xref: /netbsd-src/sys/dev/usb/if_axe.c (revision a06a044964b15ae77a6ba6f361c7728573941987)
1 /*	$NetBSD: if_axe.c,v 1.151 2022/08/20 14:08:59 riastradh Exp $	*/
2 /*	$OpenBSD: if_axe.c,v 1.137 2016/04/13 11:03:37 mpi Exp $ */
3 
4 /*
5  * Copyright (c) 2005, 2006, 2007 Jonathan Gray <jsg@openbsd.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 /*
21  * Copyright (c) 1997, 1998, 1999, 2000-2003
22  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
23  *
24  * Redistribution and use in source and binary forms, with or without
25  * modification, are permitted provided that the following conditions
26  * are met:
27  * 1. Redistributions of source code must retain the above copyright
28  *    notice, this list of conditions and the following disclaimer.
29  * 2. Redistributions in binary form must reproduce the above copyright
30  *    notice, this list of conditions and the following disclaimer in the
31  *    documentation and/or other materials provided with the distribution.
32  * 3. All advertising materials mentioning features or use of this software
33  *    must display the following acknowledgement:
34  *	This product includes software developed by Bill Paul.
35  * 4. Neither the name of the author nor the names of any co-contributors
36  *    may be used to endorse or promote products derived from this software
37  *    without specific prior written permission.
38  *
39  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
40  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
41  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
42  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
43  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
44  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
45  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
46  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
47  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
49  * THE POSSIBILITY OF SUCH DAMAGE.
50  */
51 
52 /*
53  * ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
54  * Used in the LinkSys USB200M and various other adapters.
55  *
56  * Written by Bill Paul <wpaul@windriver.com>
57  * Senior Engineer
58  * Wind River Systems
59  */
60 
61 /*
62  * The AX88172 provides USB ethernet supports at 10 and 100Mbps.
63  * It uses an external PHY (reference designs use a RealTek chip),
64  * and has a 64-bit multicast hash filter. There is some information
65  * missing from the manual which one needs to know in order to make
66  * the chip function:
67  *
68  * - You must set bit 7 in the RX control register, otherwise the
69  *   chip won't receive any packets.
70  * - You must initialize all 3 IPG registers, or you won't be able
71  *   to send any packets.
72  *
73  * Note that this device appears to only support loading the station
74  * address via autoload from the EEPROM (i.e. there's no way to manually
75  * set it).
76  *
77  * (Adam Weinberger wanted me to name this driver if_gir.c.)
78  */
79 
80 /*
81  * Ax88178 and Ax88772 support backported from the OpenBSD driver.
82  * 2007/02/12, J.R. Oldroyd, fbsd@opal.com
83  *
84  * Manual here:
85  * http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
86  * http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
87  */
88 
89 #include <sys/cdefs.h>
90 __KERNEL_RCSID(0, "$NetBSD: if_axe.c,v 1.151 2022/08/20 14:08:59 riastradh Exp $");
91 
92 #ifdef _KERNEL_OPT
93 #include "opt_usb.h"
94 #include "opt_net_mpsafe.h"
95 #endif
96 
97 #include <sys/param.h>
98 
99 #include <dev/usb/usbnet.h>
100 #include <dev/usb/usbhist.h>
101 #include <dev/usb/if_axereg.h>
102 
103 struct axe_type {
104 	struct usb_devno	axe_dev;
105 	uint16_t		axe_flags;
106 };
107 
108 struct axe_softc {
109 	struct usbnet		axe_un;
110 
111 	/* usbnet:un_flags values */
112 #define AX178		__BIT(0)	/* AX88178 */
113 #define AX772		__BIT(1)	/* AX88772 */
114 #define AX772A		__BIT(2)	/* AX88772A */
115 #define AX772B		__BIT(3)	/* AX88772B */
116 #define	AXSTD_FRAME	__BIT(12)
117 #define	AXCSUM_FRAME	__BIT(13)
118 
119 	uint8_t			axe_ipgs[3];
120 	uint8_t 		axe_phyaddrs[2];
121 	uint16_t		sc_pwrcfg;
122 	uint16_t		sc_lenmask;
123 
124 };
125 
126 #define AXE_IS_178_FAMILY(un)				\
127 	((un)->un_flags & (AX178 | AX772 | AX772A | AX772B))
128 
129 #define AXE_IS_772(un)					\
130 	((un)->un_flags & (AX772 | AX772A | AX772B))
131 
132 #define AXE_IS_172(un) (AXE_IS_178_FAMILY(un) == 0)
133 
134 #define AX_RXCSUM					\
135     (IFCAP_CSUM_IPv4_Rx | 				\
136      IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |	\
137      IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)
138 
139 #define AX_TXCSUM					\
140     (IFCAP_CSUM_IPv4_Tx | 				\
141      IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |	\
142      IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)
143 
144 /*
145  * AXE_178_MAX_FRAME_BURST
146  * max frame burst size for Ax88178 and Ax88772
147  *	0	2048 bytes
148  *	1	4096 bytes
149  *	2	8192 bytes
150  *	3	16384 bytes
151  * use the largest your system can handle without USB stalling.
152  *
153  * NB: 88772 parts appear to generate lots of input errors with
154  * a 2K rx buffer and 8K is only slightly faster than 4K on an
155  * EHCI port on a T42 so change at your own risk.
156  */
157 #define AXE_178_MAX_FRAME_BURST	1
158 
159 
160 #ifdef USB_DEBUG
161 #ifndef AXE_DEBUG
162 #define axedebug 0
163 #else
164 static int axedebug = 0;
165 
166 SYSCTL_SETUP(sysctl_hw_axe_setup, "sysctl hw.axe setup")
167 {
168 	int err;
169 	const struct sysctlnode *rnode;
170 	const struct sysctlnode *cnode;
171 
172 	err = sysctl_createv(clog, 0, NULL, &rnode,
173 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "axe",
174 	    SYSCTL_DESCR("axe global controls"),
175 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
176 
177 	if (err)
178 		goto fail;
179 
180 	/* control debugging printfs */
181 	err = sysctl_createv(clog, 0, &rnode, &cnode,
182 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
183 	    "debug", SYSCTL_DESCR("Enable debugging output"),
184 	    NULL, 0, &axedebug, sizeof(axedebug), CTL_CREATE, CTL_EOL);
185 	if (err)
186 		goto fail;
187 
188 	return;
189 fail:
190 	aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
191 }
192 
193 #endif /* AXE_DEBUG */
194 #endif /* USB_DEBUG */
195 
196 #define DPRINTF(FMT,A,B,C,D)	USBHIST_LOGN(axedebug,1,FMT,A,B,C,D)
197 #define DPRINTFN(N,FMT,A,B,C,D)	USBHIST_LOGN(axedebug,N,FMT,A,B,C,D)
198 #define AXEHIST_FUNC()		USBHIST_FUNC()
199 #define AXEHIST_CALLED(name)	USBHIST_CALLED(axedebug)
200 
201 /*
202  * Various supported device vendors/products.
203  */
204 static const struct axe_type axe_devs[] = {
205 	{ { USB_VENDOR_ABOCOM,		USB_PRODUCT_ABOCOM_UFE2000 }, 0 },
206 	{ { USB_VENDOR_ACERCM,		USB_PRODUCT_ACERCM_EP1427X2 }, 0 },
207 	{ { USB_VENDOR_APPLE,		USB_PRODUCT_APPLE_ETHERNET }, AX772 },
208 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88172 }, 0 },
209 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772 }, AX772 },
210 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772A }, AX772 },
211 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B }, AX772B },
212 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88772B_1 }, AX772B },
213 	{ { USB_VENDOR_ASIX,		USB_PRODUCT_ASIX_AX88178 }, AX178 },
214 	{ { USB_VENDOR_ATEN,		USB_PRODUCT_ATEN_UC210T }, 0 },
215 	{ { USB_VENDOR_BELKIN,		USB_PRODUCT_BELKIN_F5D5055 }, AX178 },
216 	{ { USB_VENDOR_BILLIONTON,	USB_PRODUCT_BILLIONTON_USB2AR }, 0},
217 	{ { USB_VENDOR_CISCOLINKSYS,	USB_PRODUCT_CISCOLINKSYS_USB200MV2 }, AX772A },
218 	{ { USB_VENDOR_COREGA,		USB_PRODUCT_COREGA_FETHER_USB2_TX }, 0 },
219 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100 }, 0 },
220 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100B1 }, AX772 },
221 	{ { USB_VENDOR_DLINK2,		USB_PRODUCT_DLINK2_DUBE100B1 }, AX772 },
222 	{ { USB_VENDOR_DLINK,		USB_PRODUCT_DLINK_DUBE100C1 }, AX772B },
223 	{ { USB_VENDOR_GOODWAY,		USB_PRODUCT_GOODWAY_GWUSB2E }, 0 },
224 	{ { USB_VENDOR_IODATA,		USB_PRODUCT_IODATA_ETGUS2 }, AX178 },
225 	{ { USB_VENDOR_JVC,		USB_PRODUCT_JVC_MP_PRX1 }, 0 },
226 	{ { USB_VENDOR_LENOVO,		USB_PRODUCT_LENOVO_ETHERNET }, AX772B },
227 	{ { USB_VENDOR_LINKSYS,		USB_PRODUCT_LINKSYS_HG20F9 }, AX772B },
228 	{ { USB_VENDOR_LINKSYS2,	USB_PRODUCT_LINKSYS2_USB200M }, 0 },
229 	{ { USB_VENDOR_LINKSYS4,	USB_PRODUCT_LINKSYS4_USB1000 }, AX178 },
230 	{ { USB_VENDOR_LOGITEC,		USB_PRODUCT_LOGITEC_LAN_GTJU2 }, AX178 },
231 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2GT }, AX178 },
232 	{ { USB_VENDOR_MELCO,		USB_PRODUCT_MELCO_LUAU2KTX }, 0 },
233 	{ { USB_VENDOR_MSI,		USB_PRODUCT_MSI_AX88772A }, AX772 },
234 	{ { USB_VENDOR_NETGEAR,		USB_PRODUCT_NETGEAR_FA120 }, 0 },
235 	{ { USB_VENDOR_OQO,		USB_PRODUCT_OQO_ETHER01PLUS }, AX772 },
236 	{ { USB_VENDOR_PLANEX3,		USB_PRODUCT_PLANEX3_GU1000T }, AX178 },
237 	{ { USB_VENDOR_SITECOM,		USB_PRODUCT_SITECOM_LN029 }, 0 },
238 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN028 }, AX178 },
239 	{ { USB_VENDOR_SITECOMEU,	USB_PRODUCT_SITECOMEU_LN031 }, AX178 },
240 	{ { USB_VENDOR_SYSTEMTALKS,	USB_PRODUCT_SYSTEMTALKS_SGCX2UL }, 0 },
241 };
242 #define axe_lookup(v, p) ((const struct axe_type *)usb_lookup(axe_devs, v, p))
243 
244 static const struct ax88772b_mfb ax88772b_mfb_table[] = {
245 	{ 0x8000, 0x8001, 2048 },
246 	{ 0x8100, 0x8147, 4096 },
247 	{ 0x8200, 0x81EB, 6144 },
248 	{ 0x8300, 0x83D7, 8192 },
249 	{ 0x8400, 0x851E, 16384 },
250 	{ 0x8500, 0x8666, 20480 },
251 	{ 0x8600, 0x87AE, 24576 },
252 	{ 0x8700, 0x8A3D, 32768 }
253 };
254 
255 static int	axe_match(device_t, cfdata_t, void *);
256 static void	axe_attach(device_t, device_t, void *);
257 
258 CFATTACH_DECL_NEW(axe, sizeof(struct axe_softc),
259 	axe_match, axe_attach, usbnet_detach, usbnet_activate);
260 
261 static void	axe_uno_stop(struct ifnet *, int);
262 static void	axe_uno_mcast(struct ifnet *);
263 static int	axe_uno_init(struct ifnet *);
264 static int	axe_uno_mii_read_reg(struct usbnet *, int, int, uint16_t *);
265 static int	axe_uno_mii_write_reg(struct usbnet *, int, int, uint16_t);
266 static void	axe_uno_mii_statchg(struct ifnet *);
267 static void	axe_uno_rx_loop(struct usbnet *, struct usbnet_chain *,
268 				uint32_t);
269 static unsigned axe_uno_tx_prepare(struct usbnet *, struct mbuf *,
270 				   struct usbnet_chain *);
271 
272 static void	axe_ax88178_init(struct axe_softc *);
273 static void	axe_ax88772_init(struct axe_softc *);
274 static void	axe_ax88772a_init(struct axe_softc *);
275 static void	axe_ax88772b_init(struct axe_softc *);
276 
277 static const struct usbnet_ops axe_ops = {
278 	.uno_stop = axe_uno_stop,
279 	.uno_mcast = axe_uno_mcast,
280 	.uno_read_reg = axe_uno_mii_read_reg,
281 	.uno_write_reg = axe_uno_mii_write_reg,
282 	.uno_statchg = axe_uno_mii_statchg,
283 	.uno_tx_prepare = axe_uno_tx_prepare,
284 	.uno_rx_loop = axe_uno_rx_loop,
285 	.uno_init = axe_uno_init,
286 };
287 
288 static usbd_status
axe_cmd(struct axe_softc * sc,int cmd,int index,int val,void * buf)289 axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
290 {
291 	AXEHIST_FUNC(); AXEHIST_CALLED();
292 	struct usbnet * const un = &sc->axe_un;
293 	usb_device_request_t req;
294 	usbd_status err;
295 
296 	if (usbnet_isdying(un))
297 		return -1;
298 
299 	DPRINTFN(20, "cmd %#jx index %#jx val %#jx", cmd, index, val, 0);
300 
301 	if (AXE_CMD_DIR(cmd))
302 		req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
303 	else
304 		req.bmRequestType = UT_READ_VENDOR_DEVICE;
305 	req.bRequest = AXE_CMD_CMD(cmd);
306 	USETW(req.wValue, val);
307 	USETW(req.wIndex, index);
308 	USETW(req.wLength, AXE_CMD_LEN(cmd));
309 
310 	err = usbd_do_request(un->un_udev, &req, buf);
311 	if (err)
312 		DPRINTF("cmd %jd err %jd", cmd, err, 0, 0);
313 
314 	return err;
315 }
316 
317 static int
axe_uno_mii_read_reg(struct usbnet * un,int phy,int reg,uint16_t * val)318 axe_uno_mii_read_reg(struct usbnet *un, int phy, int reg, uint16_t *val)
319 {
320 	AXEHIST_FUNC(); AXEHIST_CALLED();
321 	struct axe_softc * const sc = usbnet_softc(un);
322 	usbd_status err;
323 	uint16_t data;
324 
325 	DPRINTFN(30, "phy %#jx reg %#jx\n", phy, reg, 0, 0);
326 
327 	if (un->un_phyno != phy) {
328 		*val = 0;
329 		return EINVAL;
330 	}
331 
332 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
333 
334 	err = axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &data);
335 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
336 
337 	if (err) {
338 		device_printf(un->un_dev, "read PHY failed\n");
339 		*val = 0;
340 		return EIO;
341 	}
342 
343 	*val = le16toh(data);
344 	if (AXE_IS_772(un) && reg == MII_BMSR) {
345 		/*
346 		 * BMSR of AX88772 indicates that it supports extended
347 		 * capability but the extended status register is
348 		 * reserved for embedded ethernet PHY. So clear the
349 		 * extended capability bit of BMSR.
350 		 */
351 		*val &= ~BMSR_EXTCAP;
352 	}
353 
354 	DPRINTFN(30, "phy %#jx reg %#jx val %#jx", phy, reg, *val, 0);
355 
356 	return 0;
357 }
358 
359 static int
axe_uno_mii_write_reg(struct usbnet * un,int phy,int reg,uint16_t val)360 axe_uno_mii_write_reg(struct usbnet *un, int phy, int reg, uint16_t val)
361 {
362 	struct axe_softc * const sc = usbnet_softc(un);
363 	usbd_status err;
364 	uint16_t aval;
365 
366 	if (un->un_phyno != phy)
367 		return EINVAL;
368 
369 	aval = htole16(val);
370 
371 	axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
372 	err = axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &aval);
373 	axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
374 
375 	if (err)
376 		return EIO;
377 	return 0;
378 }
379 
380 static void
axe_uno_mii_statchg(struct ifnet * ifp)381 axe_uno_mii_statchg(struct ifnet *ifp)
382 {
383 	AXEHIST_FUNC(); AXEHIST_CALLED();
384 
385 	struct usbnet * const un = ifp->if_softc;
386 	struct axe_softc * const sc = usbnet_softc(un);
387 	struct mii_data *mii = usbnet_mii(un);
388 	int val, err;
389 
390 	if (usbnet_isdying(un))
391 		return;
392 
393 	val = 0;
394 	if (AXE_IS_172(un)) {
395 		if (mii->mii_media_active & IFM_FDX)
396 			val |= AXE_MEDIA_FULL_DUPLEX;
397 	} else {
398 		if (mii->mii_media_active & IFM_FDX) {
399 			val |= AXE_MEDIA_FULL_DUPLEX;
400 			if (mii->mii_media_active & IFM_ETH_TXPAUSE)
401 				val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
402 			if (mii->mii_media_active & IFM_ETH_RXPAUSE)
403 				val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
404 		}
405 		val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
406 		if (un->un_flags & AX178)
407 			val |= AXE_178_MEDIA_ENCK;
408 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
409 		case IFM_1000_T:
410 			val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
411 			usbnet_set_link(un, true);
412 			break;
413 		case IFM_100_TX:
414 			val |= AXE_178_MEDIA_100TX;
415 			usbnet_set_link(un, true);
416 			break;
417 		case IFM_10_T:
418 			usbnet_set_link(un, true);
419 			break;
420 		}
421 	}
422 
423 	DPRINTF("val=%#jx", val, 0, 0, 0);
424 	err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
425 	if (err)
426 		device_printf(un->un_dev, "media change failed\n");
427 }
428 
429 static void
axe_uno_mcast(struct ifnet * ifp)430 axe_uno_mcast(struct ifnet *ifp)
431 {
432 	AXEHIST_FUNC(); AXEHIST_CALLED();
433 	struct usbnet * const un = ifp->if_softc;
434 	struct axe_softc * const sc = usbnet_softc(un);
435 	struct ethercom *ec = usbnet_ec(un);
436 	struct ether_multi *enm;
437 	struct ether_multistep step;
438 	uint16_t rxmode;
439 	uint32_t h = 0;
440 	uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
441 
442 	if (usbnet_isdying(un))
443 		return;
444 
445 	if (axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode)) {
446 		device_printf(un->un_dev, "can't read rxmode");
447 		return;
448 	}
449 	rxmode = le16toh(rxmode);
450 
451 	rxmode &=
452 	    ~(AXE_RXCMD_ALLMULTI | AXE_RXCMD_PROMISC | AXE_RXCMD_MULTICAST);
453 
454 	ETHER_LOCK(ec);
455 	if (usbnet_ispromisc(un)) {
456 		ec->ec_flags |= ETHER_F_ALLMULTI;
457 		ETHER_UNLOCK(ec);
458 		/* run promisc. mode */
459 		rxmode |= AXE_RXCMD_ALLMULTI; /* ??? */
460 		rxmode |= AXE_RXCMD_PROMISC;
461 		goto update;
462 	}
463 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
464 	ETHER_FIRST_MULTI(step, ec, enm);
465 	while (enm != NULL) {
466 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
467 			ec->ec_flags |= ETHER_F_ALLMULTI;
468 			ETHER_UNLOCK(ec);
469 			/* accept all mcast frames */
470 			rxmode |= AXE_RXCMD_ALLMULTI;
471 			goto update;
472 		}
473 		h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
474 		mchash[h >> 29] |= 1U << ((h >> 26) & 7);
475 		ETHER_NEXT_MULTI(step, enm);
476 	}
477 	ETHER_UNLOCK(ec);
478 	if (h != 0)
479 		rxmode |= AXE_RXCMD_MULTICAST;	/* activate mcast hash filter */
480 	axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, mchash);
481  update:
482 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
483 }
484 
485 static void
axe_ax_init(struct usbnet * un)486 axe_ax_init(struct usbnet *un)
487 {
488 	struct axe_softc * const sc = usbnet_softc(un);
489 
490 	int cmd = AXE_178_CMD_READ_NODEID;
491 
492 	if (un->un_flags & AX178) {
493 		axe_ax88178_init(sc);
494 	} else if (un->un_flags & AX772) {
495 		axe_ax88772_init(sc);
496 	} else if (un->un_flags & AX772A) {
497 		axe_ax88772a_init(sc);
498 	} else if (un->un_flags & AX772B) {
499 		axe_ax88772b_init(sc);
500 		return;
501 	} else {
502 		cmd = AXE_172_CMD_READ_NODEID;
503 	}
504 
505 	if (axe_cmd(sc, cmd, 0, 0, un->un_eaddr)) {
506 		aprint_error_dev(un->un_dev,
507 		    "failed to read ethernet address\n");
508 	}
509 }
510 
511 
512 static void
axe_reset(struct usbnet * un)513 axe_reset(struct usbnet *un)
514 {
515 
516 	if (usbnet_isdying(un))
517 		return;
518 
519 	/*
520 	 * softnet_lock can be taken when NET_MPAFE is not defined when calling
521 	 * if_addr_init -> if_init.  This doesn't mix well with the
522 	 * usbd_delay_ms calls in the init routines as things like nd6_slowtimo
523 	 * can fire during the wait and attempt to take softnet_lock and then
524 	 * block the softclk thread meaning the wait never ends.
525 	 */
526 #ifndef NET_MPSAFE
527 	/* XXX What to reset? */
528 
529 	/* Wait a little while for the chip to get its brains in order. */
530 	DELAY(1000);
531 #else
532 	axe_ax_init(un);
533 #endif
534 }
535 
536 static int
axe_get_phyno(struct axe_softc * sc,int sel)537 axe_get_phyno(struct axe_softc *sc, int sel)
538 {
539 	int phyno;
540 
541 	switch (AXE_PHY_TYPE(sc->axe_phyaddrs[sel])) {
542 	case PHY_TYPE_100_HOME:
543 		/* FALLTHROUGH */
544 	case PHY_TYPE_GIG:
545 		phyno = AXE_PHY_NO(sc->axe_phyaddrs[sel]);
546 		break;
547 	case PHY_TYPE_SPECIAL:
548 		/* FALLTHROUGH */
549 	case PHY_TYPE_RSVD:
550 		/* FALLTHROUGH */
551 	case PHY_TYPE_NON_SUP:
552 		/* FALLTHROUGH */
553 	default:
554 		phyno = -1;
555 		break;
556 	}
557 
558 	return phyno;
559 }
560 
561 #define	AXE_GPIO_WRITE(x, y)	do {				\
562 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL);		\
563 	usbd_delay_ms(sc->axe_un.un_udev, hztoms(y));		\
564 } while (0)
565 
566 static void
axe_ax88178_init(struct axe_softc * sc)567 axe_ax88178_init(struct axe_softc *sc)
568 {
569 	AXEHIST_FUNC(); AXEHIST_CALLED();
570 	struct usbnet * const un = &sc->axe_un;
571 	int gpio0, ledmode, phymode;
572 	uint16_t eeprom, val;
573 
574 	axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
575 	/* XXX magic */
576 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom) != 0)
577 		eeprom = 0xffff;
578 	axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
579 
580 	eeprom = le16toh(eeprom);
581 
582 	DPRINTF("EEPROM is %#jx", eeprom, 0, 0, 0);
583 
584 	/* if EEPROM is invalid we have to use to GPIO0 */
585 	if (eeprom == 0xffff) {
586 		phymode = AXE_PHY_MODE_MARVELL;
587 		gpio0 = 1;
588 		ledmode = 0;
589 	} else {
590 		phymode = eeprom & 0x7f;
591 		gpio0 = (eeprom & 0x80) ? 0 : 1;
592 		ledmode = eeprom >> 8;
593 	}
594 
595 	DPRINTF("use gpio0: %jd, phymode %jd", gpio0, phymode, 0, 0);
596 
597 	/* Program GPIOs depending on PHY hardware. */
598 	switch (phymode) {
599 	case AXE_PHY_MODE_MARVELL:
600 		if (gpio0 == 1) {
601 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
602 			    hz / 32);
603 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
604 			    hz / 32);
605 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
606 			AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
607 			    hz / 32);
608 		} else {
609 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
610 			    AXE_GPIO1_EN, hz / 3);
611 			if (ledmode == 1) {
612 				AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
613 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
614 				    hz / 3);
615 			} else {
616 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
617 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
618 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
619 				    AXE_GPIO2_EN, hz / 4);
620 				AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
621 				    AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
622 			}
623 		}
624 		break;
625 	case AXE_PHY_MODE_CICADA:
626 	case AXE_PHY_MODE_CICADA_V2:
627 	case AXE_PHY_MODE_CICADA_V2_ASIX:
628 		if (gpio0 == 1)
629 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
630 			    AXE_GPIO0_EN, hz / 32);
631 		else
632 			AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
633 			    AXE_GPIO1_EN, hz / 32);
634 		break;
635 	case AXE_PHY_MODE_AGERE:
636 		AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
637 		    AXE_GPIO1_EN, hz / 32);
638 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
639 		    AXE_GPIO2_EN, hz / 32);
640 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
641 		AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
642 		    AXE_GPIO2_EN, hz / 32);
643 		break;
644 	case AXE_PHY_MODE_REALTEK_8211CL:
645 	case AXE_PHY_MODE_REALTEK_8211BN:
646 	case AXE_PHY_MODE_REALTEK_8251CL:
647 		val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
648 		    AXE_GPIO1 | AXE_GPIO1_EN;
649 		AXE_GPIO_WRITE(val, hz / 32);
650 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
651 		AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
652 		AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
653 		if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
654 			axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0005);
655 			axe_uno_mii_write_reg(un, un->un_phyno, 0x0C, 0x0000);
656 			axe_uno_mii_read_reg(un, un->un_phyno, 0x0001, &val);
657 			axe_uno_mii_write_reg(un, un->un_phyno, 0x01, val | 0x0080);
658 			axe_uno_mii_write_reg(un, un->un_phyno, 0x1F, 0x0000);
659 		}
660 		break;
661 	default:
662 		/* Unknown PHY model or no need to program GPIOs. */
663 		break;
664 	}
665 
666 	/* soft reset */
667 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
668 	usbd_delay_ms(un->un_udev, 150);
669 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
670 	    AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
671 	usbd_delay_ms(un->un_udev, 150);
672 	/* Enable MII/GMII/RGMII interface to work with external PHY. */
673 	axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
674 	usbd_delay_ms(un->un_udev, 10);
675 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
676 }
677 
678 static void
axe_ax88772_init(struct axe_softc * sc)679 axe_ax88772_init(struct axe_softc *sc)
680 {
681 	AXEHIST_FUNC(); AXEHIST_CALLED();
682 	struct usbnet * const un = &sc->axe_un;
683 
684 	axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
685 	usbd_delay_ms(un->un_udev, 40);
686 
687 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
688 		/* ask for the embedded PHY */
689 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
690 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
691 		usbd_delay_ms(un->un_udev, 10);
692 
693 		/* power down and reset state, pin reset state */
694 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
695 		usbd_delay_ms(un->un_udev, 60);
696 
697 		/* power down/reset state, pin operating state */
698 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
699 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
700 		usbd_delay_ms(un->un_udev, 150);
701 
702 		/* power up, reset */
703 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
704 
705 		/* power up, operating */
706 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
707 		    AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
708 	} else {
709 		/* ask for external PHY */
710 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_EXT,
711 		    NULL);
712 		usbd_delay_ms(un->un_udev, 10);
713 
714 		/* power down internal PHY */
715 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
716 		    AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
717 	}
718 
719 	usbd_delay_ms(un->un_udev, 150);
720 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
721 }
722 
723 static void
axe_ax88772_phywake(struct axe_softc * sc)724 axe_ax88772_phywake(struct axe_softc *sc)
725 {
726 	AXEHIST_FUNC(); AXEHIST_CALLED();
727 	struct usbnet * const un = &sc->axe_un;
728 
729 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
730 		/* Manually select internal(embedded) PHY - MAC mode. */
731 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0,
732 		    AXE_SW_PHY_SELECT_EMBEDDED, NULL);
733 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
734 	} else {
735 		/*
736 		 * Manually select external PHY - MAC mode.
737 		 * Reverse MII/RMII is for AX88772A PHY mode.
738 		 */
739 		axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
740 		    AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
741 		usbd_delay_ms(un->un_udev, hztoms(hz / 32));
742 	}
743 
744 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
745 	    AXE_SW_RESET_IPRL, NULL);
746 
747 	/* T1 = min 500ns everywhere */
748 	usbd_delay_ms(un->un_udev, 150);
749 
750 	/* Take PHY out of power down. */
751 	if (un->un_phyno == AXE_772_PHY_NO_EPHY) {
752 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
753 	} else {
754 		axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRTE, NULL);
755 	}
756 
757 	/* 772 T2 is 60ms. 772A T2 is 160ms, 772B T2 is 600ms */
758 	usbd_delay_ms(un->un_udev, 600);
759 
760 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
761 
762 	/* T3 = 500ns everywhere */
763 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
764 	axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
765 	usbd_delay_ms(un->un_udev, hztoms(hz / 32));
766 }
767 
768 static void
axe_ax88772a_init(struct axe_softc * sc)769 axe_ax88772a_init(struct axe_softc *sc)
770 {
771 	AXEHIST_FUNC(); AXEHIST_CALLED();
772 
773 	/* Reload EEPROM. */
774 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
775 	axe_ax88772_phywake(sc);
776 	/* Stop MAC. */
777 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
778 }
779 
780 static void
axe_ax88772b_init(struct axe_softc * sc)781 axe_ax88772b_init(struct axe_softc *sc)
782 {
783 	AXEHIST_FUNC(); AXEHIST_CALLED();
784 	struct usbnet * const un = &sc->axe_un;
785 	uint16_t eeprom;
786 	int i;
787 
788 	/* Reload EEPROM. */
789 	AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM , hz / 32);
790 
791 	/*
792 	 * Save PHY power saving configuration(high byte) and
793 	 * clear EEPROM checksum value(low byte).
794 	 */
795 	if (axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG,
796 	    &eeprom)) {
797 		aprint_error_dev(un->un_dev, "failed to read eeprom\n");
798 		return;
799 	}
800 
801 	sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
802 
803 	/*
804 	 * Auto-loaded default station address from internal ROM is
805 	 * 00:00:00:00:00:00 such that an explicit access to EEPROM
806 	 * is required to get real station address.
807 	 */
808 	uint8_t *eaddr = un->un_eaddr;
809 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
810 		if (axe_cmd(sc, AXE_CMD_SROM_READ, 0,
811 		    AXE_EEPROM_772B_NODE_ID + i, &eeprom)) {
812 			aprint_error_dev(un->un_dev,
813 			    "failed to read eeprom\n");
814 		    eeprom = 0;
815 		}
816 		eeprom = le16toh(eeprom);
817 		*eaddr++ = (uint8_t)(eeprom & 0xFF);
818 		*eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
819 	}
820 	/* Wakeup PHY. */
821 	axe_ax88772_phywake(sc);
822 	/* Stop MAC. */
823 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
824 }
825 
826 #undef	AXE_GPIO_WRITE
827 
828 /*
829  * Probe for a AX88172 chip.
830  */
831 static int
axe_match(device_t parent,cfdata_t match,void * aux)832 axe_match(device_t parent, cfdata_t match, void *aux)
833 {
834 	struct usb_attach_arg *uaa = aux;
835 
836 	return axe_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
837 	    UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
838 }
839 
840 /*
841  * Attach the interface. Allocate softc structures, do ifmedia
842  * setup and ethernet/BPF attach.
843  */
844 static void
axe_attach(device_t parent,device_t self,void * aux)845 axe_attach(device_t parent, device_t self, void *aux)
846 {
847 	AXEHIST_FUNC(); AXEHIST_CALLED();
848 	USBNET_MII_DECL_DEFAULT(unm);
849 	struct axe_softc *sc = device_private(self);
850 	struct usbnet * const un = &sc->axe_un;
851 	struct usb_attach_arg *uaa = aux;
852 	struct usbd_device *dev = uaa->uaa_device;
853 	usbd_status err;
854 	usb_interface_descriptor_t *id;
855 	usb_endpoint_descriptor_t *ed;
856 	char *devinfop;
857 	unsigned bufsz;
858 	int i;
859 
860 	KASSERT((void *)sc == un);
861 
862 	aprint_naive("\n");
863 	aprint_normal("\n");
864 	devinfop = usbd_devinfo_alloc(dev, 0);
865 	aprint_normal_dev(self, "%s\n", devinfop);
866 	usbd_devinfo_free(devinfop);
867 
868 	un->un_dev = self;
869 	un->un_udev = dev;
870 	un->un_sc = sc;
871 	un->un_ops = &axe_ops;
872 	un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
873 	un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
874 	un->un_rx_list_cnt = AXE_RX_LIST_CNT;
875 	un->un_tx_list_cnt = AXE_TX_LIST_CNT;
876 
877 	err = usbd_set_config_no(dev, AXE_CONFIG_NO, 1);
878 	if (err) {
879 		aprint_error_dev(self, "failed to set configuration"
880 		    ", err=%s\n", usbd_errstr(err));
881 		return;
882 	}
883 
884 	un->un_flags = axe_lookup(uaa->uaa_vendor, uaa->uaa_product)->axe_flags;
885 
886 	err = usbd_device2interface_handle(dev, AXE_IFACE_IDX, &un->un_iface);
887 	if (err) {
888 		aprint_error_dev(self, "getting interface handle failed\n");
889 		return;
890 	}
891 
892 	id = usbd_get_interface_descriptor(un->un_iface);
893 
894 	/* decide on what our bufsize will be */
895 	if (AXE_IS_172(un))
896 		bufsz = AXE_172_BUFSZ;
897 	else
898 		bufsz = (un->un_udev->ud_speed == USB_SPEED_HIGH) ?
899 		    AXE_178_MAX_BUFSZ : AXE_178_MIN_BUFSZ;
900 	un->un_rx_bufsz = un->un_tx_bufsz = bufsz;
901 
902 	un->un_ed[USBNET_ENDPT_RX] = 0;
903 	un->un_ed[USBNET_ENDPT_TX] = 0;
904 	un->un_ed[USBNET_ENDPT_INTR] = 0;
905 
906 	/* Find endpoints. */
907 	for (i = 0; i < id->bNumEndpoints; i++) {
908 		ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
909 		if (ed == NULL) {
910 			aprint_error_dev(self, "couldn't get ep %d\n", i);
911 			return;
912 		}
913 		const uint8_t xt = UE_GET_XFERTYPE(ed->bmAttributes);
914 		const uint8_t dir = UE_GET_DIR(ed->bEndpointAddress);
915 
916 		if (dir == UE_DIR_IN && xt == UE_BULK &&
917 		    un->un_ed[USBNET_ENDPT_RX] == 0) {
918 			un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
919 		} else if (dir == UE_DIR_OUT && xt == UE_BULK &&
920 		    un->un_ed[USBNET_ENDPT_TX] == 0) {
921 			un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
922 		} else if (dir == UE_DIR_IN && xt == UE_INTERRUPT) {
923 			un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
924 		}
925 	}
926 
927 	/* Set these up now for axe_cmd().  */
928 	usbnet_attach(un);
929 
930 	/* We need the PHYID for init dance in some cases */
931 	if (axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, &sc->axe_phyaddrs)) {
932 		aprint_error_dev(self, "failed to read phyaddrs\n");
933 		return;
934 	}
935 
936 	DPRINTF(" phyaddrs[0]: %jx phyaddrs[1]: %jx",
937 	    sc->axe_phyaddrs[0], sc->axe_phyaddrs[1], 0, 0);
938 	un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
939 	if (un->un_phyno == -1)
940 		un->un_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
941 	if (un->un_phyno == -1) {
942 		DPRINTF(" no valid PHY address found, assuming PHY address 0",
943 		    0, 0, 0, 0);
944 		un->un_phyno = 0;
945 	}
946 
947 	/* Initialize controller and get station address. */
948 
949 	axe_ax_init(un);
950 
951 	/*
952 	 * Fetch IPG values.
953 	 */
954 	if (un->un_flags & (AX772A | AX772B)) {
955 		/* Set IPG values. */
956 		sc->axe_ipgs[0] = AXE_IPG0_DEFAULT;
957 		sc->axe_ipgs[1] = AXE_IPG1_DEFAULT;
958 		sc->axe_ipgs[2] = AXE_IPG2_DEFAULT;
959 	} else {
960 		if (axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->axe_ipgs)) {
961 			aprint_error_dev(self, "failed to read ipg\n");
962 			return;
963 		}
964 	}
965 
966 	if (!AXE_IS_172(un))
967 		usbnet_ec(un)->ec_capabilities = ETHERCAP_VLAN_MTU;
968 	if (un->un_flags & AX772B) {
969 		struct ifnet *ifp = usbnet_ifp(un);
970 
971 		ifp->if_capabilities =
972 		    IFCAP_CSUM_IPv4_Rx |
973 		    IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
974 		    IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
975 		/*
976 		 * Checksum offloading of AX88772B also works with VLAN
977 		 * tagged frames but there is no way to take advantage
978 		 * of the feature because vlan(4) assumes
979 		 * IFCAP_VLAN_HWTAGGING is prerequisite condition to
980 		 * support checksum offloading with VLAN. VLAN hardware
981 		 * tagging support of AX88772B is very limited so it's
982 		 * not possible to announce IFCAP_VLAN_HWTAGGING.
983 		 */
984 	}
985 	if (un->un_flags & (AX772A | AX772B | AX178))
986 		unm.un_mii_flags = MIIF_DOPAUSE;
987 
988 	usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
989 	    0, &unm);
990 }
991 
992 static void
axe_uno_rx_loop(struct usbnet * un,struct usbnet_chain * c,uint32_t total_len)993 axe_uno_rx_loop(struct usbnet * un, struct usbnet_chain *c, uint32_t total_len)
994 {
995 	AXEHIST_FUNC(); AXEHIST_CALLED();
996 	struct axe_softc * const sc = usbnet_softc(un);
997 	struct ifnet *ifp = usbnet_ifp(un);
998 	uint8_t *buf = c->unc_buf;
999 
1000 	do {
1001 		u_int pktlen = 0;
1002 		u_int rxlen = 0;
1003 		int flags = 0;
1004 
1005 		if ((un->un_flags & AXSTD_FRAME) != 0) {
1006 			struct axe_sframe_hdr hdr;
1007 
1008 			if (total_len < sizeof(hdr)) {
1009 				if_statinc(ifp, if_ierrors);
1010 				break;
1011 			}
1012 
1013 			memcpy(&hdr, buf, sizeof(hdr));
1014 
1015 			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx",
1016 			    total_len,
1017 			    (le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK),
1018 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK), 0);
1019 
1020 			total_len -= sizeof(hdr);
1021 			buf += sizeof(hdr);
1022 
1023 			if (((le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK) ^
1024 			    (le16toh(hdr.ilen) & AXE_RH1M_RXLEN_MASK)) !=
1025 			    AXE_RH1M_RXLEN_MASK) {
1026 				if_statinc(ifp, if_ierrors);
1027 				break;
1028 			}
1029 
1030 			rxlen = le16toh(hdr.len) & AXE_RH1M_RXLEN_MASK;
1031 			if (total_len < rxlen) {
1032 				pktlen = total_len;
1033 				total_len = 0;
1034 			} else {
1035 				pktlen = rxlen;
1036 				rxlen = roundup2(rxlen, 2);
1037 				total_len -= rxlen;
1038 			}
1039 
1040 		} else if ((un->un_flags & AXCSUM_FRAME) != 0) {
1041 			struct axe_csum_hdr csum_hdr;
1042 
1043 			if (total_len <	sizeof(csum_hdr)) {
1044 				if_statinc(ifp, if_ierrors);
1045 				break;
1046 			}
1047 
1048 			memcpy(&csum_hdr, buf, sizeof(csum_hdr));
1049 
1050 			csum_hdr.len = le16toh(csum_hdr.len);
1051 			csum_hdr.ilen = le16toh(csum_hdr.ilen);
1052 			csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
1053 
1054 			DPRINTFN(20, "total_len %#jx len %#jx ilen %#jx"
1055 			    " cstatus %#jx", total_len,
1056 			    csum_hdr.len, csum_hdr.ilen, csum_hdr.cstatus);
1057 
1058 			if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
1059 			    AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
1060 			    sc->sc_lenmask) {
1061 				/* we lost sync */
1062 				if_statinc(ifp, if_ierrors);
1063 				DPRINTFN(20, "len %#jx ilen %#jx lenmask %#jx "
1064 				    "err",
1065 				    AXE_CSUM_RXBYTES(csum_hdr.len),
1066 				    AXE_CSUM_RXBYTES(csum_hdr.ilen),
1067 				    sc->sc_lenmask, 0);
1068 				break;
1069 			}
1070 			/*
1071 			 * Get total transferred frame length including
1072 			 * checksum header.  The length should be multiple
1073 			 * of 4.
1074 			 */
1075 			pktlen = AXE_CSUM_RXBYTES(csum_hdr.len);
1076 			u_int len = sizeof(csum_hdr) + pktlen;
1077 			len = (len + 3) & ~3;
1078 			if (total_len < len) {
1079 				DPRINTFN(20, "total_len %#jx < len %#jx",
1080 				    total_len, len, 0, 0);
1081 				/* invalid length */
1082 				if_statinc(ifp, if_ierrors);
1083 				break;
1084 			}
1085 			buf += sizeof(csum_hdr);
1086 
1087 			const uint16_t cstatus = csum_hdr.cstatus;
1088 
1089 			if (cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
1090 				if (cstatus & AXE_CSUM_HDR_L4_CSUM_ERR)
1091 					flags |= M_CSUM_TCP_UDP_BAD;
1092 				if (cstatus & AXE_CSUM_HDR_L3_CSUM_ERR)
1093 					flags |= M_CSUM_IPv4_BAD;
1094 
1095 				const uint16_t l4type =
1096 				    cstatus & AXE_CSUM_HDR_L4_TYPE_MASK;
1097 
1098 				if (l4type == AXE_CSUM_HDR_L4_TYPE_TCP)
1099 					flags |= M_CSUM_TCPv4;
1100 				if (l4type == AXE_CSUM_HDR_L4_TYPE_UDP)
1101 					flags |= M_CSUM_UDPv4;
1102 			}
1103 			if (total_len < len) {
1104 				pktlen = total_len;
1105 				total_len = 0;
1106 			} else {
1107 				total_len -= len;
1108 				rxlen = len - sizeof(csum_hdr);
1109 			}
1110 			DPRINTFN(20, "total_len %#jx len %#jx pktlen %#jx"
1111 			    " rxlen %#jx", total_len, len, pktlen, rxlen);
1112 		} else { /* AX172 */
1113 			pktlen = rxlen = total_len;
1114 			total_len = 0;
1115 		}
1116 
1117 		usbnet_enqueue(un, buf, pktlen, flags, 0, 0);
1118 		buf += rxlen;
1119 
1120 	} while (total_len > 0);
1121 
1122 	DPRINTFN(10, "start rx", 0, 0, 0, 0);
1123 }
1124 
1125 static unsigned
axe_uno_tx_prepare(struct usbnet * un,struct mbuf * m,struct usbnet_chain * c)1126 axe_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
1127 {
1128 	AXEHIST_FUNC(); AXEHIST_CALLED();
1129 	struct axe_sframe_hdr hdr, tlr;
1130 	size_t hdr_len = 0, tlr_len = 0;
1131 	int length, boundary;
1132 
1133 	if (!AXE_IS_172(un)) {
1134 		/*
1135 		 * Copy the mbuf data into a contiguous buffer, leaving two
1136 		 * bytes at the beginning to hold the frame length.
1137 		 */
1138 		boundary = (un->un_udev->ud_speed == USB_SPEED_HIGH) ? 512 : 64;
1139 
1140 		hdr.len = htole16(m->m_pkthdr.len);
1141 		hdr.ilen = ~hdr.len;
1142 		hdr_len = sizeof(hdr);
1143 
1144 		length = hdr_len + m->m_pkthdr.len;
1145 
1146 		if ((length % boundary) == 0) {
1147 			tlr.len = 0x0000;
1148 			tlr.ilen = 0xffff;
1149 			tlr_len = sizeof(tlr);
1150 		}
1151 		DPRINTFN(20, "length %jx m_pkthdr.len %jx hdrsize %#jx",
1152 			length, m->m_pkthdr.len, sizeof(hdr), 0);
1153 	}
1154 
1155 	if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - hdr_len - tlr_len)
1156 		return 0;
1157 	length = hdr_len + m->m_pkthdr.len + tlr_len;
1158 
1159 	if (hdr_len)
1160 		memcpy(c->unc_buf, &hdr, hdr_len);
1161 	m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + hdr_len);
1162 	if (tlr_len)
1163 		memcpy(c->unc_buf + length - tlr_len, &tlr, tlr_len);
1164 
1165 	return length;
1166 }
1167 
1168 static void
axe_csum_cfg(struct axe_softc * sc)1169 axe_csum_cfg(struct axe_softc *sc)
1170 {
1171 	struct usbnet * const un = &sc->axe_un;
1172 	struct ifnet * const ifp = usbnet_ifp(un);
1173 	uint16_t csum1, csum2;
1174 
1175 	if ((un->un_flags & AX772B) != 0) {
1176 		csum1 = 0;
1177 		csum2 = 0;
1178 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Tx) != 0)
1179 			csum1 |= AXE_TXCSUM_IP;
1180 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx) != 0)
1181 			csum1 |= AXE_TXCSUM_TCP;
1182 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx) != 0)
1183 			csum1 |= AXE_TXCSUM_UDP;
1184 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx) != 0)
1185 			csum1 |= AXE_TXCSUM_TCPV6;
1186 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx) != 0)
1187 			csum1 |= AXE_TXCSUM_UDPV6;
1188 		axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
1189 		csum1 = 0;
1190 		csum2 = 0;
1191 
1192 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) != 0)
1193 			csum1 |= AXE_RXCSUM_IP;
1194 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) != 0)
1195 			csum1 |= AXE_RXCSUM_TCP;
1196 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) != 0)
1197 			csum1 |= AXE_RXCSUM_UDP;
1198 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) != 0)
1199 			csum1 |= AXE_RXCSUM_TCPV6;
1200 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) != 0)
1201 			csum1 |= AXE_RXCSUM_UDPV6;
1202 		axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
1203 	}
1204 }
1205 
1206 static int
axe_uno_init(struct ifnet * ifp)1207 axe_uno_init(struct ifnet *ifp)
1208 {
1209 	AXEHIST_FUNC(); AXEHIST_CALLED();
1210 	struct usbnet * const un = ifp->if_softc;
1211 	struct axe_softc * const sc = usbnet_softc(un);
1212 	int rxmode;
1213 
1214 	/* Reset the ethernet interface. */
1215 	axe_reset(un);
1216 
1217 #if 0
1218 	ret = asix_write_gpio(dev, AX_GPIO_RSE | AX_GPIO_GPO_2 |
1219 			      AX_GPIO_GPO2EN, 5, in_pm);
1220 #endif
1221 	/* Set MAC address and transmitter IPG values. */
1222 	if (AXE_IS_172(un)) {
1223 		axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1224 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->axe_ipgs[0], NULL);
1225 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->axe_ipgs[1], NULL);
1226 		axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->axe_ipgs[2], NULL);
1227 	} else {
1228 		axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, un->un_eaddr);
1229 		axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->axe_ipgs[2],
1230 		    (sc->axe_ipgs[1] << 8) | (sc->axe_ipgs[0]), NULL);
1231 
1232 		un->un_flags &= ~(AXSTD_FRAME | AXCSUM_FRAME);
1233 		if ((un->un_flags & AX772B) != 0 &&
1234 		    (ifp->if_capenable & AX_RXCSUM) != 0) {
1235 			sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
1236 			un->un_flags |= AXCSUM_FRAME;
1237 		} else {
1238 			sc->sc_lenmask = AXE_HDR_LEN_MASK;
1239 			un->un_flags |= AXSTD_FRAME;
1240 		}
1241 	}
1242 
1243 	/* Configure TX/RX checksum offloading. */
1244 	axe_csum_cfg(sc);
1245 
1246 	if (un->un_flags & AX772B) {
1247 		/* AX88772B uses different maximum frame burst configuration. */
1248 		axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
1249 		    ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
1250 		    ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
1251 	}
1252 	/* Enable receiver, set RX mode */
1253 	rxmode = (AXE_RXCMD_BROADCAST | AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
1254 	if (AXE_IS_172(un))
1255 		rxmode |= AXE_172_RXCMD_UNICAST;
1256 	else {
1257 		if (un->un_flags & AX772B) {
1258 			/*
1259 			 * Select RX header format type 1.  Aligning IP
1260 			 * header on 4 byte boundary is not needed when
1261 			 * checksum offloading feature is not used
1262 			 * because we always copy the received frame in
1263 			 * RX handler.  When RX checksum offloading is
1264 			 * active, aligning IP header is required to
1265 			 * reflect actual frame length including RX
1266 			 * header size.
1267 			 */
1268 			rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
1269 			if (un->un_flags & AXCSUM_FRAME)
1270 				rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
1271 		} else {
1272 			/*
1273 			 * Default Rx buffer size is too small to get
1274 			 * maximum performance.
1275 			 */
1276 #if 0
1277 			if (un->un_udev->ud_speed == USB_SPEED_HIGH) {
1278 				/* Largest possible USB buffer size for AX88178 */
1279 			}
1280 #endif
1281 			rxmode |= AXE_178_RXCMD_MFB_16384;
1282 		}
1283 	}
1284 
1285 	DPRINTF("rxmode %#jx", rxmode, 0, 0, 0);
1286 
1287 	axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
1288 
1289 	return 0;
1290 }
1291 
1292 static void
axe_uno_stop(struct ifnet * ifp,int disable)1293 axe_uno_stop(struct ifnet *ifp, int disable)
1294 {
1295 	struct usbnet * const un = ifp->if_softc;
1296 
1297 	axe_reset(un);
1298 }
1299 
1300 #ifdef _MODULE
1301 #include "ioconf.c"
1302 #endif
1303 
1304 USBNET_MODULE(axe)
1305