xref: /netbsd-src/sys/dev/usb/umidi.c (revision a10c2cec390bbc4a870ed981c04dc105e6820ccf)
1 /*	$NetBSD: umidi.c,v 1.91 2024/02/10 09:21:53 andvar Exp $	*/
2 
3 /*
4  * Copyright (c) 2001, 2012, 2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Takuya SHIOZAKI (tshiozak@NetBSD.org), (full-size transfers, extended
9  * hw_if) Chapman Flack (chap@NetBSD.org), and Matthew R. Green
10  * (mrg@eterna23.net).
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31  * POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: umidi.c,v 1.91 2024/02/10 09:21:53 andvar Exp $");
36 
37 #ifdef _KERNEL_OPT
38 #include "opt_usb.h"
39 #endif
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/kmem.h>
46 #include <sys/device.h>
47 #include <sys/ioctl.h>
48 #include <sys/conf.h>
49 #include <sys/file.h>
50 #include <sys/select.h>
51 #include <sys/proc.h>
52 #include <sys/vnode.h>
53 #include <sys/poll.h>
54 #include <sys/intr.h>
55 
56 #include <dev/usb/usb.h>
57 #include <dev/usb/usbdi.h>
58 #include <dev/usb/usbdi_util.h>
59 
60 #include <dev/usb/usbdevs.h>
61 #include <dev/usb/umidi_quirks.h>
62 #include <dev/midi_if.h>
63 
64 /* Jack Descriptor */
65 #define UMIDI_MS_HEADER	0x01
66 #define UMIDI_IN_JACK	0x02
67 #define UMIDI_OUT_JACK	0x03
68 
69 /* Jack Type */
70 #define UMIDI_EMBEDDED	0x01
71 #define UMIDI_EXTERNAL	0x02
72 
73 /* generic, for iteration */
74 typedef struct {
75 	uByte		bLength;
76 	uByte		bDescriptorType;
77 	uByte		bDescriptorSubtype;
78 } UPACKED umidi_cs_descriptor_t;
79 
80 typedef struct {
81 	uByte		bLength;
82 	uByte		bDescriptorType;
83 	uByte		bDescriptorSubtype;
84 	uWord		bcdMSC;
85 	uWord		wTotalLength;
86 } UPACKED umidi_cs_interface_descriptor_t;
87 #define UMIDI_CS_INTERFACE_DESCRIPTOR_SIZE 7
88 
89 typedef struct {
90 	uByte		bLength;
91 	uByte		bDescriptorType;
92 	uByte		bDescriptorSubtype;
93 	uByte		bNumEmbMIDIJack;
94 } UPACKED umidi_cs_endpoint_descriptor_t;
95 #define UMIDI_CS_ENDPOINT_DESCRIPTOR_SIZE 4
96 
97 typedef struct {
98 	uByte		bLength;
99 	uByte		bDescriptorType;
100 	uByte		bDescriptorSubtype;
101 	uByte		bJackType;
102 	uByte		bJackID;
103 } UPACKED umidi_jack_descriptor_t;
104 #define	UMIDI_JACK_DESCRIPTOR_SIZE	5
105 
106 
107 #define TO_D(p) ((usb_descriptor_t *)(p))
108 #define NEXT_D(desc) TO_D((char *)(desc)+(desc)->bLength)
109 #define TO_IFD(desc) ((usb_interface_descriptor_t *)(desc))
110 #define TO_CSIFD(desc) ((umidi_cs_interface_descriptor_t *)(desc))
111 #define TO_EPD(desc) ((usb_endpoint_descriptor_t *)(desc))
112 #define TO_CSEPD(desc) ((umidi_cs_endpoint_descriptor_t *)(desc))
113 
114 
115 #define UMIDI_PACKET_SIZE 4
116 
117 /*
118  * hierarchy
119  *
120  * <-- parent	       child -->
121  *
122  * umidi(sc) -> endpoint -> jack   <- (dynamically assignable) - mididev
123  *	   ^	 |    ^	    |
124  *	   +-----+    +-----+
125  */
126 
127 /* midi device */
128 struct umidi_mididev {
129 	struct umidi_softc	*sc;
130 	device_t		mdev;
131 	/* */
132 	struct umidi_jack	*in_jack;
133 	struct umidi_jack	*out_jack;
134 	char			*label;
135 	size_t			label_len;
136 	/* */
137 	int			opened;
138 	int			closing;
139 	int			flags;
140 };
141 
142 /* Jack Information */
143 struct umidi_jack {
144 	struct umidi_endpoint	*endpoint;
145 	/* */
146 	int			cable_number;
147 	void			*arg;
148 	int			bound;
149 	int			opened;
150 	unsigned char		*midiman_ppkt;
151 	union {
152 		struct {
153 			void			(*intr)(void *);
154 		} out;
155 		struct {
156 			void			(*intr)(void *, int);
157 		} in;
158 	} u;
159 };
160 
161 #define UMIDI_MAX_EPJACKS	16
162 typedef unsigned char (*umidi_packet_bufp)[UMIDI_PACKET_SIZE];
163 /* endpoint data */
164 struct umidi_endpoint {
165 	struct umidi_softc	*sc;
166 	/* */
167 	int			addr;
168 	struct usbd_pipe	*pipe;
169 	struct usbd_xfer	*xfer;
170 	umidi_packet_bufp	buffer;
171 	umidi_packet_bufp	next_slot;
172 	uint32_t               buffer_size;
173 	int			num_scheduled;
174 	int			num_open;
175 	int			num_jacks;
176 	int			soliciting;
177 	void			*solicit_cookie;
178 	int			armed;
179 	struct umidi_jack	*jacks[UMIDI_MAX_EPJACKS];
180 	uint16_t		this_schedule; /* see UMIDI_MAX_EPJACKS */
181 	uint16_t		next_schedule;
182 };
183 
184 /* software context */
185 struct umidi_softc {
186 	device_t		sc_dev;
187 	struct usbd_device	*sc_udev;
188 	struct usbd_interface	*sc_iface;
189 	const struct umidi_quirk	*sc_quirk;
190 
191 	int			sc_dying;
192 
193 	int			sc_out_num_jacks;
194 	struct umidi_jack	*sc_out_jacks;
195 	int			sc_in_num_jacks;
196 	struct umidi_jack	*sc_in_jacks;
197 	struct umidi_jack	*sc_jacks;
198 
199 	int			sc_num_mididevs;
200 	struct umidi_mididev	*sc_mididevs;
201 
202 	int			sc_out_num_endpoints;
203 	struct umidi_endpoint	*sc_out_ep;
204 	int			sc_in_num_endpoints;
205 	struct umidi_endpoint	*sc_in_ep;
206 	struct umidi_endpoint	*sc_endpoints;
207 	size_t			sc_endpoints_len;
208 	int			cblnums_global;
209 
210 	kmutex_t		sc_lock;
211 	kcondvar_t		sc_cv;
212 	kcondvar_t		sc_detach_cv;
213 
214 	int			sc_refcnt;
215 };
216 
217 #ifdef UMIDI_DEBUG
218 #define DPRINTF(x)	if (umididebug) printf x
219 #define DPRINTFN(n,x)	if (umididebug >= (n)) printf x
220 #include <sys/time.h>
221 static struct timeval umidi_tv;
222 int	umididebug = 0;
223 #else
224 #define DPRINTF(x)
225 #define DPRINTFN(n,x)
226 #endif
227 
228 #define UMIDI_ENDPOINT_SIZE(sc)	(sizeof(*(sc)->sc_out_ep) * \
229 				 (sc->sc_out_num_endpoints + \
230 				  sc->sc_in_num_endpoints))
231 
232 
233 static int umidi_open(void *, int,
234 		      void (*)(void *, int), void (*)(void *), void *);
235 static void umidi_close(void *);
236 static int umidi_channelmsg(void *, int, int, u_char *, int);
237 static int umidi_commonmsg(void *, int, u_char *, int);
238 static int umidi_sysex(void *, u_char *, int);
239 static int umidi_rtmsg(void *, int);
240 static void umidi_getinfo(void *, struct midi_info *);
241 static void umidi_get_locks(void *, kmutex_t **, kmutex_t **);
242 
243 static usbd_status alloc_pipe(struct umidi_endpoint *);
244 static void free_pipe(struct umidi_endpoint *);
245 
246 static usbd_status alloc_all_endpoints(struct umidi_softc *);
247 static void free_all_endpoints(struct umidi_softc *);
248 
249 static usbd_status alloc_all_jacks(struct umidi_softc *);
250 static void free_all_jacks(struct umidi_softc *);
251 static usbd_status bind_jacks_to_mididev(struct umidi_softc *,
252 					 struct umidi_jack *,
253 					 struct umidi_jack *,
254 					 struct umidi_mididev *);
255 static void unbind_jacks_from_mididev(struct umidi_mididev *);
256 static void unbind_all_jacks(struct umidi_softc *);
257 static usbd_status assign_all_jacks_automatically(struct umidi_softc *);
258 static usbd_status open_out_jack(struct umidi_jack *, void *,
259 				 void (*)(void *));
260 static usbd_status open_in_jack(struct umidi_jack *, void *,
261 				void (*)(void *, int));
262 static void close_out_jack(struct umidi_jack *);
263 static void close_in_jack(struct umidi_jack *);
264 
265 static usbd_status attach_mididev(struct umidi_softc *, struct umidi_mididev *);
266 static usbd_status detach_mididev(struct umidi_mididev *, int);
267 static void deactivate_mididev(struct umidi_mididev *);
268 static usbd_status alloc_all_mididevs(struct umidi_softc *, int);
269 static void free_all_mididevs(struct umidi_softc *);
270 static usbd_status attach_all_mididevs(struct umidi_softc *);
271 static usbd_status detach_all_mididevs(struct umidi_softc *, int);
272 static void deactivate_all_mididevs(struct umidi_softc *);
273 static void describe_mididev(struct umidi_mididev *);
274 
275 #ifdef UMIDI_DEBUG
276 static void dump_sc(struct umidi_softc *);
277 static void dump_ep(struct umidi_endpoint *);
278 static void dump_jack(struct umidi_jack *);
279 #endif
280 
281 static usbd_status start_input_transfer(struct umidi_endpoint *);
282 static usbd_status start_output_transfer(struct umidi_endpoint *);
283 static int out_jack_output(struct umidi_jack *, u_char *, int, int);
284 static void in_intr(struct usbd_xfer *, void *, usbd_status);
285 static void out_intr(struct usbd_xfer *, void *, usbd_status);
286 static void out_solicit(void *); /* struct umidi_endpoint* for softintr */
287 static void out_solicit_locked(void *); /* pre-locked version */
288 
289 
290 const struct midi_hw_if umidi_hw_if = {
291 	.open = umidi_open,
292 	.close = umidi_close,
293 	.output = umidi_rtmsg,
294 	.getinfo = umidi_getinfo,
295 	.get_locks = umidi_get_locks,
296 };
297 
298 struct midi_hw_if_ext umidi_hw_if_ext = {
299 	.channel = umidi_channelmsg,
300 	.common  = umidi_commonmsg,
301 	.sysex   = umidi_sysex,
302 };
303 
304 struct midi_hw_if_ext umidi_hw_if_mm = {
305 	.channel = umidi_channelmsg,
306 	.common  = umidi_commonmsg,
307 	.sysex   = umidi_sysex,
308 	.compress = 1,
309 };
310 
311 static int umidi_match(device_t, cfdata_t, void *);
312 static void umidi_attach(device_t, device_t, void *);
313 static void umidi_childdet(device_t, device_t);
314 static int umidi_detach(device_t, int);
315 static int umidi_activate(device_t, enum devact);
316 
317 CFATTACH_DECL2_NEW(umidi, sizeof(struct umidi_softc), umidi_match,
318     umidi_attach, umidi_detach, umidi_activate, NULL, umidi_childdet);
319 
320 static int
umidi_match(device_t parent,cfdata_t match,void * aux)321 umidi_match(device_t parent, cfdata_t match, void *aux)
322 {
323 	struct usbif_attach_arg *uiaa = aux;
324 
325 	DPRINTFN(1,("umidi_match\n"));
326 
327 	if (umidi_search_quirk(uiaa->uiaa_vendor, uiaa->uiaa_product,
328 	    uiaa->uiaa_ifaceno))
329 		return UMATCH_IFACECLASS_IFACESUBCLASS;
330 
331 	if (uiaa->uiaa_class == UICLASS_AUDIO &&
332 	    uiaa->uiaa_subclass == UISUBCLASS_MIDISTREAM)
333 		return UMATCH_IFACECLASS_IFACESUBCLASS;
334 
335 	return UMATCH_NONE;
336 }
337 
338 static void
umidi_attach(device_t parent,device_t self,void * aux)339 umidi_attach(device_t parent, device_t self, void *aux)
340 {
341 	usbd_status     err;
342 	struct umidi_softc *sc = device_private(self);
343 	struct usbif_attach_arg *uiaa = aux;
344 	char *devinfop;
345 
346 	DPRINTFN(1,("umidi_attach\n"));
347 
348 	sc->sc_dev = self;
349 
350 	aprint_naive("\n");
351 	aprint_normal("\n");
352 
353 	devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
354 	aprint_normal_dev(self, "%s\n", devinfop);
355 	usbd_devinfo_free(devinfop);
356 
357 	sc->sc_iface = uiaa->uiaa_iface;
358 	sc->sc_udev = uiaa->uiaa_device;
359 
360 	sc->sc_quirk = umidi_search_quirk(uiaa->uiaa_vendor,
361 	    uiaa->uiaa_product, uiaa->uiaa_ifaceno);
362 
363 	aprint_normal_dev(self, "");
364 	umidi_print_quirk(sc->sc_quirk);
365 
366 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
367 	cv_init(&sc->sc_cv, "umidopcl");
368 	cv_init(&sc->sc_detach_cv, "umidetcv");
369 	sc->sc_refcnt = 0;
370 
371 	err = alloc_all_endpoints(sc);
372 	if (err != USBD_NORMAL_COMPLETION) {
373 		aprint_error_dev(self,
374 		    "alloc_all_endpoints failed. (err=%d)\n", err);
375 		goto out;
376 	}
377 	err = alloc_all_jacks(sc);
378 	if (err != USBD_NORMAL_COMPLETION) {
379 		aprint_error_dev(self, "alloc_all_jacks failed. (err=%d)\n",
380 		    err);
381 		goto out_free_endpoints;
382 	}
383 	aprint_normal_dev(self, "out=%d, in=%d\n",
384 	       sc->sc_out_num_jacks, sc->sc_in_num_jacks);
385 
386 	err = assign_all_jacks_automatically(sc);
387 	if (err != USBD_NORMAL_COMPLETION) {
388 		aprint_error_dev(self,
389 		    "assign_all_jacks_automatically failed. (err=%d)\n", err);
390 		goto out_free_jacks;
391 	}
392 	err = attach_all_mididevs(sc);
393 	if (err != USBD_NORMAL_COMPLETION) {
394 		aprint_error_dev(self,
395 		    "attach_all_mididevs failed. (err=%d)\n", err);
396 		goto out_free_jacks;
397 	}
398 
399 #ifdef UMIDI_DEBUG
400 	dump_sc(sc);
401 #endif
402 
403 	usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
404 
405 	return;
406 
407 out_free_jacks:
408 	unbind_all_jacks(sc);
409 	free_all_jacks(sc);
410 
411 out_free_endpoints:
412 	free_all_endpoints(sc);
413 
414 out:
415 	aprint_error_dev(self, "disabled.\n");
416 	sc->sc_dying = 1;
417 	return;
418 }
419 
420 static void
umidi_childdet(device_t self,device_t child)421 umidi_childdet(device_t self, device_t child)
422 {
423 	int i;
424 	struct umidi_softc *sc = device_private(self);
425 
426 	KASSERT(sc->sc_mididevs != NULL);
427 
428 	for (i = 0; i < sc->sc_num_mididevs; i++) {
429 		if (sc->sc_mididevs[i].mdev == child)
430 			break;
431 	}
432 	KASSERT(i < sc->sc_num_mididevs);
433 	sc->sc_mididevs[i].mdev = NULL;
434 }
435 
436 static int
umidi_activate(device_t self,enum devact act)437 umidi_activate(device_t self, enum devact act)
438 {
439 	struct umidi_softc *sc = device_private(self);
440 
441 	switch (act) {
442 	case DVACT_DEACTIVATE:
443 		DPRINTFN(1,("umidi_activate (deactivate)\n"));
444 		sc->sc_dying = 1;
445 		deactivate_all_mididevs(sc);
446 		return 0;
447 	default:
448 		DPRINTFN(1,("umidi_activate (%d)\n", act));
449 		return EOPNOTSUPP;
450 	}
451 }
452 
453 static int
umidi_detach(device_t self,int flags)454 umidi_detach(device_t self, int flags)
455 {
456 	struct umidi_softc *sc = device_private(self);
457 
458 	DPRINTFN(1,("umidi_detach\n"));
459 
460 	mutex_enter(&sc->sc_lock);
461 	sc->sc_dying = 1;
462 	if (--sc->sc_refcnt >= 0)
463 		if (cv_timedwait(&sc->sc_detach_cv, &sc->sc_lock, hz * 60))
464 			aprint_error_dev(self, ": didn't detach\n");
465 	mutex_exit(&sc->sc_lock);
466 
467 	detach_all_mididevs(sc, flags);
468 	free_all_mididevs(sc);
469 	free_all_jacks(sc);
470 	free_all_endpoints(sc);
471 
472 	usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
473 
474 	mutex_destroy(&sc->sc_lock);
475 	cv_destroy(&sc->sc_detach_cv);
476 	cv_destroy(&sc->sc_cv);
477 
478 	return 0;
479 }
480 
481 
482 /*
483  * midi_if stuffs
484  */
485 int
umidi_open(void * addr,int flags,void (* iintr)(void *,int),void (* ointr)(void *),void * arg)486 umidi_open(void *addr,
487 	   int flags,
488 	   void (*iintr)(void *, int),
489 	   void (*ointr)(void *),
490 	   void *arg)
491 {
492 	struct umidi_mididev *mididev = addr;
493 	struct umidi_softc *sc = mididev->sc;
494 	usbd_status err;
495 
496 	KASSERT(mutex_owned(&sc->sc_lock));
497 	DPRINTF(("umidi_open: sc=%p\n", sc));
498 
499 	if (mididev->opened)
500 		return EBUSY;
501 	if (sc->sc_dying)
502 		return EIO;
503 
504 	mididev->opened = 1;
505 	mididev->flags = flags;
506 	if ((mididev->flags & FWRITE) && mididev->out_jack) {
507 		err = open_out_jack(mididev->out_jack, arg, ointr);
508 		if (err != USBD_NORMAL_COMPLETION)
509 			goto bad;
510 	}
511 	if ((mididev->flags & FREAD) && mididev->in_jack) {
512 		err = open_in_jack(mididev->in_jack, arg, iintr);
513 		KASSERT(mididev->opened);
514 		if (err != USBD_NORMAL_COMPLETION &&
515 		    err != USBD_IN_PROGRESS) {
516 			if (mididev->out_jack)
517 				close_out_jack(mididev->out_jack);
518 			goto bad;
519 		}
520 	}
521 
522 	return 0;
523 bad:
524 	mididev->opened = 0;
525 	DPRINTF(("umidi_open: usbd_status %d\n", err));
526 	KASSERT(mutex_owned(&sc->sc_lock));
527 	return USBD_IN_USE == err ? EBUSY : EIO;
528 }
529 
530 void
umidi_close(void * addr)531 umidi_close(void *addr)
532 {
533 	struct umidi_mididev *mididev = addr;
534 	struct umidi_softc *sc = mididev->sc;
535 
536 	KASSERT(mutex_owned(&sc->sc_lock));
537 
538 	if (mididev->closing)
539 		return;
540 
541 	mididev->closing = 1;
542 
543 	sc->sc_refcnt++;
544 
545 	if ((mididev->flags & FWRITE) && mididev->out_jack)
546 		close_out_jack(mididev->out_jack);
547 	if ((mididev->flags & FREAD) && mididev->in_jack)
548 		close_in_jack(mididev->in_jack);
549 
550 	if (--sc->sc_refcnt < 0)
551 		cv_broadcast(&sc->sc_detach_cv);
552 
553 	mididev->opened = 0;
554 	mididev->closing = 0;
555 }
556 
557 int
umidi_channelmsg(void * addr,int status,int channel,u_char * msg,int len)558 umidi_channelmsg(void *addr, int status, int channel, u_char *msg,
559     int len)
560 {
561 	struct umidi_mididev *mididev = addr;
562 
563 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
564 
565 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
566 		return EIO;
567 
568 	return out_jack_output(mididev->out_jack, msg, len, (status>>4)&0xf);
569 }
570 
571 int
umidi_commonmsg(void * addr,int status,u_char * msg,int len)572 umidi_commonmsg(void *addr, int status, u_char *msg, int len)
573 {
574 	struct umidi_mididev *mididev = addr;
575 	int cin;
576 
577 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
578 
579 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
580 		return EIO;
581 
582 	switch ( len ) {
583 	case 1: cin = 5; break;
584 	case 2: cin = 2; break;
585 	case 3: cin = 3; break;
586 	default: return EIO; /* or gcc warns of cin uninitialized */
587 	}
588 
589 	return out_jack_output(mididev->out_jack, msg, len, cin);
590 }
591 
592 int
umidi_sysex(void * addr,u_char * msg,int len)593 umidi_sysex(void *addr, u_char *msg, int len)
594 {
595 	struct umidi_mididev *mididev = addr;
596 	int cin;
597 
598 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
599 
600 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
601 		return EIO;
602 
603 	switch ( len ) {
604 	case 1: cin = 5; break;
605 	case 2: cin = 6; break;
606 	case 3: cin = (msg[2] == 0xf7) ? 7 : 4; break;
607 	default: return EIO; /* or gcc warns of cin uninitialized */
608 	}
609 
610 	return out_jack_output(mididev->out_jack, msg, len, cin);
611 }
612 
613 int
umidi_rtmsg(void * addr,int d)614 umidi_rtmsg(void *addr, int d)
615 {
616 	struct umidi_mididev *mididev = addr;
617 	u_char msg = d;
618 
619 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
620 
621 	if (!mididev->out_jack || !mididev->opened || mididev->closing)
622 		return EIO;
623 
624 	return out_jack_output(mididev->out_jack, &msg, 1, 0xf);
625 }
626 
627 void
umidi_getinfo(void * addr,struct midi_info * mi)628 umidi_getinfo(void *addr, struct midi_info *mi)
629 {
630 	struct umidi_mididev *mididev = addr;
631 	struct umidi_softc *sc = mididev->sc;
632 	int mm = UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE);
633 
634 	KASSERT(mutex_owned(&sc->sc_lock));
635 
636 	mi->name = mididev->label;
637 	mi->props = MIDI_PROP_OUT_INTR;
638 	if (mididev->in_jack)
639 		mi->props |= MIDI_PROP_CAN_INPUT;
640 	midi_register_hw_if_ext(mm? &umidi_hw_if_mm : &umidi_hw_if_ext);
641 }
642 
643 static void
umidi_get_locks(void * addr,kmutex_t ** thread,kmutex_t ** intr)644 umidi_get_locks(void *addr, kmutex_t **thread, kmutex_t **intr)
645 {
646 	struct umidi_mididev *mididev = addr;
647 	struct umidi_softc *sc = mididev->sc;
648 
649 	*intr = NULL;
650 	*thread = &sc->sc_lock;
651 }
652 
653 /*
654  * each endpoint stuffs
655  */
656 
657 /* alloc/free pipe */
658 static usbd_status
alloc_pipe(struct umidi_endpoint * ep)659 alloc_pipe(struct umidi_endpoint *ep)
660 {
661 	struct umidi_softc *sc = ep->sc;
662 	usbd_status err;
663 	usb_endpoint_descriptor_t *epd;
664 
665 	epd = usbd_get_endpoint_descriptor(sc->sc_iface, ep->addr);
666 	/*
667 	 * For output, an improvement would be to have a buffer bigger than
668 	 * wMaxPacketSize by num_jacks-1 additional packet slots; that would
669 	 * allow out_solicit to fill the buffer to the full packet size in
670 	 * all cases. But to use usbd_create_xfer to get a slightly larger
671 	 * buffer would not be a good way to do that, because if the addition
672 	 * would make the buffer exceed USB_MEM_SMALL then a substantially
673 	 * larger block may be wastefully allocated. Some flavor of double
674 	 * buffering could serve the same purpose, but would increase the
675 	 * code complexity, so for now I will live with the current slight
676 	 * penalty of reducing max transfer size by (num_open-num_scheduled)
677 	 * packet slots.
678 	 */
679 	ep->buffer_size = UGETW(epd->wMaxPacketSize);
680 	ep->buffer_size -= ep->buffer_size % UMIDI_PACKET_SIZE;
681 
682 	DPRINTF(("%s: alloc_pipe %p, buffer size %u\n",
683 		device_xname(sc->sc_dev), ep, ep->buffer_size));
684 	ep->num_scheduled = 0;
685 	ep->this_schedule = 0;
686 	ep->next_schedule = 0;
687 	ep->soliciting = 0;
688 	ep->armed = 0;
689 	err = usbd_open_pipe(sc->sc_iface, ep->addr, USBD_MPSAFE, &ep->pipe);
690 	if (err)
691 		goto quit;
692 	int error = usbd_create_xfer(ep->pipe, ep->buffer_size,
693 	    0, 0, &ep->xfer);
694 	if (error) {
695 		usbd_close_pipe(ep->pipe);
696 		return USBD_NOMEM;
697 	}
698 	ep->buffer = usbd_get_buffer(ep->xfer);
699 	ep->next_slot = ep->buffer;
700 	ep->solicit_cookie = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
701 	    out_solicit, ep);
702 quit:
703 	return err;
704 }
705 
706 static void
free_pipe(struct umidi_endpoint * ep)707 free_pipe(struct umidi_endpoint *ep)
708 {
709 	DPRINTF(("%s: free_pipe %p\n", device_xname(ep->sc->sc_dev), ep));
710 	usbd_abort_pipe(ep->pipe);
711 	usbd_destroy_xfer(ep->xfer);
712 	usbd_close_pipe(ep->pipe);
713 	softint_disestablish(ep->solicit_cookie);
714 }
715 
716 
717 /* alloc/free the array of endpoint structures */
718 
719 static usbd_status alloc_all_endpoints_fixed_ep(struct umidi_softc *);
720 static usbd_status alloc_all_endpoints_yamaha(struct umidi_softc *);
721 static usbd_status alloc_all_endpoints_genuine(struct umidi_softc *);
722 
723 static usbd_status
alloc_all_endpoints(struct umidi_softc * sc)724 alloc_all_endpoints(struct umidi_softc *sc)
725 {
726 	usbd_status err;
727 	int i, n;
728 
729 	if (UMQ_ISTYPE(sc, UMQ_TYPE_FIXED_EP)) {
730 		err = alloc_all_endpoints_fixed_ep(sc);
731 	} else if (UMQ_ISTYPE(sc, UMQ_TYPE_YAMAHA)) {
732 		err = alloc_all_endpoints_yamaha(sc);
733 	} else {
734 		err = alloc_all_endpoints_genuine(sc);
735 	}
736 	if (err != USBD_NORMAL_COMPLETION)
737 		return err;
738 
739 	n = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
740 	for (i = 0; i < n; i++) {
741 		err = alloc_pipe(&sc->sc_endpoints[i]);
742 		if (err != USBD_NORMAL_COMPLETION) {
743 			while (i --> 0)
744 				free_pipe(&sc->sc_endpoints[i]);
745 			kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
746 			sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
747 			break;
748 		}
749 	}
750 	return err;
751 }
752 
753 static void
free_all_endpoints(struct umidi_softc * sc)754 free_all_endpoints(struct umidi_softc *sc)
755 {
756 	int i, n;
757 
758 	if (sc->sc_endpoints == NULL) {
759 		/* nothing to free */
760 		return;
761 	}
762 
763 	n = sc->sc_in_num_endpoints + sc->sc_out_num_endpoints;
764 	for (i = 0; i < n; i++)
765 		free_pipe(&sc->sc_endpoints[i]);
766 	kmem_free(sc->sc_endpoints, sc->sc_endpoints_len);
767 	sc->sc_endpoints = sc->sc_out_ep = sc->sc_in_ep = NULL;
768 }
769 
770 static usbd_status
alloc_all_endpoints_fixed_ep(struct umidi_softc * sc)771 alloc_all_endpoints_fixed_ep(struct umidi_softc *sc)
772 {
773 	usbd_status err;
774 	const struct umq_fixed_ep_desc *fp;
775 	struct umidi_endpoint *ep;
776 	usb_endpoint_descriptor_t *epd;
777 	int i;
778 
779 	fp = umidi_get_quirk_data_from_type(sc->sc_quirk,
780 					    UMQ_TYPE_FIXED_EP);
781 	if (fp->num_in_ep == 0 && fp->num_out_ep == 0)
782 		return USBD_INVAL;
783 	sc->sc_out_num_jacks = 0;
784 	sc->sc_in_num_jacks = 0;
785 	sc->sc_out_num_endpoints = fp->num_out_ep;
786 	sc->sc_in_num_endpoints = fp->num_in_ep;
787 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
788 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
789 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
790 	sc->sc_in_ep =
791 	    sc->sc_in_num_endpoints ?
792 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
793 
794 	ep = &sc->sc_out_ep[0];
795 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
796 		epd = usbd_interface2endpoint_descriptor(
797 			sc->sc_iface,
798 			fp->out_ep[i].ep);
799 		if (!epd) {
800 			aprint_error_dev(sc->sc_dev,
801 			    "cannot get endpoint descriptor(out:%d)\n",
802 			     fp->out_ep[i].ep);
803 			err = USBD_INVAL;
804 			goto error;
805 		}
806 		if (UE_GET_XFERTYPE(epd->bmAttributes)!=UE_BULK ||
807 		    UE_GET_DIR(epd->bEndpointAddress)!=UE_DIR_OUT) {
808 			aprint_error_dev(sc->sc_dev,
809 			    "illegal endpoint(out:%d)\n", fp->out_ep[i].ep);
810 			err = USBD_INVAL;
811 			goto error;
812 		}
813 		ep->sc = sc;
814 		ep->addr = epd->bEndpointAddress;
815 		ep->num_jacks = fp->out_ep[i].num_jacks;
816 		sc->sc_out_num_jacks += fp->out_ep[i].num_jacks;
817 		ep->num_open = 0;
818 		ep++;
819 	}
820 	ep = &sc->sc_in_ep[0];
821 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
822 		epd = usbd_interface2endpoint_descriptor(
823 			sc->sc_iface,
824 			fp->in_ep[i].ep);
825 		if (!epd) {
826 			aprint_error_dev(sc->sc_dev,
827 			    "cannot get endpoint descriptor(in:%d)\n",
828 			     fp->in_ep[i].ep);
829 			err = USBD_INVAL;
830 			goto error;
831 		}
832 		/*
833 		 * MIDISPORT_2X4 inputs on an interrupt rather than a bulk
834 		 * endpoint.  The existing input logic in this driver seems
835 		 * to work successfully if we just stop treating an interrupt
836 		 * endpoint as illegal (or the in_progress status we get on
837 		 * the initial transfer).  It does not seem necessary to
838 		 * actually use the interrupt flavor of alloc_pipe or make
839 		 * other serious rearrangements of logic.  I like that.
840 		 */
841 		switch ( UE_GET_XFERTYPE(epd->bmAttributes) ) {
842 		case UE_BULK:
843 		case UE_INTERRUPT:
844 			if (UE_DIR_IN == UE_GET_DIR(epd->bEndpointAddress))
845 				break;
846 			/*FALLTHROUGH*/
847 		default:
848 			aprint_error_dev(sc->sc_dev,
849 			    "illegal endpoint(in:%d)\n", fp->in_ep[i].ep);
850 			err = USBD_INVAL;
851 			goto error;
852 		}
853 
854 		ep->sc = sc;
855 		ep->addr = epd->bEndpointAddress;
856 		ep->num_jacks = fp->in_ep[i].num_jacks;
857 		sc->sc_in_num_jacks += fp->in_ep[i].num_jacks;
858 		ep->num_open = 0;
859 		ep++;
860 	}
861 
862 	return USBD_NORMAL_COMPLETION;
863 error:
864 	kmem_free(sc->sc_endpoints, UMIDI_ENDPOINT_SIZE(sc));
865 	sc->sc_endpoints = NULL;
866 	return err;
867 }
868 
869 static usbd_status
alloc_all_endpoints_yamaha(struct umidi_softc * sc)870 alloc_all_endpoints_yamaha(struct umidi_softc *sc)
871 {
872 	/* This driver currently supports max 1in/1out bulk endpoints */
873 	char *end;
874 	usb_config_descriptor_t *cdesc;
875 	usb_descriptor_t *desc;
876 	umidi_cs_descriptor_t *csdesc;
877 	usb_interface_descriptor_t *idesc;
878 	umidi_cs_interface_descriptor_t *udesc;
879 	usb_endpoint_descriptor_t *epd;
880 	int out_addr, in_addr, i;
881 	int dir;
882 
883 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
884 	out_addr = in_addr = 0;
885 
886 	/* detect endpoints */
887 	cdesc = usbd_get_config_descriptor(sc->sc_udev);
888 	end = (char *)cdesc + UGETW(cdesc->wTotalLength);
889 	idesc = usbd_get_interface_descriptor(sc->sc_iface);
890 	KASSERT((char *)cdesc <= (char *)idesc);
891 	KASSERT((char *)idesc < end);
892 	KASSERT(end - (char *)idesc >= sizeof(*idesc));
893 	KASSERT(idesc->bLength >= sizeof(*idesc));
894 	KASSERT(idesc->bLength <= end - (char *)idesc);
895 	for (i = idesc->bNumEndpoints; i --> 0;) {
896 		epd = usbd_interface2endpoint_descriptor(sc->sc_iface, i);
897 		KASSERT(epd != NULL);
898 		if (UE_GET_XFERTYPE(epd->bmAttributes) == UE_BULK) {
899 			dir = UE_GET_DIR(epd->bEndpointAddress);
900 			if (dir == UE_DIR_OUT && !out_addr)
901 				out_addr = epd->bEndpointAddress;
902 			else if (dir == UE_DIR_IN && !in_addr)
903 				in_addr = epd->bEndpointAddress;
904 		}
905 	}
906 	desc = NEXT_D(idesc);
907 	if ((char *)desc > end || end - (char *)desc < sizeof(*desc) ||
908 	    desc->bLength < sizeof(*desc) ||
909 	    desc->bLength > end - (char *)desc)
910 		return USBD_INVAL;
911 
912 	/* count jacks */
913 	if (desc->bDescriptorType != UDESC_CS_INTERFACE ||
914 	    desc->bLength < sizeof(*csdesc))
915 		return USBD_INVAL;
916 	csdesc = (umidi_cs_descriptor_t *)desc;
917 	if (csdesc->bDescriptorSubtype != UMIDI_MS_HEADER)
918 		return USBD_INVAL;
919 	udesc = TO_CSIFD(csdesc);
920 	if (UGETW(udesc->wTotalLength) > end - (char *)udesc)
921 		return USBD_INVAL;
922 	if (UGETW(udesc->wTotalLength) < udesc->bLength)
923 		return USBD_INVAL;
924 	end = (char *)udesc + UGETW(udesc->wTotalLength);
925 	desc = NEXT_D(udesc);
926 
927 	for (; end - (char *)desc >= sizeof(*desc); desc = NEXT_D(desc)) {
928 		if (desc->bLength < sizeof(*desc) ||
929 		    desc->bLength > end - (char *)desc)
930 			break;
931 		if (desc->bDescriptorType != UDESC_CS_INTERFACE ||
932 		    desc->bLength < sizeof(*csdesc) ||
933 		    desc->bLength < UMIDI_JACK_DESCRIPTOR_SIZE)
934 			continue;
935 		csdesc = (umidi_cs_descriptor_t *)desc;
936 		if (csdesc->bDescriptorSubtype == UMIDI_OUT_JACK)
937 			sc->sc_out_num_jacks++;
938 		else if (csdesc->bDescriptorSubtype == UMIDI_IN_JACK)
939 			sc->sc_in_num_jacks++;
940 	}
941 
942 	/* validate some parameters */
943 	if (sc->sc_out_num_jacks > UMIDI_MAX_EPJACKS)
944 		sc->sc_out_num_jacks = UMIDI_MAX_EPJACKS;
945 	if (sc->sc_in_num_jacks > UMIDI_MAX_EPJACKS)
946 		sc->sc_in_num_jacks = UMIDI_MAX_EPJACKS;
947 	if (sc->sc_out_num_jacks && out_addr) {
948 		sc->sc_out_num_endpoints = 1;
949 	} else {
950 		sc->sc_out_num_endpoints = 0;
951 		sc->sc_out_num_jacks = 0;
952 	}
953 	if (sc->sc_in_num_jacks && in_addr) {
954 		sc->sc_in_num_endpoints = 1;
955 	} else {
956 		sc->sc_in_num_endpoints = 0;
957 		sc->sc_in_num_jacks = 0;
958 	}
959 	sc->sc_endpoints_len = UMIDI_ENDPOINT_SIZE(sc);
960 	if (sc->sc_endpoints_len == 0)
961 		return USBD_INVAL;
962 	sc->sc_endpoints = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
963 	if (sc->sc_out_num_endpoints) {
964 		sc->sc_out_ep = sc->sc_endpoints;
965 		sc->sc_out_ep->sc = sc;
966 		sc->sc_out_ep->addr = out_addr;
967 		sc->sc_out_ep->num_jacks = sc->sc_out_num_jacks;
968 		sc->sc_out_ep->num_open = 0;
969 	} else
970 		sc->sc_out_ep = NULL;
971 
972 	if (sc->sc_in_num_endpoints) {
973 		sc->sc_in_ep = sc->sc_endpoints + sc->sc_out_num_endpoints;
974 		sc->sc_in_ep->sc = sc;
975 		sc->sc_in_ep->addr = in_addr;
976 		sc->sc_in_ep->num_jacks = sc->sc_in_num_jacks;
977 		sc->sc_in_ep->num_open = 0;
978 	} else
979 		sc->sc_in_ep = NULL;
980 
981 	return USBD_NORMAL_COMPLETION;
982 }
983 
984 static usbd_status
alloc_all_endpoints_genuine(struct umidi_softc * sc)985 alloc_all_endpoints_genuine(struct umidi_softc *sc)
986 {
987 	usb_interface_descriptor_t *interface_desc;
988 	usb_config_descriptor_t *config_desc;
989 	usb_descriptor_t *desc;
990 	char *end;
991 	int num_ep;
992 	struct umidi_endpoint *p, *q, *lowest, *endep, tmpep;
993 	int epaddr;
994 
995 	interface_desc = usbd_get_interface_descriptor(sc->sc_iface);
996 	num_ep = interface_desc->bNumEndpoints;
997 	if (num_ep == 0)
998 		return USBD_INVAL;
999 	sc->sc_endpoints_len = sizeof(struct umidi_endpoint) * num_ep;
1000 	sc->sc_endpoints = p = kmem_zalloc(sc->sc_endpoints_len, KM_SLEEP);
1001 	sc->sc_out_num_jacks = sc->sc_in_num_jacks = 0;
1002 	sc->sc_out_num_endpoints = sc->sc_in_num_endpoints = 0;
1003 	epaddr = -1;
1004 
1005 	/* get the list of endpoints for midi stream */
1006 	config_desc = usbd_get_config_descriptor(sc->sc_udev);
1007 	end = (char *)config_desc + UGETW(config_desc->wTotalLength);
1008 	desc = TO_D(config_desc);
1009 	for (; end - (char *)desc >= sizeof(*desc); desc = NEXT_D(desc)) {
1010 		if (desc->bLength < sizeof(*desc) ||
1011 		    desc->bLength > end - (char *)desc)
1012 			break;
1013 		if (desc->bDescriptorType == UDESC_ENDPOINT &&
1014 		    desc->bLength >= sizeof(*TO_EPD(desc)) &&
1015 		    UE_GET_XFERTYPE(TO_EPD(desc)->bmAttributes) == UE_BULK) {
1016 			epaddr = TO_EPD(desc)->bEndpointAddress;
1017 		} else if (desc->bDescriptorType == UDESC_CS_ENDPOINT &&
1018 		    desc->bLength >= sizeof(*TO_CSEPD(desc)) &&
1019 		    epaddr != -1) {
1020 			if (num_ep > 0) {
1021 				num_ep--;
1022 				p->sc = sc;
1023 				p->addr = epaddr;
1024 				p->num_jacks = TO_CSEPD(desc)->bNumEmbMIDIJack;
1025 				if (UE_GET_DIR(epaddr) == UE_DIR_OUT) {
1026 					sc->sc_out_num_endpoints++;
1027 					sc->sc_out_num_jacks += p->num_jacks;
1028 				} else {
1029 					sc->sc_in_num_endpoints++;
1030 					sc->sc_in_num_jacks += p->num_jacks;
1031 				}
1032 				p++;
1033 			}
1034 		} else
1035 			epaddr = -1;
1036 	}
1037 
1038 	/* sort endpoints */
1039 	num_ep = sc->sc_out_num_endpoints + sc->sc_in_num_endpoints;
1040 	p = sc->sc_endpoints;
1041 	endep = p + num_ep;
1042 	while (p<endep) {
1043 		lowest = p;
1044 		for (q=p+1; q<endep; q++) {
1045 			if ((UE_GET_DIR(lowest->addr)==UE_DIR_IN &&
1046 			     UE_GET_DIR(q->addr)==UE_DIR_OUT) ||
1047 			    ((UE_GET_DIR(lowest->addr)==
1048 			      UE_GET_DIR(q->addr)) &&
1049 			     (UE_GET_ADDR(lowest->addr)>
1050 			      UE_GET_ADDR(q->addr))))
1051 				lowest = q;
1052 		}
1053 		if (lowest != p) {
1054 			memcpy((void *)&tmpep, (void *)p, sizeof(tmpep));
1055 			memcpy((void *)p, (void *)lowest, sizeof(tmpep));
1056 			memcpy((void *)lowest, (void *)&tmpep, sizeof(tmpep));
1057 		}
1058 		p->num_open = 0;
1059 		p++;
1060 	}
1061 
1062 	sc->sc_out_ep = sc->sc_out_num_endpoints ? sc->sc_endpoints : NULL;
1063 	sc->sc_in_ep =
1064 	    sc->sc_in_num_endpoints ?
1065 		sc->sc_endpoints+sc->sc_out_num_endpoints : NULL;
1066 
1067 	return USBD_NORMAL_COMPLETION;
1068 }
1069 
1070 
1071 /*
1072  * jack stuffs
1073  */
1074 
1075 static usbd_status
alloc_all_jacks(struct umidi_softc * sc)1076 alloc_all_jacks(struct umidi_softc *sc)
1077 {
1078 	int i, j;
1079 	struct umidi_endpoint *ep;
1080 	struct umidi_jack *jack;
1081 	const unsigned char *cn_spec;
1082 
1083 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_PER_EP))
1084 		sc->cblnums_global = 0;
1085 	else if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_SEQ_GLOBAL))
1086 		sc->cblnums_global = 1;
1087 	else {
1088 		/*
1089 		 * I don't think this default is correct, but it preserves
1090 		 * the prior behavior of the code. That's why I defined two
1091 		 * complementary quirks. Any device for which the default
1092 		 * behavior is wrong can be made to work by giving it an
1093 		 * explicit quirk, and if a pattern ever develops (as I suspect
1094 		 * it will) that a lot of otherwise standard USB MIDI devices
1095 		 * need the CN_SEQ_PER_EP "quirk," then this default can be
1096 		 * changed to 0, and the only devices that will break are those
1097 		 * listing neither quirk, and they'll easily be fixed by giving
1098 		 * them the CN_SEQ_GLOBAL quirk.
1099 		 */
1100 		sc->cblnums_global = 1;
1101 	}
1102 
1103 	if (UMQ_ISTYPE(sc, UMQ_TYPE_CN_FIXED))
1104 		cn_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1105 					    		 UMQ_TYPE_CN_FIXED);
1106 	else
1107 		cn_spec = NULL;
1108 
1109 	/* allocate/initialize structures */
1110 	if (sc->sc_in_num_jacks == 0 && sc->sc_out_num_jacks == 0)
1111 		return USBD_INVAL;
1112 	sc->sc_jacks = kmem_zalloc(sizeof(*sc->sc_out_jacks) *
1113 	    (sc->sc_in_num_jacks + sc->sc_out_num_jacks), KM_SLEEP);
1114 	if (!sc->sc_jacks)
1115 		return USBD_NOMEM;
1116 	sc->sc_out_jacks =
1117 	    sc->sc_out_num_jacks ? sc->sc_jacks : NULL;
1118 	sc->sc_in_jacks =
1119 	    sc->sc_in_num_jacks ? sc->sc_jacks+sc->sc_out_num_jacks : NULL;
1120 
1121 	jack = &sc->sc_out_jacks[0];
1122 	for (i = 0; i < sc->sc_out_num_jacks; i++) {
1123 		jack->opened = 0;
1124 		jack->bound = 0;
1125 		jack->arg = NULL;
1126 		jack->u.out.intr = NULL;
1127 		jack->midiman_ppkt = NULL;
1128 		if (sc->cblnums_global)
1129 			jack->cable_number = i;
1130 		jack++;
1131 	}
1132 	jack = &sc->sc_in_jacks[0];
1133 	for (i = 0; i < sc->sc_in_num_jacks; i++) {
1134 		jack->opened = 0;
1135 		jack->bound = 0;
1136 		jack->arg = NULL;
1137 		jack->u.in.intr = NULL;
1138 		if (sc->cblnums_global)
1139 			jack->cable_number = i;
1140 		jack++;
1141 	}
1142 
1143 	/* assign each jacks to each endpoints */
1144 	jack = &sc->sc_out_jacks[0];
1145 	ep = &sc->sc_out_ep[0];
1146 	for (i = 0; i < sc->sc_out_num_endpoints; i++) {
1147 		for (j = 0; j < ep->num_jacks; j++) {
1148 			jack->endpoint = ep;
1149 			if (cn_spec != NULL)
1150 				jack->cable_number = *cn_spec++;
1151 			else if (!sc->cblnums_global)
1152 				jack->cable_number = j;
1153 			ep->jacks[jack->cable_number] = jack;
1154 			jack++;
1155 		}
1156 		ep++;
1157 	}
1158 	jack = &sc->sc_in_jacks[0];
1159 	ep = &sc->sc_in_ep[0];
1160 	for (i = 0; i < sc->sc_in_num_endpoints; i++) {
1161 		for (j = 0; j < ep->num_jacks; j++) {
1162 			jack->endpoint = ep;
1163 			if (cn_spec != NULL)
1164 				jack->cable_number = *cn_spec++;
1165 			else if (!sc->cblnums_global)
1166 				jack->cable_number = j;
1167 			ep->jacks[jack->cable_number] = jack;
1168 			jack++;
1169 		}
1170 		ep++;
1171 	}
1172 
1173 	return USBD_NORMAL_COMPLETION;
1174 }
1175 
1176 static void
free_all_jacks(struct umidi_softc * sc)1177 free_all_jacks(struct umidi_softc *sc)
1178 {
1179 	struct umidi_jack *jacks;
1180 	size_t len;
1181 
1182 	mutex_enter(&sc->sc_lock);
1183 	jacks = sc->sc_jacks;
1184 	len = sizeof(*sc->sc_out_jacks) *
1185 	    (sc->sc_in_num_jacks + sc->sc_out_num_jacks);
1186 	sc->sc_jacks = sc->sc_in_jacks = sc->sc_out_jacks = NULL;
1187 	mutex_exit(&sc->sc_lock);
1188 
1189 	if (jacks)
1190 		kmem_free(jacks, len);
1191 }
1192 
1193 static usbd_status
bind_jacks_to_mididev(struct umidi_softc * sc,struct umidi_jack * out_jack,struct umidi_jack * in_jack,struct umidi_mididev * mididev)1194 bind_jacks_to_mididev(struct umidi_softc *sc,
1195 		      struct umidi_jack *out_jack,
1196 		      struct umidi_jack *in_jack,
1197 		      struct umidi_mididev *mididev)
1198 {
1199 	if ((out_jack && out_jack->bound) || (in_jack && in_jack->bound))
1200 		return USBD_IN_USE;
1201 	if (mididev->out_jack || mididev->in_jack)
1202 		return USBD_IN_USE;
1203 
1204 	if (out_jack)
1205 		out_jack->bound = 1;
1206 	if (in_jack)
1207 		in_jack->bound = 1;
1208 	mididev->in_jack = in_jack;
1209 	mididev->out_jack = out_jack;
1210 
1211 	mididev->closing = 0;
1212 
1213 	return USBD_NORMAL_COMPLETION;
1214 }
1215 
1216 static void
unbind_jacks_from_mididev(struct umidi_mididev * mididev)1217 unbind_jacks_from_mididev(struct umidi_mididev *mididev)
1218 {
1219 	KASSERT(mutex_owned(&mididev->sc->sc_lock));
1220 
1221 	mididev->closing = 1;
1222 
1223 	if ((mididev->flags & FWRITE) && mididev->out_jack)
1224 		close_out_jack(mididev->out_jack);
1225 	if ((mididev->flags & FREAD) && mididev->in_jack)
1226 		close_in_jack(mididev->in_jack);
1227 
1228 	if (mididev->out_jack) {
1229 		mididev->out_jack->bound = 0;
1230 		mididev->out_jack = NULL;
1231 	}
1232 	if (mididev->in_jack) {
1233 		mididev->in_jack->bound = 0;
1234 		mididev->in_jack = NULL;
1235 	}
1236 }
1237 
1238 static void
unbind_all_jacks(struct umidi_softc * sc)1239 unbind_all_jacks(struct umidi_softc *sc)
1240 {
1241 	int i;
1242 
1243 	mutex_enter(&sc->sc_lock);
1244 	if (sc->sc_mididevs)
1245 		for (i = 0; i < sc->sc_num_mididevs; i++)
1246 			unbind_jacks_from_mididev(&sc->sc_mididevs[i]);
1247 	mutex_exit(&sc->sc_lock);
1248 }
1249 
1250 static usbd_status
assign_all_jacks_automatically(struct umidi_softc * sc)1251 assign_all_jacks_automatically(struct umidi_softc *sc)
1252 {
1253 	usbd_status err;
1254 	int i;
1255 	struct umidi_jack *out, *in;
1256 	const signed char *asg_spec;
1257 
1258 	err =
1259 	    alloc_all_mididevs(sc,
1260 			       uimax(sc->sc_out_num_jacks, sc->sc_in_num_jacks));
1261 	if (err!=USBD_NORMAL_COMPLETION)
1262 		return err;
1263 
1264 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MD_FIXED))
1265 		asg_spec = umidi_get_quirk_data_from_type(sc->sc_quirk,
1266 					    		  UMQ_TYPE_MD_FIXED);
1267 	else
1268 		asg_spec = NULL;
1269 
1270 	for (i = 0; i < sc->sc_num_mididevs; i++) {
1271 		if (asg_spec != NULL) {
1272 			if (*asg_spec == -1)
1273 				out = NULL;
1274 			else
1275 				out = &sc->sc_out_jacks[*asg_spec];
1276 			++ asg_spec;
1277 			if (*asg_spec == -1)
1278 				in = NULL;
1279 			else
1280 				in = &sc->sc_in_jacks[*asg_spec];
1281 			++ asg_spec;
1282 		} else {
1283 			out = (i<sc->sc_out_num_jacks) ? &sc->sc_out_jacks[i]
1284 						       : NULL;
1285 			in = (i<sc->sc_in_num_jacks) ? &sc->sc_in_jacks[i]
1286 						     : NULL;
1287 		}
1288 		err = bind_jacks_to_mididev(sc, out, in, &sc->sc_mididevs[i]);
1289 		if (err != USBD_NORMAL_COMPLETION) {
1290 			free_all_mididevs(sc);
1291 			return err;
1292 		}
1293 	}
1294 
1295 	return USBD_NORMAL_COMPLETION;
1296 }
1297 
1298 static usbd_status
open_out_jack(struct umidi_jack * jack,void * arg,void (* intr)(void *))1299 open_out_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *))
1300 {
1301 	struct umidi_endpoint *ep = jack->endpoint;
1302 	struct umidi_softc *sc = ep->sc;
1303 	umidi_packet_bufp end;
1304 	int err;
1305 
1306 	KASSERT(mutex_owned(&sc->sc_lock));
1307 
1308 	if (jack->opened)
1309 		return USBD_IN_USE;
1310 
1311 	jack->arg = arg;
1312 	jack->u.out.intr = intr;
1313 	jack->midiman_ppkt = NULL;
1314 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1315 	jack->opened = 1;
1316 	ep->num_open++;
1317 	/*
1318 	 * out_solicit maintains an invariant that there will always be
1319 	 * (num_open - num_scheduled) slots free in the buffer. as we have
1320 	 * just incremented num_open, the buffer may be too full to satisfy
1321 	 * the invariant until a transfer completes, for which we must wait.
1322 	 */
1323 	while (end - ep->next_slot < ep->num_open - ep->num_scheduled) {
1324 		err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1325 		     mstohz(10));
1326 		if (err) {
1327 			ep->num_open--;
1328 			jack->opened = 0;
1329 			return USBD_IOERROR;
1330 		}
1331 	}
1332 
1333 	return USBD_NORMAL_COMPLETION;
1334 }
1335 
1336 static usbd_status
open_in_jack(struct umidi_jack * jack,void * arg,void (* intr)(void *,int))1337 open_in_jack(struct umidi_jack *jack, void *arg, void (*intr)(void *, int))
1338 {
1339 	usbd_status err = USBD_NORMAL_COMPLETION;
1340 	struct umidi_endpoint *ep = jack->endpoint;
1341 
1342 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1343 
1344 	if (jack->opened)
1345 		return USBD_IN_USE;
1346 
1347 	jack->arg = arg;
1348 	jack->u.in.intr = intr;
1349 	jack->opened = 1;
1350 	if (ep->num_open++ == 0 && UE_GET_DIR(ep->addr)==UE_DIR_IN) {
1351 		/*
1352 		 * Can't hold the interrupt lock while calling into USB,
1353 		 * but we can safely drop it here.
1354 		 */
1355 		mutex_exit(&ep->sc->sc_lock);
1356 		err = start_input_transfer(ep);
1357 		if (err != USBD_NORMAL_COMPLETION &&
1358 		    err != USBD_IN_PROGRESS) {
1359 			ep->num_open--;
1360 		}
1361 		mutex_enter(&ep->sc->sc_lock);
1362 	}
1363 
1364 	return err;
1365 }
1366 
1367 static void
close_out_jack(struct umidi_jack * jack)1368 close_out_jack(struct umidi_jack *jack)
1369 {
1370 	struct umidi_endpoint *ep;
1371 	struct umidi_softc *sc;
1372 	uint16_t mask;
1373 	int err;
1374 
1375 	if (jack->opened) {
1376 		ep = jack->endpoint;
1377 		sc = ep->sc;
1378 
1379 		KASSERT(mutex_owned(&sc->sc_lock));
1380 		mask = 1 << (jack->cable_number);
1381 		while (mask & (ep->this_schedule | ep->next_schedule)) {
1382 			err = cv_timedwait_sig(&sc->sc_cv, &sc->sc_lock,
1383 			     mstohz(10));
1384 			if (err)
1385 				break;
1386 		}
1387 		/*
1388 		 * We can re-enter this function from both close() and
1389 		 * detach().  Make sure only one of them does this part.
1390 		 */
1391 		if (jack->opened) {
1392 			jack->opened = 0;
1393 			jack->endpoint->num_open--;
1394 			ep->this_schedule &= ~mask;
1395 			ep->next_schedule &= ~mask;
1396 		}
1397 	}
1398 }
1399 
1400 static void
close_in_jack(struct umidi_jack * jack)1401 close_in_jack(struct umidi_jack *jack)
1402 {
1403 	if (jack->opened) {
1404 		struct umidi_softc *sc = jack->endpoint->sc;
1405 
1406 		KASSERT(mutex_owned(&sc->sc_lock));
1407 
1408 		jack->opened = 0;
1409 		if (--jack->endpoint->num_open == 0) {
1410 			/*
1411 			 * We have to drop the (interrupt) lock so that
1412 			 * the USB thread lock can be safely taken by
1413 			 * the abort operation.  This is safe as this
1414 			 * either closing or dying will be set properly.
1415 			 */
1416 			mutex_exit(&sc->sc_lock);
1417 			usbd_abort_pipe(jack->endpoint->pipe);
1418 			mutex_enter(&sc->sc_lock);
1419 		}
1420 	}
1421 }
1422 
1423 static usbd_status
attach_mididev(struct umidi_softc * sc,struct umidi_mididev * mididev)1424 attach_mididev(struct umidi_softc *sc, struct umidi_mididev *mididev)
1425 {
1426 	if (mididev->sc)
1427 		return USBD_IN_USE;
1428 
1429 	mididev->sc = sc;
1430 
1431 	describe_mididev(mididev);
1432 
1433 	mididev->mdev = midi_attach_mi(&umidi_hw_if, mididev, sc->sc_dev);
1434 
1435 	return USBD_NORMAL_COMPLETION;
1436 }
1437 
1438 static usbd_status
detach_mididev(struct umidi_mididev * mididev,int flags)1439 detach_mididev(struct umidi_mididev *mididev, int flags)
1440 {
1441 	struct umidi_softc *sc = mididev->sc;
1442 
1443 	if (!sc)
1444 		return USBD_NO_ADDR;
1445 
1446 	mutex_enter(&sc->sc_lock);
1447 	if (mididev->opened) {
1448 		umidi_close(mididev);
1449 	}
1450 	unbind_jacks_from_mididev(mididev);
1451 	mutex_exit(&sc->sc_lock);
1452 
1453 	if (mididev->mdev != NULL)
1454 		config_detach(mididev->mdev, flags);
1455 
1456 	if (NULL != mididev->label) {
1457 		kmem_free(mididev->label, mididev->label_len);
1458 		mididev->label = NULL;
1459 	}
1460 
1461 	mididev->sc = NULL;
1462 
1463 	return USBD_NORMAL_COMPLETION;
1464 }
1465 
1466 static void
deactivate_mididev(struct umidi_mididev * mididev)1467 deactivate_mididev(struct umidi_mididev *mididev)
1468 {
1469 	if (mididev->out_jack)
1470 		mididev->out_jack->bound = 0;
1471 	if (mididev->in_jack)
1472 		mididev->in_jack->bound = 0;
1473 }
1474 
1475 static usbd_status
alloc_all_mididevs(struct umidi_softc * sc,int nmidi)1476 alloc_all_mididevs(struct umidi_softc *sc, int nmidi)
1477 {
1478 	sc->sc_num_mididevs = nmidi;
1479 	sc->sc_mididevs = kmem_zalloc(sizeof(*sc->sc_mididevs)*nmidi, KM_SLEEP);
1480 	return USBD_NORMAL_COMPLETION;
1481 }
1482 
1483 static void
free_all_mididevs(struct umidi_softc * sc)1484 free_all_mididevs(struct umidi_softc *sc)
1485 {
1486 	struct umidi_mididev *mididevs;
1487 	size_t len;
1488 
1489 	mutex_enter(&sc->sc_lock);
1490 	mididevs = sc->sc_mididevs;
1491 	if (mididevs)
1492 		  len = sizeof(*sc->sc_mididevs )* sc->sc_num_mididevs;
1493 	sc->sc_mididevs = NULL;
1494 	sc->sc_num_mididevs = 0;
1495 	mutex_exit(&sc->sc_lock);
1496 
1497 	if (mididevs)
1498 		kmem_free(mididevs, len);
1499 }
1500 
1501 static usbd_status
attach_all_mididevs(struct umidi_softc * sc)1502 attach_all_mididevs(struct umidi_softc *sc)
1503 {
1504 	usbd_status err;
1505 	int i;
1506 
1507 	if (sc->sc_mididevs)
1508 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1509 			err = attach_mididev(sc, &sc->sc_mididevs[i]);
1510 			if (err != USBD_NORMAL_COMPLETION)
1511 				return err;
1512 		}
1513 
1514 	return USBD_NORMAL_COMPLETION;
1515 }
1516 
1517 static usbd_status
detach_all_mididevs(struct umidi_softc * sc,int flags)1518 detach_all_mididevs(struct umidi_softc *sc, int flags)
1519 {
1520 	usbd_status err;
1521 	int i;
1522 
1523 	if (sc->sc_mididevs)
1524 		for (i = 0; i < sc->sc_num_mididevs; i++) {
1525 			err = detach_mididev(&sc->sc_mididevs[i], flags);
1526 			if (err != USBD_NORMAL_COMPLETION)
1527 				return err;
1528 		}
1529 
1530 	return USBD_NORMAL_COMPLETION;
1531 }
1532 
1533 static void
deactivate_all_mididevs(struct umidi_softc * sc)1534 deactivate_all_mididevs(struct umidi_softc *sc)
1535 {
1536 	int i;
1537 
1538 	if (sc->sc_mididevs) {
1539 		for (i = 0; i < sc->sc_num_mididevs; i++)
1540 			deactivate_mididev(&sc->sc_mididevs[i]);
1541 	}
1542 }
1543 
1544 /*
1545  * TODO: the 0-based cable numbers will often not match the labeling of the
1546  * equipment. Ideally:
1547  *  For class-compliant devices: get the iJack string from the jack descriptor.
1548  *  Otherwise:
1549  *  - support a DISPLAY_BASE_CN quirk (add the value to each internal cable
1550  *    number for display)
1551  *  - support an array quirk explicitly giving a char * for each jack.
1552  * For now, you get 0-based cable numbers. If there are multiple endpoints and
1553  * the CNs are not globally unique, each is shown with its associated endpoint
1554  * address in hex also. That should not be necessary when using iJack values
1555  * or a quirk array.
1556  */
1557 void
describe_mididev(struct umidi_mididev * md)1558 describe_mididev(struct umidi_mididev *md)
1559 {
1560 	char in_label[16];
1561 	char out_label[16];
1562 	const char *unit_label;
1563 	char *final_label;
1564 	struct umidi_softc *sc;
1565 	int show_ep_in;
1566 	int show_ep_out;
1567 	size_t len;
1568 
1569 	sc = md->sc;
1570 	show_ep_in  = sc-> sc_in_num_endpoints > 1 && !sc->cblnums_global;
1571 	show_ep_out = sc->sc_out_num_endpoints > 1 && !sc->cblnums_global;
1572 
1573 	if (NULL == md->in_jack)
1574 		in_label[0] = '\0';
1575 	else if (show_ep_in)
1576 		snprintf(in_label, sizeof(in_label), "<%d(%x) ",
1577 		    md->in_jack->cable_number, md->in_jack->endpoint->addr);
1578 	else
1579 		snprintf(in_label, sizeof(in_label), "<%d ",
1580 		    md->in_jack->cable_number);
1581 
1582 	if (NULL == md->out_jack)
1583 		out_label[0] = '\0';
1584 	else if (show_ep_out)
1585 		snprintf(out_label, sizeof(out_label), ">%d(%x) ",
1586 		    md->out_jack->cable_number, md->out_jack->endpoint->addr);
1587 	else
1588 		snprintf(out_label, sizeof(out_label), ">%d ",
1589 		    md->out_jack->cable_number);
1590 
1591 	unit_label = device_xname(sc->sc_dev);
1592 
1593 	len = strlen(in_label) + strlen(out_label) + strlen(unit_label) + 4;
1594 
1595 	final_label = kmem_alloc(len, KM_SLEEP);
1596 
1597 	snprintf(final_label, len, "%s%son %s",
1598 	    in_label, out_label, unit_label);
1599 
1600 	md->label = final_label;
1601 	md->label_len = len;
1602 }
1603 
1604 #ifdef UMIDI_DEBUG
1605 static void
dump_sc(struct umidi_softc * sc)1606 dump_sc(struct umidi_softc *sc)
1607 {
1608 	int i;
1609 
1610 	DPRINTFN(10, ("%s: dump_sc\n", device_xname(sc->sc_dev)));
1611 	for (i=0; i<sc->sc_out_num_endpoints; i++) {
1612 		DPRINTFN(10, ("\tout_ep(%p):\n", &sc->sc_out_ep[i]));
1613 		dump_ep(&sc->sc_out_ep[i]);
1614 	}
1615 	for (i=0; i<sc->sc_in_num_endpoints; i++) {
1616 		DPRINTFN(10, ("\tin_ep(%p):\n", &sc->sc_in_ep[i]));
1617 		dump_ep(&sc->sc_in_ep[i]);
1618 	}
1619 }
1620 
1621 static void
dump_ep(struct umidi_endpoint * ep)1622 dump_ep(struct umidi_endpoint *ep)
1623 {
1624 	int i;
1625 	for (i=0; i<UMIDI_MAX_EPJACKS; i++) {
1626 		if (NULL==ep->jacks[i])
1627 			continue;
1628 		DPRINTFN(10, ("\t\tjack[%d]:%p:\n", i, ep->jacks[i]));
1629 		dump_jack(ep->jacks[i]);
1630 	}
1631 }
1632 static void
dump_jack(struct umidi_jack * jack)1633 dump_jack(struct umidi_jack *jack)
1634 {
1635 	DPRINTFN(10, ("\t\t\tep=%p\n",
1636 		      jack->endpoint));
1637 }
1638 
1639 #endif /* UMIDI_DEBUG */
1640 
1641 
1642 
1643 /*
1644  * MUX MIDI PACKET
1645  */
1646 
1647 static const int packet_length[16] = {
1648 	/*0*/	-1,
1649 	/*1*/	-1,
1650 	/*2*/	2,
1651 	/*3*/	3,
1652 	/*4*/	3,
1653 	/*5*/	1,
1654 	/*6*/	2,
1655 	/*7*/	3,
1656 	/*8*/	3,
1657 	/*9*/	3,
1658 	/*A*/	3,
1659 	/*B*/	3,
1660 	/*C*/	2,
1661 	/*D*/	2,
1662 	/*E*/	3,
1663 	/*F*/	1,
1664 };
1665 
1666 #define	GET_CN(p)		(((unsigned char)(p)>>4)&0x0F)
1667 #define GET_CIN(p)		((unsigned char)(p)&0x0F)
1668 #define MIX_CN_CIN(cn, cin) \
1669 	((unsigned char)((((unsigned char)(cn)&0x0F)<<4)| \
1670 			  ((unsigned char)(cin)&0x0F)))
1671 
1672 static usbd_status
start_input_transfer(struct umidi_endpoint * ep)1673 start_input_transfer(struct umidi_endpoint *ep)
1674 {
1675 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, ep->buffer_size,
1676 	    USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, in_intr);
1677 	return usbd_transfer(ep->xfer);
1678 }
1679 
1680 static usbd_status
start_output_transfer(struct umidi_endpoint * ep)1681 start_output_transfer(struct umidi_endpoint *ep)
1682 {
1683 	usbd_status rv;
1684 	uint32_t length;
1685 	int i;
1686 
1687 	length = (ep->next_slot - ep->buffer) * sizeof(*ep->buffer);
1688 	DPRINTFN(200,("umidi out transfer: start %p end %p length %u\n",
1689 	    ep->buffer, ep->next_slot, length));
1690 
1691 	usbd_setup_xfer(ep->xfer, ep, ep->buffer, length, 0,
1692 	    USBD_NO_TIMEOUT, out_intr);
1693 	rv = usbd_transfer(ep->xfer);
1694 
1695 	/*
1696 	 * Once the transfer is scheduled, no more adding to partial
1697 	 * packets within it.
1698 	 */
1699 	if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1700 		for (i=0; i<UMIDI_MAX_EPJACKS; ++i)
1701 			if (NULL != ep->jacks[i])
1702 				ep->jacks[i]->midiman_ppkt = NULL;
1703 	}
1704 
1705 	return rv;
1706 }
1707 
1708 #ifdef UMIDI_DEBUG
1709 #define DPR_PACKET(dir, sc, p)						\
1710 if ((unsigned char)(p)[1]!=0xFE)				\
1711 	DPRINTFN(500,							\
1712 		 ("%s: umidi packet(" #dir "): %02X %02X %02X %02X\n",	\
1713 		  device_xname(sc->sc_dev),				\
1714 		  (unsigned char)(p)[0],			\
1715 		  (unsigned char)(p)[1],			\
1716 		  (unsigned char)(p)[2],			\
1717 		  (unsigned char)(p)[3]));
1718 #else
1719 #define DPR_PACKET(dir, sc, p)
1720 #endif
1721 
1722 /*
1723  * A 4-byte Midiman packet superficially resembles a 4-byte USB MIDI packet
1724  * with the cable number and length in the last byte instead of the first,
1725  * but there the resemblance ends. Where a USB MIDI packet is a semantic
1726  * unit, a Midiman packet is just a wrapper for 1 to 3 bytes of raw MIDI
1727  * with a cable nybble and a length nybble (which, unlike the CIN of a
1728  * real USB MIDI packet, has no semantics at all besides the length).
1729  * A packet received from a Midiman may contain part of a MIDI message,
1730  * more than one MIDI message, or parts of more than one MIDI message. A
1731  * three-byte MIDI message may arrive in three packets of data length 1, and
1732  * running status may be used. Happily, the midi(4) driver above us will put
1733  * it all back together, so the only cost is in USB bandwidth. The device
1734  * has an easier time with what it receives from us: we'll pack messages in
1735  * and across packets, but filling the packets whenever possible and,
1736  * as midi(4) hands us a complete message at a time, we'll never send one
1737  * in a dribble of short packets.
1738  */
1739 
1740 static int
out_jack_output(struct umidi_jack * out_jack,u_char * src,int len,int cin)1741 out_jack_output(struct umidi_jack *out_jack, u_char *src, int len, int cin)
1742 {
1743 	struct umidi_endpoint *ep = out_jack->endpoint;
1744 	struct umidi_softc *sc = ep->sc;
1745 	unsigned char *packet;
1746 	int plen;
1747 	int poff;
1748 
1749 	KASSERT(mutex_owned(&sc->sc_lock));
1750 
1751 	if (sc->sc_dying)
1752 		return EIO;
1753 
1754 	if (!out_jack->opened)
1755 		return ENODEV; /* XXX as it was, is this the right errno? */
1756 
1757 	sc->sc_refcnt++;
1758 
1759 #ifdef UMIDI_DEBUG
1760 	if (umididebug >= 100)
1761 		microtime(&umidi_tv);
1762 #endif
1763 	DPRINTFN(100, ("umidi out: %"PRIu64".%06"PRIu64
1764 	    "s ep=%p cn=%d len=%d cin=%#x\n", umidi_tv.tv_sec%100,
1765 	    (uint64_t)umidi_tv.tv_usec, ep, out_jack->cable_number, len, cin));
1766 
1767 	packet = *ep->next_slot++;
1768 	KASSERT(ep->buffer_size >=
1769 	    (ep->next_slot - ep->buffer) * sizeof(*ep->buffer));
1770 	memset(packet, 0, UMIDI_PACKET_SIZE);
1771 	if (UMQ_ISTYPE(sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1772 		if (NULL != out_jack->midiman_ppkt) { /* fill out a prev pkt */
1773 			poff = 0x0f & (out_jack->midiman_ppkt[3]);
1774 			plen = 3 - poff;
1775 			if (plen > len)
1776 				plen = len;
1777 			memcpy(out_jack->midiman_ppkt+poff, src, plen);
1778 			src += plen;
1779 			len -= plen;
1780 			plen += poff;
1781 			out_jack->midiman_ppkt[3] =
1782 			    MIX_CN_CIN(out_jack->cable_number, plen);
1783 			DPR_PACKET(out+, sc, out_jack->midiman_ppkt);
1784 			if (3 == plen)
1785 				out_jack->midiman_ppkt = NULL; /* no more */
1786 		}
1787 		if (0 == len)
1788 			ep->next_slot--; /* won't be needed, nevermind */
1789 		else {
1790 			memcpy(packet, src, len);
1791 			packet[3] = MIX_CN_CIN(out_jack->cable_number, len);
1792 			DPR_PACKET(out, sc, packet);
1793 			if (len < 3)
1794 				out_jack->midiman_ppkt = packet;
1795 		}
1796 	} else { /* the nice simple USB class-compliant case */
1797 		packet[0] = MIX_CN_CIN(out_jack->cable_number, cin);
1798 		memcpy(packet+1, src, len);
1799 		DPR_PACKET(out, sc, packet);
1800 	}
1801 	ep->next_schedule |= 1<<(out_jack->cable_number);
1802 	++ ep->num_scheduled;
1803 	if (!ep->armed && !ep->soliciting) {
1804 		/*
1805 		 * It would be bad to call out_solicit directly here (the
1806 		 * caller need not be reentrant) but a soft interrupt allows
1807 		 * solicit to run immediately the caller exits its critical
1808 		 * section, and if the caller has more to write we can get it
1809 		 * before starting the USB transfer, and send a longer one.
1810 		 */
1811 		ep->soliciting = 1;
1812 		kpreempt_disable();
1813 		softint_schedule(ep->solicit_cookie);
1814 		kpreempt_enable();
1815 	}
1816 
1817 	if (--sc->sc_refcnt < 0)
1818 		cv_broadcast(&sc->sc_detach_cv);
1819 
1820 	return 0;
1821 }
1822 
1823 static void
in_intr(struct usbd_xfer * xfer,void * priv,usbd_status status)1824 in_intr(struct usbd_xfer *xfer, void *priv,
1825     usbd_status status)
1826 {
1827 	int cn, len, i;
1828 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1829 	struct umidi_softc *sc = ep->sc;
1830 	struct umidi_jack *jack;
1831 	unsigned char *packet;
1832 	umidi_packet_bufp slot;
1833 	umidi_packet_bufp end;
1834 	unsigned char *data;
1835 	uint32_t count;
1836 
1837 	if (ep->sc->sc_dying || !ep->num_open)
1838 		return;
1839 
1840 	mutex_enter(&sc->sc_lock);
1841 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1842 	if (0 == count % UMIDI_PACKET_SIZE) {
1843 		DPRINTFN(200,("%s: input endpoint %p transfer length %u\n",
1844 			     device_xname(ep->sc->sc_dev), ep, count));
1845 	} else {
1846 		DPRINTF(("%s: input endpoint %p odd transfer length %u\n",
1847 			device_xname(ep->sc->sc_dev), ep, count));
1848 	}
1849 
1850 	slot = ep->buffer;
1851 	end = slot + count / sizeof(*slot);
1852 
1853 	for (packet = *slot; slot < end; packet = *++slot) {
1854 
1855 		if (UMQ_ISTYPE(ep->sc, UMQ_TYPE_MIDIMAN_GARBLE)) {
1856 			cn = (0xf0&(packet[3]))>>4;
1857 			len = 0x0f&(packet[3]);
1858 			data = packet;
1859 		} else {
1860 			cn = GET_CN(packet[0]);
1861 			len = packet_length[GET_CIN(packet[0])];
1862 			data = packet + 1;
1863 		}
1864 		/* 0 <= cn <= 15 by inspection of above code */
1865 		if (!(jack = ep->jacks[cn]) || cn != jack->cable_number) {
1866 			DPRINTF(("%s: stray input endpoint %p cable %d len %d: "
1867 				 "%02X %02X %02X (try CN_SEQ quirk?)\n",
1868 				 device_xname(ep->sc->sc_dev), ep, cn, len,
1869 				 (unsigned)data[0],
1870 				 (unsigned)data[1],
1871 				 (unsigned)data[2]));
1872 			mutex_exit(&sc->sc_lock);
1873 			return;
1874 		}
1875 
1876 		if (!jack->bound || !jack->opened)
1877 			continue;
1878 
1879 		DPRINTFN(500,("%s: input endpoint %p cable %d len %d: "
1880 			     "%02X %02X %02X\n",
1881 			     device_xname(ep->sc->sc_dev), ep, cn, len,
1882 			     (unsigned)data[0],
1883 			     (unsigned)data[1],
1884 			     (unsigned)data[2]));
1885 
1886 		if (jack->u.in.intr) {
1887 			for (i = 0; i < len; i++) {
1888 				(*jack->u.in.intr)(jack->arg, data[i]);
1889 			}
1890 		}
1891 
1892 	}
1893 
1894 	(void)start_input_transfer(ep);
1895 	mutex_exit(&sc->sc_lock);
1896 }
1897 
1898 static void
out_intr(struct usbd_xfer * xfer,void * priv,usbd_status status)1899 out_intr(struct usbd_xfer *xfer, void *priv,
1900     usbd_status status)
1901 {
1902 	struct umidi_endpoint *ep = (struct umidi_endpoint *)priv;
1903 	struct umidi_softc *sc = ep->sc;
1904 	uint32_t count;
1905 
1906 	if (sc->sc_dying)
1907 		return;
1908 
1909 	mutex_enter(&sc->sc_lock);
1910 #ifdef UMIDI_DEBUG
1911 	if (umididebug >= 200)
1912 		microtime(&umidi_tv);
1913 #endif
1914 	usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
1915 	if (0 == count % UMIDI_PACKET_SIZE) {
1916 		DPRINTFN(200, ("%s: %"PRIu64".%06"PRIu64"s out ep %p xfer "
1917 		    "length %u\n", device_xname(ep->sc->sc_dev),
1918 		    umidi_tv.tv_sec%100, (uint64_t)umidi_tv.tv_usec, ep,
1919 		    count));
1920 	} else {
1921 		DPRINTF(("%s: output endpoint %p odd transfer length %u\n",
1922 			device_xname(ep->sc->sc_dev), ep, count));
1923 	}
1924 	count /= UMIDI_PACKET_SIZE;
1925 
1926 	/*
1927 	 * If while the transfer was pending we buffered any new messages,
1928 	 * move them to the start of the buffer.
1929 	 */
1930 	ep->next_slot -= count;
1931 	if (ep->buffer < ep->next_slot) {
1932 		memcpy(ep->buffer, ep->buffer + count,
1933 		       (char *)ep->next_slot - (char *)ep->buffer);
1934 	}
1935 	cv_broadcast(&sc->sc_cv);
1936 	/*
1937 	 * Do not want anyone else to see armed <- 0 before soliciting <- 1.
1938 	 * Running at IPL_USB so the following should happen to be safe.
1939 	 */
1940 	ep->armed = 0;
1941 	if (!ep->soliciting) {
1942 		ep->soliciting = 1;
1943 		out_solicit_locked(ep);
1944 	}
1945 	mutex_exit(&sc->sc_lock);
1946 }
1947 
1948 /*
1949  * A jack on which we have received a packet must be called back on its
1950  * out.intr handler before it will send us another; it is considered
1951  * 'scheduled'. It is nice and predictable - as long as it is scheduled,
1952  * we need no extra buffer space for it.
1953  *
1954  * In contrast, a jack that is open but not scheduled may supply us a packet
1955  * at any time, driven by the top half, and we must be able to accept it, no
1956  * excuses. So we must ensure that at any point in time there are at least
1957  * (num_open - num_scheduled) slots free.
1958  *
1959  * As long as there are more slots free than that minimum, we can loop calling
1960  * scheduled jacks back on their "interrupt" handlers, soliciting more
1961  * packets, starting the USB transfer only when the buffer space is down to
1962  * the minimum or no jack has any more to send.
1963  */
1964 
1965 static void
out_solicit_locked(void * arg)1966 out_solicit_locked(void *arg)
1967 {
1968 	struct umidi_endpoint *ep = arg;
1969 	umidi_packet_bufp end;
1970 	uint16_t which;
1971 	struct umidi_jack *jack;
1972 
1973 	KASSERT(mutex_owned(&ep->sc->sc_lock));
1974 
1975 	end = ep->buffer + ep->buffer_size / sizeof(*ep->buffer);
1976 
1977 	for ( ;; ) {
1978 		if (end - ep->next_slot <= ep->num_open - ep->num_scheduled)
1979 			break; /* at IPL_USB */
1980 		if (ep->this_schedule == 0) {
1981 			if (ep->next_schedule == 0)
1982 				break; /* at IPL_USB */
1983 			ep->this_schedule = ep->next_schedule;
1984 			ep->next_schedule = 0;
1985 		}
1986 		/*
1987 		 * At least one jack is scheduled. Find and mask off the least
1988 		 * set bit in this_schedule and decrement num_scheduled.
1989 		 * Convert mask to bit index to find the corresponding jack,
1990 		 * and call its intr handler. If it has a message, it will call
1991 		 * back one of the output methods, which will set its bit in
1992 		 * next_schedule (not copied into this_schedule until the
1993 		 * latter is empty). In this way we round-robin the jacks that
1994 		 * have messages to send, until the buffer is as full as we
1995 		 * dare, and then start a transfer.
1996 		 */
1997 		which = ep->this_schedule;
1998 		which &= (~which)+1; /* now mask of least set bit */
1999 		ep->this_schedule &= ~which;
2000 		--ep->num_scheduled;
2001 
2002 		--which; /* now 1s below mask - count 1s to get index */
2003 		which -= ((which >> 1) & 0x5555);/* SWAR credit aggregate.org */
2004 		which = (((which >> 2) & 0x3333) + (which & 0x3333));
2005 		which = (((which >> 4) + which) & 0x0f0f);
2006 		which +=  (which >> 8);
2007 		which &= 0x1f; /* the bit index a/k/a jack number */
2008 
2009 		jack = ep->jacks[which];
2010 		if (jack->u.out.intr)
2011 			(*jack->u.out.intr)(jack->arg);
2012 	}
2013 	/* intr lock held at loop exit */
2014 	if (!ep->armed && ep->next_slot > ep->buffer) {
2015 		/*
2016 		 * Can't hold the interrupt lock while calling into USB,
2017 		 * but we can safely drop it here.
2018 		 */
2019 		mutex_exit(&ep->sc->sc_lock);
2020 		ep->armed = (USBD_IN_PROGRESS == start_output_transfer(ep));
2021 		mutex_enter(&ep->sc->sc_lock);
2022 	}
2023 	ep->soliciting = 0;
2024 }
2025 
2026 /* Entry point for the softintr.  */
2027 static void
out_solicit(void * arg)2028 out_solicit(void *arg)
2029 {
2030 	struct umidi_endpoint *ep = arg;
2031 	struct umidi_softc *sc = ep->sc;
2032 
2033 	mutex_enter(&sc->sc_lock);
2034 	out_solicit_locked(arg);
2035 	mutex_exit(&sc->sc_lock);
2036 }
2037