xref: /netbsd-src/sys/dev/usb/umidi.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: umidi.c,v 1.63 2012/06/10 06:15:54 mrg Exp $	*/
2 /*
3  * Copyright (c) 2001, 2012 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to The NetBSD Foundation
7  * by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
8  * hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
9  * (mrg@eterna.com.au).
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.63 2012/06/10 06:15:54 mrg Exp $");
35 
36 #include <sys/types.h>
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/device.h>
42 #include <sys/ioctl.h>
43 #include <sys/conf.h>
44 #include <sys/file.h>
45 #include <sys/select.h>
46 #include <sys/proc.h>
47 #include <sys/vnode.h>
48 #include <sys/poll.h>
49 #include <sys/intr.h>
50 
51 #include <dev/usb/usb.h>
52 #include <dev/usb/usbdi.h>
53 #include <dev/usb/usbdi_util.h>
54 
55 #include <dev/auconv.h>
56 #include <dev/usb/usbdevs.h>
57 #include <dev/usb/uaudioreg.h>
58 #include <dev/usb/umidireg.h>
59 #include <dev/usb/umidivar.h>
60 #include <dev/usb/umidi_quirks.h>
61 
62 #include <dev/midi_if.h>
63 
64 #ifdef UMIDI_DEBUG
65 #define DPRINTF(x)	if (umididebug) printf x
66 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
67 #include <sys/time.h>
68 static struct timeval umidi_tv;
69 int	umididebug = 0;
70 #else
71 #define DPRINTF(x)
72 #define DPRINTFN(n,x)
73 #endif
74 
75 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
76 				 (sc->sc_out_num_endpoints + \
77 				  sc->sc_in_num_endpoints))
78 
79 
80 static int umidi_open(void *, int,
81 		      void (*)(void *, int), void (*)(void *), void *);
82 static void umidi_close(void *);
83 static int umidi_channelmsg(void *, int, int, u_char *, int);
84 static int umidi_commonmsg(void *, int, u_char *, int);
85 static int umidi_sysex(void *, u_char *, int);
86 static int umidi_rtmsg(void *, int);
87 static void umidi_getinfo(void *, struct midi_info *);
88 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
89 
90 static usbd_status alloc_pipe(struct umidi_endpoint *);
91 static void free_pipe(struct umidi_endpoint *);
92 
93 static usbd_status alloc_all_endpoints(struct umidi_softc *);
94 static void free_all_endpoints(struct umidi_softc *);
95 
96 static usbd_status alloc_all_jacks(struct umidi_softc *);
97 static void free_all_jacks(struct umidi_softc *);
98 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
99 					 struct umidi_jack *,
100 					 struct umidi_jack *,
101 					 struct umidi_mididev *);
102 static void unbind_jacks_from_mididev(struct umidi_mididev *);
103 static void unbind_all_jacks(struct umidi_softc *);
104 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
105 static usbd_status open_out_jack(struct umidi_jack *, void *,
106 				 void (*)(void *));
107 static usbd_status open_in_jack(struct umidi_jack *, void *,
108 				void (*)(void *, int));
109 static void close_out_jack(struct umidi_jack *);
110 static void close_in_jack(struct umidi_jack *);
111 
112 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
113 static usbd_status detach_mididev(struct umidi_mididev *, int);
114 static void deactivate_mididev(struct umidi_mididev *);
115 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
116 static void free_all_mididevs(struct umidi_softc *);
117 static usbd_status attach_all_mididevs(struct umidi_softc *);
118 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
119 static void deactivate_all_mididevs(struct umidi_softc *);
120 static void describe_mididev(struct umidi_mididev *);
121 
122 #ifdef UMIDI_DEBUG
123 static void dump_sc(struct umidi_softc *);
124 static void dump_ep(struct umidi_endpoint *);
125 static void dump_jack(struct umidi_jack *);
126 #endif
127 
128 static usbd_status start_input_transfer(struct umidi_endpoint *);
129 static usbd_status start_output_transfer(struct umidi_endpoint *);
130 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
131 static void in_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
132 static void out_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
133 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
134 static void out_solicit_locked(void *); /* pre-locked version */
135 
136 
137 const struct midi_hw_if umidi_hw_if = {
138 	.open = umidi_open,
139 	.close = umidi_close,
140 	.output = umidi_rtmsg,
141 	.getinfo = umidi_getinfo,
142 	.get_locks = umidi_get_locks,
143 };
144 
145 struct midi_hw_if_ext umidi_hw_if_ext = {
146 	.channel = umidi_channelmsg,
147 	.common  = umidi_commonmsg,
148 	.sysex   = umidi_sysex,
149 };
150 
151 struct midi_hw_if_ext umidi_hw_if_mm = {
152 	.channel = umidi_channelmsg,
153 	.common  = umidi_commonmsg,
154 	.sysex   = umidi_sysex,
155 	.compress = 1,
156 };
157 
158 int umidi_match(device_t, cfdata_t, void *);
159 void umidi_attach(device_t, device_t, void *);
160 void umidi_childdet(device_t, device_t);
161 int umidi_detach(device_t, int);
162 int umidi_activate(device_t, enum devact);
163 extern struct cfdriver umidi_cd;
164 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
165     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
166 
167 int
168 umidi_match(device_t parent, cfdata_t match, void *aux)
169 {
170 	struct usbif_attach_arg *uaa = aux;
171 
172 	DPRINTFN(1,("umidi_match\n"));
173 
174 	if (umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno))
175 		return UMATCH_IFACECLASS_IFACESUBCLASS;
176 
177 	if (uaa->class == UICLASS_AUDIO &&
178 	    uaa->subclass == UISUBCLASS_MIDISTREAM)
179 		return UMATCH_IFACECLASS_IFACESUBCLASS;
180 
181 	return UMATCH_NONE;
182 }
183 
184 void
185 umidi_attach(device_t parent, device_t self, void *aux)
186 {
187 	usbd_status     err;
188 	struct umidi_softc *sc = device_private(self);
189 	struct usbif_attach_arg *uaa = aux;
190 	char *devinfop;
191 
192 	DPRINTFN(1,("umidi_attach\n"));
193 
194 	sc->sc_dev = self;
195 
196 	aprint_naive("\n");
197 	aprint_normal("\n");
198 
199 	devinfop = usbd_devinfo_alloc(uaa->device, 0);
200 	aprint_normal_dev(self, "%s\n", devinfop);
201 	usbd_devinfo_free(devinfop);
202 
203 	sc->sc_iface = uaa->iface;
204 	sc->sc_udev = uaa->device;
205 
206 	sc->sc_quirk =
207 	    umidi_search_quirk(uaa->vendor, uaa->product, uaa->ifaceno);
208 	aprint_normal_dev(self, "");
209 	umidi_print_quirk(sc->sc_quirk);
210 
211 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_USB);
212 	cv_init(&sc->sc_cv, "umidopcl");
213 
214 	err = alloc_all_endpoints(sc);
215 	if (err != USBD_NORMAL_COMPLETION) {
216 		aprint_error_dev(self,
217 		    "alloc_all_endpoints failed. (err=%d)\n", err);
218 		goto error;
219 	}
220 	err = alloc_all_jacks(sc);
221 	if (err != USBD_NORMAL_COMPLETION) {
222 		free_all_endpoints(sc);
223 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
224 		    err);
225 		goto error;
226 	}
227 	aprint_normal_dev(self, "out=%d, in=%d\n",
228 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
229 
230 	err = assign_all_jacks_automatically(sc);
231 	if (err != USBD_NORMAL_COMPLETION) {
232 		unbind_all_jacks(sc);
233 		free_all_jacks(sc);
234 		free_all_endpoints(sc);
235 		aprint_error_dev(self,
236 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
237 		goto error;
238 	}
239 	err = attach_all_mididevs(sc);
240 	if (err != USBD_NORMAL_COMPLETION) {
241 		free_all_jacks(sc);
242 		free_all_endpoints(sc);
243 		aprint_error_dev(self,
244 		    "attach_all_mididevs failed. (err=%d)\n", err);
245 	}
246 
247 #ifdef UMIDI_DEBUG
248 	dump_sc(sc);
249 #endif
250 
251 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH,
252 			   sc->sc_udev, sc->sc_dev);
253 
254 	return;
255 error:
256 	aprint_error_dev(self, "disabled.\n");
257 	sc->sc_dying = 1;
258 	KERNEL_UNLOCK_ONE(curlwp);
259 	return;
260 }
261 
262 void
263 umidi_childdet(device_t self, device_t child)
264 {
265 	int i;
266 	struct umidi_softc *sc = device_private(self);
267 
268 	KASSERT(sc->sc_mididevs != NULL);
269 
270 	for (i = 0; i < sc->sc_num_mididevs; i++) {
271 		if (sc->sc_mididevs[i].mdev == child)
272 			break;
273 	}
274 	KASSERT(i < sc->sc_num_mididevs);
275 	sc->sc_mididevs[i].mdev = NULL;
276 }
277 
278 int
279 umidi_activate(device_t self, enum devact act)
280 {
281 	struct umidi_softc *sc = device_private(self);
282 
283 	switch (act) {
284 	case DVACT_DEACTIVATE:
285 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
286 		sc->sc_dying = 1;
287 		deactivate_all_mididevs(sc);
288 		return 0;
289 	default:
290 		DPRINTFN(1,("umidi_activate (%d)\n", act));
291 		return EOPNOTSUPP;
292 	}
293 }
294 
295 int
296 umidi_detach(device_t self, int flags)
297 {
298 	struct umidi_softc *sc = device_private(self);
299 
300 	DPRINTFN(1,("umidi_detach\n"));
301 
302 	sc->sc_dying = 1;
303 	detach_all_mididevs(sc, flags);
304 	free_all_mididevs(sc);
305 	free_all_jacks(sc);
306 	free_all_endpoints(sc);
307 
308 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev,
309 			   sc->sc_dev);
310 
311 	mutex_destroy(&sc->sc_lock);
312 	cv_destroy(&sc->sc_cv);
313 
314 	return 0;
315 }
316 
317 
318 /*
319  * midi_if stuffs
320  */
321 int
322 umidi_open(void *addr,
323 	   int flags,
324 	   void (*iintr)(void *, int),
325 	   void (*ointr)(void *),
326 	   void *arg)
327 {
328 	struct umidi_mididev *mididev = addr;
329 	struct umidi_softc *sc = mididev->sc;
330 	usbd_status err;
331 
332 	DPRINTF(("umidi_open: sc=%p\n", sc));
333 
334 	if (!sc)
335 		return ENXIO;
336 	if (mididev->opened)
337 		return EBUSY;
338 	if (sc->sc_dying)
339 		return EIO;
340 
341 	mididev->opened = 1;
342 	mididev->closing = 0;
343 	mididev->flags = flags;
344 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
345 		err = open_out_jack(mididev->out_jack, arg, ointr);
346 		if ( err != USBD_NORMAL_COMPLETION )
347 			goto bad;
348 	}
349 	if ((mididev->flags & FREAD) && mididev->in_jack) {
350 		err = open_in_jack(mididev->in_jack, arg, iintr);
351 		if ( err != USBD_NORMAL_COMPLETION
352 		&&   err != USBD_IN_PROGRESS )
353 			goto bad;
354 	}
355 
356 	return 0;
357 bad:
358 	mididev->opened = 0;
359 	DPRINTF(("umidi_open: usbd_status %d\n", err));
360 	return USBD_IN_USE == err ? EBUSY : EIO;
361 }
362 
363 void
364 umidi_close(void *addr)
365 {
366 	struct umidi_mididev *mididev = addr;
367 
368 	mididev->closing = 1;
369 
370 	mutex_spin_exit(&mididev->sc->sc_lock);
371 
372 	if ((mididev->flags & FWRITE) && mididev->out_jack)
373 		close_out_jack(mididev->out_jack);
374 	if ((mididev->flags & FREAD) && mididev->in_jack)
375 		close_in_jack(mididev->in_jack);
376 
377 	mutex_spin_enter(&mididev->sc->sc_lock);
378 
379 	mididev->opened = 0;
380 }
381 
382 int
383 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
384     int len)
385 {
386 	struct umidi_mididev *mididev = addr;
387 
388 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
389 		return EIO;
390 
391 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
392 }
393 
394 int
395 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
396 {
397 	struct umidi_mididev *mididev = addr;
398 	int cin;
399 
400 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
401 		return EIO;
402 
403 	switch ( len ) {
404 	case 1: cin = 5; break;
405 	case 2: cin = 2; break;
406 	case 3: cin = 3; break;
407 	default: return EIO; /* or gcc warns of cin uninitialized */
408 	}
409 
410 	return out_jack_output(mididev->out_jack, msg, len, cin);
411 }
412 
413 int
414 umidi_sysex(void *addr, u_char *msg, int len)
415 {
416 	struct umidi_mididev *mididev = addr;
417 	int cin;
418 
419 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
420 		return EIO;
421 
422 	switch ( len ) {
423 	case 1: cin = 5; break;
424 	case 2: cin = 6; break;
425 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
426 	default: return EIO; /* or gcc warns of cin uninitialized */
427 	}
428 
429 	return out_jack_output(mididev->out_jack, msg, len, cin);
430 }
431 
432 int
433 umidi_rtmsg(void *addr, int d)
434 {
435 	struct umidi_mididev *mididev = addr;
436 	u_char msg = d;
437 
438 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
439 		return EIO;
440 
441 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
442 }
443 
444 void
445 umidi_getinfo(void *addr, struct midi_info *mi)
446 {
447 	struct umidi_mididev *mididev = addr;
448 	struct umidi_softc *sc = mididev->sc;
449 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
450 
451 	mi->name = mididev->label;
452 	mi->props = MIDI_PROP_OUT_INTR;
453 	if (mididev->in_jack)
454 		mi->props |= MIDI_PROP_CAN_INPUT;
455 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
456 }
457 
458 static void
459 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
460 {
461 	struct umidi_mididev *mididev = addr;
462 	struct umidi_softc *sc = mididev->sc;
463 
464 	*intr = NULL;
465 	*thread = &sc->sc_lock;
466 }
467 
468 /*
469  * each endpoint stuffs
470  */
471 
472 /* alloc/free pipe */
473 static usbd_status
474 alloc_pipe(struct umidi_endpoint *ep)
475 {
476 	struct umidi_softc *sc = ep->sc;
477 	usbd_status err;
478 	usb_endpoint_descriptor_t *epd;
479 
480 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
481 	/*
482 	 * For output, an improvement would be to have a buffer bigger than
483 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
484 	 * allow out_solicit to fill the buffer to the full packet size in
485 	 * all cases. But to use usbd_alloc_buffer to get a slightly larger
486 	 * buffer would not be a good way to do that, because if the addition
487 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
488 	 * larger block may be wastefully allocated. Some flavor of double
489 	 * buffering could serve the same purpose, but would increase the
490 	 * code complexity, so for now I will live with the current slight
491 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
492 	 * packet slots.
493 	 */
494 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
495 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
496 
497 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
498 	        device_xname(sc->sc_dev), ep, ep->buffer_size));
499 	ep->num_scheduled = 0;
500 	ep->this_schedule = 0;
501 	ep->next_schedule = 0;
502 	ep->soliciting = 0;
503 	ep->armed = 0;
504 	ep->xfer = usbd_alloc_xfer(sc->sc_udev);
505 	if (ep->xfer == NULL) {
506 	    err = USBD_NOMEM;
507 	    goto quit;
508 	}
509 	ep->buffer = usbd_alloc_buffer(ep->xfer, ep->buffer_size);
510 	if (ep->buffer == NULL) {
511 	    usbd_free_xfer(ep->xfer);
512 	    err = USBD_NOMEM;
513 	    goto quit;
514 	}
515 	ep->next_slot = ep->buffer;
516 	err = usbd_open_pipe(sc->sc_iface, ep->addr, 0, &ep->pipe);
517 	if (err)
518 	    usbd_free_xfer(ep->xfer);
519 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK, out_solicit, ep);
520 quit:
521 	return err;
522 }
523 
524 static void
525 free_pipe(struct umidi_endpoint *ep)
526 {
527 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
528 	usbd_abort_pipe(ep->pipe);
529 	usbd_close_pipe(ep->pipe);
530 	usbd_free_xfer(ep->xfer);
531 	softint_disestablish(ep->solicit_cookie);
532 }
533 
534 
535 /* alloc/free the array of endpoint structures */
536 
537 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
538 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
539 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
540 
541 static usbd_status
542 alloc_all_endpoints(struct umidi_softc *sc)
543 {
544 	usbd_status err;
545 	struct umidi_endpoint *ep;
546 	int i;
547 
548 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
549 		err = alloc_all_endpoints_fixed_ep(sc);
550 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
551 		err = alloc_all_endpoints_yamaha(sc);
552 	} else {
553 		err = alloc_all_endpoints_genuine(sc);
554 	}
555 	if (err != USBD_NORMAL_COMPLETION)
556 		return err;
557 
558 	ep = sc->sc_endpoints;
559 	for (i = sc->sc_out_num_endpoints+sc->sc_in_num_endpoints; i > 0; i--) {
560 		err = alloc_pipe(ep++);
561 		if (err != USBD_NORMAL_COMPLETION) {
562 			for (; ep != sc->sc_endpoints; ep--)
563 				free_pipe(ep-1);
564 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
565 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
566 			break;
567 		}
568 	}
569 	return err;
570 }
571 
572 static void
573 free_all_endpoints(struct umidi_softc *sc)
574 {
575 	int i;
576 
577 	for (i=0; i<sc->sc_in_num_endpoints+sc->sc_out_num_endpoints; i++)
578 		free_pipe(&sc->sc_endpoints[i]);
579 	if (sc->sc_endpoints != NULL)
580 		kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
581 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
582 }
583 
584 static usbd_status
585 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
586 {
587 	usbd_status err;
588 	const struct umq_fixed_ep_desc *fp;
589 	struct umidi_endpoint *ep;
590 	usb_endpoint_descriptor_t *epd;
591 	int i;
592 
593 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
594 					    UMQ_TYPE_FIXED_EP);
595 	sc->sc_out_num_jacks = 0;
596 	sc->sc_in_num_jacks = 0;
597 	sc->sc_out_num_endpoints = fp->num_out_ep;
598 	sc->sc_in_num_endpoints = fp->num_in_ep;
599 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
600 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
601 	if (!sc->sc_endpoints)
602 		return USBD_NOMEM;
603 
604 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
605 	sc->sc_in_ep =
606 	    sc->sc_in_num_endpoints ?
607 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
608 
609 	ep = &sc->sc_out_ep[0];
610 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
611 		epd = usbd_interface2endpoint_descriptor(
612 			sc->sc_iface,
613 			fp->out_ep[i].ep);
614 		if (!epd) {
615 			aprint_error_dev(sc->sc_dev,
616 			    "cannot get endpoint descriptor(out:%d)\n",
617 			     fp->out_ep[i].ep);
618 			err = USBD_INVAL;
619 			goto error;
620 		}
621 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
622 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
623 			aprint_error_dev(sc->sc_dev, "illegal endpoint(out:%d)\n",
624 			    fp->out_ep[i].ep);
625 			err = USBD_INVAL;
626 			goto error;
627 		}
628 		ep->sc = sc;
629 		ep->addr = epd->bEndpointAddress;
630 		ep->num_jacks = fp->out_ep[i].num_jacks;
631 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
632 		ep->num_open = 0;
633 		ep++;
634 	}
635 	ep = &sc->sc_in_ep[0];
636 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
637 		epd = usbd_interface2endpoint_descriptor(
638 			sc->sc_iface,
639 			fp->in_ep[i].ep);
640 		if (!epd) {
641 			aprint_error_dev(sc->sc_dev,
642 			    "cannot get endpoint descriptor(in:%d)\n",
643 			     fp->in_ep[i].ep);
644 			err = USBD_INVAL;
645 			goto error;
646 		}
647 		/*
648 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
649 		 * endpoint.  The existing input logic in this driver seems
650 		 * to work successfully if we just stop treating an interrupt
651 		 * endpoint as illegal (or the in_progress status we get on
652 		 * the initial transfer).  It does not seem necessary to
653 		 * actually use the interrupt flavor of alloc_pipe or make
654 		 * other serious rearrangements of logic.  I like that.
655 		 */
656 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
657 		case UE_BULK:
658 		case UE_INTERRUPT:
659 			if ( UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress) )
660 				break;
661 			/*FALLTHROUGH*/
662 		default:
663 			aprint_error_dev(sc->sc_dev,
664 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
665 			err = USBD_INVAL;
666 			goto error;
667 		}
668 
669 		ep->sc = sc;
670 		ep->addr = epd->bEndpointAddress;
671 		ep->num_jacks = fp->in_ep[i].num_jacks;
672 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
673 		ep->num_open = 0;
674 		ep++;
675 	}
676 
677 	return USBD_NORMAL_COMPLETION;
678 error:
679 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
680 	sc->sc_endpoints = NULL;
681 	return err;
682 }
683 
684 static usbd_status
685 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
686 {
687 	/* This driver currently supports max 1in/1out bulk endpoints */
688 	usb_descriptor_t *desc;
689 	umidi_cs_descriptor_t *udesc;
690 	usb_endpoint_descriptor_t *epd;
691 	int out_addr, in_addr, i;
692 	int dir;
693 	size_t remain, descsize;
694 
695 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
696 	out_addr = in_addr = 0;
697 
698 	/* detect endpoints */
699 	desc = TO_D(usbd_get_interface_descriptor(sc->sc_iface));
700 	for (i=(int)TO_IFD(desc)->bNumEndpoints-1; i>=0; i--) {
701 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
702 		KASSERT(epd != NULL);
703 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
704 			dir = UE_GET_DIR(epd->bEndpointAddress);
705 			if (dir==UE_DIR_OUT && !out_addr)
706 				out_addr = epd->bEndpointAddress;
707 			else if (dir==UE_DIR_IN && !in_addr)
708 				in_addr = epd->bEndpointAddress;
709 		}
710 	}
711 	udesc = (umidi_cs_descriptor_t *)NEXT_D(desc);
712 
713 	/* count jacks */
714 	if (!(udesc->bDescriptorType==UDESC_CS_INTERFACE &&
715 	      udesc->bDescriptorSubtype==UMIDI_MS_HEADER))
716 		return USBD_INVAL;
717 	remain = (size_t)UGETW(TO_CSIFD(udesc)->wTotalLength) -
718 		(size_t)udesc->bLength;
719 	udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
720 
721 	while (remain >= sizeof(usb_descriptor_t)) {
722 		descsize = udesc->bLength;
723 		if (descsize>remain || descsize==0)
724 			break;
725 		if (udesc->bDescriptorType == UDESC_CS_INTERFACE &&
726 		    remain >= UMIDI_JACK_DESCRIPTOR_SIZE) {
727 			if (udesc->bDescriptorSubtype == UMIDI_OUT_JACK)
728 				sc->sc_out_num_jacks++;
729 			else if (udesc->bDescriptorSubtype == UMIDI_IN_JACK)
730 				sc->sc_in_num_jacks++;
731 		}
732 		udesc = (umidi_cs_descriptor_t *)NEXT_D(udesc);
733 		remain -= descsize;
734 	}
735 
736 	/* validate some parameters */
737 	if (sc->sc_out_num_jacks>UMIDI_MAX_EPJACKS)
738 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
739 	if (sc->sc_in_num_jacks>UMIDI_MAX_EPJACKS)
740 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
741 	if (sc->sc_out_num_jacks && out_addr) {
742 		sc->sc_out_num_endpoints = 1;
743 	} else {
744 		sc->sc_out_num_endpoints = 0;
745 		sc->sc_out_num_jacks = 0;
746 	}
747 	if (sc->sc_in_num_jacks && in_addr) {
748 		sc->sc_in_num_endpoints = 1;
749 	} else {
750 		sc->sc_in_num_endpoints = 0;
751 		sc->sc_in_num_jacks = 0;
752 	}
753 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
754 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
755 	if (!sc->sc_endpoints)
756 		return USBD_NOMEM;
757 	if (sc->sc_out_num_endpoints) {
758 		sc->sc_out_ep = sc->sc_endpoints;
759 		sc->sc_out_ep->sc = sc;
760 		sc->sc_out_ep->addr = out_addr;
761 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
762 		sc->sc_out_ep->num_open = 0;
763 	} else
764 		sc->sc_out_ep = NULL;
765 
766 	if (sc->sc_in_num_endpoints) {
767 		sc->sc_in_ep = sc->sc_endpoints+sc->sc_out_num_endpoints;
768 		sc->sc_in_ep->sc = sc;
769 		sc->sc_in_ep->addr = in_addr;
770 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
771 		sc->sc_in_ep->num_open = 0;
772 	} else
773 		sc->sc_in_ep = NULL;
774 
775 	return USBD_NORMAL_COMPLETION;
776 }
777 
778 static usbd_status
779 alloc_all_endpoints_genuine(struct umidi_softc *sc)
780 {
781 	usb_interface_descriptor_t *interface_desc;
782 	usb_config_descriptor_t *config_desc;
783 	usb_descriptor_t *desc;
784 	int num_ep;
785 	size_t remain, descsize;
786 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
787 	int epaddr;
788 
789 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
790 	num_ep = interface_desc->bNumEndpoints;
791 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
792 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
793 	if (!p)
794 		return USBD_NOMEM;
795 
796 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
797 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
798 	epaddr = -1;
799 
800 	/* get the list of endpoints for midi stream */
801 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
802 	desc = (usb_descriptor_t *) config_desc;
803 	remain = (size_t)UGETW(config_desc->wTotalLength);
804 	while (remain>=sizeof(usb_descriptor_t)) {
805 		descsize = desc->bLength;
806 		if (descsize>remain || descsize==0)
807 			break;
808 		if (desc->bDescriptorType==UDESC_ENDPOINT &&
809 		    remain>=USB_ENDPOINT_DESCRIPTOR_SIZE &&
810 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
811 			epaddr = TO_EPD(desc)->bEndpointAddress;
812 		} else if (desc->bDescriptorType==UDESC_CS_ENDPOINT &&
813 			   remain>=UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE &&
814 			   epaddr!=-1) {
815 			if (num_ep>0) {
816 				num_ep--;
817 				p->sc = sc;
818 				p->addr = epaddr;
819 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
820 				if (UE_GET_DIR(epaddr)==UE_DIR_OUT) {
821 					sc->sc_out_num_endpoints++;
822 					sc->sc_out_num_jacks += p->num_jacks;
823 				} else {
824 					sc->sc_in_num_endpoints++;
825 					sc->sc_in_num_jacks += p->num_jacks;
826 				}
827 				p++;
828 			}
829 		} else
830 			epaddr = -1;
831 		desc = NEXT_D(desc);
832 		remain-=descsize;
833 	}
834 
835 	/* sort endpoints */
836 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
837 	p = sc->sc_endpoints;
838 	endep = p + num_ep;
839 	while (p<endep) {
840 		lowest = p;
841 		for (q=p+1; q<endep; q++) {
842 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
843 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
844 			    ((UE_GET_DIR(lowest->addr)==
845 			      UE_GET_DIR(q->addr)) &&
846 			     (UE_GET_ADDR(lowest->addr)>
847 			      UE_GET_ADDR(q->addr))))
848 				lowest = q;
849 		}
850 		if (lowest != p) {
851 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
852 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
853 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
854 		}
855 		p->num_open = 0;
856 		p++;
857 	}
858 
859 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
860 	sc->sc_in_ep =
861 	    sc->sc_in_num_endpoints ?
862 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
863 
864 	return USBD_NORMAL_COMPLETION;
865 }
866 
867 
868 /*
869  * jack stuffs
870  */
871 
872 static usbd_status
873 alloc_all_jacks(struct umidi_softc *sc)
874 {
875 	int i, j;
876 	struct umidi_endpoint *ep;
877 	struct umidi_jack *jack;
878 	const unsigned char *cn_spec;
879 
880 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
881 		sc->cblnums_global = 0;
882 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
883 		sc->cblnums_global = 1;
884 	else {
885 		/*
886 		 * I don't think this default is correct, but it preserves
887 		 * the prior behavior of the code. That's why I defined two
888 		 * complementary quirks. Any device for which the default
889 		 * behavior is wrong can be made to work by giving it an
890 		 * explicit quirk, and if a pattern ever develops (as I suspect
891 		 * it will) that a lot of otherwise standard USB MIDI devices
892 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
893 		 * changed to 0, and the only devices that will break are those
894 		 * listing neither quirk, and they'll easily be fixed by giving
895 		 * them the CN_SEQ_GLOBAL quirk.
896 		 */
897 		sc->cblnums_global = 1;
898 	}
899 
900 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
901 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
902 					    		 UMQ_TYPE_CN_FIXED);
903 	else
904 		cn_spec = NULL;
905 
906 	/* allocate/initialize structures */
907 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+
908 						      sc->sc_out_num_jacks), KM_SLEEP);
909 	if (!sc->sc_jacks)
910 		return USBD_NOMEM;
911 	sc->sc_out_jacks =
912 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
913 	sc->sc_in_jacks =
914 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
915 
916 	jack = &sc->sc_out_jacks[0];
917 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
918 		jack->opened = 0;
919 		jack->binded = 0;
920 		jack->arg = NULL;
921 		jack->u.out.intr = NULL;
922 		jack->midiman_ppkt = NULL;
923 		if (sc->cblnums_global)
924 			jack->cable_number = i;
925 		jack++;
926 	}
927 	jack = &sc->sc_in_jacks[0];
928 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
929 		jack->opened = 0;
930 		jack->binded = 0;
931 		jack->arg = NULL;
932 		jack->u.in.intr = NULL;
933 		if (sc->cblnums_global)
934 			jack->cable_number = i;
935 		jack++;
936 	}
937 
938 	/* assign each jacks to each endpoints */
939 	jack = &sc->sc_out_jacks[0];
940 	ep = &sc->sc_out_ep[0];
941 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
942 		for (j = 0; j < ep->num_jacks; j++) {
943 			jack->endpoint = ep;
944 			if (cn_spec != NULL)
945 				jack->cable_number = *cn_spec++;
946 			else if (!sc->cblnums_global)
947 				jack->cable_number = j;
948 			ep->jacks[jack->cable_number] = jack;
949 			jack++;
950 		}
951 		ep++;
952 	}
953 	jack = &sc->sc_in_jacks[0];
954 	ep = &sc->sc_in_ep[0];
955 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
956 		for (j = 0; j < ep->num_jacks; j++) {
957 			jack->endpoint = ep;
958 			if (cn_spec != NULL)
959 				jack->cable_number = *cn_spec++;
960 			else if (!sc->cblnums_global)
961 				jack->cable_number = j;
962 			ep->jacks[jack->cable_number] = jack;
963 			jack++;
964 		}
965 		ep++;
966 	}
967 
968 	return USBD_NORMAL_COMPLETION;
969 }
970 
971 static void
972 free_all_jacks(struct umidi_softc *sc)
973 {
974 	struct umidi_jack *jacks;
975 	size_t len;
976 
977 	mutex_enter(&sc->sc_lock);
978 	jacks = sc->sc_jacks;
979 	len = sizeof(*sc->sc_out_jacks)*(sc->sc_in_num_jacks+sc->sc_out_num_jacks);
980 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
981 	mutex_exit(&sc->sc_lock);
982 
983 	if (jacks)
984 		kmem_free(jacks, len);
985 }
986 
987 static usbd_status
988 bind_jacks_to_mididev(struct umidi_softc *sc,
989 		      struct umidi_jack *out_jack,
990 		      struct umidi_jack *in_jack,
991 		      struct umidi_mididev *mididev)
992 {
993 	if ((out_jack && out_jack->binded) || (in_jack && in_jack->binded))
994 		return USBD_IN_USE;
995 	if (mididev->out_jack || mididev->in_jack)
996 		return USBD_IN_USE;
997 
998 	if (out_jack)
999 		out_jack->binded = 1;
1000 	if (in_jack)
1001 		in_jack->binded = 1;
1002 	mididev->in_jack = in_jack;
1003 	mididev->out_jack = out_jack;
1004 
1005 	return USBD_NORMAL_COMPLETION;
1006 }
1007 
1008 static void
1009 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1010 {
1011 
1012 	if ((mididev->flags & FWRITE) && mididev->out_jack)
1013 		close_out_jack(mididev->out_jack);
1014 	if ((mididev->flags & FREAD) && mididev->in_jack)
1015 		close_in_jack(mididev->in_jack);
1016 
1017 	if (mididev->out_jack)
1018 		mididev->out_jack->binded = 0;
1019 	if (mididev->in_jack)
1020 		mididev->in_jack->binded = 0;
1021 	mididev->out_jack = mididev->in_jack = NULL;
1022 }
1023 
1024 static void
1025 unbind_all_jacks(struct umidi_softc *sc)
1026 {
1027 	int i;
1028 
1029 	if (sc->sc_mididevs)
1030 		for (i = 0; i < sc->sc_num_mididevs; i++)
1031 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1032 }
1033 
1034 static usbd_status
1035 assign_all_jacks_automatically(struct umidi_softc *sc)
1036 {
1037 	usbd_status err;
1038 	int i;
1039 	struct umidi_jack *out, *in;
1040 	const signed char *asg_spec;
1041 
1042 	err =
1043 	    alloc_all_mididevs(sc,
1044 			       max(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1045 	if (err!=USBD_NORMAL_COMPLETION)
1046 		return err;
1047 
1048 	if ( UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1049 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1050 					    		  UMQ_TYPE_MD_FIXED);
1051 	else
1052 		asg_spec = NULL;
1053 
1054 	for (i = 0; i < sc->sc_num_mididevs; i++) {
1055 		if (asg_spec != NULL) {
1056 			if (*asg_spec == -1)
1057 				out = NULL;
1058 			else
1059 				out = &sc->sc_out_jacks[*asg_spec];
1060 			++ asg_spec;
1061 			if (*asg_spec == -1)
1062 				in = NULL;
1063 			else
1064 				in = &sc->sc_in_jacks[*asg_spec];
1065 			++ asg_spec;
1066 		} else {
1067 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1068 			                               : NULL;
1069 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1070 						     : NULL;
1071 		}
1072 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1073 		if (err!=USBD_NORMAL_COMPLETION) {
1074 			free_all_mididevs(sc);
1075 			return err;
1076 		}
1077 	}
1078 
1079 	return USBD_NORMAL_COMPLETION;
1080 }
1081 
1082 static usbd_status
1083 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1084 {
1085 	struct umidi_endpoint *ep = jack->endpoint;
1086 	struct umidi_softc *sc = ep->sc;
1087 	umidi_packet_bufp end;
1088 	int err;
1089 
1090 	KASSERT(mutex_owned(&sc->sc_lock));
1091 
1092 	if (jack->opened)
1093 		return USBD_IN_USE;
1094 
1095 	jack->arg = arg;
1096 	jack->u.out.intr = intr;
1097 	jack->midiman_ppkt = NULL;
1098 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1099 	jack->opened = 1;
1100 	ep->num_open++;
1101 	/*
1102 	 * out_solicit maintains an invariant that there will always be
1103 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1104 	 * just incremented num_open, the buffer may be too full to satisfy
1105 	 * the invariant until a transfer completes, for which we must wait.
1106 	 */
1107 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1108 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1109 		     mstohz(10));
1110 		if (err) {
1111 			ep->num_open--;
1112 			jack->opened = 0;
1113 			return USBD_IOERROR;
1114 		}
1115 	}
1116 
1117 	return USBD_NORMAL_COMPLETION;
1118 }
1119 
1120 static usbd_status
1121 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1122 {
1123 	usbd_status err = USBD_NORMAL_COMPLETION;
1124 	struct umidi_endpoint *ep = jack->endpoint;
1125 
1126 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1127 
1128 	if (jack->opened)
1129 		return USBD_IN_USE;
1130 
1131 	jack->arg = arg;
1132 	jack->u.in.intr = intr;
1133 	jack->opened = 1;
1134 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1135 		err = start_input_transfer(ep);
1136 		if (err != USBD_NORMAL_COMPLETION &&
1137 		    err != USBD_IN_PROGRESS) {
1138 			ep->num_open--;
1139 		}
1140 	}
1141 
1142 	return err;
1143 }
1144 
1145 static void
1146 close_out_jack(struct umidi_jack *jack)
1147 {
1148 	struct umidi_endpoint *ep;
1149 	struct umidi_softc *sc;
1150 	u_int16_t mask;
1151 	int err;
1152 
1153 	if (jack->opened) {
1154 		ep = jack->endpoint;
1155 		sc = ep->sc;
1156 		mutex_spin_enter(&sc->sc_lock);
1157 		mask = 1 << (jack->cable_number);
1158 		while (mask & (ep->this_schedule | ep->next_schedule)) {
1159 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1160 			     mstohz(10));
1161 			if (err)
1162 				break;
1163 		}
1164 		/*
1165 		 * We can re-enter this function from both close() and
1166 		 * detach().  Make sure only one of them does this part.
1167 		 */
1168 		if (jack->opened) {
1169 			jack->opened = 0;
1170 			jack->endpoint->num_open--;
1171 			ep->this_schedule &= ~mask;
1172 			ep->next_schedule &= ~mask;
1173 		}
1174 		mutex_spin_exit(&sc->sc_lock);
1175 	}
1176 }
1177 
1178 static void
1179 close_in_jack(struct umidi_jack *jack)
1180 {
1181 	if (jack->opened) {
1182 		jack->opened = 0;
1183 		if (--jack->endpoint->num_open == 0) {
1184 			usbd_abort_pipe(jack->endpoint->pipe);
1185 		}
1186 	}
1187 }
1188 
1189 static usbd_status
1190 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1191 {
1192 	if (mididev->sc)
1193 		return USBD_IN_USE;
1194 
1195 	mididev->sc = sc;
1196 
1197 	describe_mididev(mididev);
1198 
1199 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1200 
1201 	return USBD_NORMAL_COMPLETION;
1202 }
1203 
1204 static usbd_status
1205 detach_mididev(struct umidi_mididev *mididev, int flags)
1206 {
1207 	if (!mididev->sc)
1208 		return USBD_NO_ADDR;
1209 
1210 	if (mididev->opened) {
1211 		umidi_close(mididev);
1212 	}
1213 	unbind_jacks_from_mididev(mididev);
1214 
1215 	if (mididev->mdev != NULL)
1216 		config_detach(mididev->mdev, flags);
1217 
1218 	if (NULL != mididev->label) {
1219 		kmem_free(mididev->label, mididev->label_len);
1220 		mididev->label = NULL;
1221 	}
1222 
1223 	mididev->sc = NULL;
1224 
1225 	return USBD_NORMAL_COMPLETION;
1226 }
1227 
1228 static void
1229 deactivate_mididev(struct umidi_mididev *mididev)
1230 {
1231 	if (mididev->out_jack)
1232 		mididev->out_jack->binded = 0;
1233 	if (mididev->in_jack)
1234 		mididev->in_jack->binded = 0;
1235 }
1236 
1237 static usbd_status
1238 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1239 {
1240 	sc->sc_num_mididevs = nmidi;
1241 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1242 	if (!sc->sc_mididevs)
1243 		return USBD_NOMEM;
1244 
1245 	return USBD_NORMAL_COMPLETION;
1246 }
1247 
1248 static void
1249 free_all_mididevs(struct umidi_softc *sc)
1250 {
1251 	if (sc->sc_mididevs)
1252 		kmem_free(sc->sc_mididevs,
1253 			  sizeof(*sc->sc_mididevs)*sc->sc_num_mididevs);
1254 	sc->sc_num_mididevs = 0;
1255 }
1256 
1257 static usbd_status
1258 attach_all_mididevs(struct umidi_softc *sc)
1259 {
1260 	usbd_status err;
1261 	int i;
1262 
1263 	if (sc->sc_mididevs)
1264 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1265 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1266 			if (err != USBD_NORMAL_COMPLETION)
1267 				return err;
1268 		}
1269 
1270 	return USBD_NORMAL_COMPLETION;
1271 }
1272 
1273 static usbd_status
1274 detach_all_mididevs(struct umidi_softc *sc, int flags)
1275 {
1276 	usbd_status err;
1277 	int i;
1278 
1279 	if (sc->sc_mididevs)
1280 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1281 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1282 			if (err != USBD_NORMAL_COMPLETION)
1283 				return err;
1284 		}
1285 
1286 	return USBD_NORMAL_COMPLETION;
1287 }
1288 
1289 static void
1290 deactivate_all_mididevs(struct umidi_softc *sc)
1291 {
1292 	int i;
1293 
1294 	if (sc->sc_mididevs) {
1295 		for (i = 0; i < sc->sc_num_mididevs; i++)
1296 			deactivate_mididev(&sc->sc_mididevs[i]);
1297 	}
1298 }
1299 
1300 /*
1301  * TODO: the 0-based cable numbers will often not match the labeling of the
1302  * equipment. Ideally:
1303  *  For class-compliant devices: get the iJack string from the jack descriptor.
1304  *  Otherwise:
1305  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1306  *    number for display)
1307  *  - support an array quirk explictly giving a char * for each jack.
1308  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1309  * the CNs are not globally unique, each is shown with its associated endpoint
1310  * address in hex also. That should not be necessary when using iJack values
1311  * or a quirk array.
1312  */
1313 void
1314 describe_mididev(struct umidi_mididev *md)
1315 {
1316 	char in_label[16];
1317 	char out_label[16];
1318 	const char *unit_label;
1319 	char *final_label;
1320 	struct umidi_softc *sc;
1321 	int show_ep_in;
1322 	int show_ep_out;
1323 	size_t len;
1324 
1325 	sc = md->sc;
1326 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1327 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1328 
1329 	if ( NULL == md->in_jack )
1330 		in_label[0] = '\0';
1331 	else if ( show_ep_in )
1332 		snprintf(in_label, sizeof in_label, "<%d(%x) ",
1333 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
1334 	else
1335 		snprintf(in_label, sizeof in_label, "<%d ",
1336 		    md->in_jack->cable_number);
1337 
1338 	if ( NULL == md->out_jack )
1339 		out_label[0] = '\0';
1340 	else if ( show_ep_out )
1341 		snprintf(out_label, sizeof out_label, ">%d(%x) ",
1342 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
1343 	else
1344 		snprintf(out_label, sizeof out_label, ">%d ",
1345 		    md->out_jack->cable_number);
1346 
1347 	unit_label = device_xname(sc->sc_dev);
1348 
1349 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1350 
1351 	final_label = kmem_alloc(len, KM_SLEEP);
1352 
1353 	snprintf(final_label, len, "%s%son %s",
1354 	    in_label, out_label, unit_label);
1355 
1356 	md->label = final_label;
1357 	md->label_len = len;
1358 }
1359 
1360 #ifdef UMIDI_DEBUG
1361 static void
1362 dump_sc(struct umidi_softc *sc)
1363 {
1364 	int i;
1365 
1366 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1367 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1368 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1369 		dump_ep(&sc->sc_out_ep[i]);
1370 	}
1371 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1372 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1373 		dump_ep(&sc->sc_in_ep[i]);
1374 	}
1375 }
1376 
1377 static void
1378 dump_ep(struct umidi_endpoint *ep)
1379 {
1380 	int i;
1381 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1382 		if (NULL==ep->jacks[i])
1383 			continue;
1384 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1385 		dump_jack(ep->jacks[i]);
1386 	}
1387 }
1388 static void
1389 dump_jack(struct umidi_jack *jack)
1390 {
1391 	DPRINTFN(10, ("\t\t\tep=%p\n",
1392 		      jack->endpoint));
1393 }
1394 
1395 #endif /* UMIDI_DEBUG */
1396 
1397 
1398 
1399 /*
1400  * MUX MIDI PACKET
1401  */
1402 
1403 static const int packet_length[16] = {
1404 	/*0*/	-1,
1405 	/*1*/	-1,
1406 	/*2*/	2,
1407 	/*3*/	3,
1408 	/*4*/	3,
1409 	/*5*/	1,
1410 	/*6*/	2,
1411 	/*7*/	3,
1412 	/*8*/	3,
1413 	/*9*/	3,
1414 	/*A*/	3,
1415 	/*B*/	3,
1416 	/*C*/	2,
1417 	/*D*/	2,
1418 	/*E*/	3,
1419 	/*F*/	1,
1420 };
1421 
1422 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1423 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1424 #define MIX_CN_CIN(cn, cin) \
1425 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1426 			  ((unsigned char)(cin)&0x0F)))
1427 
1428 static usbd_status
1429 start_input_transfer(struct umidi_endpoint *ep)
1430 {
1431 	usbd_setup_xfer(ep->xfer, ep->pipe,
1432 			(usbd_private_handle)ep,
1433 			ep->buffer, ep->buffer_size,
1434 			USBD_SHORT_XFER_OK | USBD_NO_COPY,
1435                         USBD_NO_TIMEOUT, in_intr);
1436 	return usbd_transfer(ep->xfer);
1437 }
1438 
1439 static usbd_status
1440 start_output_transfer(struct umidi_endpoint *ep)
1441 {
1442 	usbd_status rv;
1443 	u_int32_t length;
1444 	int i;
1445 
1446 	length = (ep->next_slot - ep->buffer) * sizeof *ep->buffer;
1447 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1448 	    ep->buffer, ep->next_slot, length));
1449 	usbd_setup_xfer(ep->xfer, ep->pipe,
1450 			(usbd_private_handle)ep,
1451 			ep->buffer, length,
1452 			USBD_NO_COPY, USBD_NO_TIMEOUT, out_intr);
1453 	rv = usbd_transfer(ep->xfer);
1454 
1455 	/*
1456 	 * Once the transfer is scheduled, no more adding to partial
1457 	 * packets within it.
1458 	 */
1459 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1460 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1461 			if (NULL != ep->jacks[i])
1462 				ep->jacks[i]->midiman_ppkt = NULL;
1463 	}
1464 
1465 	return rv;
1466 }
1467 
1468 #ifdef UMIDI_DEBUG
1469 #define DPR_PACKET(dir, sc, p)						\
1470 if ((unsigned char)(p)[1]!=0xFE)				\
1471 	DPRINTFN(500,							\
1472 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1473 		  device_xname(sc->sc_dev),				\
1474 		  (unsigned char)(p)[0],			\
1475 		  (unsigned char)(p)[1],			\
1476 		  (unsigned char)(p)[2],			\
1477 		  (unsigned char)(p)[3]));
1478 #else
1479 #define DPR_PACKET(dir, sc, p)
1480 #endif
1481 
1482 /*
1483  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1484  * with the cable number and length in the last byte instead of the first,
1485  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1486  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1487  * with a cable nybble and a length nybble (which, unlike the CIN of a
1488  * real USB MIDI packet, has no semantics at all besides the length).
1489  * A packet received from a Midiman may contain part of a MIDI message,
1490  * more than one MIDI message, or parts of more than one MIDI message. A
1491  * three-byte MIDI message may arrive in three packets of data length 1, and
1492  * running status may be used. Happily, the midi(4) driver above us will put
1493  * it all back together, so the only cost is in USB bandwidth. The device
1494  * has an easier time with what it receives from us: we'll pack messages in
1495  * and across packets, but filling the packets whenever possible and,
1496  * as midi(4) hands us a complete message at a time, we'll never send one
1497  * in a dribble of short packets.
1498  */
1499 
1500 static int
1501 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1502 {
1503 	struct umidi_endpoint *ep = out_jack->endpoint;
1504 	struct umidi_softc *sc = ep->sc;
1505 	unsigned char *packet;
1506 	int plen;
1507 	int poff;
1508 
1509 	if (sc->sc_dying)
1510 		return EIO;
1511 
1512 	if (!out_jack->opened)
1513 		return ENODEV; /* XXX as it was, is this the right errno? */
1514 
1515 #ifdef UMIDI_DEBUG
1516 	if ( umididebug >= 100 )
1517 		microtime(&umidi_tv);
1518 #endif
1519 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64"s ep=%p cn=%d len=%d cin=%#x\n",
1520 	    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec,
1521 	    ep, out_jack->cable_number, len, cin));
1522 
1523 	packet = *ep->next_slot++;
1524 	KASSERT(ep->buffer_size >=
1525 	    (ep->next_slot - ep->buffer) * sizeof *ep->buffer);
1526 	memset(packet, 0, UMIDI_PACKET_SIZE);
1527 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1528 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1529 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1530 			plen = 3 - poff;
1531 			if (plen > len)
1532 				plen = len;
1533 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1534 			src += plen;
1535 			len -= plen;
1536 			plen += poff;
1537 			out_jack->midiman_ppkt[3] =
1538 			    MIX_CN_CIN(out_jack->cable_number, plen);
1539 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1540 			if (3 == plen)
1541 				out_jack->midiman_ppkt = NULL; /* no more */
1542 		}
1543 		if (0 == len)
1544 			ep->next_slot--; /* won't be needed, nevermind */
1545 		else {
1546 			memcpy(packet, src, len);
1547 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1548 			DPR_PACKET(out, sc, packet);
1549 			if (len < 3)
1550 				out_jack->midiman_ppkt = packet;
1551 		}
1552 	} else { /* the nice simple USB class-compliant case */
1553 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1554 		memcpy(packet+1, src, len);
1555 		DPR_PACKET(out, sc, packet);
1556 	}
1557 	ep->next_schedule |= 1<<(out_jack->cable_number);
1558 	++ ep->num_scheduled;
1559 	if ( !ep->armed  &&  !ep->soliciting ) {
1560 		/*
1561 		 * It would be bad to call out_solicit directly here (the
1562 		 * caller need not be reentrant) but a soft interrupt allows
1563 		 * solicit to run immediately the caller exits its critical
1564 		 * section, and if the caller has more to write we can get it
1565 		 * before starting the USB transfer, and send a longer one.
1566 		 */
1567 		ep->soliciting = 1;
1568 		softint_schedule(ep->solicit_cookie);
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 static void
1575 in_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1576     usbd_status status)
1577 {
1578 	int cn, len, i;
1579 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1580 	struct umidi_softc *sc = ep->sc;
1581 	struct umidi_jack *jack;
1582 	unsigned char *packet;
1583 	umidi_packet_bufp slot;
1584 	umidi_packet_bufp end;
1585 	unsigned char *data;
1586 	u_int32_t count;
1587 
1588 	if (ep->sc->sc_dying || !ep->num_open)
1589 		return;
1590 
1591 	mutex_enter(&sc->sc_lock);
1592 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1593         if (0 == count % UMIDI_PACKET_SIZE) {
1594 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1595 			     device_xname(ep->sc->sc_dev), ep, count));
1596         } else {
1597                 DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1598                         device_xname(ep->sc->sc_dev), ep, count));
1599         }
1600 
1601 	slot = ep->buffer;
1602 	end = slot + count / sizeof *slot;
1603 
1604 	for (packet = *slot; slot < end; packet = *++slot) {
1605 
1606 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1607 			cn = (0xf0&(packet[3]))>>4;
1608 			len = 0x0f&(packet[3]);
1609 			data = packet;
1610 		} else {
1611 			cn = GET_CN(packet[0]);
1612 			len = packet_length[GET_CIN(packet[0])];
1613 			data = packet + 1;
1614 		}
1615 		/* 0 <= cn <= 15 by inspection of above code */
1616 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1617 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1618 			         "%02X %02X %02X (try CN_SEQ quirk?)\n",
1619 				 device_xname(ep->sc->sc_dev), ep, cn, len,
1620 				 (unsigned)data[0],
1621 				 (unsigned)data[1],
1622 				 (unsigned)data[2]));
1623 			mutex_exit(&sc->sc_lock);
1624 			return;
1625 		}
1626 
1627 		if (!jack->binded || !jack->opened)
1628 			continue;
1629 
1630 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1631 		             "%02X %02X %02X\n",
1632 			     device_xname(ep->sc->sc_dev), ep, cn, len,
1633 			     (unsigned)data[0],
1634 			     (unsigned)data[1],
1635 			     (unsigned)data[2]));
1636 
1637 		if (jack->u.in.intr) {
1638 			for (i = 0; i < len; i++) {
1639 				(*jack->u.in.intr)(jack->arg, data[i]);
1640 			}
1641 		}
1642 
1643 	}
1644 
1645 	(void)start_input_transfer(ep);
1646 	mutex_exit(&sc->sc_lock);
1647 }
1648 
1649 static void
1650 out_intr(usbd_xfer_handle xfer, usbd_private_handle priv,
1651     usbd_status status)
1652 {
1653 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1654 	struct umidi_softc *sc = ep->sc;
1655 	u_int32_t count;
1656 
1657 	if (sc->sc_dying)
1658 		return;
1659 
1660 	mutex_enter(&sc->sc_lock);
1661 #ifdef UMIDI_DEBUG
1662 	if ( umididebug >= 200 )
1663 		microtime(&umidi_tv);
1664 #endif
1665 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1666         if ( 0 == count % UMIDI_PACKET_SIZE ) {
1667 		DPRINTFN(200,("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer length %u\n",
1668 			     device_xname(ep->sc->sc_dev),
1669 			     umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep, count));
1670         } else {
1671                 DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1672                         device_xname(ep->sc->sc_dev), ep, count));
1673         }
1674 	count /= UMIDI_PACKET_SIZE;
1675 
1676 	/*
1677 	 * If while the transfer was pending we buffered any new messages,
1678 	 * move them to the start of the buffer.
1679 	 */
1680 	ep->next_slot -= count;
1681 	if (ep->buffer < ep->next_slot) {
1682 		memcpy(ep->buffer, ep->buffer + count,
1683 		       (char *)ep->next_slot - (char *)ep->buffer);
1684 	}
1685 	cv_broadcast(&sc->sc_cv);
1686 	/*
1687 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1688 	 * Running at IPL_USB so the following should happen to be safe.
1689 	 */
1690 	ep->armed = 0;
1691 	if (!ep->soliciting) {
1692 		ep->soliciting = 1;
1693 		out_solicit_locked(ep);
1694 	}
1695 	mutex_exit(&sc->sc_lock);
1696 }
1697 
1698 /*
1699  * A jack on which we have received a packet must be called back on its
1700  * out.intr handler before it will send us another; it is considered
1701  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1702  * we need no extra buffer space for it.
1703  *
1704  * In contrast, a jack that is open but not scheduled may supply us a packet
1705  * at any time, driven by the top half, and we must be able to accept it, no
1706  * excuses. So we must ensure that at any point in time there are at least
1707  * (num_open - num_scheduled) slots free.
1708  *
1709  * As long as there are more slots free than that minimum, we can loop calling
1710  * scheduled jacks back on their "interrupt" handlers, soliciting more
1711  * packets, starting the USB transfer only when the buffer space is down to
1712  * the minimum or no jack has any more to send.
1713  */
1714 
1715 static void
1716 out_solicit_locked(void *arg)
1717 {
1718 	struct umidi_endpoint *ep = arg;
1719 	umidi_packet_bufp end;
1720 	u_int16_t which;
1721 	struct umidi_jack *jack;
1722 
1723 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1724 
1725 	end = ep->buffer + ep->buffer_size / sizeof *ep->buffer;
1726 
1727 	for ( ;; ) {
1728 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1729 			break; /* at IPL_USB */
1730 		if (ep->this_schedule == 0) {
1731 			if (ep->next_schedule == 0)
1732 				break; /* at IPL_USB */
1733 			ep->this_schedule = ep->next_schedule;
1734 			ep->next_schedule = 0;
1735 		}
1736 		/*
1737 		 * At least one jack is scheduled. Find and mask off the least
1738 		 * set bit in this_schedule and decrement num_scheduled.
1739 		 * Convert mask to bit index to find the corresponding jack,
1740 		 * and call its intr handler. If it has a message, it will call
1741 		 * back one of the output methods, which will set its bit in
1742 		 * next_schedule (not copied into this_schedule until the
1743 		 * latter is empty). In this way we round-robin the jacks that
1744 		 * have messages to send, until the buffer is as full as we
1745 		 * dare, and then start a transfer.
1746 		 */
1747 		which = ep->this_schedule;
1748 		which &= (~which)+1; /* now mask of least set bit */
1749 		ep->this_schedule &= ~which;
1750 		--ep->num_scheduled;
1751 
1752 		--which; /* now 1s below mask - count 1s to get index */
1753 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
1754 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
1755 		which = (((which >> 4) + which) & 0x0f0f);
1756 		which +=  (which >> 8);
1757 		which &= 0x1f; /* the bit index a/k/a jack number */
1758 
1759 		jack = ep->jacks[which];
1760 		if (jack->u.out.intr)
1761 			(*jack->u.out.intr)(jack->arg);
1762 	}
1763 	/* intr lock held at loop exit */
1764 	if (!ep->armed && ep->next_slot > ep->buffer)
1765 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
1766 	ep->soliciting = 0;
1767 }
1768 
1769 /* Entry point for the softintr.  */
1770 static void
1771 out_solicit(void *arg)
1772 {
1773 	struct umidi_endpoint *ep = arg;
1774 	struct umidi_softc *sc = ep->sc;
1775 
1776 	mutex_enter(&sc->sc_lock);
1777 	out_solicit_locked(arg);
1778 	mutex_exit(&sc->sc_lock);
1779 }
1780