1 //===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of XRay, a dynamic runtime instrumentation system.
11 //
12 // Implementation of the API functions.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "xray_interface_internal.h"
17
18 #include <cstdint>
19 #include <cstdio>
20 #include <errno.h>
21 #include <limits>
22 #include <string.h>
23 #include <sys/mman.h>
24
25 #if SANITIZER_FUCHSIA
26 #include <zircon/process.h>
27 #include <zircon/sanitizer.h>
28 #include <zircon/status.h>
29 #include <zircon/syscalls.h>
30 #endif
31
32 #include "sanitizer_common/sanitizer_addrhashmap.h"
33 #include "sanitizer_common/sanitizer_common.h"
34
35 #include "xray_defs.h"
36 #include "xray_flags.h"
37
38 extern __sanitizer::SpinMutex XRayInstrMapMutex;
39 extern __sanitizer::atomic_uint8_t XRayInitialized;
40 extern __xray::XRaySledMap XRayInstrMap;
41
42 namespace __xray {
43
44 #if defined(__x86_64__)
45 static const int16_t cSledLength = 12;
46 #elif defined(__aarch64__)
47 static const int16_t cSledLength = 32;
48 #elif defined(__arm__)
49 static const int16_t cSledLength = 28;
50 #elif SANITIZER_MIPS32
51 static const int16_t cSledLength = 48;
52 #elif SANITIZER_MIPS64
53 static const int16_t cSledLength = 64;
54 #elif defined(__powerpc64__)
55 static const int16_t cSledLength = 8;
56 #else
57 #error "Unsupported CPU Architecture"
58 #endif /* CPU architecture */
59
60 // This is the function to call when we encounter the entry or exit sleds.
61 atomic_uintptr_t XRayPatchedFunction{0};
62
63 // This is the function to call from the arg1-enabled sleds/trampolines.
64 atomic_uintptr_t XRayArgLogger{0};
65
66 // This is the function to call when we encounter a custom event log call.
67 atomic_uintptr_t XRayPatchedCustomEvent{0};
68
69 // This is the function to call when we encounter a typed event log call.
70 atomic_uintptr_t XRayPatchedTypedEvent{0};
71
72 // This is the global status to determine whether we are currently
73 // patching/unpatching.
74 atomic_uint8_t XRayPatching{0};
75
76 struct TypeDescription {
77 uint32_t type_id;
78 std::size_t description_string_length;
79 };
80
81 using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
82 // An address map from immutable descriptors to type ids.
83 TypeDescriptorMapType TypeDescriptorAddressMap{};
84
85 atomic_uint32_t TypeEventDescriptorCounter{0};
86
87 // MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
88 // undo any successful mprotect(...) changes. This is used to make a page
89 // writeable and executable, and upon destruction if it was successful in
90 // doing so returns the page into a read-only and executable page.
91 //
92 // This is only used specifically for runtime-patching of the XRay
93 // instrumentation points. This assumes that the executable pages are
94 // originally read-and-execute only.
95 class MProtectHelper {
96 void *PageAlignedAddr;
97 std::size_t MProtectLen;
98 bool MustCleanup;
99
100 public:
MProtectHelper(void * PageAlignedAddr,std::size_t MProtectLen,std::size_t PageSize)101 explicit MProtectHelper(void *PageAlignedAddr,
102 std::size_t MProtectLen,
103 std::size_t PageSize) XRAY_NEVER_INSTRUMENT
104 : PageAlignedAddr(PageAlignedAddr),
105 MProtectLen(MProtectLen),
106 MustCleanup(false) {
107 #if SANITIZER_FUCHSIA
108 MProtectLen = RoundUpTo(MProtectLen, PageSize);
109 #endif
110 }
111
MakeWriteable()112 int MakeWriteable() XRAY_NEVER_INSTRUMENT {
113 #if SANITIZER_FUCHSIA
114 auto R = __sanitizer_change_code_protection(
115 reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
116 if (R != ZX_OK) {
117 Report("XRay: cannot change code protection: %s\n",
118 _zx_status_get_string(R));
119 return -1;
120 }
121 MustCleanup = true;
122 return 0;
123 #else
124 auto R = mprotect(PageAlignedAddr, MProtectLen,
125 PROT_READ | PROT_WRITE | PROT_EXEC);
126 if (R != -1)
127 MustCleanup = true;
128 return R;
129 #endif
130 }
131
~MProtectHelper()132 ~MProtectHelper() XRAY_NEVER_INSTRUMENT {
133 if (MustCleanup) {
134 #if SANITIZER_FUCHSIA
135 auto R = __sanitizer_change_code_protection(
136 reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
137 if (R != ZX_OK) {
138 Report("XRay: cannot change code protection: %s\n",
139 _zx_status_get_string(R));
140 }
141 #else
142 mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
143 #endif
144 }
145 }
146 };
147
148 namespace {
149
patchSled(const XRaySledEntry & Sled,bool Enable,int32_t FuncId)150 bool patchSled(const XRaySledEntry &Sled, bool Enable,
151 int32_t FuncId) XRAY_NEVER_INSTRUMENT {
152 bool Success = false;
153 switch (Sled.Kind) {
154 case XRayEntryType::ENTRY:
155 Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
156 break;
157 case XRayEntryType::EXIT:
158 Success = patchFunctionExit(Enable, FuncId, Sled);
159 break;
160 case XRayEntryType::TAIL:
161 Success = patchFunctionTailExit(Enable, FuncId, Sled);
162 break;
163 case XRayEntryType::LOG_ARGS_ENTRY:
164 Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
165 break;
166 case XRayEntryType::CUSTOM_EVENT:
167 Success = patchCustomEvent(Enable, FuncId, Sled);
168 break;
169 case XRayEntryType::TYPED_EVENT:
170 Success = patchTypedEvent(Enable, FuncId, Sled);
171 break;
172 default:
173 Report("Unsupported sled kind '%d' @%04x\n", Sled.Address, int(Sled.Kind));
174 return false;
175 }
176 return Success;
177 }
178
patchFunction(int32_t FuncId,bool Enable)179 XRayPatchingStatus patchFunction(int32_t FuncId,
180 bool Enable) XRAY_NEVER_INSTRUMENT {
181 if (!atomic_load(&XRayInitialized,
182 memory_order_acquire))
183 return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
184
185 uint8_t NotPatching = false;
186 if (!atomic_compare_exchange_strong(
187 &XRayPatching, &NotPatching, true, memory_order_acq_rel))
188 return XRayPatchingStatus::ONGOING; // Already patching.
189
190 // Next, we look for the function index.
191 XRaySledMap InstrMap;
192 {
193 SpinMutexLock Guard(&XRayInstrMapMutex);
194 InstrMap = XRayInstrMap;
195 }
196
197 // If we don't have an index, we can't patch individual functions.
198 if (InstrMap.Functions == 0)
199 return XRayPatchingStatus::NOT_INITIALIZED;
200
201 // FuncId must be a positive number, less than the number of functions
202 // instrumented.
203 if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
204 Report("Invalid function id provided: %d\n", FuncId);
205 return XRayPatchingStatus::FAILED;
206 }
207
208 // Now we patch ths sleds for this specific function.
209 auto SledRange = InstrMap.SledsIndex[FuncId - 1];
210 auto *f = SledRange.Begin;
211 auto *e = SledRange.End;
212
213 bool SucceedOnce = false;
214 while (f != e)
215 SucceedOnce |= patchSled(*f++, Enable, FuncId);
216
217 atomic_store(&XRayPatching, false,
218 memory_order_release);
219
220 if (!SucceedOnce) {
221 Report("Failed patching any sled for function '%d'.", FuncId);
222 return XRayPatchingStatus::FAILED;
223 }
224
225 return XRayPatchingStatus::SUCCESS;
226 }
227
228 // controlPatching implements the common internals of the patching/unpatching
229 // implementation. |Enable| defines whether we're enabling or disabling the
230 // runtime XRay instrumentation.
controlPatching(bool Enable)231 XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
232 if (!atomic_load(&XRayInitialized,
233 memory_order_acquire))
234 return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
235
236 uint8_t NotPatching = false;
237 if (!atomic_compare_exchange_strong(
238 &XRayPatching, &NotPatching, true, memory_order_acq_rel))
239 return XRayPatchingStatus::ONGOING; // Already patching.
240
241 uint8_t PatchingSuccess = false;
242 auto XRayPatchingStatusResetter =
243 at_scope_exit([&PatchingSuccess] {
244 if (!PatchingSuccess)
245 atomic_store(&XRayPatching, false,
246 memory_order_release);
247 });
248
249 XRaySledMap InstrMap;
250 {
251 SpinMutexLock Guard(&XRayInstrMapMutex);
252 InstrMap = XRayInstrMap;
253 }
254 if (InstrMap.Entries == 0)
255 return XRayPatchingStatus::NOT_INITIALIZED;
256
257 uint32_t FuncId = 1;
258 uint64_t CurFun = 0;
259
260 // First we want to find the bounds for which we have instrumentation points,
261 // and try to get as few calls to mprotect(...) as possible. We're assuming
262 // that all the sleds for the instrumentation map are contiguous as a single
263 // set of pages. When we do support dynamic shared object instrumentation,
264 // we'll need to do this for each set of page load offsets per DSO loaded. For
265 // now we're assuming we can mprotect the whole section of text between the
266 // minimum sled address and the maximum sled address (+ the largest sled
267 // size).
268 auto MinSled = InstrMap.Sleds[0];
269 auto MaxSled = InstrMap.Sleds[InstrMap.Entries - 1];
270 for (std::size_t I = 0; I < InstrMap.Entries; I++) {
271 const auto &Sled = InstrMap.Sleds[I];
272 if (Sled.Address < MinSled.Address)
273 MinSled = Sled;
274 if (Sled.Address > MaxSled.Address)
275 MaxSled = Sled;
276 }
277
278 const size_t PageSize = flags()->xray_page_size_override > 0
279 ? flags()->xray_page_size_override
280 : GetPageSizeCached();
281 if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
282 Report("System page size is not a power of two: %lld\n", PageSize);
283 return XRayPatchingStatus::FAILED;
284 }
285
286 void *PageAlignedAddr =
287 reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
288 size_t MProtectLen =
289 (MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
290 MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
291 if (Protector.MakeWriteable() == -1) {
292 Report("Failed mprotect: %d\n", errno);
293 return XRayPatchingStatus::FAILED;
294 }
295
296 for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
297 auto &Sled = InstrMap.Sleds[I];
298 auto F = Sled.Function;
299 if (CurFun == 0)
300 CurFun = F;
301 if (F != CurFun) {
302 ++FuncId;
303 CurFun = F;
304 }
305 patchSled(Sled, Enable, FuncId);
306 }
307 atomic_store(&XRayPatching, false,
308 memory_order_release);
309 PatchingSuccess = true;
310 return XRayPatchingStatus::SUCCESS;
311 }
312
mprotectAndPatchFunction(int32_t FuncId,bool Enable)313 XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
314 bool Enable) XRAY_NEVER_INSTRUMENT {
315 XRaySledMap InstrMap;
316 {
317 SpinMutexLock Guard(&XRayInstrMapMutex);
318 InstrMap = XRayInstrMap;
319 }
320
321 // FuncId must be a positive number, less than the number of functions
322 // instrumented.
323 if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
324 Report("Invalid function id provided: %d\n", FuncId);
325 return XRayPatchingStatus::FAILED;
326 }
327
328 const size_t PageSize = flags()->xray_page_size_override > 0
329 ? flags()->xray_page_size_override
330 : GetPageSizeCached();
331 if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
332 Report("Provided page size is not a power of two: %lld\n", PageSize);
333 return XRayPatchingStatus::FAILED;
334 }
335
336 // Here we compute the minumum sled and maximum sled associated with a
337 // particular function ID.
338 auto SledRange = InstrMap.SledsIndex[FuncId - 1];
339 auto *f = SledRange.Begin;
340 auto *e = SledRange.End;
341 auto MinSled = *f;
342 auto MaxSled = *(SledRange.End - 1);
343 while (f != e) {
344 if (f->Address < MinSled.Address)
345 MinSled = *f;
346 if (f->Address > MaxSled.Address)
347 MaxSled = *f;
348 ++f;
349 }
350
351 void *PageAlignedAddr =
352 reinterpret_cast<void *>(MinSled.Address & ~(PageSize - 1));
353 size_t MProtectLen =
354 (MaxSled.Address - reinterpret_cast<uptr>(PageAlignedAddr)) + cSledLength;
355 MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
356 if (Protector.MakeWriteable() == -1) {
357 Report("Failed mprotect: %d\n", errno);
358 return XRayPatchingStatus::FAILED;
359 }
360 return patchFunction(FuncId, Enable);
361 }
362
363 } // namespace
364
365 } // namespace __xray
366
367 using namespace __xray;
368
369 // The following functions are declared `extern "C" {...}` in the header, hence
370 // they're defined in the global namespace.
371
__xray_set_handler(void (* entry)(int32_t,XRayEntryType))372 int __xray_set_handler(void (*entry)(int32_t,
373 XRayEntryType)) XRAY_NEVER_INSTRUMENT {
374 if (atomic_load(&XRayInitialized,
375 memory_order_acquire)) {
376
377 atomic_store(&__xray::XRayPatchedFunction,
378 reinterpret_cast<uintptr_t>(entry),
379 memory_order_release);
380 return 1;
381 }
382 return 0;
383 }
384
__xray_set_customevent_handler(void (* entry)(void *,size_t))385 int __xray_set_customevent_handler(void (*entry)(void *, size_t))
386 XRAY_NEVER_INSTRUMENT {
387 if (atomic_load(&XRayInitialized,
388 memory_order_acquire)) {
389 atomic_store(&__xray::XRayPatchedCustomEvent,
390 reinterpret_cast<uintptr_t>(entry),
391 memory_order_release);
392 return 1;
393 }
394 return 0;
395 }
396
__xray_set_typedevent_handler(void (* entry)(uint16_t,const void *,size_t))397 int __xray_set_typedevent_handler(void (*entry)(
398 uint16_t, const void *, size_t)) XRAY_NEVER_INSTRUMENT {
399 if (atomic_load(&XRayInitialized,
400 memory_order_acquire)) {
401 atomic_store(&__xray::XRayPatchedTypedEvent,
402 reinterpret_cast<uintptr_t>(entry),
403 memory_order_release);
404 return 1;
405 }
406 return 0;
407 }
408
__xray_remove_handler()409 int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
410 return __xray_set_handler(nullptr);
411 }
412
__xray_remove_customevent_handler()413 int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
414 return __xray_set_customevent_handler(nullptr);
415 }
416
__xray_remove_typedevent_handler()417 int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
418 return __xray_set_typedevent_handler(nullptr);
419 }
420
__xray_register_event_type(const char * const event_type)421 uint16_t __xray_register_event_type(
422 const char *const event_type) XRAY_NEVER_INSTRUMENT {
423 TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
424 if (h.created()) {
425 h->type_id = atomic_fetch_add(
426 &TypeEventDescriptorCounter, 1, memory_order_acq_rel);
427 h->description_string_length = strnlen(event_type, 1024);
428 }
429 return h->type_id;
430 }
431
__xray_patch()432 XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
433 return controlPatching(true);
434 }
435
__xray_unpatch()436 XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
437 return controlPatching(false);
438 }
439
__xray_patch_function(int32_t FuncId)440 XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
441 return mprotectAndPatchFunction(FuncId, true);
442 }
443
444 XRayPatchingStatus
__xray_unpatch_function(int32_t FuncId)445 __xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
446 return mprotectAndPatchFunction(FuncId, false);
447 }
448
__xray_set_handler_arg1(void (* entry)(int32_t,XRayEntryType,uint64_t))449 int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
450 if (!atomic_load(&XRayInitialized,
451 memory_order_acquire))
452 return 0;
453
454 // A relaxed write might not be visible even if the current thread gets
455 // scheduled on a different CPU/NUMA node. We need to wait for everyone to
456 // have this handler installed for consistency of collected data across CPUs.
457 atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
458 memory_order_release);
459 return 1;
460 }
461
__xray_remove_handler_arg1()462 int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
463
__xray_function_address(int32_t FuncId)464 uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
465 SpinMutexLock Guard(&XRayInstrMapMutex);
466 if (FuncId <= 0 || static_cast<size_t>(FuncId) > XRayInstrMap.Functions)
467 return 0;
468 return XRayInstrMap.SledsIndex[FuncId - 1].Begin->Function
469 // On PPC, function entries are always aligned to 16 bytes. The beginning of a
470 // sled might be a local entry, which is always +8 based on the global entry.
471 // Always return the global entry.
472 #ifdef __PPC__
473 & ~0xf
474 #endif
475 ;
476 }
477
__xray_max_function_id()478 size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
479 SpinMutexLock Guard(&XRayInstrMapMutex);
480 return XRayInstrMap.Functions;
481 }
482