678 	roffset = 0;
679 	size = 0;
680 
681 	/*
682 	 * Layering compress on top of stdio in order to provide buffering,
683 	 * and ensure that reads and write work with the data specified.
684 	 */
685 	if ((fp = fopen(fname, mode)) == NULL) {
686 		free(zs);
687 		return (NULL);
688 	}
689 	switch (*mode) {
690 	case 'r':
691 		zmode = 'r';
692 		return (funopen(zs, zread, NULL, NULL, zclose));
693 	case 'w':
694 		zmode = 'w';
695 		return (funopen(zs, NULL, zwrite, NULL, zclose));
696 	}
697 	/* NOTREACHED */
698 	return (NULL);
699 }
700