xref: /netbsd-src/sys/net/if_vlan.c (revision be6f2fcee7fefd8149c125c7283a8c03adc8149e)
1 /*	$NetBSD: if_vlan.c,v 1.172 2024/06/29 12:11:12 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright 1998 Massachusetts Institute of Technology
34  *
35  * Permission to use, copy, modify, and distribute this software and
36  * its documentation for any purpose and without fee is hereby
37  * granted, provided that both the above copyright notice and this
38  * permission notice appear in all copies, that both the above
39  * copyright notice and this permission notice appear in all
40  * supporting documentation, and that the name of M.I.T. not be used
41  * in advertising or publicity pertaining to distribution of the
42  * software without specific, written prior permission.  M.I.T. makes
43  * no representations about the suitability of this software for any
44  * purpose.  It is provided "as is" without express or implied
45  * warranty.
46  *
47  * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''.  M.I.T. DISCLAIMS
48  * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
49  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
50  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
51  * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
53  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
54  * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
55  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
56  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
57  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58  * SUCH DAMAGE.
59  *
60  * from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
61  * via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
62  */
63 
64 /*
65  * if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs.  Might be
66  * extended some day to also handle IEEE 802.1P priority tagging.  This is
67  * sort of sneaky in the implementation, since we need to pretend to be
68  * enough of an Ethernet implementation to make ARP work.  The way we do
69  * this is by telling everyone that we are an Ethernet interface, and then
70  * catch the packets that ether_output() left on our output queue when it
71  * calls if_start(), rewrite them for use by the real outgoing interface,
72  * and ask it to send them.
73  *
74  * TODO:
75  *
76  *	- Need some way to notify vlan interfaces when the parent
77  *	  interface changes MTU.
78  */
79 
80 #include <sys/cdefs.h>
81 __KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.172 2024/06/29 12:11:12 riastradh Exp $");
82 
83 #ifdef _KERNEL_OPT
84 #include "opt_inet.h"
85 #include "opt_net_mpsafe.h"
86 #endif
87 
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/mbuf.h>
92 #include <sys/queue.h>
93 #include <sys/socket.h>
94 #include <sys/sockio.h>
95 #include <sys/systm.h>
96 #include <sys/proc.h>
97 #include <sys/kauth.h>
98 #include <sys/mutex.h>
99 #include <sys/kmem.h>
100 #include <sys/cprng.h>
101 #include <sys/cpu.h>
102 #include <sys/pserialize.h>
103 #include <sys/psref.h>
104 #include <sys/pslist.h>
105 #include <sys/atomic.h>
106 #include <sys/device.h>
107 #include <sys/module.h>
108 
109 #include <net/bpf.h>
110 #include <net/if.h>
111 #include <net/if_dl.h>
112 #include <net/if_types.h>
113 #include <net/if_ether.h>
114 #include <net/if_vlanvar.h>
115 
116 #ifdef INET
117 #include <netinet/in.h>
118 #include <netinet/if_inarp.h>
119 #endif
120 #ifdef INET6
121 #include <netinet6/in6_ifattach.h>
122 #include <netinet6/in6_var.h>
123 #include <netinet6/nd6.h>
124 #endif
125 
126 #include "ioconf.h"
127 
128 struct vlan_mc_entry {
129 	LIST_ENTRY(vlan_mc_entry)	mc_entries;
130 	/*
131 	 * A key to identify this entry.  The mc_addr below can't be
132 	 * used since multiple sockaddr may mapped into the same
133 	 * ether_multi (e.g., AF_UNSPEC).
134 	 */
135 	struct ether_multi	*mc_enm;
136 	struct sockaddr_storage		mc_addr;
137 };
138 
139 struct ifvlan_linkmib {
140 	struct ifvlan *ifvm_ifvlan;
141 	const struct vlan_multisw *ifvm_msw;
142 	int	ifvm_mtufudge;	/* MTU fudged by this much */
143 	int	ifvm_mintu;	/* min transmission unit */
144 	uint16_t ifvm_proto;	/* encapsulation ethertype */
145 	uint16_t ifvm_tag;	/* tag to apply on packets */
146 	struct ifnet *ifvm_p;	/* parent interface of this vlan */
147 
148 	struct psref_target ifvm_psref;
149 };
150 
151 struct ifvlan {
152 	struct ethercom ifv_ec;
153 	uint8_t ifv_lladdr[ETHER_ADDR_LEN];
154 	struct ifvlan_linkmib *ifv_mib;	/*
155 					 * reader must use vlan_getref_linkmib()
156 					 * instead of direct dereference
157 					 */
158 	kmutex_t ifv_lock;		/* writer lock for ifv_mib */
159 	pserialize_t ifv_psz;
160 	void *ifv_linkstate_hook;
161 	void *ifv_ifdetach_hook;
162 
163 	LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
164 	struct pslist_entry ifv_hash;
165 	int ifv_flags;
166 	bool ifv_stopping;
167 };
168 
169 #define	IFVF_PROMISC	0x01		/* promiscuous mode enabled */
170 
171 #define	ifv_if		ifv_ec.ec_if
172 
173 #define	ifv_msw		ifv_mib.ifvm_msw
174 #define	ifv_mtufudge	ifv_mib.ifvm_mtufudge
175 #define	ifv_mintu	ifv_mib.ifvm_mintu
176 #define	ifv_tag		ifv_mib.ifvm_tag
177 
178 struct vlan_multisw {
179 	int	(*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
180 	int	(*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
181 	void	(*vmsw_purgemulti)(struct ifvlan *);
182 };
183 
184 static int	vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
185 static int	vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
186 static void	vlan_ether_purgemulti(struct ifvlan *);
187 
188 const struct vlan_multisw vlan_ether_multisw = {
189 	.vmsw_addmulti = vlan_ether_addmulti,
190 	.vmsw_delmulti = vlan_ether_delmulti,
191 	.vmsw_purgemulti = vlan_ether_purgemulti,
192 };
193 
194 static void	vlan_multi_nothing(struct ifvlan *);
195 static int	vlan_multi_nothing_ifreq(struct ifvlan *, struct ifreq *);
196 
197 const struct vlan_multisw vlan_nothing_multisw = {
198 	.vmsw_addmulti = vlan_multi_nothing_ifreq,
199 	.vmsw_delmulti = vlan_multi_nothing_ifreq,
200 	.vmsw_purgemulti = vlan_multi_nothing,
201 };
202 
203 static int	vlan_clone_create(struct if_clone *, int);
204 static int	vlan_clone_destroy(struct ifnet *);
205 static int	vlan_config(struct ifvlan *, struct ifnet *, uint16_t);
206 static int	vlan_ioctl(struct ifnet *, u_long, void *);
207 static void	vlan_start(struct ifnet *);
208 static int	vlan_transmit(struct ifnet *, struct mbuf *);
209 static void	vlan_link_state_changed(void *);
210 static void	vlan_ifdetach(void *);
211 static void	vlan_unconfig(struct ifnet *);
212 static int	vlan_unconfig_locked(struct ifvlan *, struct ifvlan_linkmib *);
213 static void	vlan_hash_init(void);
214 static int	vlan_hash_fini(void);
215 static int	vlan_tag_hash(uint16_t, u_long);
216 static struct ifvlan_linkmib*
217 		vlan_getref_linkmib(struct ifvlan *, struct psref *);
218 static void	vlan_putref_linkmib(struct ifvlan_linkmib *, struct psref *);
219 static void	vlan_linkmib_update(struct ifvlan *, struct ifvlan_linkmib *);
220 static struct ifvlan_linkmib*
221 		vlan_lookup_tag_psref(struct ifnet *, uint16_t,
222 		    struct psref *);
223 
224 #if !defined(VLAN_TAG_HASH_SIZE)
225 #define VLAN_TAG_HASH_SIZE 32
226 #endif
227 static struct {
228 	kmutex_t lock;
229 	struct pslist_head *lists;
230 	u_long mask;
231 } ifv_hash __cacheline_aligned = {
232 	.lists = NULL,
233 	.mask = 0,
234 };
235 
236 pserialize_t vlan_psz __read_mostly;
237 static struct psref_class *ifvm_psref_class __read_mostly;
238 
239 struct if_clone vlan_cloner =
240     IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
241 
242 static uint32_t nvlanifs;
243 
244 static inline int
vlan_safe_ifpromisc(struct ifnet * ifp,int pswitch)245 vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
246 {
247 	int e;
248 
249 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
250 	e = ifpromisc(ifp, pswitch);
251 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
252 
253 	return e;
254 }
255 
256 __unused static inline int
vlan_safe_ifpromisc_locked(struct ifnet * ifp,int pswitch)257 vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
258 {
259 	int e;
260 
261 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
262 	e = ifpromisc_locked(ifp, pswitch);
263 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
264 
265 	return e;
266 }
267 
268 void
vlanattach(int n)269 vlanattach(int n)
270 {
271 
272 	/*
273 	 * Nothing to do here, initialization is handled by the
274 	 * module initialization code in vlaninit() below.
275 	 */
276 }
277 
278 static void
vlaninit(void)279 vlaninit(void)
280 {
281 	nvlanifs = 0;
282 
283 	mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
284 	vlan_psz = pserialize_create();
285 	ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
286 	if_clone_attach(&vlan_cloner);
287 
288 	vlan_hash_init();
289 	MODULE_HOOK_SET(if_vlan_vlan_input_hook, vlan_input);
290 }
291 
292 static int
vlandetach(void)293 vlandetach(void)
294 {
295 	int error;
296 
297 	if (nvlanifs > 0)
298 		return EBUSY;
299 
300 	error = vlan_hash_fini();
301 	if (error != 0)
302 		return error;
303 
304 	if_clone_detach(&vlan_cloner);
305 	psref_class_destroy(ifvm_psref_class);
306 	pserialize_destroy(vlan_psz);
307 	mutex_destroy(&ifv_hash.lock);
308 
309 	MODULE_HOOK_UNSET(if_vlan_vlan_input_hook);
310 	return 0;
311 }
312 
313 static void
vlan_reset_linkname(struct ifnet * ifp)314 vlan_reset_linkname(struct ifnet *ifp)
315 {
316 
317 	/*
318 	 * We start out with a "802.1Q VLAN" type and zero-length
319 	 * addresses.  When we attach to a parent interface, we
320 	 * inherit its type, address length, address, and data link
321 	 * type.
322 	 */
323 
324 	ifp->if_type = IFT_L2VLAN;
325 	ifp->if_addrlen = 0;
326 	ifp->if_dlt = DLT_NULL;
327 	if_alloc_sadl(ifp);
328 }
329 
330 static int
vlan_clone_create(struct if_clone * ifc,int unit)331 vlan_clone_create(struct if_clone *ifc, int unit)
332 {
333 	struct ifvlan *ifv;
334 	struct ifnet *ifp;
335 	struct ifvlan_linkmib *mib;
336 
337 	ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK | M_ZERO);
338 	mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
339 	ifp = &ifv->ifv_if;
340 	LIST_INIT(&ifv->ifv_mc_listhead);
341 	cprng_fast(ifv->ifv_lladdr, sizeof(ifv->ifv_lladdr));
342 	ifv->ifv_lladdr[0] &= 0xFE; /* clear I/G bit */
343 	ifv->ifv_lladdr[0] |= 0x02; /* set G/L bit */
344 
345 	mib->ifvm_ifvlan = ifv;
346 	mib->ifvm_p = NULL;
347 	psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
348 
349 	mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
350 	ifv->ifv_psz = pserialize_create();
351 	ifv->ifv_mib = mib;
352 
353 	atomic_inc_uint(&nvlanifs);
354 
355 	if_initname(ifp, ifc->ifc_name, unit);
356 	ifp->if_softc = ifv;
357 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
358 #ifdef NET_MPSAFE
359 	ifp->if_extflags = IFEF_MPSAFE;
360 #endif
361 	ifp->if_start = vlan_start;
362 	ifp->if_transmit = vlan_transmit;
363 	ifp->if_ioctl = vlan_ioctl;
364 	IFQ_SET_READY(&ifp->if_snd);
365 	if_initialize(ifp);
366 	/*
367 	 * Set the link state to down.
368 	 * When the parent interface attaches we will use that link state.
369 	 * When the parent interface link state changes, so will ours.
370 	 * When the parent interface detaches, set the link state to down.
371 	 */
372 	ifp->if_link_state = LINK_STATE_DOWN;
373 
374 	vlan_reset_linkname(ifp);
375 	if_register(ifp);
376 	return 0;
377 }
378 
379 static int
vlan_clone_destroy(struct ifnet * ifp)380 vlan_clone_destroy(struct ifnet *ifp)
381 {
382 	struct ifvlan *ifv = ifp->if_softc;
383 
384 	atomic_dec_uint(&nvlanifs);
385 
386 	IFNET_LOCK(ifp);
387 	vlan_unconfig(ifp);
388 	IFNET_UNLOCK(ifp);
389 	if_detach(ifp);
390 
391 	psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
392 	kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
393 	pserialize_destroy(ifv->ifv_psz);
394 	mutex_destroy(&ifv->ifv_lock);
395 	free(ifv, M_DEVBUF);
396 
397 	return 0;
398 }
399 
400 /*
401  * Configure a VLAN interface.
402  */
403 static int
vlan_config(struct ifvlan * ifv,struct ifnet * p,uint16_t tag)404 vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
405 {
406 	struct ifnet *ifp = &ifv->ifv_if;
407 	struct ifvlan_linkmib *nmib = NULL;
408 	struct ifvlan_linkmib *omib = NULL;
409 	struct ifvlan_linkmib *checkmib;
410 	struct psref_target *nmib_psref = NULL;
411 	struct ethercom *ec;
412 	const uint16_t vid = EVL_VLANOFTAG(tag);
413 	const uint8_t *lla;
414 	u_char ifv_iftype;
415 	int error = 0;
416 	int idx;
417 	bool omib_cleanup = false;
418 	struct psref psref;
419 
420 	/* VLAN ID 0 and 4095 are reserved in the spec */
421 	if ((vid == 0) || (vid == 0xfff))
422 		return EINVAL;
423 
424 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
425 	mutex_enter(&ifv->ifv_lock);
426 	omib = ifv->ifv_mib;
427 
428 	if (omib->ifvm_p != NULL) {
429 		error = EBUSY;
430 		goto done;
431 	}
432 
433 	/* Duplicate check */
434 	checkmib = vlan_lookup_tag_psref(p, vid, &psref);
435 	if (checkmib != NULL) {
436 		vlan_putref_linkmib(checkmib, &psref);
437 		error = EEXIST;
438 		goto done;
439 	}
440 
441 	*nmib = *omib;
442 	nmib_psref = &nmib->ifvm_psref;
443 
444 	psref_target_init(nmib_psref, ifvm_psref_class);
445 
446 	switch (p->if_type) {
447 	case IFT_ETHER:
448 		nmib->ifvm_msw = &vlan_ether_multisw;
449 		nmib->ifvm_mintu = ETHERMIN;
450 
451 		/*
452 		 * We inherit the parent's Ethernet address.
453 		 */
454 		lla = CLLADDR(p->if_sadl);
455 
456 		/*
457 		 * Inherit the if_type from the parent.  This allows us
458 		 * to participate in bridges of that type.
459 		 */
460 		ifv_iftype = p->if_type;
461 		break;
462 
463 	case IFT_L2TP:
464 		nmib->ifvm_msw = &vlan_nothing_multisw;
465 		nmib->ifvm_mintu = ETHERMIN;
466 		/* use random Ethernet address. */
467 		lla = ifv->ifv_lladdr;
468 		ifv_iftype = IFT_ETHER;
469 		break;
470 
471 	default:
472 		error = EPROTONOSUPPORT;
473 		goto done;
474 	}
475 
476 	error = ether_add_vlantag(p, tag, NULL);
477 	if (error != 0)
478 		goto done;
479 
480 	ec = (struct ethercom *)p;
481 	if (ec->ec_capenable & ETHERCAP_VLAN_MTU) {
482 		nmib->ifvm_mtufudge = 0;
483 	} else {
484 		/*
485 		 * Fudge the MTU by the encapsulation size. This
486 		 * makes us incompatible with strictly compliant
487 		 * 802.1Q implementations, but allows us to use
488 		 * the feature with other NetBSD
489 		 * implementations, which might still be useful.
490 		 */
491 		nmib->ifvm_mtufudge = ETHER_VLAN_ENCAP_LEN;
492 	}
493 
494 	/*
495 	 * If the parent interface can do hardware-assisted
496 	 * VLAN encapsulation, then propagate its hardware-
497 	 * assisted checksumming flags and tcp segmentation
498 	 * offload.
499 	 */
500 	if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
501 		ifp->if_capabilities = p->if_capabilities &
502 		    (IFCAP_TSOv4 | IFCAP_TSOv6 |
503 			IFCAP_CSUM_IPv4_Tx  | IFCAP_CSUM_IPv4_Rx |
504 			IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
505 			IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
506 			IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
507 			IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx);
508 	}
509 
510 	ether_ifattach(ifp, lla);
511 	ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
512 
513 	nmib->ifvm_p = p;
514 	nmib->ifvm_tag = vid;
515 	ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
516 	ifv->ifv_if.if_flags = p->if_flags &
517 	    (IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
518 
519 	/*XXX need to update the if_type in if_sadl if it is changed */
520 	ifv->ifv_if.if_type = ifv_iftype;
521 
522 	PSLIST_ENTRY_INIT(ifv, ifv_hash);
523 	idx = vlan_tag_hash(vid, ifv_hash.mask);
524 
525 	mutex_enter(&ifv_hash.lock);
526 	PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
527 	mutex_exit(&ifv_hash.lock);
528 
529 	vlan_linkmib_update(ifv, nmib);
530 	nmib = NULL;
531 	nmib_psref = NULL;
532 	omib_cleanup = true;
533 
534 	ifv->ifv_ifdetach_hook = ether_ifdetachhook_establish(p,
535 	    vlan_ifdetach, ifp);
536 
537 	/*
538 	 * We inherit the parents link state.
539 	 */
540 	ifv->ifv_linkstate_hook = if_linkstate_change_establish(p,
541 	    vlan_link_state_changed, ifv);
542 	if_link_state_change(&ifv->ifv_if, p->if_link_state);
543 
544 done:
545 	mutex_exit(&ifv->ifv_lock);
546 
547 	if (nmib_psref)
548 		psref_target_destroy(nmib_psref, ifvm_psref_class);
549 	if (nmib)
550 		kmem_free(nmib, sizeof(*nmib));
551 	if (omib_cleanup)
552 		kmem_free(omib, sizeof(*omib));
553 
554 	return error;
555 }
556 
557 /*
558  * Unconfigure a VLAN interface.
559  */
560 static void
vlan_unconfig(struct ifnet * ifp)561 vlan_unconfig(struct ifnet *ifp)
562 {
563 	struct ifvlan *ifv = ifp->if_softc;
564 	struct ifvlan_linkmib *nmib = NULL;
565 	int error;
566 
567 	KASSERT(IFNET_LOCKED(ifp));
568 
569 	nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
570 
571 	mutex_enter(&ifv->ifv_lock);
572 	error = vlan_unconfig_locked(ifv, nmib);
573 	mutex_exit(&ifv->ifv_lock);
574 
575 	if (error)
576 		kmem_free(nmib, sizeof(*nmib));
577 }
578 static int
vlan_unconfig_locked(struct ifvlan * ifv,struct ifvlan_linkmib * nmib)579 vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
580 {
581 	struct ifnet *p;
582 	struct ifnet *ifp = &ifv->ifv_if;
583 	struct psref_target *nmib_psref = NULL;
584 	struct ifvlan_linkmib *omib;
585 	int error = 0;
586 
587 	KASSERT(IFNET_LOCKED(ifp));
588 	KASSERT(mutex_owned(&ifv->ifv_lock));
589 
590 	if (ifv->ifv_stopping) {
591 		error = -1;
592 		goto done;
593 	}
594 
595 	ifp->if_flags &= ~(IFF_UP | IFF_RUNNING);
596 
597 	omib = ifv->ifv_mib;
598 	p = omib->ifvm_p;
599 
600 	if (p == NULL) {
601 		error = -1;
602 		goto done;
603 	}
604 
605 	*nmib = *omib;
606 	nmib_psref = &nmib->ifvm_psref;
607 	psref_target_init(nmib_psref, ifvm_psref_class);
608 
609 	/*
610 	 * Since the interface is being unconfigured, we need to empty the
611 	 * list of multicast groups that we may have joined while we were
612 	 * alive and remove them from the parent's list also.
613 	 */
614 	(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
615 
616 	/* Disconnect from parent. */
617 	KASSERT(
618 	    p->if_type == IFT_ETHER ||
619 	    p->if_type == IFT_L2TP);
620 	(void)ether_del_vlantag(p, nmib->ifvm_tag);
621 
622 	/* XXX ether_ifdetach must not be called with IFNET_LOCK */
623 	ifv->ifv_stopping = true;
624 	mutex_exit(&ifv->ifv_lock);
625 	IFNET_UNLOCK(ifp);
626 	ether_ifdetach(ifp);
627 	IFNET_LOCK(ifp);
628 	mutex_enter(&ifv->ifv_lock);
629 	ifv->ifv_stopping = false;
630 
631 	/* if_free_sadl must be called with IFNET_LOCK */
632 	if_free_sadl(ifp, 1);
633 
634 	/* Restore vlan_ioctl overwritten by ether_ifdetach */
635 	ifp->if_ioctl = vlan_ioctl;
636 	vlan_reset_linkname(ifp);
637 
638 	nmib->ifvm_p = NULL;
639 	ifv->ifv_if.if_mtu = 0;
640 	ifv->ifv_flags = 0;
641 
642 	mutex_enter(&ifv_hash.lock);
643 	PSLIST_WRITER_REMOVE(ifv, ifv_hash);
644 	pserialize_perform(vlan_psz);
645 	mutex_exit(&ifv_hash.lock);
646 	PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
647 	if_linkstate_change_disestablish(p,
648 	    ifv->ifv_linkstate_hook, NULL);
649 
650 	vlan_linkmib_update(ifv, nmib);
651 	if_link_state_change(ifp, LINK_STATE_DOWN);
652 
653 	/*XXX ether_ifdetachhook_disestablish must not called with IFNET_LOCK */
654 	IFNET_UNLOCK(ifp);
655 	ether_ifdetachhook_disestablish(p, ifv->ifv_ifdetach_hook,
656 	    &ifv->ifv_lock);
657 	mutex_exit(&ifv->ifv_lock);
658 	IFNET_LOCK(ifp);
659 
660 	nmib_psref = NULL;
661 	kmem_free(omib, sizeof(*omib));
662 
663 #ifdef INET6
664 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
665 	/* To delete v6 link local addresses */
666 	if (in6_present)
667 		in6_ifdetach(ifp);
668 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
669 #endif
670 
671 	if_down_locked(ifp);
672 	ifp->if_capabilities = 0;
673 	mutex_enter(&ifv->ifv_lock);
674 done:
675 	if (nmib_psref)
676 		psref_target_destroy(nmib_psref, ifvm_psref_class);
677 
678 	return error;
679 }
680 
681 static void
vlan_hash_init(void)682 vlan_hash_init(void)
683 {
684 
685 	ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
686 	    &ifv_hash.mask);
687 }
688 
689 static int
vlan_hash_fini(void)690 vlan_hash_fini(void)
691 {
692 	int i;
693 
694 	mutex_enter(&ifv_hash.lock);
695 
696 	for (i = 0; i < ifv_hash.mask + 1; i++) {
697 		if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
698 		    ifv_hash) != NULL) {
699 			mutex_exit(&ifv_hash.lock);
700 			return EBUSY;
701 		}
702 	}
703 
704 	for (i = 0; i < ifv_hash.mask + 1; i++)
705 		PSLIST_DESTROY(&ifv_hash.lists[i]);
706 
707 	mutex_exit(&ifv_hash.lock);
708 
709 	hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
710 
711 	ifv_hash.lists = NULL;
712 	ifv_hash.mask = 0;
713 
714 	return 0;
715 }
716 
717 static int
vlan_tag_hash(uint16_t tag,u_long mask)718 vlan_tag_hash(uint16_t tag, u_long mask)
719 {
720 	uint32_t hash;
721 
722 	hash = (tag >> 8) ^ tag;
723 	hash = (hash >> 2) ^ hash;
724 
725 	return hash & mask;
726 }
727 
728 static struct ifvlan_linkmib *
vlan_getref_linkmib(struct ifvlan * sc,struct psref * psref)729 vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
730 {
731 	struct ifvlan_linkmib *mib;
732 	int s;
733 
734 	s = pserialize_read_enter();
735 	mib = atomic_load_consume(&sc->ifv_mib);
736 	if (mib == NULL) {
737 		pserialize_read_exit(s);
738 		return NULL;
739 	}
740 	psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
741 	pserialize_read_exit(s);
742 
743 	return mib;
744 }
745 
746 static void
vlan_putref_linkmib(struct ifvlan_linkmib * mib,struct psref * psref)747 vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
748 {
749 	if (mib == NULL)
750 		return;
751 	psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
752 }
753 
754 static struct ifvlan_linkmib *
vlan_lookup_tag_psref(struct ifnet * ifp,uint16_t tag,struct psref * psref)755 vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
756 {
757 	int idx;
758 	int s;
759 	struct ifvlan *sc;
760 
761 	idx = vlan_tag_hash(tag, ifv_hash.mask);
762 
763 	s = pserialize_read_enter();
764 	PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
765 	    ifv_hash) {
766 		struct ifvlan_linkmib *mib = atomic_load_consume(&sc->ifv_mib);
767 		if (mib == NULL)
768 			continue;
769 		if (mib->ifvm_tag != tag)
770 			continue;
771 		if (mib->ifvm_p != ifp)
772 			continue;
773 
774 		psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
775 		pserialize_read_exit(s);
776 		return mib;
777 	}
778 	pserialize_read_exit(s);
779 	return NULL;
780 }
781 
782 static void
vlan_linkmib_update(struct ifvlan * ifv,struct ifvlan_linkmib * nmib)783 vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
784 {
785 	struct ifvlan_linkmib *omib = ifv->ifv_mib;
786 
787 	KASSERT(mutex_owned(&ifv->ifv_lock));
788 
789 	atomic_store_release(&ifv->ifv_mib, nmib);
790 
791 	pserialize_perform(ifv->ifv_psz);
792 	psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
793 }
794 
795 /*
796  * Called when a parent interface is detaching; destroy any VLAN
797  * configuration for the parent interface.
798  */
799 static void
vlan_ifdetach(void * xifp)800 vlan_ifdetach(void *xifp)
801 {
802 	struct ifnet *ifp;
803 
804 	ifp = (struct ifnet *)xifp;
805 
806 	/* IFNET_LOCK must be held before ifv_lock. */
807 	IFNET_LOCK(ifp);
808 	vlan_unconfig(ifp);
809 	IFNET_UNLOCK(ifp);
810 }
811 
812 static int
vlan_set_promisc(struct ifnet * ifp)813 vlan_set_promisc(struct ifnet *ifp)
814 {
815 	struct ifvlan *ifv = ifp->if_softc;
816 	struct ifvlan_linkmib *mib;
817 	struct psref psref;
818 	int error = 0;
819 	int bound;
820 
821 	bound = curlwp_bind();
822 	mib = vlan_getref_linkmib(ifv, &psref);
823 	if (mib == NULL) {
824 		curlwp_bindx(bound);
825 		return EBUSY;
826 	}
827 
828 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
829 		if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
830 			error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
831 			if (error == 0)
832 				ifv->ifv_flags |= IFVF_PROMISC;
833 		}
834 	} else {
835 		if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
836 			error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
837 			if (error == 0)
838 				ifv->ifv_flags &= ~IFVF_PROMISC;
839 		}
840 	}
841 	vlan_putref_linkmib(mib, &psref);
842 	curlwp_bindx(bound);
843 
844 	return error;
845 }
846 
847 static int
vlan_ioctl(struct ifnet * ifp,u_long cmd,void * data)848 vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
849 {
850 	struct lwp *l = curlwp;
851 	struct ifvlan *ifv = ifp->if_softc;
852 	struct ifaddr *ifa = (struct ifaddr *) data;
853 	struct ifreq *ifr = (struct ifreq *) data;
854 	struct ifnet *pr;
855 	struct ifcapreq *ifcr;
856 	struct vlanreq vlr;
857 	struct ifvlan_linkmib *mib;
858 	struct psref psref;
859 	int error = 0;
860 	int bound;
861 
862 	switch (cmd) {
863 	case SIOCSIFMTU:
864 		bound = curlwp_bind();
865 		mib = vlan_getref_linkmib(ifv, &psref);
866 		if (mib == NULL) {
867 			curlwp_bindx(bound);
868 			error = EBUSY;
869 			break;
870 		}
871 
872 		if (mib->ifvm_p == NULL) {
873 			vlan_putref_linkmib(mib, &psref);
874 			curlwp_bindx(bound);
875 			error = EINVAL;
876 		} else if (
877 		    ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
878 		    ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
879 			vlan_putref_linkmib(mib, &psref);
880 			curlwp_bindx(bound);
881 			error = EINVAL;
882 		} else {
883 			vlan_putref_linkmib(mib, &psref);
884 			curlwp_bindx(bound);
885 
886 			error = ifioctl_common(ifp, cmd, data);
887 			if (error == ENETRESET)
888 				error = 0;
889 		}
890 
891 		break;
892 
893 	case SIOCSETVLAN:
894 		if ((error = kauth_authorize_network(l->l_cred,
895 		    KAUTH_NETWORK_INTERFACE,
896 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
897 		    NULL)) != 0)
898 			break;
899 		if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
900 			break;
901 
902 		if (vlr.vlr_parent[0] == '\0') {
903 			bound = curlwp_bind();
904 			mib = vlan_getref_linkmib(ifv, &psref);
905 			if (mib == NULL) {
906 				curlwp_bindx(bound);
907 				error = EBUSY;
908 				break;
909 			}
910 
911 			if (mib->ifvm_p != NULL &&
912 			    (ifp->if_flags & IFF_PROMISC) != 0)
913 				error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
914 
915 			vlan_putref_linkmib(mib, &psref);
916 			curlwp_bindx(bound);
917 
918 			vlan_unconfig(ifp);
919 			break;
920 		}
921 		if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
922 			error = EINVAL;		 /* check for valid tag */
923 			break;
924 		}
925 		if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
926 			error = ENOENT;
927 			break;
928 		}
929 
930 		error = vlan_config(ifv, pr, vlr.vlr_tag);
931 		if (error != 0)
932 			break;
933 
934 		/* Update promiscuous mode, if necessary. */
935 		vlan_set_promisc(ifp);
936 
937 		ifp->if_flags |= IFF_RUNNING;
938 		break;
939 
940 	case SIOCGETVLAN:
941 		memset(&vlr, 0, sizeof(vlr));
942 		bound = curlwp_bind();
943 		mib = vlan_getref_linkmib(ifv, &psref);
944 		if (mib == NULL) {
945 			curlwp_bindx(bound);
946 			error = EBUSY;
947 			break;
948 		}
949 		if (mib->ifvm_p != NULL) {
950 			snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
951 			    mib->ifvm_p->if_xname);
952 			vlr.vlr_tag = mib->ifvm_tag;
953 		}
954 		vlan_putref_linkmib(mib, &psref);
955 		curlwp_bindx(bound);
956 		error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
957 		break;
958 
959 	case SIOCSIFFLAGS:
960 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
961 			break;
962 		/*
963 		 * For promiscuous mode, we enable promiscuous mode on
964 		 * the parent if we need promiscuous on the VLAN interface.
965 		 */
966 		bound = curlwp_bind();
967 		mib = vlan_getref_linkmib(ifv, &psref);
968 		if (mib == NULL) {
969 			curlwp_bindx(bound);
970 			error = EBUSY;
971 			break;
972 		}
973 
974 		if (mib->ifvm_p != NULL)
975 			error = vlan_set_promisc(ifp);
976 		vlan_putref_linkmib(mib, &psref);
977 		curlwp_bindx(bound);
978 		break;
979 
980 	case SIOCADDMULTI:
981 		mutex_enter(&ifv->ifv_lock);
982 		mib = ifv->ifv_mib;
983 		if (mib == NULL) {
984 			error = EBUSY;
985 			mutex_exit(&ifv->ifv_lock);
986 			break;
987 		}
988 
989 		error = (mib->ifvm_p != NULL) ?
990 		    (*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
991 		mib = NULL;
992 		mutex_exit(&ifv->ifv_lock);
993 		break;
994 
995 	case SIOCDELMULTI:
996 		mutex_enter(&ifv->ifv_lock);
997 		mib = ifv->ifv_mib;
998 		if (mib == NULL) {
999 			error = EBUSY;
1000 			mutex_exit(&ifv->ifv_lock);
1001 			break;
1002 		}
1003 		error = (mib->ifvm_p != NULL) ?
1004 		    (*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
1005 		mib = NULL;
1006 		mutex_exit(&ifv->ifv_lock);
1007 		break;
1008 
1009 	case SIOCSIFCAP:
1010 		ifcr = data;
1011 		/* make sure caps are enabled on parent */
1012 		bound = curlwp_bind();
1013 		mib = vlan_getref_linkmib(ifv, &psref);
1014 		if (mib == NULL) {
1015 			curlwp_bindx(bound);
1016 			error = EBUSY;
1017 			break;
1018 		}
1019 
1020 		if (mib->ifvm_p == NULL) {
1021 			vlan_putref_linkmib(mib, &psref);
1022 			curlwp_bindx(bound);
1023 			error = EINVAL;
1024 			break;
1025 		}
1026 		if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
1027 		    ifcr->ifcr_capenable) {
1028 			vlan_putref_linkmib(mib, &psref);
1029 			curlwp_bindx(bound);
1030 			error = EINVAL;
1031 			break;
1032 		}
1033 
1034 		vlan_putref_linkmib(mib, &psref);
1035 		curlwp_bindx(bound);
1036 
1037 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
1038 			error = 0;
1039 		break;
1040 	case SIOCINITIFADDR:
1041 		bound = curlwp_bind();
1042 		mib = vlan_getref_linkmib(ifv, &psref);
1043 		if (mib == NULL) {
1044 			curlwp_bindx(bound);
1045 			error = EBUSY;
1046 			break;
1047 		}
1048 
1049 		if (mib->ifvm_p == NULL) {
1050 			error = EINVAL;
1051 			vlan_putref_linkmib(mib, &psref);
1052 			curlwp_bindx(bound);
1053 			break;
1054 		}
1055 		vlan_putref_linkmib(mib, &psref);
1056 		curlwp_bindx(bound);
1057 
1058 		ifp->if_flags |= IFF_UP;
1059 #ifdef INET
1060 		if (ifa->ifa_addr->sa_family == AF_INET)
1061 			arp_ifinit(ifp, ifa);
1062 #endif
1063 		break;
1064 
1065 	default:
1066 		error = ether_ioctl(ifp, cmd, data);
1067 	}
1068 
1069 	return error;
1070 }
1071 
1072 static int
vlan_ether_addmulti(struct ifvlan * ifv,struct ifreq * ifr)1073 vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
1074 {
1075 	const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
1076 	struct vlan_mc_entry *mc;
1077 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1078 	struct ifvlan_linkmib *mib;
1079 	int error;
1080 
1081 	KASSERT(mutex_owned(&ifv->ifv_lock));
1082 
1083 	if (sa->sa_len > sizeof(struct sockaddr_storage))
1084 		return EINVAL;
1085 
1086 	error = ether_addmulti(sa, &ifv->ifv_ec);
1087 	if (error != ENETRESET)
1088 		return error;
1089 
1090 	/*
1091 	 * This is a new multicast address.  We have to tell parent
1092 	 * about it.  Also, remember this multicast address so that
1093 	 * we can delete it on unconfigure.
1094 	 */
1095 	mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
1096 	if (mc == NULL) {
1097 		error = ENOMEM;
1098 		goto alloc_failed;
1099 	}
1100 
1101 	/*
1102 	 * Since ether_addmulti() returned ENETRESET, the following two
1103 	 * statements shouldn't fail. Here ifv_ec is implicitly protected
1104 	 * by the ifv_lock lock.
1105 	 */
1106 	error = ether_multiaddr(sa, addrlo, addrhi);
1107 	KASSERT(error == 0);
1108 
1109 	ETHER_LOCK(&ifv->ifv_ec);
1110 	mc->mc_enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1111 	ETHER_UNLOCK(&ifv->ifv_ec);
1112 
1113 	KASSERT(mc->mc_enm != NULL);
1114 
1115 	memcpy(&mc->mc_addr, sa, sa->sa_len);
1116 	LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
1117 
1118 	mib = ifv->ifv_mib;
1119 
1120 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1121 	error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
1122 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
1123 
1124 	if (error != 0)
1125 		goto ioctl_failed;
1126 	return error;
1127 
1128 ioctl_failed:
1129 	LIST_REMOVE(mc, mc_entries);
1130 	free(mc, M_DEVBUF);
1131 
1132 alloc_failed:
1133 	(void)ether_delmulti(sa, &ifv->ifv_ec);
1134 	return error;
1135 }
1136 
1137 static int
vlan_ether_delmulti(struct ifvlan * ifv,struct ifreq * ifr)1138 vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
1139 {
1140 	const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
1141 	struct ether_multi *enm;
1142 	struct vlan_mc_entry *mc;
1143 	struct ifvlan_linkmib *mib;
1144 	uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
1145 	int error;
1146 
1147 	KASSERT(mutex_owned(&ifv->ifv_lock));
1148 
1149 	/*
1150 	 * Find a key to lookup vlan_mc_entry.  We have to do this
1151 	 * before calling ether_delmulti for obvious reasons.
1152 	 */
1153 	if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
1154 		return error;
1155 
1156 	ETHER_LOCK(&ifv->ifv_ec);
1157 	enm = ether_lookup_multi(addrlo, addrhi, &ifv->ifv_ec);
1158 	ETHER_UNLOCK(&ifv->ifv_ec);
1159 	if (enm == NULL)
1160 		return EINVAL;
1161 
1162 	LIST_FOREACH(mc, &ifv->ifv_mc_listhead, mc_entries) {
1163 		if (mc->mc_enm == enm)
1164 			break;
1165 	}
1166 
1167 	/* We woun't delete entries we didn't add */
1168 	if (mc == NULL)
1169 		return EINVAL;
1170 
1171 	error = ether_delmulti(sa, &ifv->ifv_ec);
1172 	if (error != ENETRESET)
1173 		return error;
1174 
1175 	/* We no longer use this multicast address.  Tell parent so. */
1176 	mib = ifv->ifv_mib;
1177 	error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
1178 
1179 	if (error == 0) {
1180 		/* And forget about this address. */
1181 		LIST_REMOVE(mc, mc_entries);
1182 		free(mc, M_DEVBUF);
1183 	} else {
1184 		(void)ether_addmulti(sa, &ifv->ifv_ec);
1185 	}
1186 
1187 	return error;
1188 }
1189 
1190 /*
1191  * Delete any multicast address we have asked to add from parent
1192  * interface.  Called when the vlan is being unconfigured.
1193  */
1194 static void
vlan_ether_purgemulti(struct ifvlan * ifv)1195 vlan_ether_purgemulti(struct ifvlan *ifv)
1196 {
1197 	struct vlan_mc_entry *mc;
1198 	struct ifvlan_linkmib *mib;
1199 
1200 	KASSERT(mutex_owned(&ifv->ifv_lock));
1201 	mib = ifv->ifv_mib;
1202 	if (mib == NULL) {
1203 		return;
1204 	}
1205 
1206 	while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
1207 		(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
1208 		    sstocsa(&mc->mc_addr));
1209 		LIST_REMOVE(mc, mc_entries);
1210 		free(mc, M_DEVBUF);
1211 	}
1212 }
1213 
1214 static int
vlan_multi_nothing_ifreq(struct ifvlan * v __unused,struct ifreq * r __unused)1215 vlan_multi_nothing_ifreq(struct ifvlan *v __unused, struct ifreq *r __unused)
1216 {
1217 	/* do nothing */
1218 	return 0;
1219 }
1220 static void
vlan_multi_nothing(struct ifvlan * v __unused)1221 vlan_multi_nothing(struct ifvlan *v __unused)
1222 {
1223 	/* do nothing */
1224 }
1225 
1226 static void
vlan_start(struct ifnet * ifp)1227 vlan_start(struct ifnet *ifp)
1228 {
1229 	struct ifvlan *ifv = ifp->if_softc;
1230 	struct ifnet *p;
1231 	struct ethercom *ec;
1232 	struct mbuf *m;
1233 	struct ifvlan_linkmib *mib;
1234 	struct psref psref;
1235 	struct ether_header *eh;
1236 	int error, bound;
1237 
1238 	bound = curlwp_bind();
1239 	mib = vlan_getref_linkmib(ifv, &psref);
1240 	if (mib == NULL) {
1241 		curlwp_bindx(bound);
1242 		return;
1243 	}
1244 
1245 	if (__predict_false(mib->ifvm_p == NULL)) {
1246 		vlan_putref_linkmib(mib, &psref);
1247 		curlwp_bindx(bound);
1248 		return;
1249 	}
1250 
1251 	p = mib->ifvm_p;
1252 	ec = (void *)mib->ifvm_p;
1253 
1254 	ifp->if_flags |= IFF_OACTIVE;
1255 
1256 	for (;;) {
1257 		IFQ_DEQUEUE(&ifp->if_snd, m);
1258 		if (m == NULL)
1259 			break;
1260 
1261 		if (m->m_len < sizeof(*eh)) {
1262 			m = m_pullup(m, sizeof(*eh));
1263 			if (m == NULL) {
1264 				if_statinc(ifp, if_oerrors);
1265 				continue;
1266 			}
1267 		}
1268 
1269 		eh = mtod(m, struct ether_header *);
1270 		if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
1271 			m_freem(m);
1272 			if_statinc(ifp, if_noproto);
1273 			continue;
1274 		}
1275 
1276 #ifdef ALTQ
1277 		/*
1278 		 * KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
1279 		 * defined.
1280 		 */
1281 		KERNEL_LOCK(1, NULL);
1282 		/*
1283 		 * If ALTQ is enabled on the parent interface, do
1284 		 * classification; the queueing discipline might
1285 		 * not require classification, but might require
1286 		 * the address family/header pointer in the pktattr.
1287 		 */
1288 		if (ALTQ_IS_ENABLED(&p->if_snd)) {
1289 			KASSERT(
1290 			    p->if_type == IFT_ETHER ||
1291 			    p->if_type == IFT_L2TP);
1292 			altq_etherclassify(&p->if_snd, m);
1293 		}
1294 		KERNEL_UNLOCK_ONE(NULL);
1295 #endif /* ALTQ */
1296 
1297 		bpf_mtap(ifp, m, BPF_D_OUT);
1298 		/*
1299 		 * If the parent can insert the tag itself, just mark
1300 		 * the tag in the mbuf header.
1301 		 */
1302 		if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1303 			vlan_set_tag(m, mib->ifvm_tag);
1304 		} else {
1305 			/*
1306 			 * insert the tag ourselves
1307 			 */
1308 			KASSERT(
1309 			    p->if_type == IFT_ETHER ||
1310 			    p->if_type == IFT_L2TP);
1311 			(void)ether_inject_vlantag(&m,
1312 			    ETHERTYPE_VLAN, mib->ifvm_tag);
1313 			if (m == NULL) {
1314 				printf("%s: unable to inject VLAN tag",
1315 				    p->if_xname);
1316 				continue;
1317 			}
1318 		}
1319 
1320 		if ((p->if_flags & IFF_RUNNING) == 0) {
1321 			m_freem(m);
1322 			continue;
1323 		}
1324 
1325 		error = if_transmit_lock(p, m);
1326 		if (error) {
1327 			/* mbuf is already freed */
1328 			if_statinc(ifp, if_oerrors);
1329 			continue;
1330 		}
1331 		if_statinc(ifp, if_opackets);
1332 	}
1333 
1334 	ifp->if_flags &= ~IFF_OACTIVE;
1335 
1336 	/* Remove reference to mib before release */
1337 	vlan_putref_linkmib(mib, &psref);
1338 	curlwp_bindx(bound);
1339 }
1340 
1341 static int
vlan_transmit(struct ifnet * ifp,struct mbuf * m)1342 vlan_transmit(struct ifnet *ifp, struct mbuf *m)
1343 {
1344 	struct ifvlan *ifv = ifp->if_softc;
1345 	struct ifnet *p;
1346 	struct ethercom *ec;
1347 	struct ifvlan_linkmib *mib;
1348 	struct psref psref;
1349 	struct ether_header *eh;
1350 	int error, bound;
1351 	size_t pktlen = m->m_pkthdr.len;
1352 	bool mcast = (m->m_flags & M_MCAST) != 0;
1353 
1354 	if (m->m_len < sizeof(*eh)) {
1355 		m = m_pullup(m, sizeof(*eh));
1356 		if (m == NULL) {
1357 			if_statinc(ifp, if_oerrors);
1358 			return ENOBUFS;
1359 		}
1360 	}
1361 
1362 	eh = mtod(m, struct ether_header *);
1363 	if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
1364 		m_freem(m);
1365 		if_statinc(ifp, if_noproto);
1366 		return EPROTONOSUPPORT;
1367 	}
1368 
1369 	bound = curlwp_bind();
1370 	mib = vlan_getref_linkmib(ifv, &psref);
1371 	if (mib == NULL) {
1372 		curlwp_bindx(bound);
1373 		m_freem(m);
1374 		return ENETDOWN;
1375 	}
1376 
1377 	if (__predict_false(mib->ifvm_p == NULL)) {
1378 		vlan_putref_linkmib(mib, &psref);
1379 		curlwp_bindx(bound);
1380 		m_freem(m);
1381 		return ENETDOWN;
1382 	}
1383 
1384 	p = mib->ifvm_p;
1385 	ec = (void *)mib->ifvm_p;
1386 
1387 	bpf_mtap(ifp, m, BPF_D_OUT);
1388 
1389 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
1390 		goto out;
1391 	if (m == NULL)
1392 		goto out;
1393 
1394 	/*
1395 	 * If the parent can insert the tag itself, just mark
1396 	 * the tag in the mbuf header.
1397 	 */
1398 	if (ec->ec_capenable & ETHERCAP_VLAN_HWTAGGING) {
1399 		vlan_set_tag(m, mib->ifvm_tag);
1400 	} else {
1401 		/*
1402 		 * insert the tag ourselves
1403 		 */
1404 		KASSERT(
1405 		    p->if_type == IFT_ETHER ||
1406 		    p->if_type == IFT_L2TP);
1407 		error = ether_inject_vlantag(&m,
1408 		    ETHERTYPE_VLAN, mib->ifvm_tag);
1409 		if (error != 0) {
1410 			KASSERT(m == NULL);
1411 			printf("%s: unable to inject VLAN tag",
1412 			    p->if_xname);
1413 			goto out;
1414 		}
1415 	}
1416 
1417 	if ((p->if_flags & IFF_RUNNING) == 0) {
1418 		m_freem(m);
1419 		error = ENETDOWN;
1420 		goto out;
1421 	}
1422 
1423 	error = if_transmit_lock(p, m);
1424 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1425 	if (error) {
1426 		/* mbuf is already freed */
1427 		if_statinc_ref(ifp, nsr, if_oerrors);
1428 	} else {
1429 		if_statinc_ref(ifp, nsr, if_opackets);
1430 		if_statadd_ref(ifp, nsr, if_obytes, pktlen);
1431 		if (mcast)
1432 			if_statinc_ref(ifp, nsr, if_omcasts);
1433 	}
1434 	IF_STAT_PUTREF(ifp);
1435 
1436 out:
1437 	/* Remove reference to mib before release */
1438 	vlan_putref_linkmib(mib, &psref);
1439 	curlwp_bindx(bound);
1440 
1441 	return error;
1442 }
1443 
1444 /*
1445  * Given an Ethernet frame, find a valid vlan interface corresponding to the
1446  * given source interface and tag, then run the real packet through the
1447  * parent's input routine.
1448  */
1449 struct mbuf *
vlan_input(struct ifnet * ifp,struct mbuf * m)1450 vlan_input(struct ifnet *ifp, struct mbuf *m)
1451 {
1452 	struct ifvlan *ifv;
1453 	uint16_t vid;
1454 	struct ifvlan_linkmib *mib;
1455 	struct psref psref;
1456 
1457 	KASSERT(vlan_has_tag(m));
1458 	vid = EVL_VLANOFTAG(vlan_get_tag(m));
1459 	KASSERT(vid != 0);
1460 
1461 	mib = vlan_lookup_tag_psref(ifp, vid, &psref);
1462 	if (mib == NULL) {
1463 		return m;
1464 	}
1465 
1466 	ifv = mib->ifvm_ifvlan;
1467 	if ((ifv->ifv_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
1468 	    (IFF_UP | IFF_RUNNING)) {
1469 		m_freem(m);
1470 		if_statinc(ifp, if_noproto);
1471 		goto out;
1472 	}
1473 
1474 	/*
1475 	 * Having found a valid vlan interface corresponding to
1476 	 * the given source interface and vlan tag.
1477 	 * remove the vlan tag.
1478 	 */
1479 	m->m_flags &= ~M_VLANTAG;
1480 
1481 	/*
1482 	 * Drop promiscuously received packets if we are not in
1483 	 * promiscuous mode
1484 	 */
1485 	if ((m->m_flags & (M_BCAST | M_MCAST)) == 0 &&
1486 	    (ifp->if_flags & IFF_PROMISC) &&
1487 	    (ifv->ifv_if.if_flags & IFF_PROMISC) == 0) {
1488 		struct ether_header *eh;
1489 
1490 		eh = mtod(m, struct ether_header *);
1491 		if (memcmp(CLLADDR(ifv->ifv_if.if_sadl),
1492 		    eh->ether_dhost, ETHER_ADDR_LEN) != 0) {
1493 			m_freem(m);
1494 			if_statinc(&ifv->ifv_if, if_ierrors);
1495 			goto out;
1496 		}
1497 	}
1498 
1499 	m_set_rcvif(m, &ifv->ifv_if);
1500 
1501 	if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
1502 		goto out;
1503 	if (m == NULL)
1504 		goto out;
1505 
1506 	m->m_flags &= ~M_PROMISC;
1507 	if_input(&ifv->ifv_if, m);
1508 out:
1509 	vlan_putref_linkmib(mib, &psref);
1510 	return NULL;
1511 }
1512 
1513 /*
1514  * If the parent link state changed, the vlan link state should change also.
1515  */
1516 static void
vlan_link_state_changed(void * xifv)1517 vlan_link_state_changed(void *xifv)
1518 {
1519 	struct ifvlan *ifv = xifv;
1520 	struct ifnet *ifp, *p;
1521 	struct ifvlan_linkmib *mib;
1522 	struct psref psref;
1523 	int bound;
1524 
1525 	bound = curlwp_bind();
1526 	mib = vlan_getref_linkmib(ifv, &psref);
1527 	if (mib == NULL) {
1528 		curlwp_bindx(bound);
1529 		return;
1530 	}
1531 
1532 	if (mib->ifvm_p == NULL) {
1533 		vlan_putref_linkmib(mib, &psref);
1534 		curlwp_bindx(bound);
1535 		return;
1536 	}
1537 
1538 	ifp = &ifv->ifv_if;
1539 	p = mib->ifvm_p;
1540 	if_link_state_change(ifp, p->if_link_state);
1541 
1542 	vlan_putref_linkmib(mib, &psref);
1543 	curlwp_bindx(bound);
1544 }
1545 
1546 /*
1547  * Module infrastructure
1548  */
1549 #include "if_module.h"
1550 
1551 IF_MODULE(MODULE_CLASS_DRIVER, vlan, NULL)
1552