xref: /netbsd-src/sys/kern/kern_time.c (revision 65195a4c92dbfea163b48af57736b67314fc5cbb)
1 /*	$NetBSD: kern_time.c,v 1.227 2024/12/22 23:24:20 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000, 2004, 2005, 2007, 2008, 2009, 2020
5  *     The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Christopher G. Demetriou, by Andrew Doran, and by Jason R. Thorpe.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1982, 1986, 1989, 1993
35  *	The Regents of the University of California.  All rights reserved.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. Neither the name of the University nor the names of its contributors
46  *    may be used to endorse or promote products derived from this software
47  *    without specific prior written permission.
48  *
49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59  * SUCH DAMAGE.
60  *
61  *	@(#)kern_time.c	8.4 (Berkeley) 5/26/95
62  */
63 
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.227 2024/12/22 23:24:20 riastradh Exp $");
66 
67 #include <sys/param.h>
68 #include <sys/types.h>
69 
70 #include <sys/callout.h>
71 #include <sys/cpu.h>
72 #include <sys/errno.h>
73 #include <sys/intr.h>
74 #include <sys/kauth.h>
75 #include <sys/kernel.h>
76 #include <sys/kmem.h>
77 #include <sys/lwp.h>
78 #include <sys/mount.h>
79 #include <sys/mutex.h>
80 #include <sys/proc.h>
81 #include <sys/queue.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signal.h>
84 #include <sys/signalvar.h>
85 #include <sys/syscallargs.h>
86 #include <sys/syslog.h>
87 #include <sys/systm.h>
88 #include <sys/timetc.h>
89 #include <sys/timevar.h>
90 #include <sys/timex.h>
91 #include <sys/vnode.h>
92 
93 #include <machine/limits.h>
94 
95 kmutex_t	itimer_mutex __cacheline_aligned;	/* XXX static */
96 static struct itlist itimer_realtime_changed_notify;
97 
98 static void	itimer_callout(void *);
99 static void	ptimer_intr(void *);
100 static void	*ptimer_sih __read_mostly;
101 static TAILQ_HEAD(, ptimer) ptimer_queue;
102 
103 #define	CLOCK_VIRTUAL_P(clockid)	\
104 	((clockid) == CLOCK_VIRTUAL || (clockid) == CLOCK_PROF)
105 
106 CTASSERT(ITIMER_REAL == CLOCK_REALTIME);
107 CTASSERT(ITIMER_VIRTUAL == CLOCK_VIRTUAL);
108 CTASSERT(ITIMER_PROF == CLOCK_PROF);
109 CTASSERT(ITIMER_MONOTONIC == CLOCK_MONOTONIC);
110 
111 /*
112  * Initialize timekeeping.
113  */
114 void
115 time_init(void)
116 {
117 
118 	mutex_init(&itimer_mutex, MUTEX_DEFAULT, IPL_SCHED);
119 	LIST_INIT(&itimer_realtime_changed_notify);
120 
121 	TAILQ_INIT(&ptimer_queue);
122 	ptimer_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
123 	    ptimer_intr, NULL);
124 }
125 
126 /*
127  * Check if the time will wrap if set to ts.
128  *
129  * ts - timespec describing the new time
130  * delta - the delta between the current time and ts
131  */
132 bool
133 time_wraps(struct timespec *ts, struct timespec *delta)
134 {
135 
136 	/*
137 	 * Don't allow the time to be set forward so far it
138 	 * will wrap and become negative, thus allowing an
139 	 * attacker to bypass the next check below.  The
140 	 * cutoff is 1 year before rollover occurs, so even
141 	 * if the attacker uses adjtime(2) to move the time
142 	 * past the cutoff, it will take a very long time
143 	 * to get to the wrap point.
144 	 */
145 	if ((ts->tv_sec > LLONG_MAX - 365*24*60*60) ||
146 	    (delta->tv_sec < 0 || delta->tv_nsec < 0))
147 		return true;
148 
149 	return false;
150 }
151 
152 /*
153  * itimer_lock:
154  *
155  *	Acquire the interval timer data lock.
156  */
157 void
158 itimer_lock(void)
159 {
160 	mutex_spin_enter(&itimer_mutex);
161 }
162 
163 /*
164  * itimer_unlock:
165  *
166  *	Release the interval timer data lock.
167  */
168 void
169 itimer_unlock(void)
170 {
171 	mutex_spin_exit(&itimer_mutex);
172 }
173 
174 /*
175  * itimer_lock_held:
176  *
177  *	Check that the interval timer lock is held for diagnostic
178  *	assertions.
179  */
180 inline bool __diagused
181 itimer_lock_held(void)
182 {
183 	return mutex_owned(&itimer_mutex);
184 }
185 
186 /*
187  * Time of day and interval timer support.
188  *
189  * These routines provide the kernel entry points to get and set
190  * the time-of-day and per-process interval timers.  Subroutines
191  * here provide support for adding and subtracting timeval structures
192  * and decrementing interval timers, optionally reloading the interval
193  * timers when they expire.
194  */
195 
196 /* This function is used by clock_settime and settimeofday */
197 static int
198 settime1(struct proc *p, const struct timespec *ts, bool check_kauth)
199 {
200 	struct timespec delta, now;
201 
202 	/*
203 	 * The time being set to an unreasonable value will cause
204 	 * unreasonable system behaviour.
205 	 */
206 	if (ts->tv_sec < 0 || ts->tv_sec > (1LL << 36))
207 		return EINVAL;
208 
209 	nanotime(&now);
210 	timespecsub(ts, &now, &delta);
211 
212 	if (check_kauth && kauth_authorize_system(kauth_cred_get(),
213 	    KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_SYSTEM, __UNCONST(ts),
214 	    &delta, KAUTH_ARG(check_kauth ? false : true)) != 0) {
215 		return EPERM;
216 	}
217 
218 #ifdef notyet
219 	if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
220 		return EPERM;
221 	}
222 #endif
223 
224 	tc_setclock(ts);
225 
226 	resettodr();
227 
228 	/*
229 	 * Notify pending CLOCK_REALTIME timers about the real time change.
230 	 * There may be inactive timers on this list, but this happens
231 	 * comparatively less often than timers firing, and so it's better
232 	 * to put the extra checks here than to complicate the other code
233 	 * path.
234 	 */
235 	struct itimer *it;
236 	itimer_lock();
237 	LIST_FOREACH(it, &itimer_realtime_changed_notify, it_rtchgq) {
238 		KASSERT(it->it_ops->ito_realtime_changed != NULL);
239 		if (timespecisset(&it->it_time.it_value)) {
240 			(*it->it_ops->ito_realtime_changed)(it);
241 		}
242 	}
243 	itimer_unlock();
244 
245 	return 0;
246 }
247 
248 int
249 settime(struct proc *p, struct timespec *ts)
250 {
251 	return settime1(p, ts, true);
252 }
253 
254 /* ARGSUSED */
255 int
256 sys___clock_gettime50(struct lwp *l,
257     const struct sys___clock_gettime50_args *uap, register_t *retval)
258 {
259 	/* {
260 		syscallarg(clockid_t) clock_id;
261 		syscallarg(struct timespec *) tp;
262 	} */
263 	int error;
264 	struct timespec ats;
265 
266 	error = clock_gettime1(SCARG(uap, clock_id), &ats);
267 	if (error != 0)
268 		return error;
269 
270 	return copyout(&ats, SCARG(uap, tp), sizeof(ats));
271 }
272 
273 /* ARGSUSED */
274 int
275 sys___clock_settime50(struct lwp *l,
276     const struct sys___clock_settime50_args *uap, register_t *retval)
277 {
278 	/* {
279 		syscallarg(clockid_t) clock_id;
280 		syscallarg(const struct timespec *) tp;
281 	} */
282 	int error;
283 	struct timespec ats;
284 
285 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
286 		return error;
287 
288 	return clock_settime1(l->l_proc, SCARG(uap, clock_id), &ats, true);
289 }
290 
291 
292 int
293 clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp,
294     bool check_kauth)
295 {
296 	int error;
297 
298 	if (tp->tv_nsec < 0 || tp->tv_nsec >= 1000000000L)
299 		return EINVAL;
300 
301 	switch (clock_id) {
302 	case CLOCK_REALTIME:
303 		if ((error = settime1(p, tp, check_kauth)) != 0)
304 			return error;
305 		break;
306 	case CLOCK_MONOTONIC:
307 		return EINVAL;	/* read-only clock */
308 	default:
309 		return EINVAL;
310 	}
311 
312 	return 0;
313 }
314 
315 int
316 sys___clock_getres50(struct lwp *l, const struct sys___clock_getres50_args *uap,
317     register_t *retval)
318 {
319 	/* {
320 		syscallarg(clockid_t) clock_id;
321 		syscallarg(struct timespec *) tp;
322 	} */
323 	struct timespec ts;
324 	int error;
325 
326 	if ((error = clock_getres1(SCARG(uap, clock_id), &ts)) != 0)
327 		return error;
328 
329 	if (SCARG(uap, tp))
330 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
331 
332 	return error;
333 }
334 
335 int
336 clock_getres1(clockid_t clock_id, struct timespec *ts)
337 {
338 
339 	switch (clock_id) {
340 	case CLOCK_REALTIME:
341 	case CLOCK_MONOTONIC:
342 		ts->tv_sec = 0;
343 		if (tc_getfrequency() > 1000000000)
344 			ts->tv_nsec = 1;
345 		else
346 			ts->tv_nsec = 1000000000 / tc_getfrequency();
347 		break;
348 	default:
349 		return EINVAL;
350 	}
351 
352 	return 0;
353 }
354 
355 /* ARGSUSED */
356 int
357 sys___nanosleep50(struct lwp *l, const struct sys___nanosleep50_args *uap,
358     register_t *retval)
359 {
360 	/* {
361 		syscallarg(struct timespec *) rqtp;
362 		syscallarg(struct timespec *) rmtp;
363 	} */
364 	struct timespec rmt, rqt;
365 	int error, error1;
366 
367 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
368 	if (error)
369 		return error;
370 
371 	error = nanosleep1(l, CLOCK_MONOTONIC, 0, &rqt,
372 	    SCARG(uap, rmtp) ? &rmt : NULL);
373 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
374 		return error;
375 
376 	error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
377 	return error1 ? error1 : error;
378 }
379 
380 /* ARGSUSED */
381 int
382 sys_clock_nanosleep(struct lwp *l, const struct sys_clock_nanosleep_args *uap,
383     register_t *retval)
384 {
385 	/* {
386 		syscallarg(clockid_t) clock_id;
387 		syscallarg(int) flags;
388 		syscallarg(struct timespec *) rqtp;
389 		syscallarg(struct timespec *) rmtp;
390 	} */
391 	struct timespec rmt, rqt;
392 	int error, error1;
393 
394 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
395 	if (error)
396 		goto out;
397 
398 	error = nanosleep1(l, SCARG(uap, clock_id), SCARG(uap, flags), &rqt,
399 	    SCARG(uap, rmtp) ? &rmt : NULL);
400 	if (SCARG(uap, rmtp) == NULL || (error != 0 && error != EINTR))
401 		goto out;
402 
403 	if ((SCARG(uap, flags) & TIMER_ABSTIME) == 0 &&
404 	    (error1 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt))) != 0)
405 		error = error1;
406 out:
407 	*retval = error;
408 	return 0;
409 }
410 
411 int
412 nanosleep1(struct lwp *l, clockid_t clock_id, int flags, struct timespec *rqt,
413     struct timespec *rmt)
414 {
415 	struct timespec rmtstart;
416 	int error, timo;
417 
418 	if ((error = ts2timo(clock_id, flags, rqt, &timo, &rmtstart)) != 0) {
419 		if (error == ETIMEDOUT) {
420 			error = 0;
421 			if (rmt != NULL)
422 				rmt->tv_sec = rmt->tv_nsec = 0;
423 		}
424 		return error;
425 	}
426 
427 	/*
428 	 * Avoid inadvertently sleeping forever
429 	 */
430 	if (timo == 0)
431 		timo = 1;
432 again:
433 	error = kpause("nanoslp", true, timo, NULL);
434 	if (error == EWOULDBLOCK)
435 		error = 0;
436 	if (rmt != NULL || error == 0) {
437 		struct timespec rmtend;
438 		struct timespec t0;
439 		struct timespec *t;
440 		int err;
441 
442 		err = clock_gettime1(clock_id, &rmtend);
443 		if (err != 0)
444 			return err;
445 
446 		t = (rmt != NULL) ? rmt : &t0;
447 		if (flags & TIMER_ABSTIME) {
448 			timespecsub(rqt, &rmtend, t);
449 		} else {
450 			if (timespeccmp(&rmtend, &rmtstart, <))
451 				timespecclear(t); /* clock wound back */
452 			else
453 				timespecsub(&rmtend, &rmtstart, t);
454 			if (timespeccmp(rqt, t, <))
455 				timespecclear(t);
456 			else
457 				timespecsub(rqt, t, t);
458 		}
459 		if (t->tv_sec < 0)
460 			timespecclear(t);
461 		if (error == 0) {
462 			timo = tstohz(t);
463 			if (timo > 0)
464 				goto again;
465 		}
466 	}
467 
468 	if (error == ERESTART)
469 		error = EINTR;
470 
471 	return error;
472 }
473 
474 int
475 sys_clock_getcpuclockid2(struct lwp *l,
476     const struct sys_clock_getcpuclockid2_args *uap,
477     register_t *retval)
478 {
479 	/* {
480 		syscallarg(idtype_t idtype;
481 		syscallarg(id_t id);
482 		syscallarg(clockid_t *)clock_id;
483 	} */
484 	pid_t pid;
485 	lwpid_t lid;
486 	clockid_t clock_id;
487 	id_t id = SCARG(uap, id);
488 
489 	switch (SCARG(uap, idtype)) {
490 	case P_PID:
491 		pid = id == 0 ? l->l_proc->p_pid : id;
492 		clock_id = CLOCK_PROCESS_CPUTIME_ID | pid;
493 		break;
494 	case P_LWPID:
495 		lid = id == 0 ? l->l_lid : id;
496 		clock_id = CLOCK_THREAD_CPUTIME_ID | lid;
497 		break;
498 	default:
499 		return EINVAL;
500 	}
501 	return copyout(&clock_id, SCARG(uap, clock_id), sizeof(clock_id));
502 }
503 
504 /* ARGSUSED */
505 int
506 sys___gettimeofday50(struct lwp *l, const struct sys___gettimeofday50_args *uap,
507     register_t *retval)
508 {
509 	/* {
510 		syscallarg(struct timeval *) tp;
511 		syscallarg(void *) tzp;		really "struct timezone *";
512 	} */
513 	struct timeval atv;
514 	int error = 0;
515 	struct timezone tzfake;
516 
517 	if (SCARG(uap, tp)) {
518 		memset(&atv, 0, sizeof(atv));
519 		microtime(&atv);
520 		error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
521 		if (error)
522 			return error;
523 	}
524 	if (SCARG(uap, tzp)) {
525 		/*
526 		 * NetBSD has no kernel notion of time zone, so we just
527 		 * fake up a timezone struct and return it if demanded.
528 		 */
529 		tzfake.tz_minuteswest = 0;
530 		tzfake.tz_dsttime = 0;
531 		error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
532 	}
533 	return error;
534 }
535 
536 /* ARGSUSED */
537 int
538 sys___settimeofday50(struct lwp *l, const struct sys___settimeofday50_args *uap,
539     register_t *retval)
540 {
541 	/* {
542 		syscallarg(const struct timeval *) tv;
543 		syscallarg(const void *) tzp; really "const struct timezone *";
544 	} */
545 
546 	return settimeofday1(SCARG(uap, tv), true, SCARG(uap, tzp), l, true);
547 }
548 
549 int
550 settimeofday1(const struct timeval *utv, bool userspace,
551     const void *utzp, struct lwp *l, bool check_kauth)
552 {
553 	struct timeval atv;
554 	struct timespec ts;
555 	int error;
556 
557 	/* Verify all parameters before changing time. */
558 
559 	/*
560 	 * NetBSD has no kernel notion of time zone, and only an
561 	 * obsolete program would try to set it, so we log a warning.
562 	 */
563 	if (utzp)
564 		log(LOG_WARNING, "pid %d attempted to set the "
565 		    "(obsolete) kernel time zone\n", l->l_proc->p_pid);
566 
567 	if (utv == NULL)
568 		return 0;
569 
570 	if (userspace) {
571 		if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
572 			return error;
573 		utv = &atv;
574 	}
575 
576 	if (utv->tv_usec < 0 || utv->tv_usec >= 1000000)
577 		return EINVAL;
578 
579 	TIMEVAL_TO_TIMESPEC(utv, &ts);
580 	return settime1(l->l_proc, &ts, check_kauth);
581 }
582 
583 int	time_adjusted;			/* set if an adjustment is made */
584 
585 /* ARGSUSED */
586 int
587 sys___adjtime50(struct lwp *l, const struct sys___adjtime50_args *uap,
588     register_t *retval)
589 {
590 	/* {
591 		syscallarg(const struct timeval *) delta;
592 		syscallarg(struct timeval *) olddelta;
593 	} */
594 	int error;
595 	struct timeval atv, oldatv;
596 
597 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
598 	    KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
599 		return error;
600 
601 	if (SCARG(uap, delta)) {
602 		error = copyin(SCARG(uap, delta), &atv,
603 		    sizeof(*SCARG(uap, delta)));
604 		if (error)
605 			return error;
606 	}
607 	adjtime1(SCARG(uap, delta) ? &atv : NULL,
608 	    SCARG(uap, olddelta) ? &oldatv : NULL, l->l_proc);
609 	if (SCARG(uap, olddelta))
610 		error = copyout(&oldatv, SCARG(uap, olddelta),
611 		    sizeof(*SCARG(uap, olddelta)));
612 	return error;
613 }
614 
615 void
616 adjtime1(const struct timeval *delta, struct timeval *olddelta, struct proc *p)
617 {
618 
619 	if (olddelta) {
620 		memset(olddelta, 0, sizeof(*olddelta));
621 		mutex_spin_enter(&timecounter_lock);
622 		olddelta->tv_sec = time_adjtime / 1000000;
623 		olddelta->tv_usec = time_adjtime % 1000000;
624 		if (olddelta->tv_usec < 0) {
625 			olddelta->tv_usec += 1000000;
626 			olddelta->tv_sec--;
627 		}
628 		mutex_spin_exit(&timecounter_lock);
629 	}
630 
631 	if (delta) {
632 		mutex_spin_enter(&timecounter_lock);
633 		/*
634 		 * XXX This should maybe just report failure to
635 		 * userland for nonsense deltas.
636 		 */
637 		if (delta->tv_sec > INT64_MAX/1000000 - 1) {
638 			time_adjtime = INT64_MAX;
639 		} else if (delta->tv_sec < INT64_MIN/1000000 + 1) {
640 			time_adjtime = INT64_MIN;
641 		} else {
642 			time_adjtime = delta->tv_sec * 1000000
643 			    + MAX(-999999, MIN(999999, delta->tv_usec));
644 		}
645 
646 		if (time_adjtime) {
647 			/* We need to save the system time during shutdown */
648 			time_adjusted |= 1;
649 		}
650 		mutex_spin_exit(&timecounter_lock);
651 	}
652 }
653 
654 /*
655  * Interval timer support.
656  *
657  * The itimer_*() routines provide generic support for interval timers,
658  * both real (CLOCK_REALTIME, CLOCK_MONOTIME), and virtual (CLOCK_VIRTUAL,
659  * CLOCK_PROF).
660  *
661  * Real timers keep their deadline as an absolute time, and are fired
662  * by a callout.  Virtual timers are kept as a linked-list of deltas,
663  * and are processed by hardclock().
664  *
665  * Because the real time timer callout may be delayed in real time due
666  * to interrupt processing on the system, it is possible for the real
667  * time timeout routine (itimer_callout()) run past after its deadline.
668  * It does not suffice, therefore, to reload the real timer .it_value
669  * from the timer's .it_interval.  Rather, we compute the next deadline
670  * in absolute time based on the current time and the .it_interval value,
671  * and report any overruns.
672  *
673  * Note that while the virtual timers are supported in a generic fashion
674  * here, they only (currently) make sense as per-process timers, and thus
675  * only really work for that case.
676  */
677 
678 /*
679  * itimer_init:
680  *
681  *	Initialize the common data for an interval timer.
682  */
683 void
684 itimer_init(struct itimer * const it, const struct itimer_ops * const ops,
685     clockid_t const id, struct itlist * const itl)
686 {
687 
688 	KASSERT(itimer_lock_held());
689 	KASSERT(ops != NULL);
690 
691 	timespecclear(&it->it_time.it_value);
692 	it->it_ops = ops;
693 	it->it_clockid = id;
694 	it->it_overruns = 0;
695 	it->it_dying = false;
696 	if (!CLOCK_VIRTUAL_P(id)) {
697 		KASSERT(itl == NULL);
698 		callout_init(&it->it_ch, CALLOUT_MPSAFE);
699 		callout_setfunc(&it->it_ch, itimer_callout, it);
700 		if (id == CLOCK_REALTIME && ops->ito_realtime_changed != NULL) {
701 			LIST_INSERT_HEAD(&itimer_realtime_changed_notify,
702 			    it, it_rtchgq);
703 		}
704 	} else {
705 		KASSERT(itl != NULL);
706 		it->it_vlist = itl;
707 		it->it_active = false;
708 	}
709 }
710 
711 /*
712  * itimer_poison:
713  *
714  *	Poison an interval timer, preventing it from being scheduled
715  *	or processed, in preparation for freeing the timer.
716  */
717 void
718 itimer_poison(struct itimer * const it)
719 {
720 
721 	KASSERT(itimer_lock_held());
722 
723 	it->it_dying = true;
724 
725 	/*
726 	 * For non-virtual timers, stop the callout, or wait for it to
727 	 * run if it has already fired.  It cannot restart again after
728 	 * this point: the callout won't restart itself when dying, no
729 	 * other users holding the lock can restart it, and any other
730 	 * users waiting for callout_halt concurrently (itimer_settime)
731 	 * will restart from the top.
732 	 */
733 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
734 		callout_halt(&it->it_ch, &itimer_mutex);
735 		if (it->it_clockid == CLOCK_REALTIME &&
736 		    it->it_ops->ito_realtime_changed != NULL) {
737 			LIST_REMOVE(it, it_rtchgq);
738 		}
739 	}
740 }
741 
742 /*
743  * itimer_fini:
744  *
745  *	Release resources used by an interval timer.
746  *
747  *	N.B. itimer_lock must be held on entry, and is released on exit.
748  */
749 void
750 itimer_fini(struct itimer * const it)
751 {
752 
753 	KASSERT(itimer_lock_held());
754 
755 	/* All done with the global state. */
756 	itimer_unlock();
757 
758 	/* Destroy the callout, if needed. */
759 	if (!CLOCK_VIRTUAL_P(it->it_clockid))
760 		callout_destroy(&it->it_ch);
761 }
762 
763 /*
764  * itimer_decr:
765  *
766  *	Decrement an interval timer by a specified number of nanoseconds,
767  *	which must be less than a second, i.e. < 1000000000.  If the timer
768  *	expires, then reload it.  In this case, carry over (nsec - old value)
769  *	to reduce the value reloaded into the timer so that the timer does
770  *	not drift.  This routine assumes that it is called in a context where
771  *	the timers on which it is operating cannot change in value.
772  *
773  *	Returns true if the timer has expired.
774  */
775 static bool
776 itimer_decr(struct itimer *it, int nsec)
777 {
778 	struct itimerspec *itp;
779 	int error __diagused;
780 
781 	KASSERT(itimer_lock_held());
782 	KASSERT(CLOCK_VIRTUAL_P(it->it_clockid));
783 
784 	itp = &it->it_time;
785 	if (itp->it_value.tv_nsec < nsec) {
786 		if (itp->it_value.tv_sec == 0) {
787 			/* expired, and already in next interval */
788 			nsec -= itp->it_value.tv_nsec;
789 			goto expire;
790 		}
791 		itp->it_value.tv_nsec += 1000000000;
792 		itp->it_value.tv_sec--;
793 	}
794 	itp->it_value.tv_nsec -= nsec;
795 	nsec = 0;
796 	if (timespecisset(&itp->it_value))
797 		return false;
798 	/* expired, exactly at end of interval */
799  expire:
800 	if (timespecisset(&itp->it_interval)) {
801 		itp->it_value = itp->it_interval;
802 		itp->it_value.tv_nsec -= nsec;
803 		if (itp->it_value.tv_nsec < 0) {
804 			itp->it_value.tv_nsec += 1000000000;
805 			itp->it_value.tv_sec--;
806 		}
807 		error = itimer_settime(it);
808 		KASSERT(error == 0); /* virtual, never fails */
809 	} else
810 		itp->it_value.tv_nsec = 0;		/* sec is already 0 */
811 	return true;
812 }
813 
814 /*
815  * itimer_arm_real:
816  *
817  *	Arm a non-virtual timer.
818  */
819 static void
820 itimer_arm_real(struct itimer * const it)
821 {
822 
823 	KASSERT(!it->it_dying);
824 	KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
825 	KASSERT(!callout_pending(&it->it_ch));
826 
827 	/*
828 	 * Don't need to check tshzto() return value, here.
829 	 * callout_schedule() does it for us.
830 	 */
831 	callout_schedule(&it->it_ch,
832 	    (it->it_clockid == CLOCK_MONOTONIC
833 		? tshztoup(&it->it_time.it_value)
834 		: tshzto(&it->it_time.it_value)));
835 }
836 
837 /*
838  * itimer_callout:
839  *
840  *	Callout to expire a non-virtual timer.  Queue it up for processing,
841  *	and then reload, if it is configured to do so.
842  *
843  *	N.B. A delay in processing this callout causes multiple
844  *	SIGALRM calls to be compressed into one.
845  */
846 static void
847 itimer_callout(void *arg)
848 {
849 	struct timespec now, next;
850 	struct itimer * const it = arg;
851 	int overruns;
852 
853 	itimer_lock();
854 	(*it->it_ops->ito_fire)(it);
855 
856 	if (!timespecisset(&it->it_time.it_interval)) {
857 		timespecclear(&it->it_time.it_value);
858 		itimer_unlock();
859 		return;
860 	}
861 
862 	if (it->it_clockid == CLOCK_MONOTONIC) {
863 		getnanouptime(&now);
864 	} else {
865 		getnanotime(&now);
866 	}
867 
868 	/*
869 	 * Given the current itimer value and interval and the time
870 	 * now, compute the next itimer value and count overruns.
871 	 */
872 	itimer_transition(&it->it_time, &now, &next, &overruns);
873 	it->it_time.it_value = next;
874 	it->it_overruns += overruns;
875 
876 	/*
877 	 * Reset the callout, if it's not going away.
878 	 */
879 	if (!it->it_dying)
880 		itimer_arm_real(it);
881 	itimer_unlock();
882 }
883 
884 /*
885  * itimer_settime:
886  *
887  *	Set up the given interval timer. The value in it->it_time.it_value
888  *	is taken to be an absolute time for CLOCK_REALTIME/CLOCK_MONOTONIC
889  *	timers and a relative time for CLOCK_VIRTUAL/CLOCK_PROF timers.
890  *
891  *	If the callout had already fired but not yet run, fails with
892  *	ERESTART -- caller must restart from the top to look up a timer.
893  *
894  *	Caller is responsible for validating it->it_value and
895  *	it->it_interval, e.g. with itimerfix or itimespecfix.
896  */
897 int
898 itimer_settime(struct itimer *it)
899 {
900 	struct itimer *itn, *pitn;
901 	struct itlist *itl;
902 
903 	KASSERT(itimer_lock_held());
904 	KASSERT(!it->it_dying);
905 	KASSERT(it->it_time.it_value.tv_sec >= 0);
906 	KASSERT(it->it_time.it_value.tv_nsec >= 0);
907 	KASSERT(it->it_time.it_value.tv_nsec < 1000000000);
908 	KASSERT(it->it_time.it_interval.tv_sec >= 0);
909 	KASSERT(it->it_time.it_interval.tv_nsec >= 0);
910 	KASSERT(it->it_time.it_interval.tv_nsec < 1000000000);
911 
912 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
913 		/*
914 		 * Try to stop the callout.  However, if it had already
915 		 * fired, we have to drop the lock to wait for it, so
916 		 * the world may have changed and pt may not be there
917 		 * any more.  In that case, tell the caller to start
918 		 * over from the top.
919 		 */
920 		if (callout_halt(&it->it_ch, &itimer_mutex))
921 			return ERESTART;
922 		KASSERT(!it->it_dying);
923 
924 		/* Now we can touch it and start it up again. */
925 		if (timespecisset(&it->it_time.it_value))
926 			itimer_arm_real(it);
927 	} else {
928 		if (it->it_active) {
929 			itn = LIST_NEXT(it, it_list);
930 			LIST_REMOVE(it, it_list);
931 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
932 				timespecadd(&it->it_time.it_value,
933 				    &itn->it_time.it_value,
934 				    &itn->it_time.it_value);
935 		}
936 		if (timespecisset(&it->it_time.it_value)) {
937 			itl = it->it_vlist;
938 			for (itn = LIST_FIRST(itl), pitn = NULL;
939 			     itn && timespeccmp(&it->it_time.it_value,
940 				 &itn->it_time.it_value, >);
941 			     pitn = itn, itn = LIST_NEXT(itn, it_list))
942 				timespecsub(&it->it_time.it_value,
943 				    &itn->it_time.it_value,
944 				    &it->it_time.it_value);
945 
946 			if (pitn)
947 				LIST_INSERT_AFTER(pitn, it, it_list);
948 			else
949 				LIST_INSERT_HEAD(itl, it, it_list);
950 
951 			for ( ; itn ; itn = LIST_NEXT(itn, it_list))
952 				timespecsub(&itn->it_time.it_value,
953 				    &it->it_time.it_value,
954 				    &itn->it_time.it_value);
955 
956 			it->it_active = true;
957 		} else {
958 			it->it_active = false;
959 		}
960 	}
961 
962 	/* Success!  */
963 	return 0;
964 }
965 
966 /*
967  * itimer_gettime:
968  *
969  *	Return the remaining time of an interval timer.
970  */
971 void
972 itimer_gettime(const struct itimer *it, struct itimerspec *aits)
973 {
974 	struct timespec now;
975 	struct itimer *itn;
976 
977 	KASSERT(itimer_lock_held());
978 	KASSERT(!it->it_dying);
979 
980 	*aits = it->it_time;
981 	if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
982 		/*
983 		 * Convert from absolute to relative time in .it_value
984 		 * part of real time timer.  If time for real time
985 		 * timer has passed return 0, else return difference
986 		 * between current time and time for the timer to go
987 		 * off.
988 		 */
989 		if (timespecisset(&aits->it_value)) {
990 			if (it->it_clockid == CLOCK_REALTIME) {
991 				getnanotime(&now);
992 			} else { /* CLOCK_MONOTONIC */
993 				getnanouptime(&now);
994 			}
995 			if (timespeccmp(&aits->it_value, &now, <))
996 				timespecclear(&aits->it_value);
997 			else
998 				timespecsub(&aits->it_value, &now,
999 				    &aits->it_value);
1000 		}
1001 	} else if (it->it_active) {
1002 		for (itn = LIST_FIRST(it->it_vlist); itn && itn != it;
1003 		     itn = LIST_NEXT(itn, it_list))
1004 			timespecadd(&aits->it_value,
1005 			    &itn->it_time.it_value, &aits->it_value);
1006 		KASSERT(itn != NULL); /* it should be findable on the list */
1007 	} else
1008 		timespecclear(&aits->it_value);
1009 }
1010 
1011 /*
1012  * Per-process timer support.
1013  *
1014  * Both the BSD getitimer() family and the POSIX timer_*() family of
1015  * routines are supported.
1016  *
1017  * All timers are kept in an array pointed to by p_timers, which is
1018  * allocated on demand - many processes don't use timers at all. The
1019  * first four elements in this array are reserved for the BSD timers:
1020  * element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, element
1021  * 2 is ITIMER_PROF, and element 3 is ITIMER_MONOTONIC. The rest may be
1022  * allocated by the timer_create() syscall.
1023  *
1024  * These timers are a "sub-class" of interval timer.
1025  */
1026 
1027 /*
1028  * ptimer_free:
1029  *
1030  *	Free the per-process timer at the specified index.
1031  */
1032 static void
1033 ptimer_free(struct ptimers *pts, int index)
1034 {
1035 	struct itimer *it;
1036 	struct ptimer *pt;
1037 
1038 	KASSERT(itimer_lock_held());
1039 
1040 	it = pts->pts_timers[index];
1041 	pt = container_of(it, struct ptimer, pt_itimer);
1042 	pts->pts_timers[index] = NULL;
1043 	itimer_poison(it);
1044 
1045 	/*
1046 	 * Remove it from the queue to be signalled.  Must be done
1047 	 * after itimer is poisoned, because we may have had to wait
1048 	 * for the callout to complete.
1049 	 */
1050 	if (pt->pt_queued) {
1051 		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1052 		pt->pt_queued = false;
1053 	}
1054 
1055 	itimer_fini(it);	/* releases itimer_lock */
1056 	kmem_free(pt, sizeof(*pt));
1057 }
1058 
1059 /*
1060  * ptimers_alloc:
1061  *
1062  *	Allocate a ptimers for the specified process.
1063  */
1064 static struct ptimers *
1065 ptimers_alloc(struct proc *p)
1066 {
1067 	struct ptimers *pts;
1068 	int i;
1069 
1070 	pts = kmem_alloc(sizeof(*pts), KM_SLEEP);
1071 	LIST_INIT(&pts->pts_virtual);
1072 	LIST_INIT(&pts->pts_prof);
1073 	for (i = 0; i < TIMER_MAX; i++)
1074 		pts->pts_timers[i] = NULL;
1075 	itimer_lock();
1076 	if (p->p_timers == NULL) {
1077 		p->p_timers = pts;
1078 		itimer_unlock();
1079 		return pts;
1080 	}
1081 	itimer_unlock();
1082 	kmem_free(pts, sizeof(*pts));
1083 	return p->p_timers;
1084 }
1085 
1086 /*
1087  * ptimers_free:
1088  *
1089  *	Clean up the per-process timers. If "which" is set to TIMERS_ALL,
1090  *	then clean up all timers and free all the data structures. If
1091  *	"which" is set to TIMERS_POSIX, only clean up the timers allocated
1092  *	by timer_create(), not the BSD setitimer() timers, and only free the
1093  *	structure if none of those remain.
1094  *
1095  *	This function is exported because it is needed in the exec and
1096  *	exit code paths.
1097  */
1098 void
1099 ptimers_free(struct proc *p, int which)
1100 {
1101 	struct ptimers *pts;
1102 	struct itimer *itn;
1103 	struct timespec ts;
1104 	int i;
1105 
1106 	if (p->p_timers == NULL)
1107 		return;
1108 
1109 	pts = p->p_timers;
1110 	itimer_lock();
1111 	if (which == TIMERS_ALL) {
1112 		p->p_timers = NULL;
1113 		i = 0;
1114 	} else {
1115 		timespecclear(&ts);
1116 		for (itn = LIST_FIRST(&pts->pts_virtual);
1117 		     itn && itn != pts->pts_timers[ITIMER_VIRTUAL];
1118 		     itn = LIST_NEXT(itn, it_list)) {
1119 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1120 			timespecadd(&ts, &itn->it_time.it_value, &ts);
1121 		}
1122 		LIST_FIRST(&pts->pts_virtual) = NULL;
1123 		if (itn) {
1124 			KASSERT(itn->it_clockid == CLOCK_VIRTUAL);
1125 			timespecadd(&ts, &itn->it_time.it_value,
1126 			    &itn->it_time.it_value);
1127 			LIST_INSERT_HEAD(&pts->pts_virtual, itn, it_list);
1128 		}
1129 		timespecclear(&ts);
1130 		for (itn = LIST_FIRST(&pts->pts_prof);
1131 		     itn && itn != pts->pts_timers[ITIMER_PROF];
1132 		     itn = LIST_NEXT(itn, it_list)) {
1133 			KASSERT(itn->it_clockid == CLOCK_PROF);
1134 			timespecadd(&ts, &itn->it_time.it_value, &ts);
1135 		}
1136 		LIST_FIRST(&pts->pts_prof) = NULL;
1137 		if (itn) {
1138 			KASSERT(itn->it_clockid == CLOCK_PROF);
1139 			timespecadd(&ts, &itn->it_time.it_value,
1140 			    &itn->it_time.it_value);
1141 			LIST_INSERT_HEAD(&pts->pts_prof, itn, it_list);
1142 		}
1143 		i = TIMER_MIN;
1144 	}
1145 	for ( ; i < TIMER_MAX; i++) {
1146 		if (pts->pts_timers[i] != NULL) {
1147 			/* Free the timer and release the lock.  */
1148 			ptimer_free(pts, i);
1149 			/* Reacquire the lock for the next one.  */
1150 			itimer_lock();
1151 		}
1152 	}
1153 	if (pts->pts_timers[0] == NULL && pts->pts_timers[1] == NULL &&
1154 	    pts->pts_timers[2] == NULL && pts->pts_timers[3] == NULL) {
1155 		p->p_timers = NULL;
1156 		itimer_unlock();
1157 		kmem_free(pts, sizeof(*pts));
1158 	} else
1159 		itimer_unlock();
1160 }
1161 
1162 /*
1163  * ptimer_fire:
1164  *
1165  *	Fire a per-process timer.
1166  */
1167 static void
1168 ptimer_fire(struct itimer *it)
1169 {
1170 	struct ptimer *pt = container_of(it, struct ptimer, pt_itimer);
1171 
1172 	KASSERT(itimer_lock_held());
1173 
1174 	/*
1175 	 * XXX Can overrun, but we don't do signal queueing yet, anyway.
1176 	 * XXX Relying on the clock interrupt is stupid.
1177 	 */
1178 	if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1179 		return;
1180 	}
1181 
1182 	if (!pt->pt_queued) {
1183 		TAILQ_INSERT_TAIL(&ptimer_queue, pt, pt_chain);
1184 		pt->pt_queued = true;
1185 		softint_schedule(ptimer_sih);
1186 	}
1187 }
1188 
1189 /*
1190  * Operations vector for per-process timers (BSD and POSIX).
1191  */
1192 static const struct itimer_ops ptimer_itimer_ops = {
1193 	.ito_fire = ptimer_fire,
1194 };
1195 
1196 /*
1197  * sys_timer_create:
1198  *
1199  *	System call to create a POSIX timer.
1200  */
1201 int
1202 sys_timer_create(struct lwp *l, const struct sys_timer_create_args *uap,
1203     register_t *retval)
1204 {
1205 	/* {
1206 		syscallarg(clockid_t) clock_id;
1207 		syscallarg(struct sigevent *) evp;
1208 		syscallarg(timer_t *) timerid;
1209 	} */
1210 
1211 	return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
1212 	    SCARG(uap, evp), copyin, l);
1213 }
1214 
1215 int
1216 timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
1217     copyin_t fetch_event, struct lwp *l)
1218 {
1219 	int error;
1220 	timer_t timerid;
1221 	struct itlist *itl;
1222 	struct ptimers *pts;
1223 	struct ptimer *pt;
1224 	struct proc *p;
1225 
1226 	p = l->l_proc;
1227 
1228 	if ((u_int)id > CLOCK_MONOTONIC)
1229 		return EINVAL;
1230 
1231 	if ((pts = p->p_timers) == NULL)
1232 		pts = ptimers_alloc(p);
1233 
1234 	pt = kmem_zalloc(sizeof(*pt), KM_SLEEP);
1235 	if (evp != NULL) {
1236 		if (((error =
1237 		    (*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
1238 		    ((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
1239 			(pt->pt_ev.sigev_notify > SIGEV_SA)) ||
1240 			(pt->pt_ev.sigev_notify == SIGEV_SIGNAL &&
1241 			 (pt->pt_ev.sigev_signo <= 0 ||
1242 			  pt->pt_ev.sigev_signo >= NSIG))) {
1243 			kmem_free(pt, sizeof(*pt));
1244 			return (error ? error : EINVAL);
1245 		}
1246 	}
1247 
1248 	/* Find a free timer slot, skipping those reserved for setitimer(). */
1249 	itimer_lock();
1250 	for (timerid = TIMER_MIN; timerid < TIMER_MAX; timerid++)
1251 		if (pts->pts_timers[timerid] == NULL)
1252 			break;
1253 	if (timerid == TIMER_MAX) {
1254 		itimer_unlock();
1255 		kmem_free(pt, sizeof(*pt));
1256 		return EAGAIN;
1257 	}
1258 	if (evp == NULL) {
1259 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1260 		switch (id) {
1261 		case CLOCK_REALTIME:
1262 		case CLOCK_MONOTONIC:
1263 			pt->pt_ev.sigev_signo = SIGALRM;
1264 			break;
1265 		case CLOCK_VIRTUAL:
1266 			pt->pt_ev.sigev_signo = SIGVTALRM;
1267 			break;
1268 		case CLOCK_PROF:
1269 			pt->pt_ev.sigev_signo = SIGPROF;
1270 			break;
1271 		}
1272 		pt->pt_ev.sigev_value.sival_int = timerid;
1273 	}
1274 
1275 	switch (id) {
1276 	case CLOCK_VIRTUAL:
1277 		itl = &pts->pts_virtual;
1278 		break;
1279 	case CLOCK_PROF:
1280 		itl = &pts->pts_prof;
1281 		break;
1282 	default:
1283 		itl = NULL;
1284 	}
1285 
1286 	itimer_init(&pt->pt_itimer, &ptimer_itimer_ops, id, itl);
1287 	pt->pt_proc = p;
1288 	pt->pt_poverruns = 0;
1289 	pt->pt_entry = timerid;
1290 	pt->pt_queued = false;
1291 
1292 	pts->pts_timers[timerid] = &pt->pt_itimer;
1293 	itimer_unlock();
1294 
1295 	return copyout(&timerid, tid, sizeof(timerid));
1296 }
1297 
1298 /*
1299  * sys_timer_delete:
1300  *
1301  *	System call to delete a POSIX timer.
1302  */
1303 int
1304 sys_timer_delete(struct lwp *l, const struct sys_timer_delete_args *uap,
1305     register_t *retval)
1306 {
1307 	/* {
1308 		syscallarg(timer_t) timerid;
1309 	} */
1310 	struct proc *p = l->l_proc;
1311 	timer_t timerid;
1312 	struct ptimers *pts;
1313 	struct itimer *it, *itn;
1314 
1315 	timerid = SCARG(uap, timerid);
1316 	pts = p->p_timers;
1317 
1318 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1319 		return EINVAL;
1320 
1321 	itimer_lock();
1322 	if ((it = pts->pts_timers[timerid]) == NULL) {
1323 		itimer_unlock();
1324 		return EINVAL;
1325 	}
1326 
1327 	if (CLOCK_VIRTUAL_P(it->it_clockid)) {
1328 		if (it->it_active) {
1329 			itn = LIST_NEXT(it, it_list);
1330 			LIST_REMOVE(it, it_list);
1331 			for ( ; itn; itn = LIST_NEXT(itn, it_list))
1332 				timespecadd(&it->it_time.it_value,
1333 				    &itn->it_time.it_value,
1334 				    &itn->it_time.it_value);
1335 			it->it_active = false;
1336 		}
1337 	}
1338 
1339 	/* Free the timer and release the lock.  */
1340 	ptimer_free(pts, timerid);
1341 
1342 	return 0;
1343 }
1344 
1345 /*
1346  * sys___timer_settime50:
1347  *
1348  *	System call to set/arm a POSIX timer.
1349  */
1350 int
1351 sys___timer_settime50(struct lwp *l,
1352     const struct sys___timer_settime50_args *uap,
1353     register_t *retval)
1354 {
1355 	/* {
1356 		syscallarg(timer_t) timerid;
1357 		syscallarg(int) flags;
1358 		syscallarg(const struct itimerspec *) value;
1359 		syscallarg(struct itimerspec *) ovalue;
1360 	} */
1361 	int error;
1362 	struct itimerspec value, ovalue, *ovp = NULL;
1363 
1364 	if ((error = copyin(SCARG(uap, value), &value,
1365 	    sizeof(struct itimerspec))) != 0)
1366 		return error;
1367 
1368 	if (SCARG(uap, ovalue))
1369 		ovp = &ovalue;
1370 
1371 	if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
1372 	    SCARG(uap, flags), l->l_proc)) != 0)
1373 		return error;
1374 
1375 	if (ovp)
1376 		return copyout(&ovalue, SCARG(uap, ovalue),
1377 		    sizeof(struct itimerspec));
1378 	return 0;
1379 }
1380 
1381 int
1382 dotimer_settime(int timerid, struct itimerspec *value,
1383     struct itimerspec *ovalue, int flags, struct proc *p)
1384 {
1385 	struct timespec now;
1386 	struct itimerspec val;
1387 	struct ptimers *pts;
1388 	struct itimer *it;
1389 	int error;
1390 
1391 	pts = p->p_timers;
1392 
1393 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1394 		return EINVAL;
1395 	val = *value;
1396 	if (itimespecfix(&val.it_value) != 0 ||
1397 	    itimespecfix(&val.it_interval) != 0)
1398 		return EINVAL;
1399 
1400 	itimer_lock();
1401  restart:
1402 	if ((it = pts->pts_timers[timerid]) == NULL) {
1403 		itimer_unlock();
1404 		return EINVAL;
1405 	}
1406 
1407 	if (ovalue)
1408 		itimer_gettime(it, ovalue);
1409 	it->it_time = val;
1410 
1411 	/*
1412 	 * If we've been passed a relative time for a realtime timer,
1413 	 * convert it to absolute; if an absolute time for a virtual
1414 	 * timer, convert it to relative and make sure we don't set it
1415 	 * to zero, which would cancel the timer, or let it go
1416 	 * negative, which would confuse the comparison tests.
1417 	 */
1418 	if (timespecisset(&it->it_time.it_value)) {
1419 		if (!CLOCK_VIRTUAL_P(it->it_clockid)) {
1420 			if ((flags & TIMER_ABSTIME) == 0) {
1421 				if (it->it_clockid == CLOCK_REALTIME) {
1422 					getnanotime(&now);
1423 				} else { /* CLOCK_MONOTONIC */
1424 					getnanouptime(&now);
1425 				}
1426 				timespecadd(&it->it_time.it_value, &now,
1427 				    &it->it_time.it_value);
1428 			}
1429 		} else {
1430 			if ((flags & TIMER_ABSTIME) != 0) {
1431 				getnanotime(&now);
1432 				timespecsub(&it->it_time.it_value, &now,
1433 				    &it->it_time.it_value);
1434 				if (!timespecisset(&it->it_time.it_value) ||
1435 				    it->it_time.it_value.tv_sec < 0) {
1436 					it->it_time.it_value.tv_sec = 0;
1437 					it->it_time.it_value.tv_nsec = 1;
1438 				}
1439 			}
1440 		}
1441 	}
1442 
1443 	error = itimer_settime(it);
1444 	if (error == ERESTART) {
1445 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1446 		goto restart;
1447 	}
1448 	KASSERT(error == 0);
1449 	itimer_unlock();
1450 
1451 	return 0;
1452 }
1453 
1454 /*
1455  * sys___timer_gettime50:
1456  *
1457  *	System call to return the time remaining until a POSIX timer fires.
1458  */
1459 int
1460 sys___timer_gettime50(struct lwp *l,
1461     const struct sys___timer_gettime50_args *uap, register_t *retval)
1462 {
1463 	/* {
1464 		syscallarg(timer_t) timerid;
1465 		syscallarg(struct itimerspec *) value;
1466 	} */
1467 	struct itimerspec its;
1468 	int error;
1469 
1470 	if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
1471 	    &its)) != 0)
1472 		return error;
1473 
1474 	return copyout(&its, SCARG(uap, value), sizeof(its));
1475 }
1476 
1477 int
1478 dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
1479 {
1480 	struct itimer *it;
1481 	struct ptimers *pts;
1482 
1483 	pts = p->p_timers;
1484 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1485 		return EINVAL;
1486 	itimer_lock();
1487 	if ((it = pts->pts_timers[timerid]) == NULL) {
1488 		itimer_unlock();
1489 		return EINVAL;
1490 	}
1491 	itimer_gettime(it, its);
1492 	itimer_unlock();
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * sys_timer_getoverrun:
1499  *
1500  *	System call to return the number of times a POSIX timer has
1501  *	expired while a notification was already pending.  The counter
1502  *	is reset when a timer expires and a notification can be posted.
1503  */
1504 int
1505 sys_timer_getoverrun(struct lwp *l, const struct sys_timer_getoverrun_args *uap,
1506     register_t *retval)
1507 {
1508 	/* {
1509 		syscallarg(timer_t) timerid;
1510 	} */
1511 	struct proc *p = l->l_proc;
1512 	struct ptimers *pts;
1513 	int timerid;
1514 	struct itimer *it;
1515 	struct ptimer *pt;
1516 
1517 	timerid = SCARG(uap, timerid);
1518 
1519 	pts = p->p_timers;
1520 	if (pts == NULL || timerid < 2 || timerid >= TIMER_MAX)
1521 		return EINVAL;
1522 	itimer_lock();
1523 	if ((it = pts->pts_timers[timerid]) == NULL) {
1524 		itimer_unlock();
1525 		return EINVAL;
1526 	}
1527 	pt = container_of(it, struct ptimer, pt_itimer);
1528 	*retval = pt->pt_poverruns;
1529 	if (*retval >= DELAYTIMER_MAX)
1530 		*retval = DELAYTIMER_MAX;
1531 	itimer_unlock();
1532 
1533 	return 0;
1534 }
1535 
1536 /*
1537  * sys___getitimer50:
1538  *
1539  *	System call to get the time remaining before a BSD timer fires.
1540  */
1541 int
1542 sys___getitimer50(struct lwp *l, const struct sys___getitimer50_args *uap,
1543     register_t *retval)
1544 {
1545 	/* {
1546 		syscallarg(int) which;
1547 		syscallarg(struct itimerval *) itv;
1548 	} */
1549 	struct proc *p = l->l_proc;
1550 	struct itimerval aitv;
1551 	int error;
1552 
1553 	memset(&aitv, 0, sizeof(aitv));
1554 	error = dogetitimer(p, SCARG(uap, which), &aitv);
1555 	if (error)
1556 		return error;
1557 	return copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval));
1558 }
1559 
1560 int
1561 dogetitimer(struct proc *p, int which, struct itimerval *itvp)
1562 {
1563 	struct ptimers *pts;
1564 	struct itimer *it;
1565 	struct itimerspec its;
1566 
1567 	if ((u_int)which > ITIMER_MONOTONIC)
1568 		return EINVAL;
1569 
1570 	itimer_lock();
1571 	pts = p->p_timers;
1572 	if (pts == NULL || (it = pts->pts_timers[which]) == NULL) {
1573 		timerclear(&itvp->it_value);
1574 		timerclear(&itvp->it_interval);
1575 	} else {
1576 		itimer_gettime(it, &its);
1577 		TIMESPEC_TO_TIMEVAL(&itvp->it_value, &its.it_value);
1578 		TIMESPEC_TO_TIMEVAL(&itvp->it_interval, &its.it_interval);
1579 	}
1580 	itimer_unlock();
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * sys___setitimer50:
1587  *
1588  *	System call to set/arm a BSD timer.
1589  */
1590 int
1591 sys___setitimer50(struct lwp *l, const struct sys___setitimer50_args *uap,
1592     register_t *retval)
1593 {
1594 	/* {
1595 		syscallarg(int) which;
1596 		syscallarg(const struct itimerval *) itv;
1597 		syscallarg(struct itimerval *) oitv;
1598 	} */
1599 	struct proc *p = l->l_proc;
1600 	int which = SCARG(uap, which);
1601 	struct sys___getitimer50_args getargs;
1602 	const struct itimerval *itvp;
1603 	struct itimerval aitv;
1604 	int error;
1605 
1606 	itvp = SCARG(uap, itv);
1607 	if (itvp &&
1608 	    (error = copyin(itvp, &aitv, sizeof(struct itimerval))) != 0)
1609 		return error;
1610 	if (SCARG(uap, oitv) != NULL) {
1611 		SCARG(&getargs, which) = which;
1612 		SCARG(&getargs, itv) = SCARG(uap, oitv);
1613 		if ((error = sys___getitimer50(l, &getargs, retval)) != 0)
1614 			return error;
1615 	}
1616 	if (itvp == 0)
1617 		return 0;
1618 
1619 	return dosetitimer(p, which, &aitv);
1620 }
1621 
1622 int
1623 dosetitimer(struct proc *p, int which, struct itimerval *itvp)
1624 {
1625 	struct timespec now;
1626 	struct ptimers *pts;
1627 	struct ptimer *spare;
1628 	struct itimer *it;
1629 	struct itlist *itl;
1630 	int error;
1631 
1632 	if ((u_int)which > ITIMER_MONOTONIC)
1633 		return EINVAL;
1634 	if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
1635 		return EINVAL;
1636 
1637 	/*
1638 	 * Don't bother allocating data structures if the process just
1639 	 * wants to clear the timer.
1640 	 */
1641 	spare = NULL;
1642 	pts = p->p_timers;
1643  retry:
1644 	if (!timerisset(&itvp->it_value) && (pts == NULL ||
1645 	    pts->pts_timers[which] == NULL))
1646 		return 0;
1647 	if (pts == NULL)
1648 		pts = ptimers_alloc(p);
1649 	itimer_lock();
1650  restart:
1651 	it = pts->pts_timers[which];
1652 	if (it == NULL) {
1653 		struct ptimer *pt;
1654 
1655 		if (spare == NULL) {
1656 			itimer_unlock();
1657 			spare = kmem_zalloc(sizeof(*spare), KM_SLEEP);
1658 			goto retry;
1659 		}
1660 		pt = spare;
1661 		spare = NULL;
1662 
1663 		it = &pt->pt_itimer;
1664 		pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
1665 		pt->pt_ev.sigev_value.sival_int = which;
1666 
1667 		switch (which) {
1668 		case ITIMER_REAL:
1669 		case ITIMER_MONOTONIC:
1670 			itl = NULL;
1671 			pt->pt_ev.sigev_signo = SIGALRM;
1672 			break;
1673 		case ITIMER_VIRTUAL:
1674 			itl = &pts->pts_virtual;
1675 			pt->pt_ev.sigev_signo = SIGVTALRM;
1676 			break;
1677 		case ITIMER_PROF:
1678 			itl = &pts->pts_prof;
1679 			pt->pt_ev.sigev_signo = SIGPROF;
1680 			break;
1681 		default:
1682 			panic("%s: can't happen %d", __func__, which);
1683 		}
1684 		itimer_init(it, &ptimer_itimer_ops, which, itl);
1685 		pt->pt_proc = p;
1686 		pt->pt_entry = which;
1687 
1688 		pts->pts_timers[which] = it;
1689 	}
1690 
1691 	TIMEVAL_TO_TIMESPEC(&itvp->it_value, &it->it_time.it_value);
1692 	TIMEVAL_TO_TIMESPEC(&itvp->it_interval, &it->it_time.it_interval);
1693 
1694 	error = 0;
1695 	if (timespecisset(&it->it_time.it_value)) {
1696 		/* Convert to absolute time */
1697 		/* XXX need to wrap in splclock for timecounters case? */
1698 		switch (which) {
1699 		case ITIMER_REAL:
1700 			getnanotime(&now);
1701 			if (!timespecaddok(&it->it_time.it_value, &now)) {
1702 				error = EINVAL;
1703 				goto out;
1704 			}
1705 			timespecadd(&it->it_time.it_value, &now,
1706 			    &it->it_time.it_value);
1707 			break;
1708 		case ITIMER_MONOTONIC:
1709 			getnanouptime(&now);
1710 			if (!timespecaddok(&it->it_time.it_value, &now)) {
1711 				error = EINVAL;
1712 				goto out;
1713 			}
1714 			timespecadd(&it->it_time.it_value, &now,
1715 			    &it->it_time.it_value);
1716 			break;
1717 		default:
1718 			break;
1719 		}
1720 	}
1721 
1722 	error = itimer_settime(it);
1723 	if (error == ERESTART) {
1724 		KASSERT(!CLOCK_VIRTUAL_P(it->it_clockid));
1725 		goto restart;
1726 	}
1727 	KASSERT(error == 0);
1728 out:
1729 	itimer_unlock();
1730 	if (spare != NULL)
1731 		kmem_free(spare, sizeof(*spare));
1732 
1733 	return error;
1734 }
1735 
1736 /*
1737  * ptimer_tick:
1738  *
1739  *	Called from hardclock() to decrement per-process virtual timers.
1740  */
1741 void
1742 ptimer_tick(lwp_t *l, bool user)
1743 {
1744 	struct ptimers *pts;
1745 	struct itimer *it;
1746 	proc_t *p;
1747 
1748 	p = l->l_proc;
1749 	if (p->p_timers == NULL)
1750 		return;
1751 
1752 	itimer_lock();
1753 	if ((pts = l->l_proc->p_timers) != NULL) {
1754 		/*
1755 		 * Run current process's virtual and profile time, as needed.
1756 		 */
1757 		if (user && (it = LIST_FIRST(&pts->pts_virtual)) != NULL)
1758 			if (itimer_decr(it, tick * 1000))
1759 				(*it->it_ops->ito_fire)(it);
1760 		if ((it = LIST_FIRST(&pts->pts_prof)) != NULL)
1761 			if (itimer_decr(it, tick * 1000))
1762 				(*it->it_ops->ito_fire)(it);
1763 	}
1764 	itimer_unlock();
1765 }
1766 
1767 /*
1768  * ptimer_intr:
1769  *
1770  *	Software interrupt handler for processing per-process
1771  *	timer expiration.
1772  */
1773 static void
1774 ptimer_intr(void *cookie)
1775 {
1776 	ksiginfo_t ksi;
1777 	struct itimer *it;
1778 	struct ptimer *pt;
1779 	proc_t *p;
1780 
1781 	mutex_enter(&proc_lock);
1782 	itimer_lock();
1783 	while ((pt = TAILQ_FIRST(&ptimer_queue)) != NULL) {
1784 		it = &pt->pt_itimer;
1785 
1786 		TAILQ_REMOVE(&ptimer_queue, pt, pt_chain);
1787 		KASSERT(pt->pt_queued);
1788 		pt->pt_queued = false;
1789 
1790 		p = pt->pt_proc;
1791 		if (p->p_timers == NULL) {
1792 			/* Process is dying. */
1793 			continue;
1794 		}
1795 		if (pt->pt_ev.sigev_notify != SIGEV_SIGNAL) {
1796 			continue;
1797 		}
1798 		if (sigismember(&p->p_sigpend.sp_set, pt->pt_ev.sigev_signo)) {
1799 			it->it_overruns++;
1800 			continue;
1801 		}
1802 
1803 		KSI_INIT(&ksi);
1804 		ksi.ksi_signo = pt->pt_ev.sigev_signo;
1805 		ksi.ksi_code = SI_TIMER;
1806 		ksi.ksi_value = pt->pt_ev.sigev_value;
1807 		pt->pt_poverruns = it->it_overruns;
1808 		it->it_overruns = 0;
1809 		itimer_unlock();
1810 		kpsignal(p, &ksi, NULL);
1811 		itimer_lock();
1812 	}
1813 	itimer_unlock();
1814 	mutex_exit(&proc_lock);
1815 }
1816