xref: /netbsd-src/sys/external/bsd/drm/dist/bsd-core/drm_mm.c (revision 4add633a5d2fec50da1d714e01bc407420d679e9)
1 /**************************************************************************
2  *
3  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  *
27  **************************************************************************/
28 
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: drm_mm.c,v 1.1 2011/02/18 14:26:09 jmcneill Exp $");
31 
32 /*
33  * Generic simple memory manager implementation. Intended to be used as a base
34  * class implementation for more advanced memory managers.
35  *
36  * Note that the algorithm used is quite simple and there might be substantial
37  * performance gains if a smarter free list is implemented. Currently it is just an
38  * unordered stack of free regions. This could easily be improved if an RB-tree
39  * is used instead. At least if we expect heavy fragmentation.
40  *
41  * Aligned allocations can also see improvement.
42  *
43  * Authors:
44  * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
45  */
46 
47 #include "drmP.h"
48 #include "drm_mm.h"
49 
50 #define MM_UNUSED_TARGET 4
51 
drm_mm_tail_space(struct drm_mm * mm)52 unsigned long drm_mm_tail_space(struct drm_mm *mm)
53 {
54 	struct list_head *tail_node;
55 	struct drm_mm_node *entry;
56 
57 	tail_node = mm->ml_entry.prev;
58 	entry = list_entry(tail_node, struct drm_mm_node, ml_entry);
59 	if (!entry->free)
60 		return 0;
61 
62 	return entry->size;
63 }
64 
drm_mm_remove_space_from_tail(struct drm_mm * mm,unsigned long size)65 int drm_mm_remove_space_from_tail(struct drm_mm *mm, unsigned long size)
66 {
67 	struct list_head *tail_node;
68 	struct drm_mm_node *entry;
69 
70 	tail_node = mm->ml_entry.prev;
71 	entry = list_entry(tail_node, struct drm_mm_node, ml_entry);
72 	if (!entry->free)
73 		return -ENOMEM;
74 
75 	if (entry->size <= size)
76 		return -ENOMEM;
77 
78 	entry->size -= size;
79 	return 0;
80 }
81 
drm_mm_kmalloc(struct drm_mm * mm,int atomic)82 static struct drm_mm_node *drm_mm_kmalloc(struct drm_mm *mm, int atomic)
83 {
84 	struct drm_mm_node *child;
85 
86 	if (atomic)
87 		child = malloc(sizeof(*child), DRM_MEM_MM, M_NOWAIT);
88 	else
89 		child = malloc(sizeof(*child), DRM_MEM_MM, M_WAITOK);
90 
91 	if (__predict_false(child == NULL)) {
92 		mutex_enter(&mm->unused_lock);
93 		if (list_empty(&mm->unused_nodes))
94 			child = NULL;
95 		else {
96 			child =
97 			    list_entry(mm->unused_nodes.next,
98 				       struct drm_mm_node, fl_entry);
99 			list_del(&child->fl_entry);
100 			--mm->num_unused;
101 		}
102 		mutex_exit(&mm->unused_lock);
103 	}
104 	return child;
105 }
106 
drm_mm_pre_get(struct drm_mm * mm)107 int drm_mm_pre_get(struct drm_mm *mm)
108 {
109 	struct drm_mm_node *node;
110 
111 	mutex_enter(&mm->unused_lock);
112 	while (mm->num_unused < MM_UNUSED_TARGET) {
113 		mutex_exit(&mm->unused_lock);
114 		node = malloc(sizeof(*node), DRM_MEM_MM, M_WAITOK);
115 		mutex_enter(&mm->unused_lock);
116 
117 		if (__predict_false(node == NULL)) {
118 			int ret = (mm->num_unused < 2) ? -ENOMEM : 0;
119 			mutex_exit(&mm->unused_lock);
120 			return ret;
121 		}
122 		++mm->num_unused;
123 		list_add_tail(&node->fl_entry, &mm->unused_nodes);
124 	}
125 	mutex_exit(&mm->unused_lock);
126 	return 0;
127 }
128 
drm_mm_create_tail_node(struct drm_mm * mm,unsigned long start,unsigned long size,int atomic)129 static int drm_mm_create_tail_node(struct drm_mm *mm,
130 				   unsigned long start,
131 				   unsigned long size, int atomic)
132 {
133 	struct drm_mm_node *child;
134 
135 	child = drm_mm_kmalloc(mm, atomic);
136 	if (__predict_false(child == NULL))
137 		return -ENOMEM;
138 
139 	child->free = 1;
140 	child->size = size;
141 	child->start = start;
142 	child->mm = mm;
143 
144 	list_add_tail(&child->ml_entry, &mm->ml_entry);
145 	list_add_tail(&child->fl_entry, &mm->fl_entry);
146 
147 	return 0;
148 }
149 
drm_mm_add_space_to_tail(struct drm_mm * mm,unsigned long size,int atomic)150 int drm_mm_add_space_to_tail(struct drm_mm *mm, unsigned long size, int atomic)
151 {
152 	struct list_head *tail_node;
153 	struct drm_mm_node *entry;
154 
155 	tail_node = mm->ml_entry.prev;
156 	entry = list_entry(tail_node, struct drm_mm_node, ml_entry);
157 	if (!entry->free) {
158 		return drm_mm_create_tail_node(mm, entry->start + entry->size,
159 					       size, atomic);
160 	}
161 	entry->size += size;
162 	return 0;
163 }
164 
drm_mm_split_at_start(struct drm_mm_node * parent,unsigned long size,int atomic)165 static struct drm_mm_node *drm_mm_split_at_start(struct drm_mm_node *parent,
166 						 unsigned long size,
167 						 int atomic)
168 {
169 	struct drm_mm_node *child;
170 
171 	child = drm_mm_kmalloc(parent->mm, atomic);
172 	if (__predict_false(child == NULL))
173 		return NULL;
174 
175 	INIT_LIST_HEAD(&child->fl_entry);
176 
177 	child->free = 0;
178 	child->size = size;
179 	child->start = parent->start;
180 	child->mm = parent->mm;
181 
182 	list_add_tail(&child->ml_entry, &parent->ml_entry);
183 	INIT_LIST_HEAD(&child->fl_entry);
184 
185 	parent->size -= size;
186 	parent->start += size;
187 	return child;
188 }
189 
190 
drm_mm_get_block_generic(struct drm_mm_node * node,unsigned long size,unsigned alignment,int atomic)191 struct drm_mm_node *drm_mm_get_block_generic(struct drm_mm_node *node,
192 					     unsigned long size,
193 					     unsigned alignment,
194 					     int atomic)
195 {
196 
197 	struct drm_mm_node *align_splitoff = NULL;
198 	unsigned tmp = 0;
199 
200 	if (alignment)
201 		tmp = node->start % alignment;
202 
203 	if (tmp) {
204 		align_splitoff =
205 		    drm_mm_split_at_start(node, alignment - tmp, atomic);
206 		if (__predict_false(align_splitoff == NULL))
207 			return NULL;
208 	}
209 
210 	if (node->size == size) {
211 		list_del_init(&node->fl_entry);
212 		node->free = 0;
213 	} else {
214 		node = drm_mm_split_at_start(node, size, atomic);
215 	}
216 
217 	if (align_splitoff)
218 		drm_mm_put_block(align_splitoff);
219 
220 	return node;
221 }
222 
223 /*
224  * Put a block. Merge with the previous and / or next block if they are free.
225  * Otherwise add to the free stack.
226  */
227 
drm_mm_put_block(struct drm_mm_node * cur)228 void drm_mm_put_block(struct drm_mm_node *cur)
229 {
230 
231 	struct drm_mm *mm = cur->mm;
232 	struct list_head *cur_head = &cur->ml_entry;
233 	struct list_head *root_head = &mm->ml_entry;
234 	struct drm_mm_node *prev_node = NULL;
235 	struct drm_mm_node *next_node;
236 
237 	int merged = 0;
238 
239 	if (cur_head->prev != root_head) {
240 		prev_node =
241 		    list_entry(cur_head->prev, struct drm_mm_node, ml_entry);
242 		if (prev_node->free) {
243 			prev_node->size += cur->size;
244 			merged = 1;
245 		}
246 	}
247 	if (cur_head->next != root_head) {
248 		next_node =
249 		    list_entry(cur_head->next, struct drm_mm_node, ml_entry);
250 		if (next_node->free) {
251 			if (merged) {
252 				prev_node->size += next_node->size;
253 				list_del(&next_node->ml_entry);
254 				list_del(&next_node->fl_entry);
255 				if (mm->num_unused < MM_UNUSED_TARGET) {
256 					list_add(&next_node->fl_entry,
257 						 &mm->unused_nodes);
258 					++mm->num_unused;
259 				} else
260 					free(next_node, DRM_MEM_MM);
261 			} else {
262 				next_node->size += cur->size;
263 				next_node->start = cur->start;
264 				merged = 1;
265 			}
266 		}
267 	}
268 	if (!merged) {
269 		cur->free = 1;
270 		list_add(&cur->fl_entry, &mm->fl_entry);
271 	} else {
272 		list_del(&cur->ml_entry);
273 		if (mm->num_unused < MM_UNUSED_TARGET) {
274 			list_add(&cur->fl_entry, &mm->unused_nodes);
275 			++mm->num_unused;
276 		} else
277 			free(cur, DRM_MEM_MM);
278 	}
279 }
280 
drm_mm_search_free(const struct drm_mm * mm,unsigned long size,unsigned alignment,int best_match)281 struct drm_mm_node *drm_mm_search_free(const struct drm_mm *mm,
282 				       unsigned long size,
283 				       unsigned alignment, int best_match)
284 {
285 	struct list_head *list;
286 	const struct list_head *free_stack = &mm->fl_entry;
287 	struct drm_mm_node *entry;
288 	struct drm_mm_node *best;
289 	unsigned long best_size;
290 	unsigned wasted;
291 
292 	best = NULL;
293 	best_size = ~0UL;
294 
295 	list_for_each(list, free_stack) {
296 		entry = list_entry(list, struct drm_mm_node, fl_entry);
297 		wasted = 0;
298 
299 		if (entry->size < size)
300 			continue;
301 
302 		if (alignment) {
303 			register unsigned tmp = entry->start % alignment;
304 			if (tmp)
305 				wasted += alignment - tmp;
306 		}
307 
308 		if (entry->size >= size + wasted) {
309 			if (!best_match)
310 				return entry;
311 			if (size < best_size) {
312 				best = entry;
313 				best_size = entry->size;
314 			}
315 		}
316 	}
317 
318 	return best;
319 }
320 
drm_mm_clean(struct drm_mm * mm)321 int drm_mm_clean(struct drm_mm * mm)
322 {
323 	struct list_head *head = &mm->ml_entry;
324 
325 	return (head->next->next == head);
326 }
327 
drm_mm_init(struct drm_mm * mm,unsigned long start,unsigned long size)328 int drm_mm_init(struct drm_mm * mm, unsigned long start, unsigned long size)
329 {
330 	INIT_LIST_HEAD(&mm->ml_entry);
331 	INIT_LIST_HEAD(&mm->fl_entry);
332 	INIT_LIST_HEAD(&mm->unused_nodes);
333 	mm->num_unused = 0;
334 	mutex_init(&mm->unused_lock, MUTEX_DEFAULT, IPL_NONE);
335 
336 	/* XXX This could be non-atomic but gets called from a locked path */
337 	return drm_mm_create_tail_node(mm, start, size, 1);
338 }
339 
drm_mm_takedown(struct drm_mm * mm)340 void drm_mm_takedown(struct drm_mm * mm)
341 {
342 	struct list_head *bnode = mm->fl_entry.next;
343 	struct drm_mm_node *entry;
344 	struct drm_mm_node *next;
345 
346 	entry = list_entry(bnode, struct drm_mm_node, fl_entry);
347 
348 	if (entry->ml_entry.next != &mm->ml_entry ||
349 	    entry->fl_entry.next != &mm->fl_entry) {
350 		DRM_ERROR("Memory manager not clean. Delaying takedown\n");
351 		return;
352 	}
353 
354 	list_del(&entry->fl_entry);
355 	list_del(&entry->ml_entry);
356 	free(entry, DRM_MEM_MM);
357 
358 	mutex_enter(&mm->unused_lock);
359 	list_for_each_entry_safe(entry, next, &mm->unused_nodes, fl_entry) {
360 		list_del(&entry->fl_entry);
361 		free(entry, DRM_MEM_MM);
362 		--mm->num_unused;
363 	}
364 	mutex_exit(&mm->unused_lock);
365 
366 	mutex_destroy(&mm->unused_lock);
367 
368 	KASSERT(mm->num_unused == 0);
369 }
370