xref: /netbsd-src/sys/kern/subr_thmap.c (revision ed4437302a40b495a0d9ba449ed9028ae89363ab)
1 /*	$NetBSD: subr_thmap.c,v 1.15 2023/10/17 11:57:20 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * Upstream: https://github.com/rmind/thmap/
29  */
30 
31 /*
32  * Concurrent trie-hash map.
33  *
34  * The data structure is conceptually a radix trie on hashed keys.
35  * Keys are hashed using a 32-bit function.  The root level is a special
36  * case: it is managed using the compare-and-swap (CAS) atomic operation
37  * and has a fanout of 64.  The subsequent levels are constructed using
38  * intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
39  * are created, more blocks of the 32-bit hash value might be generated
40  * by incrementing the seed parameter of the hash function.
41  *
42  * Concurrency
43  *
44  * - READERS: Descending is simply walking through the slot values of
45  *   the intermediate nodes.  It is lock-free as there is no intermediate
46  *   state: the slot is either empty or has a pointer to the child node.
47  *   The main assumptions here are the following:
48  *
49  *   i) modifications must preserve consistency with the respect to the
50  *   readers i.e. the readers can only see the valid node values;
51  *
52  *   ii) any invalid view must "fail" the reads, e.g. by making them
53  *   re-try from the root; this is a case for deletions and is achieved
54  *   using the NODE_DELETED flag.
55  *
56  *   iii) the node destruction must be synchronized with the readers,
57  *   e.g. by using the Epoch-based reclamation or other techniques.
58  *
59  * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
60  *   is implemented using the NODE_LOCKED bit) -- it provides mutual
61  *   exclusion amongst concurrent writers.  The lock order for the nodes
62  *   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
63  *   constraint here is that parent pointer never changes.
64  *
65  * - DELETES: In addition to writer's locking, the deletion keeps the
66  *   intermediate nodes in a valid state and sets the NODE_DELETED flag,
67  *   to indicate that the readers must re-start the walk from the root.
68  *   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
69  *   The leaf nodes just stay as-is until they are reclaimed.
70  *
71  * - ROOT LEVEL: The root level is a special case, as it is implemented
72  *   as an array (rather than intermediate node).  The root-level slot can
73  *   only be set using CAS and it can only be set to a valid intermediate
74  *   node.  The root-level slot can only be cleared when the node it points
75  *   at becomes empty, is locked and marked as NODE_DELETED (this causes
76  *   the insert/delete operations to re-try until the slot is set to NULL).
77  *
78  * References:
79  *
80  *	W. Litwin, 1981, Trie Hashing.
81  *	Proceedings of the 1981 ACM SIGMOD, p. 19-29
82  *	https://dl.acm.org/citation.cfm?id=582322
83  *
84  *	P. L. Lehman and S. B. Yao.
85  *	Efficient locking for concurrent operations on B-trees.
86  *	ACM TODS, 6(4):650-670, 1981
87  *	https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
88  */
89 
90 #ifdef _KERNEL
91 #include <sys/cdefs.h>
92 #include <sys/param.h>
93 #include <sys/types.h>
94 #include <sys/thmap.h>
95 #include <sys/kmem.h>
96 #include <sys/lock.h>
97 #include <sys/atomic.h>
98 #include <sys/hash.h>
99 #include <sys/cprng.h>
100 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
101 #else
102 #include <stdio.h>
103 #include <stdlib.h>
104 #include <stdbool.h>
105 #include <stddef.h>
106 #include <inttypes.h>
107 #include <string.h>
108 #include <limits.h>
109 #define THMAP_RCSID(a) __RCSID(a)
110 
111 #include "thmap.h"
112 #include "utils.h"
113 #endif
114 
115 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.15 2023/10/17 11:57:20 riastradh Exp $");
116 
117 #include <crypto/blake2/blake2s.h>
118 
119 /*
120  * NetBSD kernel wrappers
121  */
122 #ifdef _KERNEL
123 #define	ASSERT KASSERT
124 #define	atomic_thread_fence(x) membar_release() /* only used for release order */
125 #define	atomic_compare_exchange_weak_explicit_32(p, e, n, m1, m2) \
126     (atomic_cas_32((p), *(e), (n)) == *(e))
127 #define	atomic_compare_exchange_weak_explicit_ptr(p, e, n, m1, m2) \
128     (atomic_cas_ptr((p), *(void **)(e), (void *)(n)) == *(void **)(e))
129 #define	atomic_exchange_explicit(o, n, m1) atomic_swap_ptr((o), (n))
130 #define	murmurhash3 murmurhash2
131 #endif
132 
133 /*
134  * The root level fanout is 64 (indexed by the last 6 bits of the hash
135  * value XORed with the length).  Each subsequent level, represented by
136  * intermediate nodes, has a fanout of 16 (using 4 bits).
137  *
138  * The hash function produces 32-bit values.
139  */
140 
141 #define	HASHVAL_SEEDLEN	(16)
142 #define	HASHVAL_BITS	(32)
143 #define	HASHVAL_MOD	(HASHVAL_BITS - 1)
144 #define	HASHVAL_SHIFT	(5)
145 
146 #define	ROOT_BITS	(6)
147 #define	ROOT_SIZE	(1 << ROOT_BITS)
148 #define	ROOT_MASK	(ROOT_SIZE - 1)
149 #define	ROOT_MSBITS	(HASHVAL_BITS - ROOT_BITS)
150 
151 #define	LEVEL_BITS	(4)
152 #define	LEVEL_SIZE	(1 << LEVEL_BITS)
153 #define	LEVEL_MASK	(LEVEL_SIZE - 1)
154 
155 /*
156  * Instead of raw pointers, we use offsets from the base address.
157  * This accommodates the use of this data structure in shared memory,
158  * where mappings can be in different address spaces.
159  *
160  * The pointers must be aligned, since pointer tagging is used to
161  * differentiate the intermediate nodes from leaves.  We reserve the
162  * least significant bit.
163  */
164 typedef uintptr_t thmap_ptr_t;
165 typedef uintptr_t atomic_thmap_ptr_t;			// C11 _Atomic
166 
167 #define	THMAP_NULL		((thmap_ptr_t)0)
168 
169 #define	THMAP_LEAF_BIT		(0x1)
170 
171 #define	THMAP_ALIGNED_P(p)	(((uintptr_t)(p) & 3) == 0)
172 #define	THMAP_ALIGN(p)		((uintptr_t)(p) & ~(uintptr_t)3)
173 #define	THMAP_INODE_P(p)	(((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
174 
175 #define	THMAP_GETPTR(th, p)	((void *)((th)->baseptr + (uintptr_t)(p)))
176 #define	THMAP_GETOFF(th, p)	((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
177 #define	THMAP_NODE(th, p)	THMAP_GETPTR(th, THMAP_ALIGN(p))
178 
179 /*
180  * State field.
181  */
182 
183 #define	NODE_LOCKED		(1U << 31)		// lock (writers)
184 #define	NODE_DELETED		(1U << 30)		// node deleted
185 #define	NODE_COUNT(s)		((s) & 0x3fffffff)	// slot count mask
186 
187 /*
188  * There are two types of nodes:
189  * - Intermediate nodes -- arrays pointing to another level or a leaf;
190  * - Leaves, which store a key-value pair.
191  */
192 
193 typedef struct {
194 	uint32_t		state;			// C11 _Atomic
195 	thmap_ptr_t		parent;
196 	atomic_thmap_ptr_t	slots[LEVEL_SIZE];
197 } thmap_inode_t;
198 
199 #define	THMAP_INODE_LEN	sizeof(thmap_inode_t)
200 
201 typedef struct {
202 	thmap_ptr_t	key;
203 	size_t		len;
204 	void *		val;
205 } thmap_leaf_t;
206 
207 typedef struct {
208 	const uint8_t *	seed;		// secret seed
209 	unsigned	rslot;		// root-level slot index
210 	unsigned	level;		// current level in the tree
211 	unsigned	hashidx;	// current hash index (block of bits)
212 	uint32_t	hashval;	// current hash value
213 } thmap_query_t;
214 
215 union thmap_align {
216 	void *		p;
217 	uint64_t	v;
218 };
219 
220 typedef struct thmap_gc thmap_gc_t;
221 struct thmap_gc {
222 	size_t		len;
223 	thmap_gc_t *	next;
224 	char		data[] __aligned(sizeof(union thmap_align));
225 };
226 
227 #define	THMAP_ROOT_LEN	(sizeof(thmap_ptr_t) * ROOT_SIZE)
228 
229 struct thmap {
230 	uintptr_t		baseptr;
231 	atomic_thmap_ptr_t *	root;
232 	unsigned		flags;
233 	const thmap_ops_t *	ops;
234 	thmap_gc_t *		gc_list;		// C11 _Atomic
235 	uint8_t			seed[HASHVAL_SEEDLEN];
236 };
237 
238 static void	stage_mem_gc(thmap_t *, uintptr_t, size_t);
239 
240 /*
241  * A few low-level helper routines.
242  */
243 
244 static uintptr_t
alloc_wrapper(size_t len)245 alloc_wrapper(size_t len)
246 {
247 	return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
248 }
249 
250 static void
free_wrapper(uintptr_t addr,size_t len)251 free_wrapper(uintptr_t addr, size_t len)
252 {
253 	kmem_intr_free((void *)addr, len);
254 }
255 
256 static const thmap_ops_t thmap_default_ops = {
257 	.alloc = alloc_wrapper,
258 	.free = free_wrapper
259 };
260 
261 static uintptr_t
gc_alloc(const thmap_t * thmap,size_t len)262 gc_alloc(const thmap_t *thmap, size_t len)
263 {
264 	const size_t alloclen = offsetof(struct thmap_gc, data[len]);
265 	const uintptr_t gcaddr = thmap->ops->alloc(alloclen);
266 
267 	if (!gcaddr)
268 		return 0;
269 
270 	thmap_gc_t *const gc = THMAP_GETPTR(thmap, gcaddr);
271 	gc->len = len;
272 	return THMAP_GETOFF(thmap, &gc->data[0]);
273 }
274 
275 static void
gc_free(const thmap_t * thmap,uintptr_t addr,size_t len)276 gc_free(const thmap_t *thmap, uintptr_t addr, size_t len)
277 {
278 	const size_t alloclen = offsetof(struct thmap_gc, data[len]);
279 	char *const ptr = THMAP_GETPTR(thmap, addr);
280 	thmap_gc_t *const gc = container_of(ptr, struct thmap_gc, data[0]);
281 	const uintptr_t gcaddr = THMAP_GETOFF(thmap, gc);
282 
283 	KASSERTMSG(gc->len == len, "thmap=%p ops=%p addr=%p len=%zu"
284 	    " gc=%p gc->len=%zu",
285 	    thmap, thmap->ops, (void *)addr, len, gc, gc->len);
286 	thmap->ops->free(gcaddr, alloclen);
287 }
288 
289 /*
290  * NODE LOCKING.
291  */
292 
293 static inline bool __diagused
node_locked_p(thmap_inode_t * node)294 node_locked_p(thmap_inode_t *node)
295 {
296 	return (atomic_load_relaxed(&node->state) & NODE_LOCKED) != 0;
297 }
298 
299 static void
lock_node(thmap_inode_t * node)300 lock_node(thmap_inode_t *node)
301 {
302 	unsigned bcount = SPINLOCK_BACKOFF_MIN;
303 	uint32_t s;
304 again:
305 	s = atomic_load_relaxed(&node->state);
306 	if (s & NODE_LOCKED) {
307 		SPINLOCK_BACKOFF(bcount);
308 		goto again;
309 	}
310 	/* Acquire from prior release in unlock_node.() */
311 	if (!atomic_compare_exchange_weak_explicit_32(&node->state,
312 	    &s, s | NODE_LOCKED, memory_order_acquire, memory_order_relaxed)) {
313 		bcount = SPINLOCK_BACKOFF_MIN;
314 		goto again;
315 	}
316 }
317 
318 static void
unlock_node(thmap_inode_t * node)319 unlock_node(thmap_inode_t *node)
320 {
321 	uint32_t s = atomic_load_relaxed(&node->state) & ~NODE_LOCKED;
322 
323 	ASSERT(node_locked_p(node));
324 	/* Release to subsequent acquire in lock_node(). */
325 	atomic_store_release(&node->state, s);
326 }
327 
328 /*
329  * HASH VALUE AND KEY OPERATIONS.
330  */
331 
332 static inline uint32_t
hash(const uint8_t seed[static HASHVAL_SEEDLEN],const void * key,size_t len,uint32_t level)333 hash(const uint8_t seed[static HASHVAL_SEEDLEN], const void *key, size_t len,
334     uint32_t level)
335 {
336 	struct blake2s B;
337 	uint32_t h;
338 
339 	if (level == 0)
340 		return murmurhash3(key, len, 0);
341 
342 	/*
343 	 * Byte order is not significant here because this is
344 	 * intentionally secret and independent for each thmap.
345 	 *
346 	 * XXX We get 32 bytes of output at a time; we could march
347 	 * through them sequentially rather than throwing away 28 bytes
348 	 * and recomputing BLAKE2 each time.  But the number of
349 	 * iterations ought to be geometric in the collision
350 	 * probability at each level which should be very small anyway.
351 	 */
352 	blake2s_init(&B, sizeof h, seed, HASHVAL_SEEDLEN);
353 	blake2s_update(&B, &level, sizeof level);
354 	blake2s_update(&B, key, len);
355 	blake2s_final(&B, &h);
356 
357 	return h;
358 }
359 
360 static inline void
hashval_init(thmap_query_t * query,const uint8_t seed[static HASHVAL_SEEDLEN],const void * restrict key,size_t len)361 hashval_init(thmap_query_t *query, const uint8_t seed[static HASHVAL_SEEDLEN],
362     const void * restrict key, size_t len)
363 {
364 	const uint32_t hashval = hash(seed, key, len, 0);
365 
366 	query->seed = seed;
367 	query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
368 	query->level = 0;
369 	query->hashval = hashval;
370 	query->hashidx = 0;
371 }
372 
373 /*
374  * hashval_getslot: given the key, compute the hash (if not already cached)
375  * and return the offset for the current level.
376  */
377 static unsigned
hashval_getslot(thmap_query_t * query,const void * restrict key,size_t len)378 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
379 {
380 	const unsigned offset = query->level * LEVEL_BITS;
381 	const unsigned shift = offset & HASHVAL_MOD;
382 	const unsigned i = offset >> HASHVAL_SHIFT;
383 
384 	if (query->hashidx != i) {
385 		/* Generate a hash value for a required range. */
386 		query->hashval = hash(query->seed, key, len, i);
387 		query->hashidx = i;
388 	}
389 	return (query->hashval >> shift) & LEVEL_MASK;
390 }
391 
392 static unsigned
hashval_getleafslot(const thmap_t * thmap,const thmap_leaf_t * leaf,unsigned level)393 hashval_getleafslot(const thmap_t *thmap,
394     const thmap_leaf_t *leaf, unsigned level)
395 {
396 	const void *key = THMAP_GETPTR(thmap, leaf->key);
397 	const unsigned offset = level * LEVEL_BITS;
398 	const unsigned shift = offset & HASHVAL_MOD;
399 	const unsigned i = offset >> HASHVAL_SHIFT;
400 
401 	return (hash(thmap->seed, key, leaf->len, i) >> shift) & LEVEL_MASK;
402 }
403 
404 static inline unsigned
hashval_getl0slot(const thmap_t * thmap,const thmap_query_t * query,const thmap_leaf_t * leaf)405 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
406     const thmap_leaf_t *leaf)
407 {
408 	if (__predict_true(query->hashidx == 0)) {
409 		return query->hashval & LEVEL_MASK;
410 	}
411 	return hashval_getleafslot(thmap, leaf, 0);
412 }
413 
414 static bool
key_cmp_p(const thmap_t * thmap,const thmap_leaf_t * leaf,const void * restrict key,size_t len)415 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
416     const void * restrict key, size_t len)
417 {
418 	const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
419 	return len == leaf->len && memcmp(key, leafkey, len) == 0;
420 }
421 
422 /*
423  * INTER-NODE OPERATIONS.
424  */
425 
426 static thmap_inode_t *
node_create(thmap_t * thmap,thmap_inode_t * parent)427 node_create(thmap_t *thmap, thmap_inode_t *parent)
428 {
429 	thmap_inode_t *node;
430 	uintptr_t p;
431 
432 	p = gc_alloc(thmap, THMAP_INODE_LEN);
433 	if (!p) {
434 		return NULL;
435 	}
436 	node = THMAP_GETPTR(thmap, p);
437 	ASSERT(THMAP_ALIGNED_P(node));
438 
439 	memset(node, 0, THMAP_INODE_LEN);
440 	if (parent) {
441 		/* Not yet published, no need for ordering. */
442 		atomic_store_relaxed(&node->state, NODE_LOCKED);
443 		node->parent = THMAP_GETOFF(thmap, parent);
444 	}
445 	return node;
446 }
447 
448 static void
node_insert(thmap_inode_t * node,unsigned slot,thmap_ptr_t child)449 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
450 {
451 	ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
452 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
453 	ASSERT(atomic_load_relaxed(&node->slots[slot]) == THMAP_NULL);
454 
455 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) < LEVEL_SIZE);
456 
457 	/*
458 	 * If node is public already, caller is responsible for issuing
459 	 * release fence; if node is not public, no ordering is needed.
460 	 * Hence relaxed ordering.
461 	 */
462 	atomic_store_relaxed(&node->slots[slot], child);
463 	atomic_store_relaxed(&node->state,
464 	    atomic_load_relaxed(&node->state) + 1);
465 }
466 
467 static void
node_remove(thmap_inode_t * node,unsigned slot)468 node_remove(thmap_inode_t *node, unsigned slot)
469 {
470 	ASSERT(node_locked_p(node));
471 	ASSERT((atomic_load_relaxed(&node->state) & NODE_DELETED) == 0);
472 	ASSERT(atomic_load_relaxed(&node->slots[slot]) != THMAP_NULL);
473 
474 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) > 0);
475 	ASSERT(NODE_COUNT(atomic_load_relaxed(&node->state)) <= LEVEL_SIZE);
476 
477 	/* Element will be GC-ed later; no need for ordering here. */
478 	atomic_store_relaxed(&node->slots[slot], THMAP_NULL);
479 	atomic_store_relaxed(&node->state,
480 	    atomic_load_relaxed(&node->state) - 1);
481 }
482 
483 /*
484  * LEAF OPERATIONS.
485  */
486 
487 static thmap_leaf_t *
leaf_create(const thmap_t * thmap,const void * key,size_t len,void * val)488 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
489 {
490 	thmap_leaf_t *leaf;
491 	uintptr_t leaf_off, key_off;
492 
493 	leaf_off = gc_alloc(thmap, sizeof(thmap_leaf_t));
494 	if (!leaf_off) {
495 		return NULL;
496 	}
497 	leaf = THMAP_GETPTR(thmap, leaf_off);
498 	ASSERT(THMAP_ALIGNED_P(leaf));
499 
500 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
501 		/*
502 		 * Copy the key.
503 		 */
504 		key_off = gc_alloc(thmap, len);
505 		if (!key_off) {
506 			gc_free(thmap, leaf_off, sizeof(thmap_leaf_t));
507 			return NULL;
508 		}
509 		memcpy(THMAP_GETPTR(thmap, key_off), key, len);
510 		leaf->key = key_off;
511 	} else {
512 		/* Otherwise, we use a reference. */
513 		leaf->key = (uintptr_t)key;
514 	}
515 	leaf->len = len;
516 	leaf->val = val;
517 	return leaf;
518 }
519 
520 static void
leaf_free(const thmap_t * thmap,thmap_leaf_t * leaf)521 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
522 {
523 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
524 		gc_free(thmap, leaf->key, leaf->len);
525 	}
526 	gc_free(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
527 }
528 
529 static thmap_leaf_t *
get_leaf(const thmap_t * thmap,thmap_inode_t * parent,unsigned slot)530 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
531 {
532 	thmap_ptr_t node;
533 
534 	/* Consume from prior release in thmap_put(). */
535 	node = atomic_load_consume(&parent->slots[slot]);
536 	if (THMAP_INODE_P(node)) {
537 		return NULL;
538 	}
539 	return THMAP_NODE(thmap, node);
540 }
541 
542 /*
543  * ROOT OPERATIONS.
544  */
545 
546 /*
547  * root_try_put: Try to set a root pointer at query->rslot.
548  *
549  * => Implies release operation on success.
550  * => Implies no ordering on failure.
551  */
552 static inline int
root_try_put(thmap_t * thmap,const thmap_query_t * query,thmap_leaf_t * leaf)553 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
554 {
555 	thmap_ptr_t expected;
556 	const unsigned i = query->rslot;
557 	thmap_inode_t *node;
558 	thmap_ptr_t nptr;
559 	unsigned slot;
560 
561 	/*
562 	 * Must pre-check first.  No ordering required because we will
563 	 * check again before taking any actions, and start over if
564 	 * this changes from null.
565 	 */
566 	if (atomic_load_relaxed(&thmap->root[i])) {
567 		return EEXIST;
568 	}
569 
570 	/*
571 	 * Create an intermediate node.  Since there is no parent set,
572 	 * it will be created unlocked and the CAS operation will
573 	 * release it to readers.
574 	 */
575 	node = node_create(thmap, NULL);
576 	if (__predict_false(node == NULL)) {
577 		return ENOMEM;
578 	}
579 	slot = hashval_getl0slot(thmap, query, leaf);
580 	node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
581 	nptr = THMAP_GETOFF(thmap, node);
582 again:
583 	if (atomic_load_relaxed(&thmap->root[i])) {
584 		gc_free(thmap, nptr, THMAP_INODE_LEN);
585 		return EEXIST;
586 	}
587 	/* Release to subsequent consume in find_edge_node(). */
588 	expected = THMAP_NULL;
589 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->root[i], &expected,
590 	    nptr, memory_order_release, memory_order_relaxed)) {
591 		goto again;
592 	}
593 	return 0;
594 }
595 
596 /*
597  * find_edge_node: given the hash, traverse the tree to find the edge node.
598  *
599  * => Returns an aligned (clean) pointer to the parent node.
600  * => Returns the slot number and sets current level.
601  */
602 static thmap_inode_t *
find_edge_node(const thmap_t * thmap,thmap_query_t * query,const void * restrict key,size_t len,unsigned * slot)603 find_edge_node(const thmap_t *thmap, thmap_query_t *query,
604     const void * restrict key, size_t len, unsigned *slot)
605 {
606 	thmap_ptr_t root_slot;
607 	thmap_inode_t *parent;
608 	thmap_ptr_t node;
609 	unsigned off;
610 
611 	ASSERT(query->level == 0);
612 
613 	/* Consume from prior release in root_try_put(). */
614 	root_slot = atomic_load_consume(&thmap->root[query->rslot]);
615 	parent = THMAP_NODE(thmap, root_slot);
616 	if (!parent) {
617 		return NULL;
618 	}
619 descend:
620 	off = hashval_getslot(query, key, len);
621 	/* Consume from prior release in thmap_put(). */
622 	node = atomic_load_consume(&parent->slots[off]);
623 
624 	/* Descend the tree until we find a leaf or empty slot. */
625 	if (node && THMAP_INODE_P(node)) {
626 		parent = THMAP_NODE(thmap, node);
627 		query->level++;
628 		goto descend;
629 	}
630 	/*
631 	 * NODE_DELETED does not become stale until GC runs, which
632 	 * cannot happen while we are in the middle of an operation,
633 	 * hence relaxed ordering.
634 	 */
635 	if (atomic_load_relaxed(&parent->state) & NODE_DELETED) {
636 		return NULL;
637 	}
638 	*slot = off;
639 	return parent;
640 }
641 
642 /*
643  * find_edge_node_locked: traverse the tree, like find_edge_node(),
644  * but attempt to lock the edge node.
645  *
646  * => Returns NULL if the deleted node is found.  This indicates that
647  *    the caller must re-try from the root, as the root slot might have
648  *    changed too.
649  */
650 static thmap_inode_t *
find_edge_node_locked(const thmap_t * thmap,thmap_query_t * query,const void * restrict key,size_t len,unsigned * slot)651 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
652     const void * restrict key, size_t len, unsigned *slot)
653 {
654 	thmap_inode_t *node;
655 	thmap_ptr_t target;
656 retry:
657 	/*
658 	 * Find the edge node and lock it!  Re-check the state since
659 	 * the tree might change by the time we acquire the lock.
660 	 */
661 	node = find_edge_node(thmap, query, key, len, slot);
662 	if (!node) {
663 		/* The root slot is empty -- let the caller decide. */
664 		query->level = 0;
665 		return NULL;
666 	}
667 	lock_node(node);
668 	if (__predict_false(atomic_load_relaxed(&node->state) & NODE_DELETED)) {
669 		/*
670 		 * The node has been deleted.  The tree might have a new
671 		 * shape now, therefore we must re-start from the root.
672 		 */
673 		unlock_node(node);
674 		query->level = 0;
675 		return NULL;
676 	}
677 	target = atomic_load_relaxed(&node->slots[*slot]);
678 	if (__predict_false(target && THMAP_INODE_P(target))) {
679 		/*
680 		 * The target slot has been changed and it is now an
681 		 * intermediate node.  Re-start from the top internode.
682 		 */
683 		unlock_node(node);
684 		query->level = 0;
685 		goto retry;
686 	}
687 	return node;
688 }
689 
690 /*
691  * thmap_get: lookup a value given the key.
692  */
693 void *
thmap_get(thmap_t * thmap,const void * key,size_t len)694 thmap_get(thmap_t *thmap, const void *key, size_t len)
695 {
696 	thmap_query_t query;
697 	thmap_inode_t *parent;
698 	thmap_leaf_t *leaf;
699 	unsigned slot;
700 
701 	hashval_init(&query, thmap->seed, key, len);
702 	parent = find_edge_node(thmap, &query, key, len, &slot);
703 	if (!parent) {
704 		return NULL;
705 	}
706 	leaf = get_leaf(thmap, parent, slot);
707 	if (!leaf) {
708 		return NULL;
709 	}
710 	if (!key_cmp_p(thmap, leaf, key, len)) {
711 		return NULL;
712 	}
713 	return leaf->val;
714 }
715 
716 /*
717  * thmap_put: insert a value given the key.
718  *
719  * => If the key is already present, return the associated value.
720  * => Otherwise, on successful insert, return the given value.
721  */
722 void *
thmap_put(thmap_t * thmap,const void * key,size_t len,void * val)723 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
724 {
725 	thmap_query_t query;
726 	thmap_leaf_t *leaf, *other;
727 	thmap_inode_t *parent, *child;
728 	unsigned slot, other_slot;
729 	thmap_ptr_t target;
730 
731 	/*
732 	 * First, pre-allocate and initialize the leaf node.
733 	 */
734 	leaf = leaf_create(thmap, key, len, val);
735 	if (__predict_false(!leaf)) {
736 		return NULL;
737 	}
738 	hashval_init(&query, thmap->seed, key, len);
739 retry:
740 	/*
741 	 * Try to insert into the root first, if its slot is empty.
742 	 */
743 	switch (root_try_put(thmap, &query, leaf)) {
744 	case 0:
745 		/* Success: the leaf was inserted; no locking involved. */
746 		return val;
747 	case EEXIST:
748 		break;
749 	case ENOMEM:
750 		return NULL;
751 	default:
752 		__unreachable();
753 	}
754 
755 	/*
756 	 * Release node via store in node_insert (*) to subsequent
757 	 * consume in get_leaf() or find_edge_node().
758 	 */
759 	atomic_thread_fence(memory_order_release);
760 
761 	/*
762 	 * Find the edge node and the target slot.
763 	 */
764 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
765 	if (!parent) {
766 		goto retry;
767 	}
768 	target = atomic_load_relaxed(&parent->slots[slot]); // tagged offset
769 	if (THMAP_INODE_P(target)) {
770 		/*
771 		 * Empty slot: simply insert the new leaf.  The release
772 		 * fence is already issued for us.
773 		 */
774 		target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
775 		node_insert(parent, slot, target); /* (*) */
776 		goto out;
777 	}
778 
779 	/*
780 	 * Collision or duplicate.
781 	 */
782 	other = THMAP_NODE(thmap, target);
783 	if (key_cmp_p(thmap, other, key, len)) {
784 		/*
785 		 * Duplicate.  Free the pre-allocated leaf and
786 		 * return the present value.
787 		 */
788 		leaf_free(thmap, leaf);
789 		val = other->val;
790 		goto out;
791 	}
792 descend:
793 	/*
794 	 * Collision -- expand the tree.  Create an intermediate node
795 	 * which will be locked (NODE_LOCKED) for us.  At this point,
796 	 * we advance to the next level.
797 	 */
798 	child = node_create(thmap, parent);
799 	if (__predict_false(!child)) {
800 		leaf_free(thmap, leaf);
801 		val = NULL;
802 		goto out;
803 	}
804 	query.level++;
805 
806 	/*
807 	 * Insert the other (colliding) leaf first.  The new child is
808 	 * not yet published, so memory order is relaxed.
809 	 */
810 	other_slot = hashval_getleafslot(thmap, other, query.level);
811 	target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
812 	node_insert(child, other_slot, target);
813 
814 	/*
815 	 * Insert the intermediate node into the parent node.
816 	 * It becomes the new parent for the our new leaf.
817 	 *
818 	 * Ensure that stores to the child (and leaf) reach global
819 	 * visibility before it gets inserted to the parent, as
820 	 * consumed by get_leaf() or find_edge_node().
821 	 */
822 	atomic_store_release(&parent->slots[slot], THMAP_GETOFF(thmap, child));
823 
824 	unlock_node(parent);
825 	ASSERT(node_locked_p(child));
826 	parent = child;
827 
828 	/*
829 	 * Get the new slot and check for another collision
830 	 * at the next level.
831 	 */
832 	slot = hashval_getslot(&query, key, len);
833 	if (slot == other_slot) {
834 		/* Another collision -- descend and expand again. */
835 		goto descend;
836 	}
837 
838 	/*
839 	 * Insert our new leaf once we expanded enough.  The release
840 	 * fence is already issued for us.
841 	 */
842 	target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
843 	node_insert(parent, slot, target); /* (*) */
844 out:
845 	unlock_node(parent);
846 	return val;
847 }
848 
849 /*
850  * thmap_del: remove the entry given the key.
851  */
852 void *
thmap_del(thmap_t * thmap,const void * key,size_t len)853 thmap_del(thmap_t *thmap, const void *key, size_t len)
854 {
855 	thmap_query_t query;
856 	thmap_leaf_t *leaf;
857 	thmap_inode_t *parent;
858 	unsigned slot;
859 	void *val;
860 
861 	hashval_init(&query, thmap->seed, key, len);
862 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
863 	if (!parent) {
864 		/* Root slot empty: not found. */
865 		return NULL;
866 	}
867 	leaf = get_leaf(thmap, parent, slot);
868 	if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
869 		/* Not found. */
870 		unlock_node(parent);
871 		return NULL;
872 	}
873 
874 	/* Remove the leaf. */
875 	ASSERT(THMAP_NODE(thmap, atomic_load_relaxed(&parent->slots[slot]))
876 	    == leaf);
877 	node_remove(parent, slot);
878 
879 	/*
880 	 * Collapse the levels if removing the last item.
881 	 */
882 	while (query.level &&
883 	    NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
884 		thmap_inode_t *node = parent;
885 
886 		ASSERT(atomic_load_relaxed(&node->state) == NODE_LOCKED);
887 
888 		/*
889 		 * Ascend one level up.
890 		 * => Mark our current parent as deleted.
891 		 * => Lock the parent one level up.
892 		 */
893 		query.level--;
894 		slot = hashval_getslot(&query, key, len);
895 		parent = THMAP_NODE(thmap, node->parent);
896 		ASSERT(parent != NULL);
897 
898 		lock_node(parent);
899 		ASSERT((atomic_load_relaxed(&parent->state) & NODE_DELETED)
900 		    == 0);
901 
902 		/*
903 		 * Lock is exclusive, so nobody else can be writing at
904 		 * the same time, and no need for atomic R/M/W, but
905 		 * readers may read without the lock and so need atomic
906 		 * load/store.  No ordering here needed because the
907 		 * entry itself stays valid until GC.
908 		 */
909 		atomic_store_relaxed(&node->state,
910 		    atomic_load_relaxed(&node->state) | NODE_DELETED);
911 		unlock_node(node); // memory_order_release
912 
913 		ASSERT(THMAP_NODE(thmap,
914 		    atomic_load_relaxed(&parent->slots[slot])) == node);
915 		node_remove(parent, slot);
916 
917 		/* Stage the removed node for G/C. */
918 		stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
919 	}
920 
921 	/*
922 	 * If the top node is empty, then we need to remove it from the
923 	 * root level.  Mark the node as deleted and clear the slot.
924 	 *
925 	 * Note: acquiring the lock on the top node effectively prevents
926 	 * the root slot from changing.
927 	 */
928 	if (NODE_COUNT(atomic_load_relaxed(&parent->state)) == 0) {
929 		const unsigned rslot = query.rslot;
930 		const thmap_ptr_t nptr =
931 		    atomic_load_relaxed(&thmap->root[rslot]);
932 
933 		ASSERT(query.level == 0);
934 		ASSERT(parent->parent == THMAP_NULL);
935 		ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
936 
937 		/* Mark as deleted and remove from the root-level slot. */
938 		atomic_store_relaxed(&parent->state,
939 		    atomic_load_relaxed(&parent->state) | NODE_DELETED);
940 		atomic_store_relaxed(&thmap->root[rslot], THMAP_NULL);
941 
942 		stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
943 	}
944 	unlock_node(parent);
945 
946 	/*
947 	 * Save the value and stage the leaf for G/C.
948 	 */
949 	val = leaf->val;
950 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
951 		stage_mem_gc(thmap, leaf->key, leaf->len);
952 	}
953 	stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
954 	return val;
955 }
956 
957 /*
958  * G/C routines.
959  */
960 
961 static void
stage_mem_gc(thmap_t * thmap,uintptr_t addr,size_t len)962 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
963 {
964 	char *const ptr = THMAP_GETPTR(thmap, addr);
965 	thmap_gc_t *head, *gc;
966 
967 	gc = container_of(ptr, struct thmap_gc, data[0]);
968 	KASSERTMSG(gc->len == len,
969 	    "thmap=%p ops=%p ptr=%p len=%zu gc=%p gc->len=%zu",
970 	    thmap, thmap->ops, (char *)addr, len, gc, gc->len);
971 retry:
972 	head = atomic_load_relaxed(&thmap->gc_list);
973 	gc->next = head; // not yet published
974 
975 	/* Release to subsequent acquire in thmap_stage_gc(). */
976 	if (!atomic_compare_exchange_weak_explicit_ptr(&thmap->gc_list, &head, gc,
977 	    memory_order_release, memory_order_relaxed)) {
978 		goto retry;
979 	}
980 }
981 
982 void *
thmap_stage_gc(thmap_t * thmap)983 thmap_stage_gc(thmap_t *thmap)
984 {
985 	/* Acquire from prior release in stage_mem_gc(). */
986 	return atomic_exchange_explicit(&thmap->gc_list, NULL,
987 	    memory_order_acquire);
988 }
989 
990 void
thmap_gc(thmap_t * thmap,void * ref)991 thmap_gc(thmap_t *thmap, void *ref)
992 {
993 	thmap_gc_t *gc = ref;
994 
995 	while (gc) {
996 		thmap_gc_t *next = gc->next;
997 		gc_free(thmap, THMAP_GETOFF(thmap, &gc->data[0]), gc->len);
998 		gc = next;
999 	}
1000 }
1001 
1002 /*
1003  * thmap_create: construct a new trie-hash map object.
1004  */
1005 thmap_t *
thmap_create(uintptr_t baseptr,const thmap_ops_t * ops,unsigned flags)1006 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
1007 {
1008 	thmap_t *thmap;
1009 	uintptr_t root;
1010 
1011 	/*
1012 	 * Setup the map object.
1013 	 */
1014 	if (!THMAP_ALIGNED_P(baseptr)) {
1015 		return NULL;
1016 	}
1017 	thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
1018 	thmap->baseptr = baseptr;
1019 	thmap->ops = ops ? ops : &thmap_default_ops;
1020 	thmap->flags = flags;
1021 
1022 	if ((thmap->flags & THMAP_SETROOT) == 0) {
1023 		/* Allocate the root level. */
1024 		root = gc_alloc(thmap, THMAP_ROOT_LEN);
1025 		if (!root) {
1026 			kmem_free(thmap, sizeof(thmap_t));
1027 			return NULL;
1028 		}
1029 		thmap->root = THMAP_GETPTR(thmap, root);
1030 		memset(thmap->root, 0, THMAP_ROOT_LEN);
1031 	}
1032 
1033 	cprng_strong(kern_cprng, thmap->seed, sizeof thmap->seed, 0);
1034 
1035 	return thmap;
1036 }
1037 
1038 int
thmap_setroot(thmap_t * thmap,uintptr_t root_off)1039 thmap_setroot(thmap_t *thmap, uintptr_t root_off)
1040 {
1041 	if (thmap->root) {
1042 		return -1;
1043 	}
1044 	thmap->root = THMAP_GETPTR(thmap, root_off);
1045 	return 0;
1046 }
1047 
1048 uintptr_t
thmap_getroot(const thmap_t * thmap)1049 thmap_getroot(const thmap_t *thmap)
1050 {
1051 	return THMAP_GETOFF(thmap, thmap->root);
1052 }
1053 
1054 void
thmap_destroy(thmap_t * thmap)1055 thmap_destroy(thmap_t *thmap)
1056 {
1057 	uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
1058 	void *ref;
1059 
1060 	ref = thmap_stage_gc(thmap);
1061 	thmap_gc(thmap, ref);
1062 
1063 	if ((thmap->flags & THMAP_SETROOT) == 0) {
1064 		gc_free(thmap, root, THMAP_ROOT_LEN);
1065 	}
1066 	kmem_free(thmap, sizeof(thmap_t));
1067 }
1068