xref: /netbsd-src/sys/net/radix.c (revision a59360497a7ce5907f2695fc74999a2e47a4c336)
1 /*	$NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $	*/
2 
3 /*
4  * Copyright (c) 1988, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)radix.c	8.6 (Berkeley) 10/17/95
32  */
33 
34 /*
35  * Routines to build and maintain radix trees for routing lookups.
36  */
37 
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: radix.c,v 1.49 2020/10/18 13:07:31 gson Exp $");
40 
41 #ifndef _NET_RADIX_H_
42 #include <sys/param.h>
43 #include <sys/queue.h>
44 #include <sys/kmem.h>
45 #ifdef	_KERNEL
46 #ifdef _KERNEL_OPT
47 #include "opt_inet.h"
48 #endif
49 
50 #include <sys/systm.h>
51 #include <sys/malloc.h>
52 #define	M_DONTWAIT M_NOWAIT
53 #include <sys/domain.h>
54 #else
55 #include <stdlib.h>
56 #endif
57 #include <sys/syslog.h>
58 #include <net/radix.h>
59 #endif
60 
61 typedef void (*rn_printer_t)(void *, const char *fmt, ...);
62 
63 int	max_keylen;
64 struct radix_mask *rn_mkfreelist;
65 struct radix_node_head *mask_rnhead;
66 static char *addmask_key;
67 static const char normal_chars[] =
68     {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
69 static char *rn_zeros, *rn_ones;
70 
71 #define rn_masktop (mask_rnhead->rnh_treetop)
72 
73 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
74 static int rn_lexobetter(const void *, const void *);
75 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
76     struct radix_mask *);
77 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
78     void *);
79 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
80     void *);
81 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
82     const char *);
83 
84 #define	SUBTREE_OPEN	"[ "
85 #define	SUBTREE_CLOSE	" ]"
86 
87 #ifdef RN_DEBUG
88 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
89 #endif /* RN_DEBUG */
90 
91 /*
92  * The data structure for the keys is a radix tree with one way
93  * branching removed.  The index rn_b at an internal node n represents a bit
94  * position to be tested.  The tree is arranged so that all descendants
95  * of a node n have keys whose bits all agree up to position rn_b - 1.
96  * (We say the index of n is rn_b.)
97  *
98  * There is at least one descendant which has a one bit at position rn_b,
99  * and at least one with a zero there.
100  *
101  * A route is determined by a pair of key and mask.  We require that the
102  * bit-wise logical and of the key and mask to be the key.
103  * We define the index of a route to associated with the mask to be
104  * the first bit number in the mask where 0 occurs (with bit number 0
105  * representing the highest order bit).
106  *
107  * We say a mask is normal if every bit is 0, past the index of the mask.
108  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
109  * and m is a normal mask, then the route applies to every descendant of n.
110  * If the index(m) < rn_b, this implies the trailing last few bits of k
111  * before bit b are all 0, (and hence consequently true of every descendant
112  * of n), so the route applies to all descendants of the node as well.
113  *
114  * Similar logic shows that a non-normal mask m such that
115  * index(m) <= index(n) could potentially apply to many children of n.
116  * Thus, for each non-host route, we attach its mask to a list at an internal
117  * node as high in the tree as we can go.
118  *
119  * The present version of the code makes use of normal routes in short-
120  * circuiting an explicit mask and compare operation when testing whether
121  * a key satisfies a normal route, and also in remembering the unique leaf
122  * that governs a subtree.
123  */
124 
125 struct radix_node *
rn_search(const void * v_arg,struct radix_node * head)126 rn_search(
127 	const void *v_arg,
128 	struct radix_node *head)
129 {
130 	const u_char * const v = v_arg;
131 	struct radix_node *x;
132 
133 	for (x = head; x->rn_b >= 0;) {
134 		if (x->rn_bmask & v[x->rn_off])
135 			x = x->rn_r;
136 		else
137 			x = x->rn_l;
138 	}
139 	return x;
140 }
141 
142 struct radix_node *
rn_search_m(const void * v_arg,struct radix_node * head,const void * m_arg)143 rn_search_m(
144 	const void *v_arg,
145 	struct radix_node *head,
146 	const void *m_arg)
147 {
148 	struct radix_node *x;
149 	const u_char * const v = v_arg;
150 	const u_char * const m = m_arg;
151 
152 	for (x = head; x->rn_b >= 0;) {
153 		if ((x->rn_bmask & m[x->rn_off]) &&
154 		    (x->rn_bmask & v[x->rn_off]))
155 			x = x->rn_r;
156 		else
157 			x = x->rn_l;
158 	}
159 	return x;
160 }
161 
162 int
rn_refines(const void * m_arg,const void * n_arg)163 rn_refines(
164 	const void *m_arg,
165 	const void *n_arg)
166 {
167 	const char *m = m_arg;
168 	const char *n = n_arg;
169 	const char *lim = n + *(const u_char *)n;
170 	const char *lim2 = lim;
171 	int longer = (*(const u_char *)n++) - (int)(*(const u_char *)m++);
172 	int masks_are_equal = 1;
173 
174 	if (longer > 0)
175 		lim -= longer;
176 	while (n < lim) {
177 		if (*n & ~(*m))
178 			return 0;
179 		if (*n++ != *m++)
180 			masks_are_equal = 0;
181 	}
182 	while (n < lim2)
183 		if (*n++)
184 			return 0;
185 	if (masks_are_equal && (longer < 0))
186 		for (lim2 = m - longer; m < lim2; )
187 			if (*m++)
188 				return 1;
189 	return !masks_are_equal;
190 }
191 
192 struct radix_node *
rn_lookup(const void * v_arg,const void * m_arg,struct radix_node_head * head)193 rn_lookup(
194 	const void *v_arg,
195 	const void *m_arg,
196 	struct radix_node_head *head)
197 {
198 	struct radix_node *x;
199 	const char *netmask = NULL;
200 
201 	if (m_arg) {
202 		if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
203 			return NULL;
204 		netmask = x->rn_key;
205 	}
206 	x = rn_match(v_arg, head);
207 	if (x != NULL && netmask != NULL) {
208 		while (x != NULL && x->rn_mask != netmask)
209 			x = x->rn_dupedkey;
210 	}
211 	return x;
212 }
213 
214 static int
rn_satisfies_leaf(const char * trial,struct radix_node * leaf,int skip)215 rn_satisfies_leaf(
216 	const char *trial,
217 	struct radix_node *leaf,
218 	int skip)
219 {
220 	const char *cp = trial;
221 	const char *cp2 = leaf->rn_key;
222 	const char *cp3 = leaf->rn_mask;
223 	const char *cplim;
224 	int length = uimin(*(const u_char *)cp, *(const u_char *)cp2);
225 
226 	if (cp3 == 0)
227 		cp3 = rn_ones;
228 	else
229 		length = uimin(length, *(const u_char *)cp3);
230 	cplim = cp + length; cp3 += skip; cp2 += skip;
231 	for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
232 		if ((*cp ^ *cp2) & *cp3)
233 			return 0;
234 	return 1;
235 }
236 
237 struct radix_node *
rn_match(const void * v_arg,struct radix_node_head * head)238 rn_match(
239 	const void *v_arg,
240 	struct radix_node_head *head)
241 {
242 	const char * const v = v_arg;
243 	struct radix_node *t = head->rnh_treetop;
244 	struct radix_node *top = t;
245 	struct radix_node *x;
246 	struct radix_node *saved_t;
247 	const char *cp = v;
248 	const char *cp2;
249 	const char *cplim;
250 	int off = t->rn_off;
251 	int vlen = *(const u_char *)cp;
252 	int matched_off;
253 	int test, b, rn_b;
254 
255 	/*
256 	 * Open code rn_search(v, top) to avoid overhead of extra
257 	 * subroutine call.
258 	 */
259 	for (; t->rn_b >= 0; ) {
260 		if (t->rn_bmask & cp[t->rn_off])
261 			t = t->rn_r;
262 		else
263 			t = t->rn_l;
264 	}
265 	/*
266 	 * See if we match exactly as a host destination
267 	 * or at least learn how many bits match, for normal mask finesse.
268 	 *
269 	 * It doesn't hurt us to limit how many bytes to check
270 	 * to the length of the mask, since if it matches we had a genuine
271 	 * match and the leaf we have is the most specific one anyway;
272 	 * if it didn't match with a shorter length it would fail
273 	 * with a long one.  This wins big for class B&C netmasks which
274 	 * are probably the most common case...
275 	 */
276 	if (t->rn_mask)
277 		vlen = *(const u_char *)t->rn_mask;
278 	cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
279 	for (; cp < cplim; cp++, cp2++)
280 		if (*cp != *cp2)
281 			goto on1;
282 	/*
283 	 * This extra grot is in case we are explicitly asked
284 	 * to look up the default.  Ugh!
285 	 */
286 	if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
287 		t = t->rn_dupedkey;
288 	return t;
289 on1:
290 	test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
291 	for (b = 7; (test >>= 1) > 0;)
292 		b--;
293 	matched_off = cp - v;
294 	b += matched_off << 3;
295 	rn_b = -1 - b;
296 	/*
297 	 * If there is a host route in a duped-key chain, it will be first.
298 	 */
299 	if ((saved_t = t)->rn_mask == 0)
300 		t = t->rn_dupedkey;
301 	for (; t; t = t->rn_dupedkey)
302 		/*
303 		 * Even if we don't match exactly as a host,
304 		 * we may match if the leaf we wound up at is
305 		 * a route to a net.
306 		 */
307 		if (t->rn_flags & RNF_NORMAL) {
308 			if (rn_b <= t->rn_b)
309 				return t;
310 		} else if (rn_satisfies_leaf(v, t, matched_off))
311 				return t;
312 	t = saved_t;
313 	/* start searching up the tree */
314 	do {
315 		struct radix_mask *m;
316 		t = t->rn_p;
317 		m = t->rn_mklist;
318 		if (m) {
319 			/*
320 			 * If non-contiguous masks ever become important
321 			 * we can restore the masking and open coding of
322 			 * the search and satisfaction test and put the
323 			 * calculation of "off" back before the "do".
324 			 */
325 			do {
326 				if (m->rm_flags & RNF_NORMAL) {
327 					if (rn_b <= m->rm_b)
328 						return m->rm_leaf;
329 				} else {
330 					off = uimin(t->rn_off, matched_off);
331 					x = rn_search_m(v, t, m->rm_mask);
332 					while (x && x->rn_mask != m->rm_mask)
333 						x = x->rn_dupedkey;
334 					if (x && rn_satisfies_leaf(v, x, off))
335 						return x;
336 				}
337 				m = m->rm_mklist;
338 			} while (m);
339 		}
340 	} while (t != top);
341 	return NULL;
342 }
343 
344 static void
rn_nodeprint(struct radix_node * rn,rn_printer_t printer,void * arg,const char * delim)345 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
346     const char *delim)
347 {
348 	(*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
349 	    delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
350 	    rn->rn_l, rn->rn_r);
351 }
352 
353 #ifdef RN_DEBUG
354 int	rn_debug =  1;
355 
356 static void
rn_dbg_print(void * arg,const char * fmt,...)357 rn_dbg_print(void *arg, const char *fmt, ...)
358 {
359 	va_list ap;
360 
361 	va_start(ap, fmt);
362 	vlog(LOG_DEBUG, fmt, ap);
363 	va_end(ap);
364 }
365 
366 static void
rn_treeprint(struct radix_node_head * h,rn_printer_t printer,void * arg)367 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
368 {
369 	struct radix_node *dup, *rn;
370 	const char *delim;
371 
372 	if (printer == NULL)
373 		return;
374 
375 	rn = rn_walkfirst(h->rnh_treetop, printer, arg);
376 	for (;;) {
377 		/* Process leaves */
378 		delim = "";
379 		for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
380 			if ((dup->rn_flags & RNF_ROOT) != 0)
381 				continue;
382 			rn_nodeprint(dup, printer, arg, delim);
383 			delim = ", ";
384 		}
385 		rn = rn_walknext(rn, printer, arg);
386 		if (rn->rn_flags & RNF_ROOT)
387 			return;
388 	}
389 	/* NOTREACHED */
390 }
391 
392 #define	traverse(__head, __rn)	rn_treeprint((__head), rn_dbg_print, (__rn))
393 #endif /* RN_DEBUG */
394 
395 struct radix_node *
rn_newpair(const void * v,int b,struct radix_node nodes[2])396 rn_newpair(
397 	const void *v,
398 	int b,
399 	struct radix_node nodes[2])
400 {
401 	struct radix_node *tt = nodes;
402 	struct radix_node *t = tt + 1;
403 	t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
404 	t->rn_l = tt; t->rn_off = b >> 3;
405 	tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
406 	tt->rn_flags = t->rn_flags = RNF_ACTIVE;
407 	return t;
408 }
409 
410 struct radix_node *
rn_insert(const void * v_arg,struct radix_node_head * head,int * dupentry,struct radix_node nodes[2])411 rn_insert(
412 	const void *v_arg,
413 	struct radix_node_head *head,
414 	int *dupentry,
415 	struct radix_node nodes[2])
416 {
417 	struct radix_node *top = head->rnh_treetop;
418 	struct radix_node *t = rn_search(v_arg, top);
419 	struct radix_node *tt;
420 	const char *v = v_arg;
421 	int head_off = top->rn_off;
422 	int vlen = *((const u_char *)v);
423 	const char *cp = v + head_off;
424 	int b;
425     	/*
426 	 * Find first bit at which v and t->rn_key differ
427 	 */
428     {
429 	const char *cp2 = t->rn_key + head_off;
430 	const char *cplim = v + vlen;
431 	int cmp_res;
432 
433 	while (cp < cplim)
434 		if (*cp2++ != *cp++)
435 			goto on1;
436 	*dupentry = 1;
437 	return t;
438 on1:
439 	*dupentry = 0;
440 	cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
441 	for (b = (cp - v) << 3; cmp_res; b--)
442 		cmp_res >>= 1;
443     }
444     {
445 	struct radix_node *p, *x = top;
446 	cp = v;
447 	do {
448 		p = x;
449 		if (cp[x->rn_off] & x->rn_bmask)
450 			x = x->rn_r;
451 		else x = x->rn_l;
452 	} while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
453 #ifdef RN_DEBUG
454 	if (rn_debug)
455 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
456 #endif
457 	t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
458 	if ((cp[p->rn_off] & p->rn_bmask) == 0)
459 		p->rn_l = t;
460 	else
461 		p->rn_r = t;
462 	x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
463 	if ((cp[t->rn_off] & t->rn_bmask) == 0) {
464 		t->rn_r = x;
465 	} else {
466 		t->rn_r = tt; t->rn_l = x;
467 	}
468 #ifdef RN_DEBUG
469 	if (rn_debug) {
470 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
471 		    traverse(head, p);
472 	}
473 #endif /* RN_DEBUG */
474     }
475 	return tt;
476 }
477 
478 struct radix_node *
rn_addmask(const void * n_arg,int search,int skip)479 rn_addmask(
480 	const void *n_arg,
481 	int search,
482 	int skip)
483 {
484 	const char *netmask = n_arg;
485 	const char *cp;
486 	const char *cplim;
487 	struct radix_node *x;
488 	struct radix_node *saved_x;
489 	int b = 0, mlen, j;
490 	int maskduplicated, m0, isnormal;
491 	static int last_zeroed = 0;
492 
493 	if ((mlen = *(const u_char *)netmask) > max_keylen)
494 		mlen = max_keylen;
495 	if (skip == 0)
496 		skip = 1;
497 	if (mlen <= skip)
498 		return mask_rnhead->rnh_nodes;
499 	if (skip > 1)
500 		memmove(addmask_key + 1, rn_ones + 1, skip - 1);
501 	if ((m0 = mlen) > skip)
502 		memmove(addmask_key + skip, netmask + skip, mlen - skip);
503 	/*
504 	 * Trim trailing zeroes.
505 	 */
506 	for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
507 		cp--;
508 	mlen = cp - addmask_key;
509 	if (mlen <= skip) {
510 		if (m0 >= last_zeroed)
511 			last_zeroed = mlen;
512 		return mask_rnhead->rnh_nodes;
513 	}
514 	if (m0 < last_zeroed)
515 		memset(addmask_key + m0, 0, last_zeroed - m0);
516 	*addmask_key = last_zeroed = mlen;
517 	x = rn_search(addmask_key, rn_masktop);
518 	if (memcmp(addmask_key, x->rn_key, mlen) != 0)
519 		x = 0;
520 	if (x || search)
521 		return x;
522 	R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
523 	if ((saved_x = x) == NULL)
524 		return NULL;
525 	memset(x, 0, max_keylen + 2 * sizeof (*x));
526 	cp = netmask = (void *)(x + 2);
527 	memmove(x + 2, addmask_key, mlen);
528 	x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
529 	if (maskduplicated) {
530 		log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
531 		Free(saved_x);
532 		return x;
533 	}
534 	/*
535 	 * Calculate index of mask, and check for normalcy.
536 	 */
537 	cplim = netmask + mlen; isnormal = 1;
538 	for (cp = netmask + skip; (cp < cplim) && *(const u_char *)cp == 0xff;)
539 		cp++;
540 	if (cp != cplim) {
541 		for (j = 0x80; (j & *cp) != 0; j >>= 1)
542 			b++;
543 		if (*cp != normal_chars[b] || cp != (cplim - 1))
544 			isnormal = 0;
545 	}
546 	b += (cp - netmask) << 3;
547 	x->rn_b = -1 - b;
548 	if (isnormal)
549 		x->rn_flags |= RNF_NORMAL;
550 	return x;
551 }
552 
553 static int	/* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(const void * m_arg,const void * n_arg)554 rn_lexobetter(
555 	const void *m_arg,
556 	const void *n_arg)
557 {
558 	const u_char *mp = m_arg;
559 	const u_char *np = n_arg;
560 	const u_char *lim;
561 
562 	if (*mp > *np)
563 		return 1;  /* not really, but need to check longer one first */
564 	if (*mp == *np)
565 		for (lim = mp + *mp; mp < lim;)
566 			if (*mp++ > *np++)
567 				return 1;
568 	return 0;
569 }
570 
571 static struct radix_mask *
rn_new_radix_mask(struct radix_node * tt,struct radix_mask * next)572 rn_new_radix_mask(
573 	struct radix_node *tt,
574 	struct radix_mask *next)
575 {
576 	struct radix_mask *m;
577 
578 	MKGet(m);
579 	if (m == NULL) {
580 		log(LOG_ERR, "Mask for route not entered\n");
581 		return NULL;
582 	}
583 	memset(m, 0, sizeof(*m));
584 	m->rm_b = tt->rn_b;
585 	m->rm_flags = tt->rn_flags;
586 	if (tt->rn_flags & RNF_NORMAL)
587 		m->rm_leaf = tt;
588 	else
589 		m->rm_mask = tt->rn_mask;
590 	m->rm_mklist = next;
591 	tt->rn_mklist = m;
592 	return m;
593 }
594 
595 struct radix_node *
rn_addroute(const void * v_arg,const void * n_arg,struct radix_node_head * head,struct radix_node treenodes[2])596 rn_addroute(
597 	const void *v_arg,
598 	const void *n_arg,
599 	struct radix_node_head *head,
600 	struct radix_node treenodes[2])
601 {
602 	const char *v = v_arg, *netmask = n_arg;
603 	struct radix_node *t, *x = NULL, *tt;
604 	struct radix_node *saved_tt, *top = head->rnh_treetop;
605 	short b = 0, b_leaf = 0;
606 	int keyduplicated;
607 	const char *mmask;
608 	struct radix_mask *m, **mp;
609 
610 	/*
611 	 * In dealing with non-contiguous masks, there may be
612 	 * many different routes which have the same mask.
613 	 * We will find it useful to have a unique pointer to
614 	 * the mask to speed avoiding duplicate references at
615 	 * nodes and possibly save time in calculating indices.
616 	 */
617 	if (netmask != NULL) {
618 		if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
619 			return NULL;
620 		b_leaf = x->rn_b;
621 		b = -1 - x->rn_b;
622 		netmask = x->rn_key;
623 	}
624 	/*
625 	 * Deal with duplicated keys: attach node to previous instance
626 	 */
627 	saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
628 	if (keyduplicated) {
629 		for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
630 			if (tt->rn_mask == netmask)
631 				return NULL;
632 			if (netmask == NULL ||
633 			    (tt->rn_mask != NULL &&
634 			     (b_leaf < tt->rn_b || /* index(netmask) > node */
635 			       rn_refines(netmask, tt->rn_mask) ||
636 			       rn_lexobetter(netmask, tt->rn_mask))))
637 				break;
638 		}
639 		/*
640 		 * If the mask is not duplicated, we wouldn't
641 		 * find it among possible duplicate key entries
642 		 * anyway, so the above test doesn't hurt.
643 		 *
644 		 * We sort the masks for a duplicated key the same way as
645 		 * in a masklist -- most specific to least specific.
646 		 * This may require the unfortunate nuisance of relocating
647 		 * the head of the list.
648 		 *
649 		 * We also reverse, or doubly link the list through the
650 		 * parent pointer.
651 		 */
652 		if (tt == saved_tt) {
653 			struct	radix_node *xx = x;
654 			/* link in at head of list */
655 			(tt = treenodes)->rn_dupedkey = t;
656 			tt->rn_flags = t->rn_flags;
657 			tt->rn_p = x = t->rn_p;
658 			t->rn_p = tt;
659 			if (x->rn_l == t)
660 				x->rn_l = tt;
661 			else
662 				x->rn_r = tt;
663 			saved_tt = tt;
664 			x = xx;
665 		} else {
666 			(tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
667 			t->rn_dupedkey = tt;
668 			tt->rn_p = t;
669 			if (tt->rn_dupedkey)
670 				tt->rn_dupedkey->rn_p = tt;
671 		}
672 		tt->rn_key = v;
673 		tt->rn_b = -1;
674 		tt->rn_flags = RNF_ACTIVE;
675 	}
676 	/*
677 	 * Put mask in tree.
678 	 */
679 	if (netmask != NULL) {
680 		tt->rn_mask = netmask;
681 		tt->rn_b = x->rn_b;
682 		tt->rn_flags |= x->rn_flags & RNF_NORMAL;
683 	}
684 	t = saved_tt->rn_p;
685 	if (keyduplicated)
686 		goto on2;
687 	b_leaf = -1 - t->rn_b;
688 	if (t->rn_r == saved_tt)
689 		x = t->rn_l;
690 	else
691 		x = t->rn_r;
692 	/* Promote general routes from below */
693 	if (x->rn_b < 0) {
694 		for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
695 			if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
696 			    x->rn_mklist == NULL) {
697 				*mp = m = rn_new_radix_mask(x, NULL);
698 				if (m != NULL)
699 					mp = &m->rm_mklist;
700 			}
701 		}
702 	} else if (x->rn_mklist != NULL) {
703 		/*
704 		 * Skip over masks whose index is > that of new node
705 		 */
706 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
707 			if (m->rm_b >= b_leaf)
708 				break;
709 		t->rn_mklist = m;
710 		*mp = NULL;
711 	}
712 on2:
713 	/* Add new route to highest possible ancestor's list */
714 	if (netmask == NULL || b > t->rn_b)
715 		return tt; /* can't lift at all */
716 	b_leaf = tt->rn_b;
717 	do {
718 		x = t;
719 		t = t->rn_p;
720 	} while (b <= t->rn_b && x != top);
721 	/*
722 	 * Search through routes associated with node to
723 	 * insert new route according to index.
724 	 * Need same criteria as when sorting dupedkeys to avoid
725 	 * double loop on deletion.
726 	 */
727 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
728 		if (m->rm_b < b_leaf)
729 			continue;
730 		if (m->rm_b > b_leaf)
731 			break;
732 		if (m->rm_flags & RNF_NORMAL) {
733 			mmask = m->rm_leaf->rn_mask;
734 			if (tt->rn_flags & RNF_NORMAL) {
735 				log(LOG_ERR, "Non-unique normal route,"
736 				    " mask not entered\n");
737 				return tt;
738 			}
739 		} else
740 			mmask = m->rm_mask;
741 		if (mmask == netmask) {
742 			m->rm_refs++;
743 			tt->rn_mklist = m;
744 			return tt;
745 		}
746 		if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
747 			break;
748 	}
749 	*mp = rn_new_radix_mask(tt, *mp);
750 	return tt;
751 }
752 
753 struct radix_node *
rn_delete1(const void * v_arg,const void * netmask_arg,struct radix_node_head * head,struct radix_node * rn)754 rn_delete1(
755 	const void *v_arg,
756 	const void *netmask_arg,
757 	struct radix_node_head *head,
758 	struct radix_node *rn)
759 {
760 	struct radix_node *t, *p, *x, *tt;
761 	struct radix_mask *m, *saved_m, **mp;
762 	struct radix_node *dupedkey, *saved_tt, *top;
763 	const char *v, *netmask;
764 	int b, head_off, vlen;
765 
766 	v = v_arg;
767 	netmask = netmask_arg;
768 	x = head->rnh_treetop;
769 	tt = rn_search(v, x);
770 	head_off = x->rn_off;
771 	vlen =  *(const u_char *)v;
772 	saved_tt = tt;
773 	top = x;
774 	if (tt == NULL ||
775 	    memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
776 		return NULL;
777 	/*
778 	 * Delete our route from mask lists.
779 	 */
780 	if (netmask != NULL) {
781 		if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
782 			return NULL;
783 		netmask = x->rn_key;
784 		while (tt->rn_mask != netmask)
785 			if ((tt = tt->rn_dupedkey) == NULL)
786 				return NULL;
787 	}
788 	if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
789 		goto on1;
790 	if (tt->rn_flags & RNF_NORMAL) {
791 		if (m->rm_leaf != tt || m->rm_refs > 0) {
792 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
793 			return NULL;  /* dangling ref could cause disaster */
794 		}
795 	} else {
796 		if (m->rm_mask != tt->rn_mask) {
797 			log(LOG_ERR, "rn_delete: inconsistent annotation\n");
798 			goto on1;
799 		}
800 		if (--m->rm_refs >= 0)
801 			goto on1;
802 	}
803 	b = -1 - tt->rn_b;
804 	t = saved_tt->rn_p;
805 	if (b > t->rn_b)
806 		goto on1; /* Wasn't lifted at all */
807 	do {
808 		x = t;
809 		t = t->rn_p;
810 	} while (b <= t->rn_b && x != top);
811 	for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
812 		if (m == saved_m) {
813 			*mp = m->rm_mklist;
814 			MKFree(m);
815 			break;
816 		}
817 	}
818 	if (m == NULL) {
819 		log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
820 		if (tt->rn_flags & RNF_NORMAL)
821 			return NULL; /* Dangling ref to us */
822 	}
823 on1:
824 	/*
825 	 * Eliminate us from tree
826 	 */
827 	if (tt->rn_flags & RNF_ROOT)
828 		return NULL;
829 #ifdef RN_DEBUG
830 	if (rn_debug)
831 		log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
832 #endif
833 	t = tt->rn_p;
834 	dupedkey = saved_tt->rn_dupedkey;
835 	if (dupedkey != NULL) {
836 		/*
837 		 * Here, tt is the deletion target, and
838 		 * saved_tt is the head of the dupedkey chain.
839 		 */
840 		if (tt == saved_tt) {
841 			x = dupedkey;
842 			x->rn_p = t;
843 			if (t->rn_l == tt)
844 				t->rn_l = x;
845 			else
846 				t->rn_r = x;
847 		} else {
848 			/* find node in front of tt on the chain */
849 			for (x = p = saved_tt;
850 			     p != NULL && p->rn_dupedkey != tt;)
851 				p = p->rn_dupedkey;
852 			if (p != NULL) {
853 				p->rn_dupedkey = tt->rn_dupedkey;
854 				if (tt->rn_dupedkey != NULL)
855 					tt->rn_dupedkey->rn_p = p;
856 			} else
857 				log(LOG_ERR, "rn_delete: couldn't find us\n");
858 		}
859 		t = tt + 1;
860 		if  (t->rn_flags & RNF_ACTIVE) {
861 			*++x = *t;
862 			p = t->rn_p;
863 			if (p->rn_l == t)
864 				p->rn_l = x;
865 			else
866 				p->rn_r = x;
867 			x->rn_l->rn_p = x;
868 			x->rn_r->rn_p = x;
869 		}
870 		goto out;
871 	}
872 	if (t->rn_l == tt)
873 		x = t->rn_r;
874 	else
875 		x = t->rn_l;
876 	p = t->rn_p;
877 	if (p->rn_r == t)
878 		p->rn_r = x;
879 	else
880 		p->rn_l = x;
881 	x->rn_p = p;
882 	/*
883 	 * Demote routes attached to us.
884 	 */
885 	if (t->rn_mklist == NULL)
886 		;
887 	else if (x->rn_b >= 0) {
888 		for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
889 			;
890 		*mp = t->rn_mklist;
891 	} else {
892 		/* If there are any key,mask pairs in a sibling
893 		   duped-key chain, some subset will appear sorted
894 		   in the same order attached to our mklist */
895 		for (m = t->rn_mklist;
896 		     m != NULL && x != NULL;
897 		     x = x->rn_dupedkey) {
898 			if (m == x->rn_mklist) {
899 				struct radix_mask *mm = m->rm_mklist;
900 				x->rn_mklist = NULL;
901 				if (--(m->rm_refs) < 0)
902 					MKFree(m);
903 				m = mm;
904 			}
905 		}
906 		if (m != NULL) {
907 			log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
908 			    m, x);
909 		}
910 	}
911 	/*
912 	 * We may be holding an active internal node in the tree.
913 	 */
914 	x = tt + 1;
915 	if (t != x) {
916 		*t = *x;
917 		t->rn_l->rn_p = t;
918 		t->rn_r->rn_p = t;
919 		p = x->rn_p;
920 		if (p->rn_l == x)
921 			p->rn_l = t;
922 		else
923 			p->rn_r = t;
924 	}
925 out:
926 #ifdef RN_DEBUG
927 	if (rn_debug) {
928 		log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
929 		    traverse(head, tt);
930 	}
931 #endif /* RN_DEBUG */
932 	tt->rn_flags &= ~RNF_ACTIVE;
933 	tt[1].rn_flags &= ~RNF_ACTIVE;
934 	return tt;
935 }
936 
937 struct radix_node *
rn_delete(const void * v_arg,const void * netmask_arg,struct radix_node_head * head)938 rn_delete(
939 	const void *v_arg,
940 	const void *netmask_arg,
941 	struct radix_node_head *head)
942 {
943 	return rn_delete1(v_arg, netmask_arg, head, NULL);
944 }
945 
946 static struct radix_node *
rn_walknext(struct radix_node * rn,rn_printer_t printer,void * arg)947 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
948 {
949 	/* If at right child go back up, otherwise, go right */
950 	while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
951 		if (printer != NULL)
952 			(*printer)(arg, SUBTREE_CLOSE);
953 		rn = rn->rn_p;
954 	}
955 	if (printer)
956 		rn_nodeprint(rn->rn_p, printer, arg, "");
957 	/* Find the next *leaf* since next node might vanish, too */
958 	for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
959 		if (printer != NULL)
960 			(*printer)(arg, SUBTREE_OPEN);
961 		rn = rn->rn_l;
962 	}
963 	return rn;
964 }
965 
966 static struct radix_node *
rn_walkfirst(struct radix_node * rn,rn_printer_t printer,void * arg)967 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
968 {
969 	/* First time through node, go left */
970 	while (rn->rn_b >= 0) {
971 		if (printer != NULL)
972 			(*printer)(arg, SUBTREE_OPEN);
973 		rn = rn->rn_l;
974 	}
975 	return rn;
976 }
977 
978 int
rn_walktree(struct radix_node_head * h,int (* f)(struct radix_node *,void *),void * w)979 rn_walktree(
980 	struct radix_node_head *h,
981 	int (*f)(struct radix_node *, void *),
982 	void *w)
983 {
984 	int error;
985 	struct radix_node *base, *next, *rn;
986 	/*
987 	 * This gets complicated because we may delete the node
988 	 * while applying the function f to it, so we need to calculate
989 	 * the successor node in advance.
990 	 */
991 	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
992 	for (;;) {
993 		base = rn;
994 		next = rn_walknext(rn, NULL, NULL);
995 		/* Process leaves */
996 		while ((rn = base) != NULL) {
997 			base = rn->rn_dupedkey;
998 			if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
999 				return error;
1000 		}
1001 		rn = next;
1002 		if (rn->rn_flags & RNF_ROOT)
1003 			return 0;
1004 	}
1005 	/* NOTREACHED */
1006 }
1007 
1008 struct radix_node *
rn_search_matched(struct radix_node_head * h,int (* matcher)(struct radix_node *,void *),void * w)1009 rn_search_matched(struct radix_node_head *h,
1010     int (*matcher)(struct radix_node *, void *), void *w)
1011 {
1012 	bool matched;
1013 	struct radix_node *base, *next, *rn;
1014 	/*
1015 	 * This gets complicated because we may delete the node
1016 	 * while applying the function f to it, so we need to calculate
1017 	 * the successor node in advance.
1018 	 */
1019 	rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
1020 	for (;;) {
1021 		base = rn;
1022 		next = rn_walknext(rn, NULL, NULL);
1023 		/* Process leaves */
1024 		while ((rn = base) != NULL) {
1025 			base = rn->rn_dupedkey;
1026 			if (!(rn->rn_flags & RNF_ROOT)) {
1027 				matched = (*matcher)(rn, w);
1028 				if (matched)
1029 					return rn;
1030 			}
1031 		}
1032 		rn = next;
1033 		if (rn->rn_flags & RNF_ROOT)
1034 			return NULL;
1035 	}
1036 	/* NOTREACHED */
1037 }
1038 
1039 struct delayinit {
1040 	void **head;
1041 	int off;
1042 	SLIST_ENTRY(delayinit) entries;
1043 };
1044 static SLIST_HEAD(, delayinit) delayinits = SLIST_HEAD_INITIALIZER(delayheads);
1045 static int radix_initialized;
1046 
1047 /*
1048  * Initialize a radix tree once radix is initialized.  Only for bootstrap.
1049  * Assume that no concurrency protection is necessary at this stage.
1050  */
1051 void
rn_delayedinit(void ** head,int off)1052 rn_delayedinit(void **head, int off)
1053 {
1054 	struct delayinit *di;
1055 
1056 	if (radix_initialized)
1057 		return;
1058 
1059 	di = kmem_alloc(sizeof(*di), KM_SLEEP);
1060 	di->head = head;
1061 	di->off = off;
1062 	SLIST_INSERT_HEAD(&delayinits, di, entries);
1063 }
1064 
1065 int
rn_inithead(void ** head,int off)1066 rn_inithead(void **head, int off)
1067 {
1068 	struct radix_node_head *rnh;
1069 
1070 	if (*head != NULL)
1071 		return 1;
1072 	R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1073 	if (rnh == NULL)
1074 		return 0;
1075 	*head = rnh;
1076 	return rn_inithead0(rnh, off);
1077 }
1078 
1079 int
rn_inithead0(struct radix_node_head * rnh,int off)1080 rn_inithead0(struct radix_node_head *rnh, int off)
1081 {
1082 	struct radix_node *t;
1083 	struct radix_node *tt;
1084 	struct radix_node *ttt;
1085 
1086 	memset(rnh, 0, sizeof(*rnh));
1087 	t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1088 	ttt = rnh->rnh_nodes + 2;
1089 	t->rn_r = ttt;
1090 	t->rn_p = t;
1091 	tt = t->rn_l;
1092 	tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1093 	tt->rn_b = -1 - off;
1094 	*ttt = *tt;
1095 	ttt->rn_key = rn_ones;
1096 	rnh->rnh_addaddr = rn_addroute;
1097 	rnh->rnh_deladdr = rn_delete;
1098 	rnh->rnh_matchaddr = rn_match;
1099 	rnh->rnh_lookup = rn_lookup;
1100 	rnh->rnh_treetop = t;
1101 	return 1;
1102 }
1103 
1104 void
rn_init(void)1105 rn_init(void)
1106 {
1107 	char *cp, *cplim;
1108 	struct delayinit *di;
1109 #ifdef _KERNEL
1110 	struct domain *dp;
1111 
1112 	if (radix_initialized)
1113 		panic("radix already initialized");
1114 	radix_initialized = 1;
1115 
1116 	DOMAIN_FOREACH(dp) {
1117 		if (dp->dom_maxrtkey > max_keylen)
1118 			max_keylen = dp->dom_maxrtkey;
1119 	}
1120 #endif
1121 	if (max_keylen == 0) {
1122 #ifndef _KERNEL
1123 		log(LOG_ERR,
1124 		    "rn_init: radix functions require max_keylen be set\n");
1125 #endif
1126 		return;
1127 	}
1128 
1129 	R_Malloc(rn_zeros, char *, 3 * max_keylen);
1130 	if (rn_zeros == NULL)
1131 		panic("rn_init");
1132 	memset(rn_zeros, 0, 3 * max_keylen);
1133 	rn_ones = cp = rn_zeros + max_keylen;
1134 	addmask_key = cplim = rn_ones + max_keylen;
1135 	while (cp < cplim)
1136 		*cp++ = -1;
1137 	if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1138 		panic("rn_init 2");
1139 
1140 	while ((di = SLIST_FIRST(&delayinits)) != NULL) {
1141 		if (!rn_inithead(di->head, di->off))
1142 			panic("delayed rn_inithead failed");
1143 		SLIST_REMOVE_HEAD(&delayinits, entries);
1144 		kmem_free(di, sizeof(*di));
1145 	}
1146 }
1147