xref: /netbsd-src/sys/dev/pci/if_alc.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: if_alc.c,v 1.28 2018/06/26 06:48:01 msaitoh Exp $	*/
2 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
3 /*-
4  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
31 
32 #ifdef _KERNEL_OPT
33 #include "vlan.h"
34 #endif
35 
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/endian.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/kernel.h>
45 #include <sys/device.h>
46 #include <sys/callout.h>
47 #include <sys/socket.h>
48 #include <sys/module.h>
49 
50 #include <sys/bus.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/if_alcreg.h>
77 
78 /*
79  * Devices supported by this driver.
80  */
81 static struct alc_ident alc_ident_table[] = {
82 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
83 		"Atheros AR8131 PCIe Gigabit Ethernet" },
84 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
85 		"Atheros AR8132 PCIe Fast Ethernet" },
86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
87 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
89 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
91 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
93 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
95 		"Atheros AR8161 PCIe Gigabit Ethernet" },
96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
97 		"Atheros AR8162 PCIe Fast Ethernet" },
98 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
99 		"Atheros AR8171 PCIe Gigabit Ethernet" },
100 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
101 		"Atheros AR8172 PCIe Fast Ethernet" },
102 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
103 		"Killer E2200 Gigabit Ethernet" },
104 	{ 0, 0, 0, NULL },
105 };
106 
107 static int	alc_match(device_t, cfdata_t, void *);
108 static void	alc_attach(device_t, device_t, void *);
109 static int	alc_detach(device_t, int);
110 
111 static int	alc_init(struct ifnet *);
112 static int	alc_init_backend(struct ifnet *, bool);
113 static void	alc_start(struct ifnet *);
114 static int	alc_ioctl(struct ifnet *, u_long, void *);
115 static void	alc_watchdog(struct ifnet *);
116 static int	alc_mediachange(struct ifnet *);
117 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
118 
119 static void	alc_aspm(struct alc_softc *, int, int);
120 static void	alc_aspm_813x(struct alc_softc *, int);
121 static void	alc_aspm_816x(struct alc_softc *, int);
122 static void	alc_disable_l0s_l1(struct alc_softc *);
123 static int	alc_dma_alloc(struct alc_softc *);
124 static void	alc_dma_free(struct alc_softc *);
125 static void	alc_dsp_fixup(struct alc_softc *, int);
126 static int	alc_encap(struct alc_softc *, struct mbuf **);
127 static struct alc_ident *
128 		alc_find_ident(struct pci_attach_args *);
129 static void	alc_get_macaddr(struct alc_softc *);
130 static void	alc_get_macaddr_813x(struct alc_softc *);
131 static void	alc_get_macaddr_816x(struct alc_softc *);
132 static void	alc_get_macaddr_par(struct alc_softc *);
133 static void	alc_init_cmb(struct alc_softc *);
134 static void	alc_init_rr_ring(struct alc_softc *);
135 static int	alc_init_rx_ring(struct alc_softc *, bool);
136 static void	alc_init_smb(struct alc_softc *);
137 static void	alc_init_tx_ring(struct alc_softc *);
138 static int	alc_intr(void *);
139 static void	alc_mac_config(struct alc_softc *);
140 static uint32_t	alc_mii_readreg_813x(struct alc_softc *, int, int);
141 static uint32_t	alc_mii_readreg_816x(struct alc_softc *, int, int);
142 static void	alc_mii_writereg_813x(struct alc_softc *, int, int, int);
143 static void	alc_mii_writereg_816x(struct alc_softc *, int, int, int);
144 static int	alc_miibus_readreg(device_t, int, int);
145 static void	alc_miibus_statchg(struct ifnet *);
146 static void	alc_miibus_writereg(device_t, int, int, int);
147 static uint32_t	alc_miidbg_readreg(struct alc_softc *, int);
148 static void	alc_miidbg_writereg(struct alc_softc *, int, int);
149 static uint32_t	alc_miiext_readreg(struct alc_softc *, int, int);
150 static uint32_t	alc_miiext_writereg(struct alc_softc *, int, int, int);
151 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
152 static void	alc_phy_down(struct alc_softc *);
153 static void	alc_phy_reset(struct alc_softc *);
154 static void	alc_phy_reset_813x(struct alc_softc *);
155 static void	alc_phy_reset_816x(struct alc_softc *);
156 static void	alc_reset(struct alc_softc *);
157 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
158 static int	alc_rxintr(struct alc_softc *);
159 static void	alc_iff(struct alc_softc *);
160 static void	alc_rxvlan(struct alc_softc *);
161 static void	alc_start_queue(struct alc_softc *);
162 static void	alc_stats_clear(struct alc_softc *);
163 static void	alc_stats_update(struct alc_softc *);
164 static void	alc_stop(struct ifnet *, int);
165 static void	alc_stop_mac(struct alc_softc *);
166 static void	alc_stop_queue(struct alc_softc *);
167 static void	alc_tick(void *);
168 static void	alc_txeof(struct alc_softc *);
169 
170 uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 };
171 
172 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
173     alc_match, alc_attach, alc_detach, NULL);
174 
175 int alcdebug = 0;
176 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
177 
178 #define ETHER_ALIGN		2
179 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
180 
181 static int
182 alc_miibus_readreg(device_t dev, int phy, int reg)
183 {
184 	struct alc_softc *sc = device_private(dev);
185 	int v;
186 
187 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
188 		v = alc_mii_readreg_816x(sc, phy, reg);
189 	else
190 		v = alc_mii_readreg_813x(sc, phy, reg);
191 	return (v);
192 }
193 
194 static uint32_t
195 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg)
196 {
197 	uint32_t v;
198 	int i;
199 
200 	if (phy != sc->alc_phyaddr)
201 		return (0);
202 
203 	/*
204 	 * For AR8132 fast ethernet controller, do not report 1000baseT
205 	 * capability to mii(4). Even though AR8132 uses the same
206 	 * model/revision number of F1 gigabit PHY, the PHY has no
207 	 * ability to establish 1000baseT link.
208 	 */
209 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 &&
210 	    reg == MII_EXTSR)
211 		return 0;
212 
213 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
214 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
215 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
216 		DELAY(5);
217 		v = CSR_READ_4(sc, ALC_MDIO);
218 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
219 			break;
220 	}
221 
222 	if (i == 0) {
223 		printf("%s: phy read timeout: phy %d, reg %d\n",
224 		    device_xname(sc->sc_dev), phy, reg);
225 		return (0);
226 	}
227 
228 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229 }
230 
231 static uint32_t
232 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg)
233 {
234 	uint32_t clk, v;
235 	int i;
236 
237 	if (phy != sc->alc_phyaddr)
238 		return (0);
239 
240 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
241 		clk = MDIO_CLK_25_128;
242 	else
243 		clk = MDIO_CLK_25_4;
244 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
245 	    MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
246 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
247 		DELAY(5);
248 		v = CSR_READ_4(sc, ALC_MDIO);
249 		if ((v & MDIO_OP_BUSY) == 0)
250 			break;
251 	}
252 
253 	if (i == 0) {
254 		printf("%s: phy read timeout: phy %d, reg %d\n",
255 		    device_xname(sc->sc_dev), phy, reg);
256 		return (0);
257 	}
258 
259 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
260 }
261 
262 static void
263 alc_miibus_writereg(device_t dev, int phy, int reg, int val)
264 {
265 	struct alc_softc *sc = device_private(dev);
266 
267 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
268 		alc_mii_writereg_816x(sc, phy, reg, val);
269 	else
270 		alc_mii_writereg_813x(sc, phy, reg, val);
271 
272 	return;
273 }
274 
275 static void
276 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, int val)
277 {
278 	uint32_t v;
279 	int i;
280 
281 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
282 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
283 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
284 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
285 		DELAY(5);
286 		v = CSR_READ_4(sc, ALC_MDIO);
287 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
288 			break;
289 	}
290 
291 	if (i == 0)
292 		printf("%s: phy write timeout: phy %d, reg %d\n",
293 		    device_xname(sc->sc_dev), phy, reg);
294 
295 	return;
296 }
297 
298 static void
299 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, int val)
300 {
301 	uint32_t clk, v;
302 	int i;
303 
304 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
305 		clk = MDIO_CLK_25_128;
306 	else
307 		clk = MDIO_CLK_25_4;
308 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
309 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
310 	    MDIO_SUP_PREAMBLE | clk);
311 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
312 		DELAY(5);
313 		v = CSR_READ_4(sc, ALC_MDIO);
314 		if ((v & MDIO_OP_BUSY) == 0)
315 			break;
316 	}
317 
318 	if (i == 0)
319 		printf("%s: phy write timeout: phy %d, reg %d\n",
320 		    device_xname(sc->sc_dev), phy, reg);
321 
322 	return;
323 }
324 
325 static void
326 alc_miibus_statchg(struct ifnet *ifp)
327 {
328 	struct alc_softc *sc = ifp->if_softc;
329 	struct mii_data *mii = &sc->sc_miibus;
330 	uint32_t reg;
331 
332 	if ((ifp->if_flags & IFF_RUNNING) == 0)
333 		return;
334 
335 	sc->alc_flags &= ~ALC_FLAG_LINK;
336 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
337 	    (IFM_ACTIVE | IFM_AVALID)) {
338 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
339 		case IFM_10_T:
340 		case IFM_100_TX:
341 			sc->alc_flags |= ALC_FLAG_LINK;
342 			break;
343 		case IFM_1000_T:
344 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
345 				sc->alc_flags |= ALC_FLAG_LINK;
346 			break;
347 		default:
348 			break;
349 		}
350 	}
351 	/* Stop Rx/Tx MACs. */
352 	alc_stop_mac(sc);
353 
354 	/* Program MACs with resolved speed/duplex/flow-control. */
355 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
356 		alc_start_queue(sc);
357 		alc_mac_config(sc);
358 		/* Re-enable Tx/Rx MACs. */
359 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
360 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
361 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
362 	}
363 	alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
364 	alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
365 }
366 
367 static uint32_t
368 alc_miidbg_readreg(struct alc_softc *sc, int reg)
369 {
370 
371 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
372 	    reg);
373 	return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
374 	    ALC_MII_DBG_DATA));
375 }
376 
377 static void
378 alc_miidbg_writereg(struct alc_softc *sc, int reg, int val)
379 {
380 
381 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
382 	    reg);
383 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val);
384 
385 	return;
386 }
387 
388 static uint32_t
389 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg)
390 {
391 	uint32_t clk, v;
392 	int i;
393 
394 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
395 	    EXT_MDIO_DEVADDR(devaddr));
396 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
397 		clk = MDIO_CLK_25_128;
398 	else
399 		clk = MDIO_CLK_25_4;
400 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
401 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
402 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
403 		DELAY(5);
404 		v = CSR_READ_4(sc, ALC_MDIO);
405 		if ((v & MDIO_OP_BUSY) == 0)
406 			break;
407 	}
408 
409 	if (i == 0) {
410 		printf("%s: phy ext read timeout: %d\n",
411 		    device_xname(sc->sc_dev), reg);
412 		return (0);
413 	}
414 
415 	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
416 }
417 
418 static uint32_t
419 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, int val)
420 {
421 	uint32_t clk, v;
422 	int i;
423 
424 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
425 	    EXT_MDIO_DEVADDR(devaddr));
426 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
427 		clk = MDIO_CLK_25_128;
428 	else
429 		clk = MDIO_CLK_25_4;
430 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
431 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
432 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
433 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
434 		DELAY(5);
435 		v = CSR_READ_4(sc, ALC_MDIO);
436 		if ((v & MDIO_OP_BUSY) == 0)
437 			break;
438 	}
439 
440 	if (i == 0) {
441 		printf("%s: phy ext write timeout: reg %d\n",
442 		    device_xname(sc->sc_dev), reg);
443 		return (0);
444 	}
445 
446 	return (0);
447 }
448 
449 static void
450 alc_dsp_fixup(struct alc_softc *sc, int media)
451 {
452 	uint16_t agc, len, val;
453 
454 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
455 		return;
456 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
457 		return;
458 
459 	/*
460 	 * Vendor PHY magic.
461 	 * 1000BT/AZ, wrong cable length
462 	 */
463 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
464 		len = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6);
465 		len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
466 		    EXT_CLDCTL6_CAB_LEN_MASK;
467 		/* XXX: used to be (alc >> shift) & mask which is 0 */
468 		agc = alc_miidbg_readreg(sc, MII_DBG_AGC) & DBG_AGC_2_VGA_MASK;
469 		agc >>= DBG_AGC_2_VGA_SHIFT;
470 		if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
471 		    agc > DBG_AGC_LONG1G_LIMT) ||
472 		    (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
473 		    agc > DBG_AGC_LONG1G_LIMT)) {
474 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
475 			    DBG_AZ_ANADECT_LONG);
476 			val = alc_miiext_readreg(sc, MII_EXT_ANEG,
477 			    MII_EXT_ANEG_AFE);
478 			val |= ANEG_AFEE_10BT_100M_TH;
479 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
480 			    val);
481 		} else {
482 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
483 			    DBG_AZ_ANADECT_DEFAULT);
484 			val = alc_miiext_readreg(sc, MII_EXT_ANEG,
485 			    MII_EXT_ANEG_AFE);
486 			val &= ~ANEG_AFEE_10BT_100M_TH;
487 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
488 			    val);
489 		}
490 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
491 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
492 			if (media == IFM_1000_T) {
493 				/*
494 				 * Giga link threshold, raise the tolerance of
495 				 * noise 50%.
496 				 */
497 				val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
498 				val &= ~DBG_MSE20DB_TH_MASK;
499 				val |= (DBG_MSE20DB_TH_HI <<
500 				    DBG_MSE20DB_TH_SHIFT);
501 				alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
502 			} else if (media == IFM_100_TX)
503 				alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
504 				    DBG_MSE16DB_UP);
505 		}
506 	} else {
507 		val = alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE);
508 		val &= ~ANEG_AFEE_10BT_100M_TH;
509 		alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
510 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
511 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
512 			alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
513 			    DBG_MSE16DB_DOWN);
514 			val = alc_miidbg_readreg(sc, MII_DBG_MSE20DB);
515 			val &= ~DBG_MSE20DB_TH_MASK;
516 			val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
517 			alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
518 		}
519  	}
520 }
521 
522 static void
523 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
524 {
525 	struct alc_softc *sc = ifp->if_softc;
526 	struct mii_data *mii = &sc->sc_miibus;
527 
528 	if ((ifp->if_flags & IFF_UP) == 0)
529 		return;
530 
531 	mii_pollstat(mii);
532 	ifmr->ifm_status = mii->mii_media_status;
533 	ifmr->ifm_active = mii->mii_media_active;
534 }
535 
536 static int
537 alc_mediachange(struct ifnet *ifp)
538 {
539 	struct alc_softc *sc = ifp->if_softc;
540 	struct mii_data *mii = &sc->sc_miibus;
541 	int error;
542 
543 	if (mii->mii_instance != 0) {
544 		struct mii_softc *miisc;
545 
546 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
547 			mii_phy_reset(miisc);
548 	}
549 	error = mii_mediachg(mii);
550 
551 	return (error);
552 }
553 
554 static struct alc_ident *
555 alc_find_ident(struct pci_attach_args *pa)
556 {
557 	struct alc_ident *ident;
558 	uint16_t vendor, devid;
559 
560 	vendor = PCI_VENDOR(pa->pa_id);
561 	devid = PCI_PRODUCT(pa->pa_id);
562 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
563 		if (vendor == ident->vendorid && devid == ident->deviceid)
564 			return (ident);
565 	}
566 
567 	return (NULL);
568 }
569 
570 static int
571 alc_match(device_t dev, cfdata_t match, void *aux)
572 {
573 	struct pci_attach_args *pa = aux;
574 
575 	return alc_find_ident(pa) != NULL;
576 }
577 
578 static void
579 alc_get_macaddr(struct alc_softc *sc)
580 {
581 
582 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
583 		alc_get_macaddr_816x(sc);
584 	else
585 		alc_get_macaddr_813x(sc);
586 }
587 
588 static void
589 alc_get_macaddr_813x(struct alc_softc *sc)
590 {
591 	uint32_t opt;
592 	uint16_t val;
593 	int eeprom, i;
594 
595 	eeprom = 0;
596 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
597 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
598 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
599 		/*
600 		 * EEPROM found, let TWSI reload EEPROM configuration.
601 		 * This will set ethernet address of controller.
602 		 */
603 		eeprom++;
604 		switch (sc->alc_ident->deviceid) {
605 		case PCI_PRODUCT_ATTANSIC_AR8131:
606 		case PCI_PRODUCT_ATTANSIC_AR8132:
607 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
608 				opt |= OPT_CFG_CLK_ENB;
609 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
610 				CSR_READ_4(sc, ALC_OPT_CFG);
611 				DELAY(1000);
612 			}
613 			break;
614 		case PCI_PRODUCT_ATTANSIC_AR8151:
615 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
616 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
617 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
618 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
619 			    ALC_MII_DBG_ADDR, 0x00);
620 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
621 			    ALC_MII_DBG_DATA);
622 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
623 			    ALC_MII_DBG_DATA, val & 0xFF7F);
624 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
625 			    ALC_MII_DBG_ADDR, 0x3B);
626 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
627 			    ALC_MII_DBG_DATA);
628 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
629 			    ALC_MII_DBG_DATA, val | 0x0008);
630 			DELAY(20);
631 			break;
632 		}
633 
634 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
635 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
636 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
637 		CSR_READ_4(sc, ALC_WOL_CFG);
638 
639 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
640 		    TWSI_CFG_SW_LD_START);
641 		for (i = 100; i > 0; i--) {
642 			DELAY(1000);
643 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
644 			    TWSI_CFG_SW_LD_START) == 0)
645 				break;
646 		}
647 		if (i == 0)
648 			printf("%s: reloading EEPROM timeout!\n",
649 			    device_xname(sc->sc_dev));
650 	} else {
651 		if (alcdebug)
652 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
653 	}
654 	if (eeprom != 0) {
655 		switch (sc->alc_ident->deviceid) {
656 		case PCI_PRODUCT_ATTANSIC_AR8131:
657 		case PCI_PRODUCT_ATTANSIC_AR8132:
658 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
659 				opt &= ~OPT_CFG_CLK_ENB;
660 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
661 				CSR_READ_4(sc, ALC_OPT_CFG);
662 				DELAY(1000);
663 			}
664 			break;
665 		case PCI_PRODUCT_ATTANSIC_AR8151:
666 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
667 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
668 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
669 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
670 			    ALC_MII_DBG_ADDR, 0x00);
671 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
672 			    ALC_MII_DBG_DATA);
673 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
674 			    ALC_MII_DBG_DATA, val | 0x0080);
675 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
676 			    ALC_MII_DBG_ADDR, 0x3B);
677 			val = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
678 			    ALC_MII_DBG_DATA);
679 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
680 			    ALC_MII_DBG_DATA, val & 0xFFF7);
681 			DELAY(20);
682 			break;
683 		}
684 	}
685 
686 	alc_get_macaddr_par(sc);
687 }
688 
689 static void
690 alc_get_macaddr_816x(struct alc_softc *sc)
691 {
692 	uint32_t reg;
693 	int i, reloaded;
694 
695 	reloaded = 0;
696 	/* Try to reload station address via TWSI. */
697 	for (i = 100; i > 0; i--) {
698 		reg = CSR_READ_4(sc, ALC_SLD);
699 		if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
700 			break;
701 		DELAY(1000);
702 	}
703 	if (i != 0) {
704 		CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
705 		for (i = 100; i > 0; i--) {
706 			DELAY(1000);
707 			reg = CSR_READ_4(sc, ALC_SLD);
708 			if ((reg & SLD_START) == 0)
709 				break;
710 		}
711 		if (i != 0)
712 			reloaded++;
713 		else if (alcdebug)
714 			printf("%s: reloading station address via TWSI timed out!\n",
715 			    device_xname(sc->sc_dev));
716 	}
717 
718 	/* Try to reload station address from EEPROM or FLASH. */
719 	if (reloaded == 0) {
720 		reg = CSR_READ_4(sc, ALC_EEPROM_LD);
721 		if ((reg & (EEPROM_LD_EEPROM_EXIST |
722 		    EEPROM_LD_FLASH_EXIST)) != 0) {
723 			for (i = 100; i > 0; i--) {
724 				reg = CSR_READ_4(sc, ALC_EEPROM_LD);
725 				if ((reg & (EEPROM_LD_PROGRESS |
726 				    EEPROM_LD_START)) == 0)
727 					break;
728 				DELAY(1000);
729 			}
730 			if (i != 0) {
731 				CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
732 				    EEPROM_LD_START);
733 				for (i = 100; i > 0; i--) {
734 					DELAY(1000);
735 					reg = CSR_READ_4(sc, ALC_EEPROM_LD);
736 					if ((reg & EEPROM_LD_START) == 0)
737 						break;
738 				}
739 			} else if (alcdebug)
740 				printf("%s: reloading EEPROM/FLASH timed out!\n",
741 			  	  device_xname(sc->sc_dev));
742 		}
743 	}
744 
745 	alc_get_macaddr_par(sc);
746 }
747 
748 
749 static void
750 alc_get_macaddr_par(struct alc_softc *sc)
751 {
752 	uint32_t ea[2];
753 
754 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
755 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
756 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
757 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
758 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
759 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
760 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
761 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
762 }
763 
764 static void
765 alc_disable_l0s_l1(struct alc_softc *sc)
766 {
767 	uint32_t pmcfg;
768 
769 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
770 		/* Another magic from vendor. */
771 		pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
772 		pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
773 		    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
774 		    PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
775 		pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
776 		    PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
777 		CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
778 	}
779 }
780 
781 static void
782 alc_phy_reset(struct alc_softc *sc)
783 {
784 
785 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
786 		alc_phy_reset_816x(sc);
787 	else
788 		alc_phy_reset_813x(sc);
789 }
790 
791 static void
792 alc_phy_reset_813x(struct alc_softc *sc)
793 {
794 	uint16_t data;
795 
796 	/* Reset magic from Linux. */
797 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
798 	CSR_READ_2(sc, ALC_GPHY_CFG);
799 	DELAY(10 * 1000);
800 
801 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
802 	    GPHY_CFG_SEL_ANA_RESET);
803 	CSR_READ_2(sc, ALC_GPHY_CFG);
804 	DELAY(10 * 1000);
805 
806 	/* DSP fixup, Vendor magic. */
807 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
808 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
809 		    ALC_MII_DBG_ADDR, 0x000A);
810 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
811 		    ALC_MII_DBG_DATA);
812 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
813 		    ALC_MII_DBG_DATA, data & 0xDFFF);
814 	}
815 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
816 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
817 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
818 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
819 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
820 		    ALC_MII_DBG_ADDR, 0x003B);
821 		data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
822 		    ALC_MII_DBG_DATA);
823 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
824 		    ALC_MII_DBG_DATA, data & 0xFFF7);
825 		DELAY(20 * 1000);
826 	}
827 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
828 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
829 		    ALC_MII_DBG_ADDR, 0x0029);
830 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
831 		    ALC_MII_DBG_DATA, 0x929D);
832 	}
833 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
834 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
835 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
836 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
837 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
838 		    ALC_MII_DBG_ADDR, 0x0029);
839 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
840 		    ALC_MII_DBG_DATA, 0xB6DD);
841 	}
842 
843 	/* Load DSP codes, vendor magic. */
844 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
845 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
846 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
847 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
848 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
849 	    ALC_MII_DBG_DATA, data);
850 
851 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
852 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
853 	    ANA_SERDES_EN_LCKDT;
854 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
855 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
856 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
857 	    ALC_MII_DBG_DATA, data);
858 
859 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
860 	    ANA_LONG_CABLE_TH_100_MASK) |
861 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
862 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
863 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
864 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
865 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
866 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
867 	    ALC_MII_DBG_DATA, data);
868 
869 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
870 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
871 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
872 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
873 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
874 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
875 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
876 	    ALC_MII_DBG_DATA, data);
877 
878 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
879 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
880 	    ANA_OEN_125M;
881 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
882 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
883 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
884 	    ALC_MII_DBG_DATA, data);
885 	DELAY(1000);
886 
887 	/* Disable hibernation. */
888 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
889 	    0x0029);
890 	data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
891 	    ALC_MII_DBG_DATA);
892 	data &= ~0x8000;
893 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
894 	    data);
895 
896 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
897 	    0x000B);
898 	data = alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
899 	    ALC_MII_DBG_DATA);
900 	data &= ~0x8000;
901 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
902 	    data);
903 }
904 
905 static void
906 alc_phy_reset_816x(struct alc_softc *sc)
907 {
908 	uint32_t val;
909 
910 	val = CSR_READ_4(sc, ALC_GPHY_CFG);
911 	val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
912 	    GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
913 	    GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
914 	val |= GPHY_CFG_SEL_ANA_RESET;
915 #ifdef notyet
916 	val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
917 #else
918 	/* Disable PHY hibernation. */
919 	val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
920 #endif
921 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
922 	DELAY(10);
923 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
924 	DELAY(800);
925 
926 	/* Vendor PHY magic. */
927 #ifdef notyet
928 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
929 	alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
930 	alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
931 	    EXT_VDRVBIAS_DEFAULT);
932 #else
933 	/* Disable PHY hibernation. */
934 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
935 	    DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
936 	alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
937 	    DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
938 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
939 #endif
940 
941 	/* XXX Disable EEE. */
942 	val = CSR_READ_4(sc, ALC_LPI_CTL);
943 	val &= ~LPI_CTL_ENB;
944 	CSR_WRITE_4(sc, ALC_LPI_CTL, val);
945 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
946 
947 	/* PHY power saving. */
948 	alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
949 	alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
950 	alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
951 	alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
952 	val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
953 	val &= ~DBG_GREENCFG2_GATE_DFSE_EN;
954 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
955 
956 	/* RTL8139C, 120m issue. */
957 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
958 	    ANEG_NLP78_120M_DEFAULT);
959 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
960 	    ANEG_S3DIG10_DEFAULT);
961 
962 	if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
963 		/* Turn off half amplitude. */
964 		val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3);
965 		val |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
966 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, val);
967 		/* Turn off Green feature. */
968 		val = alc_miidbg_readreg(sc, MII_DBG_GREENCFG2);
969 		val |= DBG_GREENCFG2_BP_GREEN;
970 		alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, val);
971 		/* Turn off half bias. */
972 		val = alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5);
973 		val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
974 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, val);
975 	}
976 }
977 
978 static void
979 alc_phy_down(struct alc_softc *sc)
980 {
981 	uint32_t gphy;
982 
983 	switch (sc->alc_ident->deviceid) {
984 	case PCI_PRODUCT_ATTANSIC_AR8161:
985 	case PCI_PRODUCT_ATTANSIC_E2200:
986 	case PCI_PRODUCT_ATTANSIC_AR8162:
987 	case PCI_PRODUCT_ATTANSIC_AR8171:
988 	case PCI_PRODUCT_ATTANSIC_AR8172:
989 		gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
990 		gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
991 		    GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
992 		gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
993 		    GPHY_CFG_SEL_ANA_RESET;
994 		gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
995 		CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
996 		break;
997 	case PCI_PRODUCT_ATTANSIC_AR8151:
998 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
999 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1000 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1001 		/*
1002 		 * GPHY power down caused more problems on AR8151 v2.0.
1003 		 * When driver is reloaded after GPHY power down,
1004 		 * accesses to PHY/MAC registers hung the system. Only
1005 		 * cold boot recovered from it.  I'm not sure whether
1006 		 * AR8151 v1.0 also requires this one though.  I don't
1007 		 * have AR8151 v1.0 controller in hand.
1008 		 * The only option left is to isolate the PHY and
1009 		 * initiates power down the PHY which in turn saves
1010 		 * more power when driver is unloaded.
1011 		 */
1012 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1013 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1014 		break;
1015 	default:
1016 		/* Force PHY down. */
1017 		CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1018 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1019 		    GPHY_CFG_PWDOWN_HW);
1020 		DELAY(1000);
1021 		break;
1022 	}
1023 }
1024 
1025 static void
1026 alc_aspm(struct alc_softc *sc, int init, int media)
1027 {
1028 
1029 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1030 		alc_aspm_816x(sc, init);
1031 	else
1032 		alc_aspm_813x(sc, media);
1033 }
1034 
1035 static void
1036 alc_aspm_813x(struct alc_softc *sc, int media)
1037 {
1038 	uint32_t pmcfg;
1039 	uint16_t linkcfg;
1040 
1041 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1042 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1043 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
1044 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1045 		    PCIE_LCSR);
1046 	else
1047 		linkcfg = 0;
1048 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1049 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1050 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
1051 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1052 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1053 
1054 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1055 		/* Disable extended sync except AR8152 B v1.0 */
1056 		linkcfg &= ~0x80;
1057 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1058 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
1059 			linkcfg |= 0x80;
1060 		CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1061 		    linkcfg);
1062 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1063 		    PM_CFG_HOTRST);
1064 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1065 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1066 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1067 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1068 		    PM_CFG_PM_REQ_TIMER_SHIFT);
1069 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1070 	}
1071 
1072 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1073 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1074 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
1075 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1076 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1077 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1078 			if (sc->alc_ident->deviceid ==
1079 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
1080 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1081 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1082 			    PM_CFG_SERDES_PLL_L1_ENB |
1083 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
1084 			pmcfg |= PM_CFG_CLK_SWH_L1;
1085 			if (media == IFM_100_TX || media == IFM_1000_T) {
1086 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1087 				switch (sc->alc_ident->deviceid) {
1088 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
1089 					pmcfg |= (7 <<
1090 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1091 					break;
1092 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1093 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1094 					pmcfg |= (4 <<
1095 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1096 					break;
1097 				default:
1098 					pmcfg |= (15 <<
1099 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1100 					break;
1101 				}
1102 			}
1103 		} else {
1104 			pmcfg |= PM_CFG_SERDES_L1_ENB |
1105 			    PM_CFG_SERDES_PLL_L1_ENB |
1106 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
1107 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1108 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1109 		}
1110 	} else {
1111 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1112 		    PM_CFG_SERDES_PLL_L1_ENB);
1113 		pmcfg |= PM_CFG_CLK_SWH_L1;
1114 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1115 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1116 	}
1117 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1118 }
1119 
1120 static void
1121 alc_aspm_816x(struct alc_softc *sc, int init)
1122 {
1123 	uint32_t pmcfg;
1124 
1125 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1126 	pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1127 	pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1128 	pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1129 	pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1130 	pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1131 	pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1132 	pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1133 	pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1134 	    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1135 	    PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1136 	    PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1137 	    PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1138 	if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1139 	    (sc->alc_rev & 0x01) != 0)
1140 		pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1141 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1142 		/* Link up, enable both L0s, L1s. */
1143 		pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1144 		    PM_CFG_MAC_ASPM_CHK;
1145 	} else {
1146 		if (init != 0)
1147 			pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1148 			    PM_CFG_MAC_ASPM_CHK;
1149 		else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1150 			pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1151 	}
1152 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1153 }
1154 
1155 static void
1156 alc_attach(device_t parent, device_t self, void *aux)
1157 {
1158 
1159 	struct alc_softc *sc = device_private(self);
1160 	struct pci_attach_args *pa = aux;
1161 	pci_chipset_tag_t pc = pa->pa_pc;
1162 	pci_intr_handle_t ih;
1163 	const char *intrstr;
1164 	struct ifnet *ifp;
1165 	pcireg_t memtype;
1166 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1167 	uint16_t burst;
1168 	int base, mii_flags, state, error = 0;
1169 	uint32_t cap, ctl, val;
1170 	char intrbuf[PCI_INTRSTR_LEN];
1171 
1172 	sc->alc_ident = alc_find_ident(pa);
1173 
1174 	aprint_naive("\n");
1175 	aprint_normal(": %s\n", sc->alc_ident->name);
1176 
1177 	sc->sc_dev = self;
1178 	sc->sc_dmat = pa->pa_dmat;
1179 	sc->sc_pct = pa->pa_pc;
1180 	sc->sc_pcitag = pa->pa_tag;
1181 
1182 	/*
1183 	 * Allocate IO memory
1184 	 */
1185 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1186 	switch (memtype) {
1187 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1188 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1189 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1190 		break;
1191 	default:
1192 		aprint_error_dev(self, "invalid base address register\n");
1193 		break;
1194 	}
1195 
1196 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1197 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1198 		aprint_error_dev(self, "could not map mem space\n");
1199 		return;
1200 	}
1201 
1202 	if (pci_intr_map(pa, &ih) != 0) {
1203 		printf(": can't map interrupt\n");
1204 		goto fail;
1205 	}
1206 
1207 	/*
1208 	 * Allocate IRQ
1209 	 */
1210 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1211 	sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc);
1212 	if (sc->sc_irq_handle == NULL) {
1213 		printf(": could not establish interrupt");
1214 		if (intrstr != NULL)
1215 			printf(" at %s", intrstr);
1216 		printf("\n");
1217 		goto fail;
1218 	}
1219 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1220 
1221 	/* Set PHY address. */
1222 	sc->alc_phyaddr = ALC_PHY_ADDR;
1223 
1224 	/* Initialize DMA parameters. */
1225 	sc->alc_dma_rd_burst = 0;
1226 	sc->alc_dma_wr_burst = 0;
1227 	sc->alc_rcb = DMA_CFG_RCB_64;
1228 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1229 	    &base, NULL)) {
1230 		sc->alc_flags |= ALC_FLAG_PCIE;
1231 		sc->alc_expcap = base;
1232 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1233 		    base + PCIE_DCSR) >> 16;
1234 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1235 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1236 		if (alcdebug) {
1237 			printf("%s: Read request size : %u bytes.\n",
1238 			    device_xname(sc->sc_dev),
1239 			    alc_dma_burst[sc->alc_dma_rd_burst]);
1240 			printf("%s: TLP payload size : %u bytes.\n",
1241 			    device_xname(sc->sc_dev),
1242 			    alc_dma_burst[sc->alc_dma_wr_burst]);
1243 		}
1244 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1245 			sc->alc_dma_rd_burst = 3;
1246 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1247 			sc->alc_dma_wr_burst = 3;
1248 
1249 		/* Clear data link and flow-control protocol error. */
1250 		val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1251 		val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1252 		CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1253 
1254 		if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1255  			CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1256  			    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1257  			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1258  			    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1259  			    PCIE_PHYMISC_FORCE_RCV_DET);
1260  			if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1261 			    sc->alc_rev == ATHEROS_AR8152_B_V10) {
1262  				val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1263  				val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1264  				    PCIE_PHYMISC2_SERDES_TH_MASK);
1265 				val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1266 				val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1267 				CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1268 			}
1269 			/* Disable ASPM L0S and L1. */
1270 			cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1271 			    base + PCIE_LCAP) >> 16;
1272 			if ((cap & PCIE_LCAP_ASPM) != 0) {
1273 				ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1274 				    base + PCIE_LCSR) >> 16;
1275 				if ((ctl & 0x08) != 0)
1276 					sc->alc_rcb = DMA_CFG_RCB_128;
1277 				if (alcdebug)
1278 					printf("%s: RCB %u bytes\n",
1279 					    device_xname(sc->sc_dev),
1280 					    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1281 				state = ctl & 0x03;
1282 				if (state & 0x01)
1283 					sc->alc_flags |= ALC_FLAG_L0S;
1284 				if (state & 0x02)
1285 					sc->alc_flags |= ALC_FLAG_L1S;
1286 				if (alcdebug)
1287 					printf("%s: ASPM %s %s\n",
1288 					    device_xname(sc->sc_dev),
1289 					    aspm_state[state],
1290 					    state == 0 ? "disabled" : "enabled");
1291 				alc_disable_l0s_l1(sc);
1292 			} else {
1293 				aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1294 			}
1295 		} else {
1296 			val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1297 			val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1298 			CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1299 			val = CSR_READ_4(sc, ALC_MASTER_CFG);
1300 			if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1301 			    (sc->alc_rev & 0x01) != 0) {
1302 				if ((val & MASTER_WAKEN_25M) == 0 ||
1303 				    (val & MASTER_CLK_SEL_DIS) == 0) {
1304 					val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1305 					CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1306 				}
1307 			} else {
1308 				if ((val & MASTER_WAKEN_25M) == 0 ||
1309 				    (val & MASTER_CLK_SEL_DIS) != 0) {
1310 					val |= MASTER_WAKEN_25M;
1311 					val &= ~MASTER_CLK_SEL_DIS;
1312 					CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1313 				}
1314 			}
1315 		}
1316 		alc_aspm(sc, 1, IFM_UNKNOWN);
1317 	}
1318 
1319 	/* Reset PHY. */
1320 	alc_phy_reset(sc);
1321 
1322 	/* Reset the ethernet controller. */
1323 	alc_stop_mac(sc);
1324 	alc_reset(sc);
1325 
1326 	/*
1327 	 * One odd thing is AR8132 uses the same PHY hardware(F1
1328 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1329 	 * the PHY supports 1000Mbps but that's not true. The PHY
1330 	 * used in AR8132 can't establish gigabit link even if it
1331 	 * shows the same PHY model/revision number of AR8131.
1332 	 */
1333 	switch (sc->alc_ident->deviceid) {
1334 	case PCI_PRODUCT_ATTANSIC_AR8161:
1335 		if (PCI_SUBSYS_ID(pci_conf_read(
1336 		   sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1337 		   sc->alc_rev == 0)
1338 			sc->alc_flags |= ALC_FLAG_LINK_WAR;
1339 		/* FALLTHROUGH */
1340 	case PCI_PRODUCT_ATTANSIC_E2200:
1341 	case PCI_PRODUCT_ATTANSIC_AR8171:
1342 		sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1343 		break;
1344 	case PCI_PRODUCT_ATTANSIC_AR8162:
1345 	case PCI_PRODUCT_ATTANSIC_AR8172:
1346 		sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1347 		break;
1348 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1349 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1350 		sc->alc_flags |= ALC_FLAG_APS;
1351 		/* FALLTHROUGH */
1352 	case PCI_PRODUCT_ATTANSIC_AR8132:
1353 		sc->alc_flags |= ALC_FLAG_FASTETHER;
1354 		break;
1355 	case PCI_PRODUCT_ATTANSIC_AR8151:
1356 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1357 		sc->alc_flags |= ALC_FLAG_APS;
1358 		/* FALLTHROUGH */
1359 	default:
1360 		break;
1361 	}
1362 	sc->alc_flags |= ALC_FLAG_JUMBO;
1363 
1364 	/*
1365 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
1366 	 * addition, Atheros said that enabling SMB wouldn't improve
1367 	 * performance. However I think it's bad to access lots of
1368 	 * registers to extract MAC statistics.
1369 	 */
1370 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
1371 	/*
1372 	 * Don't use Tx CMB. It is known to have silicon bug.
1373 	 */
1374 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
1375 	sc->alc_rev = PCI_REVISION(pa->pa_class);
1376 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1377 	    MASTER_CHIP_REV_SHIFT;
1378 	if (alcdebug) {
1379 		printf("%s: PCI device revision : 0x%04x\n",
1380 		    device_xname(sc->sc_dev), sc->alc_rev);
1381 		printf("%s: Chip id/revision : 0x%04x\n",
1382 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
1383 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1384 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1385 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1386 	}
1387 
1388 	error = alc_dma_alloc(sc);
1389 	if (error)
1390 		goto fail;
1391 
1392 	callout_init(&sc->sc_tick_ch, 0);
1393 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1394 
1395 	/* Load station address. */
1396 	alc_get_macaddr(sc);
1397 
1398 	aprint_normal_dev(self, "Ethernet address %s\n",
1399 	    ether_sprintf(sc->alc_eaddr));
1400 
1401 	ifp = &sc->sc_ec.ec_if;
1402 	ifp->if_softc = sc;
1403 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1404 	ifp->if_init = alc_init;
1405 	ifp->if_ioctl = alc_ioctl;
1406 	ifp->if_start = alc_start;
1407 	ifp->if_stop = alc_stop;
1408 	ifp->if_watchdog = alc_watchdog;
1409 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1410 	IFQ_SET_READY(&ifp->if_snd);
1411 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1412 
1413 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1414 
1415 #ifdef ALC_CHECKSUM
1416 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1417 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1418 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1419 #endif
1420 
1421 #if NVLAN > 0
1422 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1423 #endif
1424 
1425 	/*
1426 	 * XXX
1427 	 * It seems enabling Tx checksum offloading makes more trouble.
1428 	 * Sometimes the controller does not receive any frames when
1429 	 * Tx checksum offloading is enabled. I'm not sure whether this
1430 	 * is a bug in Tx checksum offloading logic or I got broken
1431 	 * sample boards. To safety, don't enable Tx checksum offloading
1432 	 * by default but give chance to users to toggle it if they know
1433 	 * their controllers work without problems.
1434 	 * Fortunately, Tx checksum offloading for AR816x family
1435 	 * seems to work.
1436 	 */
1437 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1438 		ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1439 		ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1440 	}
1441 
1442 	/* Set up MII bus. */
1443 	sc->sc_miibus.mii_ifp = ifp;
1444 	sc->sc_miibus.mii_readreg = alc_miibus_readreg;
1445 	sc->sc_miibus.mii_writereg = alc_miibus_writereg;
1446 	sc->sc_miibus.mii_statchg = alc_miibus_statchg;
1447 
1448 	sc->sc_ec.ec_mii = &sc->sc_miibus;
1449 	ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange,
1450 	    alc_mediastatus);
1451 	mii_flags = 0;
1452 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1453 		mii_flags |= MIIF_DOPAUSE;
1454 	mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
1455 		MII_OFFSET_ANY, mii_flags);
1456 
1457 	if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
1458 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1459 		ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
1460 		    0, NULL);
1461 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
1462 	} else
1463 		ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
1464 
1465 	if_attach(ifp);
1466 	if_deferred_start_init(ifp, NULL);
1467 	ether_ifattach(ifp, sc->alc_eaddr);
1468 
1469 	if (!pmf_device_register(self, NULL, NULL))
1470 		aprint_error_dev(self, "couldn't establish power handler\n");
1471 	else
1472 		pmf_class_network_register(self, ifp);
1473 
1474 	return;
1475 fail:
1476 	alc_dma_free(sc);
1477 	if (sc->sc_irq_handle != NULL) {
1478 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1479 		sc->sc_irq_handle = NULL;
1480 	}
1481 	if (sc->sc_mem_size) {
1482 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1483 		sc->sc_mem_size = 0;
1484 	}
1485 }
1486 
1487 static int
1488 alc_detach(device_t self, int flags)
1489 {
1490 	struct alc_softc *sc = device_private(self);
1491 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1492 	int s;
1493 
1494 	s = splnet();
1495 	alc_stop(ifp, 0);
1496 	splx(s);
1497 
1498 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1499 
1500 	/* Delete all remaining media. */
1501 	ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
1502 
1503 	ether_ifdetach(ifp);
1504 	if_detach(ifp);
1505 	alc_dma_free(sc);
1506 
1507 	alc_phy_down(sc);
1508 	if (sc->sc_irq_handle != NULL) {
1509 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1510 		sc->sc_irq_handle = NULL;
1511 	}
1512 	if (sc->sc_mem_size) {
1513 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1514 		sc->sc_mem_size = 0;
1515 	}
1516 
1517 	return (0);
1518 }
1519 
1520 static int
1521 alc_dma_alloc(struct alc_softc *sc)
1522 {
1523 	struct alc_txdesc *txd;
1524 	struct alc_rxdesc *rxd;
1525 	int nsegs, error, i;
1526 
1527 	/*
1528 	 * Create DMA stuffs for TX ring
1529 	 */
1530 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1531 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1532 	if (error) {
1533 		sc->alc_cdata.alc_tx_ring_map = NULL;
1534 		return (ENOBUFS);
1535 	}
1536 
1537 	/* Allocate DMA'able memory for TX ring */
1538 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1539 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1540 	    &nsegs, BUS_DMA_NOWAIT);
1541 	if (error) {
1542 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1543 		    device_xname(sc->sc_dev));
1544 		return error;
1545 	}
1546 
1547 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1548 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1549 	    BUS_DMA_NOWAIT);
1550 	if (error)
1551 		return (ENOBUFS);
1552 
1553 	/* Load the DMA map for Tx ring. */
1554 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1555 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1556 	if (error) {
1557 		printf("%s: could not load DMA'able memory for Tx ring.\n",
1558 		    device_xname(sc->sc_dev));
1559 		bus_dmamem_free(sc->sc_dmat,
1560 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1561 		return error;
1562 	}
1563 
1564 	sc->alc_rdata.alc_tx_ring_paddr =
1565 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1566 
1567 	/*
1568 	 * Create DMA stuffs for RX ring
1569 	 */
1570 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1571 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1572 	if (error)
1573 		return (ENOBUFS);
1574 
1575 	/* Allocate DMA'able memory for RX ring */
1576 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1577 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1578 	    &nsegs, BUS_DMA_NOWAIT);
1579 	if (error) {
1580 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1581 		    device_xname(sc->sc_dev));
1582 		return error;
1583 	}
1584 
1585 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1586 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1587 	    BUS_DMA_NOWAIT);
1588 	if (error)
1589 		return (ENOBUFS);
1590 
1591 	/* Load the DMA map for Rx ring. */
1592 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1593 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1594 	if (error) {
1595 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1596 		    device_xname(sc->sc_dev));
1597 		bus_dmamem_free(sc->sc_dmat,
1598 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1599 		return error;
1600 	}
1601 
1602 	sc->alc_rdata.alc_rx_ring_paddr =
1603 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1604 
1605 	/*
1606 	 * Create DMA stuffs for RX return ring
1607 	 */
1608 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1609 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1610 	if (error)
1611 		return (ENOBUFS);
1612 
1613 	/* Allocate DMA'able memory for RX return ring */
1614 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1615 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1616 	    &nsegs, BUS_DMA_NOWAIT);
1617 	if (error) {
1618 		printf("%s: could not allocate DMA'able memory for Rx "
1619 		    "return ring.\n", device_xname(sc->sc_dev));
1620 		return error;
1621 	}
1622 
1623 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1624 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1625 	    BUS_DMA_NOWAIT);
1626 	if (error)
1627 		return (ENOBUFS);
1628 
1629 	/*  Load the DMA map for Rx return ring. */
1630 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1631 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1632 	if (error) {
1633 		printf("%s: could not load DMA'able memory for Rx return ring."
1634 		    "\n", device_xname(sc->sc_dev));
1635 		bus_dmamem_free(sc->sc_dmat,
1636 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1637 		return error;
1638 	}
1639 
1640 	sc->alc_rdata.alc_rr_ring_paddr =
1641 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1642 
1643 	/*
1644 	 * Create DMA stuffs for CMB block
1645 	 */
1646 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1647 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1648 	    &sc->alc_cdata.alc_cmb_map);
1649 	if (error)
1650 		return (ENOBUFS);
1651 
1652 	/* Allocate DMA'able memory for CMB block */
1653 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1654 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1655 	    &nsegs, BUS_DMA_NOWAIT);
1656 	if (error) {
1657 		printf("%s: could not allocate DMA'able memory for "
1658 		    "CMB block\n", device_xname(sc->sc_dev));
1659 		return error;
1660 	}
1661 
1662 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1663 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1664 	    BUS_DMA_NOWAIT);
1665 	if (error)
1666 		return (ENOBUFS);
1667 
1668 	/*  Load the DMA map for CMB block. */
1669 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1670 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1671 	    BUS_DMA_WAITOK);
1672 	if (error) {
1673 		printf("%s: could not load DMA'able memory for CMB block\n",
1674 		    device_xname(sc->sc_dev));
1675 		bus_dmamem_free(sc->sc_dmat,
1676 		    &sc->alc_rdata.alc_cmb_seg, 1);
1677 		return error;
1678 	}
1679 
1680 	sc->alc_rdata.alc_cmb_paddr =
1681 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1682 
1683 	/*
1684 	 * Create DMA stuffs for SMB block
1685 	 */
1686 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1687 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1688 	    &sc->alc_cdata.alc_smb_map);
1689 	if (error)
1690 		return (ENOBUFS);
1691 
1692 	/* Allocate DMA'able memory for SMB block */
1693 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1694 	    ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1,
1695 	    &nsegs, BUS_DMA_NOWAIT);
1696 	if (error) {
1697 		printf("%s: could not allocate DMA'able memory for "
1698 		    "SMB block\n", device_xname(sc->sc_dev));
1699 		return error;
1700 	}
1701 
1702 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1703 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1704 	    BUS_DMA_NOWAIT);
1705 	if (error)
1706 		return (ENOBUFS);
1707 
1708 	/*  Load the DMA map for SMB block */
1709 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1710 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1711 	    BUS_DMA_WAITOK);
1712 	if (error) {
1713 		printf("%s: could not load DMA'able memory for SMB block\n",
1714 		    device_xname(sc->sc_dev));
1715 		bus_dmamem_free(sc->sc_dmat,
1716 		    &sc->alc_rdata.alc_smb_seg, 1);
1717 		return error;
1718 	}
1719 
1720 	sc->alc_rdata.alc_smb_paddr =
1721 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1722 
1723 
1724 	/* Create DMA maps for Tx buffers. */
1725 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1726 		txd = &sc->alc_cdata.alc_txdesc[i];
1727 		txd->tx_m = NULL;
1728 		txd->tx_dmamap = NULL;
1729 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1730 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1731 		    &txd->tx_dmamap);
1732 		if (error) {
1733 			printf("%s: could not create Tx dmamap.\n",
1734 			    device_xname(sc->sc_dev));
1735 			return error;
1736 		}
1737 	}
1738 
1739 	/* Create DMA maps for Rx buffers. */
1740 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1741 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1742 	if (error) {
1743 		printf("%s: could not create spare Rx dmamap.\n",
1744 		    device_xname(sc->sc_dev));
1745 		return error;
1746 	}
1747 
1748 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1749 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1750 		rxd->rx_m = NULL;
1751 		rxd->rx_dmamap = NULL;
1752 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1753 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1754 		if (error) {
1755 			printf("%s: could not create Rx dmamap.\n",
1756 			    device_xname(sc->sc_dev));
1757 			return error;
1758 		}
1759 	}
1760 
1761 	return (0);
1762 }
1763 
1764 
1765 static void
1766 alc_dma_free(struct alc_softc *sc)
1767 {
1768 	struct alc_txdesc *txd;
1769 	struct alc_rxdesc *rxd;
1770 	int i;
1771 
1772 	/* Tx buffers */
1773 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1774 		txd = &sc->alc_cdata.alc_txdesc[i];
1775 		if (txd->tx_dmamap != NULL) {
1776 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1777 			txd->tx_dmamap = NULL;
1778 		}
1779 	}
1780 	/* Rx buffers */
1781 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1782 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1783 		if (rxd->rx_dmamap != NULL) {
1784 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1785 			rxd->rx_dmamap = NULL;
1786 		}
1787 	}
1788 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1789 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1790 		sc->alc_cdata.alc_rx_sparemap = NULL;
1791 	}
1792 
1793 	/* Tx ring. */
1794 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1795 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1796 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1797 	    sc->alc_rdata.alc_tx_ring != NULL)
1798 		bus_dmamem_free(sc->sc_dmat,
1799 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1800 	sc->alc_rdata.alc_tx_ring = NULL;
1801 	sc->alc_cdata.alc_tx_ring_map = NULL;
1802 
1803 	/* Rx ring. */
1804 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1805 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1806 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1807 	    sc->alc_rdata.alc_rx_ring != NULL)
1808 		bus_dmamem_free(sc->sc_dmat,
1809 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1810 	sc->alc_rdata.alc_rx_ring = NULL;
1811 	sc->alc_cdata.alc_rx_ring_map = NULL;
1812 
1813 	/* Rx return ring. */
1814 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1815 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1816 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1817 	    sc->alc_rdata.alc_rr_ring != NULL)
1818 		bus_dmamem_free(sc->sc_dmat,
1819 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1820 	sc->alc_rdata.alc_rr_ring = NULL;
1821 	sc->alc_cdata.alc_rr_ring_map = NULL;
1822 
1823 	/* CMB block */
1824 	if (sc->alc_cdata.alc_cmb_map != NULL)
1825 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1826 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1827 	    sc->alc_rdata.alc_cmb != NULL)
1828 		bus_dmamem_free(sc->sc_dmat,
1829 		    &sc->alc_rdata.alc_cmb_seg, 1);
1830 	sc->alc_rdata.alc_cmb = NULL;
1831 	sc->alc_cdata.alc_cmb_map = NULL;
1832 
1833 	/* SMB block */
1834 	if (sc->alc_cdata.alc_smb_map != NULL)
1835 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1836 	if (sc->alc_cdata.alc_smb_map != NULL &&
1837 	    sc->alc_rdata.alc_smb != NULL)
1838 		bus_dmamem_free(sc->sc_dmat,
1839 		    &sc->alc_rdata.alc_smb_seg, 1);
1840 	sc->alc_rdata.alc_smb = NULL;
1841 	sc->alc_cdata.alc_smb_map = NULL;
1842 }
1843 
1844 static int
1845 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1846 {
1847 	struct alc_txdesc *txd, *txd_last;
1848 	struct tx_desc *desc;
1849 	struct mbuf *m;
1850 	bus_dmamap_t map;
1851 	uint32_t cflags, poff, vtag;
1852 	int error, idx, nsegs, prod;
1853 
1854 	m = *m_head;
1855 	cflags = vtag = 0;
1856 	poff = 0;
1857 
1858 	prod = sc->alc_cdata.alc_tx_prod;
1859 	txd = &sc->alc_cdata.alc_txdesc[prod];
1860 	txd_last = txd;
1861 	map = txd->tx_dmamap;
1862 
1863 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1864 
1865 	if (error == EFBIG) {
1866 		error = 0;
1867 
1868 		*m_head = m_pullup(*m_head, MHLEN);
1869 		if (*m_head == NULL) {
1870 			printf("%s: can't defrag TX mbuf\n",
1871 			    device_xname(sc->sc_dev));
1872 			return ENOBUFS;
1873 		}
1874 
1875 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1876 		    BUS_DMA_NOWAIT);
1877 
1878 		if (error != 0) {
1879 			printf("%s: could not load defragged TX mbuf\n",
1880 			    device_xname(sc->sc_dev));
1881 			m_freem(*m_head);
1882 			*m_head = NULL;
1883 			return error;
1884 		}
1885 	} else if (error) {
1886 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1887 		return (error);
1888 	}
1889 
1890 	nsegs = map->dm_nsegs;
1891 
1892 	if (nsegs == 0) {
1893 		m_freem(*m_head);
1894 		*m_head = NULL;
1895 		return (EIO);
1896 	}
1897 
1898 	/* Check descriptor overrun. */
1899 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1900 		bus_dmamap_unload(sc->sc_dmat, map);
1901 		return (ENOBUFS);
1902 	}
1903 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1904 	    BUS_DMASYNC_PREWRITE);
1905 
1906 	m = *m_head;
1907 	desc = NULL;
1908 	idx = 0;
1909 #if NVLAN > 0
1910 	/* Configure VLAN hardware tag insertion. */
1911 	if (vlan_has_tag(m)) {
1912 		vtag = htons(vlan_get_tag(m));
1913 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1914 		cflags |= TD_INS_VLAN_TAG;
1915 	}
1916 #endif
1917 	/* Configure Tx checksum offload. */
1918 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1919 		cflags |= TD_CUSTOM_CSUM;
1920 		/* Set checksum start offset. */
1921 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1922 		    TD_PLOAD_OFFSET_MASK;
1923 	}
1924 	for (; idx < nsegs; idx++) {
1925 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1926 		desc->len =
1927 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1928 		desc->flags = htole32(cflags);
1929 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1930 		sc->alc_cdata.alc_tx_cnt++;
1931 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1932 	}
1933 	/* Update producer index. */
1934 	sc->alc_cdata.alc_tx_prod = prod;
1935 
1936 	/* Finally set EOP on the last descriptor. */
1937 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
1938 	desc = &sc->alc_rdata.alc_tx_ring[prod];
1939 	desc->flags |= htole32(TD_EOP);
1940 
1941 	/* Swap dmamap of the first and the last. */
1942 	txd = &sc->alc_cdata.alc_txdesc[prod];
1943 	map = txd_last->tx_dmamap;
1944 	txd_last->tx_dmamap = txd->tx_dmamap;
1945 	txd->tx_dmamap = map;
1946 	txd->tx_m = m;
1947 
1948 	return (0);
1949 }
1950 
1951 static void
1952 alc_start(struct ifnet *ifp)
1953 {
1954 	struct alc_softc *sc = ifp->if_softc;
1955 	struct mbuf *m_head;
1956 	int enq;
1957 
1958 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1959 		return;
1960 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
1961 		return;
1962 	if (IFQ_IS_EMPTY(&ifp->if_snd))
1963 		return;
1964 
1965 	/* Reclaim transmitted frames. */
1966 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
1967 		alc_txeof(sc);
1968 
1969 	enq = 0;
1970 	for (;;) {
1971 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
1972 		if (m_head == NULL)
1973 			break;
1974 
1975 		/*
1976 		 * Pack the data into the transmit ring. If we
1977 		 * don't have room, set the OACTIVE flag and wait
1978 		 * for the NIC to drain the ring.
1979 		 */
1980 		if (alc_encap(sc, &m_head)) {
1981 			if (m_head == NULL)
1982 				break;
1983 			ifp->if_flags |= IFF_OACTIVE;
1984 			break;
1985 		}
1986 		enq = 1;
1987 
1988 		/*
1989 		 * If there's a BPF listener, bounce a copy of this frame
1990 		 * to him.
1991 		 */
1992 		bpf_mtap(ifp, m_head, BPF_D_OUT);
1993 	}
1994 
1995 	if (enq) {
1996 		/* Sync descriptors. */
1997 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
1998 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
1999 		    BUS_DMASYNC_PREWRITE);
2000 		/* Kick. Assume we're using normal Tx priority queue. */
2001 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2002 		    (sc->alc_cdata.alc_tx_prod <<
2003 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2004 		    MBOX_TD_PROD_LO_IDX_MASK);
2005 		/* Set a timeout in case the chip goes out to lunch. */
2006 		ifp->if_timer = ALC_TX_TIMEOUT;
2007 	}
2008 }
2009 
2010 static void
2011 alc_watchdog(struct ifnet *ifp)
2012 {
2013 	struct alc_softc *sc = ifp->if_softc;
2014 
2015 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2016 		printf("%s: watchdog timeout (missed link)\n",
2017 		    device_xname(sc->sc_dev));
2018 		ifp->if_oerrors++;
2019 		alc_init_backend(ifp, false);
2020 		return;
2021 	}
2022 
2023 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2024 	ifp->if_oerrors++;
2025 	alc_init_backend(ifp, false);
2026 	alc_start(ifp);
2027 }
2028 
2029 static int
2030 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2031 {
2032 	struct alc_softc *sc = ifp->if_softc;
2033 	struct mii_data *mii = &sc->sc_miibus;
2034 	struct ifreq *ifr = (struct ifreq *)data;
2035 	int s, error = 0;
2036 
2037 	s = splnet();
2038 
2039 	error = ether_ioctl(ifp, cmd, data);
2040 	switch (cmd) {
2041 	case SIOCSIFADDR:
2042 		ifp->if_flags |= IFF_UP;
2043 		if (!(ifp->if_flags & IFF_RUNNING))
2044 			alc_init(ifp);
2045 		break;
2046 
2047 	case SIOCSIFFLAGS:
2048 		if (ifp->if_flags & IFF_UP) {
2049 			if (ifp->if_flags & IFF_RUNNING)
2050 				error = ENETRESET;
2051 			else
2052 				alc_init(ifp);
2053 		} else {
2054 			if (ifp->if_flags & IFF_RUNNING)
2055 				alc_stop(ifp, 0);
2056 		}
2057 		break;
2058 
2059 	case SIOCSIFMEDIA:
2060 	case SIOCGIFMEDIA:
2061 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
2062 		break;
2063 
2064 	default:
2065 		error = ether_ioctl(ifp, cmd, data);
2066 		break;
2067 	}
2068 
2069 	if (error == ENETRESET) {
2070 		if (ifp->if_flags & IFF_RUNNING)
2071 			alc_iff(sc);
2072 		error = 0;
2073 	}
2074 
2075 	splx(s);
2076 	return (error);
2077 }
2078 
2079 static void
2080 alc_mac_config(struct alc_softc *sc)
2081 {
2082 	struct mii_data *mii;
2083 	uint32_t reg;
2084 
2085 	mii = &sc->sc_miibus;
2086 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2087 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2088 	    MAC_CFG_SPEED_MASK);
2089 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2090 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2091 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2092 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2093 	/* Reprogram MAC with resolved speed/duplex. */
2094 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2095 	case IFM_10_T:
2096 	case IFM_100_TX:
2097 		reg |= MAC_CFG_SPEED_10_100;
2098 		break;
2099 	case IFM_1000_T:
2100 		reg |= MAC_CFG_SPEED_1000;
2101 		break;
2102 	}
2103 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2104 		reg |= MAC_CFG_FULL_DUPLEX;
2105 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2106 			reg |= MAC_CFG_TX_FC;
2107 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2108 			reg |= MAC_CFG_RX_FC;
2109 	}
2110 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2111 }
2112 
2113 static void
2114 alc_stats_clear(struct alc_softc *sc)
2115 {
2116 	struct smb sb, *smb;
2117 	uint32_t *reg;
2118 	int i;
2119 
2120 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2121 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2122 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2123 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2124 		smb = sc->alc_rdata.alc_smb;
2125 		/* Update done, clear. */
2126 		smb->updated = 0;
2127 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2128 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2129 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2130 	} else {
2131 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2132 		    reg++) {
2133 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2134 			i += sizeof(uint32_t);
2135 		}
2136 		/* Read Tx statistics. */
2137 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2138 		    reg++) {
2139 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2140 			i += sizeof(uint32_t);
2141 		}
2142 	}
2143 }
2144 
2145 static void
2146 alc_stats_update(struct alc_softc *sc)
2147 {
2148 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2149 	struct alc_hw_stats *stat;
2150 	struct smb sb, *smb;
2151 	uint32_t *reg;
2152 	int i;
2153 
2154 	stat = &sc->alc_stats;
2155 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2156 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2157 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2158 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2159 		smb = sc->alc_rdata.alc_smb;
2160 		if (smb->updated == 0)
2161 			return;
2162 	} else {
2163 		smb = &sb;
2164 		/* Read Rx statistics. */
2165 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2166 		    reg++) {
2167 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2168 			i += sizeof(uint32_t);
2169 		}
2170 		/* Read Tx statistics. */
2171 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2172 		    reg++) {
2173 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2174 			i += sizeof(uint32_t);
2175 		}
2176 	}
2177 
2178 	/* Rx stats. */
2179 	stat->rx_frames += smb->rx_frames;
2180 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2181 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2182 	stat->rx_pause_frames += smb->rx_pause_frames;
2183 	stat->rx_control_frames += smb->rx_control_frames;
2184 	stat->rx_crcerrs += smb->rx_crcerrs;
2185 	stat->rx_lenerrs += smb->rx_lenerrs;
2186 	stat->rx_bytes += smb->rx_bytes;
2187 	stat->rx_runts += smb->rx_runts;
2188 	stat->rx_fragments += smb->rx_fragments;
2189 	stat->rx_pkts_64 += smb->rx_pkts_64;
2190 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2191 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2192 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2193 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2194 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2195 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2196 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2197 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2198 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2199 	stat->rx_alignerrs += smb->rx_alignerrs;
2200 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2201 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2202 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2203 
2204 	/* Tx stats. */
2205 	stat->tx_frames += smb->tx_frames;
2206 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2207 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2208 	stat->tx_pause_frames += smb->tx_pause_frames;
2209 	stat->tx_excess_defer += smb->tx_excess_defer;
2210 	stat->tx_control_frames += smb->tx_control_frames;
2211 	stat->tx_deferred += smb->tx_deferred;
2212 	stat->tx_bytes += smb->tx_bytes;
2213 	stat->tx_pkts_64 += smb->tx_pkts_64;
2214 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2215 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2216 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2217 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2218 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2219 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2220 	stat->tx_single_colls += smb->tx_single_colls;
2221 	stat->tx_multi_colls += smb->tx_multi_colls;
2222 	stat->tx_late_colls += smb->tx_late_colls;
2223 	stat->tx_excess_colls += smb->tx_excess_colls;
2224 	stat->tx_underrun += smb->tx_underrun;
2225 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2226 	stat->tx_lenerrs += smb->tx_lenerrs;
2227 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2228 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2229 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2230 
2231 	/* Update counters in ifnet. */
2232 	ifp->if_opackets += smb->tx_frames;
2233 
2234 	ifp->if_collisions += smb->tx_single_colls +
2235 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2236 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2237 
2238 	ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls +
2239 	    smb->tx_underrun + smb->tx_pkts_truncated;
2240 
2241 	ifp->if_ipackets += smb->rx_frames;
2242 
2243 	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2244 	    smb->rx_runts + smb->rx_pkts_truncated +
2245 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2246 	    smb->rx_alignerrs;
2247 
2248 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2249 		/* Update done, clear. */
2250 		smb->updated = 0;
2251 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2252 		sc->alc_cdata.alc_smb_map->dm_mapsize,
2253 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2254 	}
2255 }
2256 
2257 static int
2258 alc_intr(void *arg)
2259 {
2260 	struct alc_softc *sc = arg;
2261 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2262 	uint32_t status;
2263 
2264 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2265 	if ((status & ALC_INTRS) == 0)
2266 		return (0);
2267 
2268 	/* Acknowledge and disable interrupts. */
2269 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2270 
2271 	if (ifp->if_flags & IFF_RUNNING) {
2272 		if (status & INTR_RX_PKT) {
2273 			int error;
2274 
2275 			error = alc_rxintr(sc);
2276 			if (error) {
2277 				alc_init_backend(ifp, false);
2278 				return (0);
2279 			}
2280 		}
2281 
2282 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2283 		    INTR_TXQ_TO_RST)) {
2284 			if (status & INTR_DMA_RD_TO_RST)
2285 				printf("%s: DMA read error! -- resetting\n",
2286 				    device_xname(sc->sc_dev));
2287 			if (status & INTR_DMA_WR_TO_RST)
2288 				printf("%s: DMA write error! -- resetting\n",
2289 				    device_xname(sc->sc_dev));
2290 			if (status & INTR_TXQ_TO_RST)
2291 				printf("%s: TxQ reset! -- resetting\n",
2292 				    device_xname(sc->sc_dev));
2293 			alc_init_backend(ifp, false);
2294 			return (0);
2295 		}
2296 
2297 		alc_txeof(sc);
2298 		if_schedule_deferred_start(ifp);
2299 	}
2300 
2301 	/* Re-enable interrupts. */
2302 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2303 	return (1);
2304 }
2305 
2306 static void
2307 alc_txeof(struct alc_softc *sc)
2308 {
2309 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2310 	struct alc_txdesc *txd;
2311 	uint32_t cons, prod;
2312 	int prog;
2313 
2314 	if (sc->alc_cdata.alc_tx_cnt == 0)
2315 		return;
2316 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2317 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2318 	    BUS_DMASYNC_POSTREAD);
2319 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2320 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2321 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
2322 		    BUS_DMASYNC_POSTREAD);
2323 		prod = sc->alc_rdata.alc_cmb->cons;
2324 	} else
2325 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2326 	/* Assume we're using normal Tx priority queue. */
2327 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2328 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2329 	cons = sc->alc_cdata.alc_tx_cons;
2330 	/*
2331 	 * Go through our Tx list and free mbufs for those
2332 	 * frames which have been transmitted.
2333 	 */
2334 	for (prog = 0; cons != prod; prog++,
2335 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2336 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2337 			break;
2338 		prog++;
2339 		ifp->if_flags &= ~IFF_OACTIVE;
2340 		sc->alc_cdata.alc_tx_cnt--;
2341 		txd = &sc->alc_cdata.alc_txdesc[cons];
2342 		if (txd->tx_m != NULL) {
2343 			/* Reclaim transmitted mbufs. */
2344 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
2345 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2346 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2347 			m_freem(txd->tx_m);
2348 			txd->tx_m = NULL;
2349 		}
2350 	}
2351 
2352 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2353 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2354 	        sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2355 	sc->alc_cdata.alc_tx_cons = cons;
2356 	/*
2357 	 * Unarm watchdog timer only when there is no pending
2358 	 * frames in Tx queue.
2359 	 */
2360 	if (sc->alc_cdata.alc_tx_cnt == 0)
2361 		ifp->if_timer = 0;
2362 }
2363 
2364 static int
2365 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2366 {
2367 	struct mbuf *m;
2368 	bus_dmamap_t map;
2369 	int error;
2370 
2371 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2372 	if (m == NULL)
2373 		return (ENOBUFS);
2374 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2375 	if (!(m->m_flags & M_EXT)) {
2376 		m_freem(m);
2377 		return (ENOBUFS);
2378 	}
2379 
2380 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2381 
2382 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2383 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2384 
2385 	if (error != 0) {
2386 		m_freem(m);
2387 
2388 		if (init)
2389 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2390 
2391 		return (error);
2392 	}
2393 
2394 	if (rxd->rx_m != NULL) {
2395 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2396 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2397 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2398 	}
2399 	map = rxd->rx_dmamap;
2400 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2401 	sc->alc_cdata.alc_rx_sparemap = map;
2402 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
2403 	    BUS_DMASYNC_PREREAD);
2404 	rxd->rx_m = m;
2405 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2406 	return (0);
2407 }
2408 
2409 static int
2410 alc_rxintr(struct alc_softc *sc)
2411 {
2412 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2413 	struct rx_rdesc *rrd;
2414 	uint32_t nsegs, status;
2415 	int rr_cons, prog;
2416 
2417 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2418 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2419 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2420 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2421 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2422 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2423 	rr_cons = sc->alc_cdata.alc_rr_cons;
2424 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2425 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2426 		status = le32toh(rrd->status);
2427 		if ((status & RRD_VALID) == 0)
2428 			break;
2429 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2430 		if (nsegs == 0) {
2431 			/* This should not happen! */
2432 			if (alcdebug)
2433 				printf("%s: unexpected segment count -- "
2434 				    "resetting\n", device_xname(sc->sc_dev));
2435 			return (EIO);
2436 		}
2437 		alc_rxeof(sc, rrd);
2438 		/* Clear Rx return status. */
2439 		rrd->status = 0;
2440 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2441 		sc->alc_cdata.alc_rx_cons += nsegs;
2442 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2443 		prog += nsegs;
2444 	}
2445 
2446 	if (prog > 0) {
2447 		/* Update the consumer index. */
2448 		sc->alc_cdata.alc_rr_cons = rr_cons;
2449 		/* Sync Rx return descriptors. */
2450 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2451 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2452 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2453 		/*
2454 		 * Sync updated Rx descriptors such that controller see
2455 		 * modified buffer addresses.
2456 		 */
2457 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2458 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2459 		    BUS_DMASYNC_PREWRITE);
2460 		/*
2461 		 * Let controller know availability of new Rx buffers.
2462 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2463 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2464 		 * only when Rx buffer pre-fetching is required. In
2465 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2466 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2467 		 * it still seems that pre-fetching needs more
2468 		 * experimentation.
2469 		 */
2470 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2471 		    sc->alc_cdata.alc_rx_cons);
2472 	}
2473 
2474 	return (0);
2475 }
2476 
2477 /* Receive a frame. */
2478 static void
2479 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2480 {
2481 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2482 	struct alc_rxdesc *rxd;
2483 	struct mbuf *mp, *m;
2484 	uint32_t rdinfo, status;
2485 	int count, nsegs, rx_cons;
2486 
2487 	status = le32toh(rrd->status);
2488 	rdinfo = le32toh(rrd->rdinfo);
2489 	rx_cons = RRD_RD_IDX(rdinfo);
2490 	nsegs = RRD_RD_CNT(rdinfo);
2491 
2492 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2493 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2494 		/*
2495 		 * We want to pass the following frames to upper
2496 		 * layer regardless of error status of Rx return
2497 		 * ring.
2498 		 *
2499 		 *  o IP/TCP/UDP checksum is bad.
2500 		 *  o frame length and protocol specific length
2501 		 *     does not match.
2502 		 *
2503 		 *  Force network stack compute checksum for
2504 		 *  errored frames.
2505 		 */
2506 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2507 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2508 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2509 			return;
2510 	}
2511 
2512 	for (count = 0; count < nsegs; count++,
2513 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2514 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2515 		mp = rxd->rx_m;
2516 		/* Add a new receive buffer to the ring. */
2517 		if (alc_newbuf(sc, rxd, false) != 0) {
2518 			ifp->if_iqdrops++;
2519 			/* Reuse Rx buffers. */
2520 			if (sc->alc_cdata.alc_rxhead != NULL)
2521 				m_freem(sc->alc_cdata.alc_rxhead);
2522 			break;
2523 		}
2524 
2525 		/*
2526 		 * Assume we've received a full sized frame.
2527 		 * Actual size is fixed when we encounter the end of
2528 		 * multi-segmented frame.
2529 		 */
2530 		mp->m_len = sc->alc_buf_size;
2531 
2532 		/* Chain received mbufs. */
2533 		if (sc->alc_cdata.alc_rxhead == NULL) {
2534 			sc->alc_cdata.alc_rxhead = mp;
2535 			sc->alc_cdata.alc_rxtail = mp;
2536 		} else {
2537 			m_remove_pkthdr(mp);
2538 			sc->alc_cdata.alc_rxprev_tail =
2539 			    sc->alc_cdata.alc_rxtail;
2540 			sc->alc_cdata.alc_rxtail->m_next = mp;
2541 			sc->alc_cdata.alc_rxtail = mp;
2542 		}
2543 
2544 		if (count == nsegs - 1) {
2545 			/* Last desc. for this frame. */
2546 			m = sc->alc_cdata.alc_rxhead;
2547 			KASSERT(m->m_flags & M_PKTHDR);
2548 			/*
2549 			 * It seems that L1C/L2C controller has no way
2550 			 * to tell hardware to strip CRC bytes.
2551 			 */
2552 			m->m_pkthdr.len =
2553 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2554 			if (nsegs > 1) {
2555 				/* Set last mbuf size. */
2556 				mp->m_len = sc->alc_cdata.alc_rxlen -
2557 				    (nsegs - 1) * sc->alc_buf_size;
2558 				/* Remove the CRC bytes in chained mbufs. */
2559 				if (mp->m_len <= ETHER_CRC_LEN) {
2560 					sc->alc_cdata.alc_rxtail =
2561 					    sc->alc_cdata.alc_rxprev_tail;
2562 					sc->alc_cdata.alc_rxtail->m_len -=
2563 					    (ETHER_CRC_LEN - mp->m_len);
2564 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2565 					m_freem(mp);
2566 				} else {
2567 					mp->m_len -= ETHER_CRC_LEN;
2568 				}
2569 			} else
2570 				m->m_len = m->m_pkthdr.len;
2571 			m_set_rcvif(m, ifp);
2572 #if NVLAN > 0
2573 			/*
2574 			 * Due to hardware bugs, Rx checksum offloading
2575 			 * was intentionally disabled.
2576 			 */
2577 			if (status & RRD_VLAN_TAG) {
2578 				u_int32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2579 				vlan_set_tag(m, ntohs(vtag));
2580 			}
2581 #endif
2582 
2583 			/* Pass it on. */
2584 			if_percpuq_enqueue(ifp->if_percpuq, m);
2585 		}
2586 	}
2587 	/* Reset mbuf chains. */
2588 	ALC_RXCHAIN_RESET(sc);
2589 }
2590 
2591 static void
2592 alc_tick(void *xsc)
2593 {
2594 	struct alc_softc *sc = xsc;
2595 	struct mii_data *mii = &sc->sc_miibus;
2596 	int s;
2597 
2598 	s = splnet();
2599 	mii_tick(mii);
2600 	alc_stats_update(sc);
2601 	splx(s);
2602 
2603 	callout_schedule(&sc->sc_tick_ch, hz);
2604 }
2605 
2606 static void
2607 alc_osc_reset(struct alc_softc *sc)
2608 {
2609 	uint32_t reg;
2610 
2611 	reg = CSR_READ_4(sc, ALC_MISC3);
2612 	reg &= ~MISC3_25M_BY_SW;
2613 	reg |= MISC3_25M_NOTO_INTNL;
2614 	CSR_WRITE_4(sc, ALC_MISC3, reg);
2615 
2616 	reg = CSR_READ_4(sc, ALC_MISC);
2617 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2618 		/*
2619 		 * Restore over-current protection default value.
2620 		 * This value could be reset by MAC reset.
2621 		 */
2622 		reg &= ~MISC_PSW_OCP_MASK;
2623 		reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2624 		reg &= ~MISC_INTNLOSC_OPEN;
2625 		CSR_WRITE_4(sc, ALC_MISC, reg);
2626 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2627 		reg = CSR_READ_4(sc, ALC_MISC2);
2628 		reg &= ~MISC2_CALB_START;
2629 		CSR_WRITE_4(sc, ALC_MISC2, reg);
2630 		CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2631 
2632 	} else {
2633 		reg &= ~MISC_INTNLOSC_OPEN;
2634 		/* Disable isolate for revision A devices. */
2635 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2636 			reg &= ~MISC_ISO_ENB;
2637 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2638 		CSR_WRITE_4(sc, ALC_MISC, reg);
2639 	}
2640 
2641 	DELAY(20);
2642 }
2643 
2644 static void
2645 alc_reset(struct alc_softc *sc)
2646 {
2647 	uint32_t pmcfg, reg;
2648 	int i;
2649 
2650 	pmcfg = 0;
2651 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2652 		/* Reset workaround. */
2653 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2654 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2655 		    (sc->alc_rev & 0x01) != 0) {
2656 			/* Disable L0s/L1s before reset. */
2657 			pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2658 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2659 			    != 0) {
2660 				pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2661 				    PM_CFG_ASPM_L1_ENB);
2662 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2663 			}
2664 		}
2665 	}
2666 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2667 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2668 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2669 
2670 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2671 		for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2672 			DELAY(10);
2673 			if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2674 				break;
2675 		}
2676 		if (i == 0)
2677 			printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2678 	}
2679 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2680 		DELAY(10);
2681 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2682 			break;
2683 	}
2684 	if (i == 0)
2685 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2686 
2687 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2688 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2689 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2690 		    IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2691 			break;
2692 		DELAY(10);
2693 	}
2694 	if (i == 0)
2695 		printf("%s: reset timeout(0x%08x)!\n",
2696 		    device_xname(sc->sc_dev), reg);
2697 
2698 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2699 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2700 		    (sc->alc_rev & 0x01) != 0) {
2701 			reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2702 			reg |= MASTER_CLK_SEL_DIS;
2703 			CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2704 			/* Restore L0s/L1s config. */
2705 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2706 			    != 0)
2707 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2708 		}
2709 
2710 		alc_osc_reset(sc);
2711 		reg = CSR_READ_4(sc, ALC_MISC3);
2712 		reg &= ~MISC3_25M_BY_SW;
2713 		reg |= MISC3_25M_NOTO_INTNL;
2714 		CSR_WRITE_4(sc, ALC_MISC3, reg);
2715 		reg = CSR_READ_4(sc, ALC_MISC);
2716 		reg &= ~MISC_INTNLOSC_OPEN;
2717 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2718 			reg &= ~MISC_ISO_ENB;
2719 		CSR_WRITE_4(sc, ALC_MISC, reg);
2720 		DELAY(20);
2721 	}
2722 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2723 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2724 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2725 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2726 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2727 		    SERDES_PHY_CLK_SLOWDOWN);
2728 }
2729 
2730 static int
2731 alc_init(struct ifnet *ifp)
2732 {
2733 
2734 	return alc_init_backend(ifp, true);
2735 }
2736 
2737 static int
2738 alc_init_backend(struct ifnet *ifp, bool init)
2739 {
2740 	struct alc_softc *sc = ifp->if_softc;
2741 	struct mii_data *mii;
2742 	uint8_t eaddr[ETHER_ADDR_LEN];
2743 	bus_addr_t paddr;
2744 	uint32_t reg, rxf_hi, rxf_lo;
2745 	int error;
2746 
2747 	/*
2748 	 * Cancel any pending I/O.
2749 	 */
2750 	alc_stop(ifp, 0);
2751 	/*
2752 	 * Reset the chip to a known state.
2753 	 */
2754 	alc_reset(sc);
2755 
2756 	/* Initialize Rx descriptors. */
2757 	error = alc_init_rx_ring(sc, init);
2758 	if (error != 0) {
2759 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2760 		alc_stop(ifp, 0);
2761 		return (error);
2762 	}
2763 	alc_init_rr_ring(sc);
2764 	alc_init_tx_ring(sc);
2765 	alc_init_cmb(sc);
2766 	alc_init_smb(sc);
2767 
2768 	/* Enable all clocks. */
2769 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2770 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2771 		    CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2772 		    CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2773 		    CLK_GATING_RXMAC_ENB);
2774 		if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2775 			CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2776 			    IDLE_DECISN_TIMER_DEFAULT_1MS);
2777 	} else
2778 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2779 
2780 
2781 	/* Reprogram the station address. */
2782 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2783 	CSR_WRITE_4(sc, ALC_PAR0,
2784 	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2785 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2786 	/*
2787 	 * Clear WOL status and disable all WOL feature as WOL
2788 	 * would interfere Rx operation under normal environments.
2789 	 */
2790 	CSR_READ_4(sc, ALC_WOL_CFG);
2791 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2792 	/* Set Tx descriptor base addresses. */
2793 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2794 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2795 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2796 	/* We don't use high priority ring. */
2797 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2798 	/* Set Tx descriptor counter. */
2799 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2800 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2801 	/* Set Rx descriptor base addresses. */
2802 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2803 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2804 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2805 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2806 		/* We use one Rx ring. */
2807 		CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2808 		CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2809 		CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2810 	}
2811 	/* Set Rx descriptor counter. */
2812 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2813 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2814 
2815 	/*
2816 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2817 	 * if it do not fit the buffer size. Rx return descriptor holds
2818 	 * a counter that indicates how many fragments were made by the
2819 	 * hardware. The buffer size should be multiple of 8 bytes.
2820 	 * Since hardware has limit on the size of buffer size, always
2821 	 * use the maximum value.
2822 	 * For strict-alignment architectures make sure to reduce buffer
2823 	 * size by 8 bytes to make room for alignment fixup.
2824 	 */
2825 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2826 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2827 
2828 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2829 	/* Set Rx return descriptor base addresses. */
2830 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2831 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2832 		/* We use one Rx return ring. */
2833 		CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2834 		CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2835 		CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2836 	}\
2837 	/* Set Rx return descriptor counter. */
2838 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2839 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2840 	paddr = sc->alc_rdata.alc_cmb_paddr;
2841 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2842 	paddr = sc->alc_rdata.alc_smb_paddr;
2843 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2844 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2845 
2846 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2847 		/* Reconfigure SRAM - Vendor magic. */
2848 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2849 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2850 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2851 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2852 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2853 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2854 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2855 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2856 	}
2857 
2858 	/* Tell hardware that we're ready to load DMA blocks. */
2859 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2860 
2861 	/* Configure interrupt moderation timer. */
2862 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2863 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2864 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2865 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2866 		reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2867 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2868 	/*
2869 	 * We don't want to automatic interrupt clear as task queue
2870 	 * for the interrupt should know interrupt status.
2871 	 */
2872 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2873 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2874 	reg |= MASTER_SA_TIMER_ENB;
2875 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2876 		reg |= MASTER_IM_RX_TIMER_ENB;
2877 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2878 	    ALC_USECS(sc->alc_int_tx_mod) != 0)
2879 		reg |= MASTER_IM_TX_TIMER_ENB;
2880 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2881 	/*
2882 	 * Disable interrupt re-trigger timer. We don't want automatic
2883 	 * re-triggering of un-ACKed interrupts.
2884 	 */
2885 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2886 	/* Configure CMB. */
2887 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2888 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2889 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2890 		    ALC_USECS(sc->alc_int_tx_mod));
2891 	} else {
2892 		if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2893 			CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2894 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2895 		} else
2896 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2897 	}
2898 	/*
2899 	 * Hardware can be configured to issue SMB interrupt based
2900 	 * on programmed interval. Since there is a callout that is
2901 	 * invoked for every hz in driver we use that instead of
2902 	 * relying on periodic SMB interrupt.
2903 	 */
2904 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2905 	/* Clear MAC statistics. */
2906 	alc_stats_clear(sc);
2907 
2908 	/*
2909 	 * Always use maximum frame size that controller can support.
2910 	 * Otherwise received frames that has larger frame length
2911 	 * than alc(4) MTU would be silently dropped in hardware. This
2912 	 * would make path-MTU discovery hard as sender wouldn't get
2913 	 * any responses from receiver. alc(4) supports
2914 	 * multi-fragmented frames on Rx path so it has no issue on
2915 	 * assembling fragmented frames. Using maximum frame size also
2916 	 * removes the need to reinitialize hardware when interface
2917 	 * MTU configuration was changed.
2918 	 *
2919 	 * Be conservative in what you do, be liberal in what you
2920 	 * accept from others - RFC 793.
2921 	 */
2922 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2923 
2924 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2925 		/* Disable header split(?) */
2926 		CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2927 
2928 		/* Configure IPG/IFG parameters. */
2929 		CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2930 		    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2931 		    IPG_IFG_IPGT_MASK) |
2932 		    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2933 		    IPG_IFG_MIFG_MASK) |
2934 		    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2935 		    IPG_IFG_IPG1_MASK) |
2936 		    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2937 		    IPG_IFG_IPG2_MASK));
2938 		/* Set parameters for half-duplex media. */
2939 		CSR_WRITE_4(sc, ALC_HDPX_CFG,
2940 		    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2941 		    HDPX_CFG_LCOL_MASK) |
2942 		    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2943 		    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2944 		    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2945 		    HDPX_CFG_ABEBT_MASK) |
2946 		    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2947 		    HDPX_CFG_JAMIPG_MASK));
2948 	}
2949 
2950 	/*
2951 	 * Set TSO/checksum offload threshold. For frames that is
2952 	 * larger than this threshold, hardware wouldn't do
2953 	 * TSO/checksum offloading.
2954 	 */
2955 	reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
2956 	    TSO_OFFLOAD_THRESH_MASK;
2957 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
2958 		reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
2959 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
2960 	/* Configure TxQ. */
2961 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
2962 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
2963 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2964 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2965 		reg >>= 1;
2966 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
2967 	    TXQ_CFG_TD_BURST_MASK;
2968 	reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
2969 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
2970 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2971 		reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
2972 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
2973 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
2974 		    HQTD_CFG_BURST_ENB);
2975 		CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
2976 		reg = WRR_PRI_RESTRICT_NONE;
2977 		reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
2978 		    WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
2979 		    WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
2980 		    WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
2981 		CSR_WRITE_4(sc, ALC_WRR, reg);
2982 	} else {
2983 		/* Configure Rx free descriptor pre-fetching. */
2984 		CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
2985 		    ((RX_RD_FREE_THRESH_HI_DEFAULT <<
2986 		    RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
2987 		    ((RX_RD_FREE_THRESH_LO_DEFAULT <<
2988 		    RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
2989 	}
2990 
2991 	/*
2992 	 * Configure flow control parameters.
2993 	 * XON  : 80% of Rx FIFO
2994 	 * XOFF : 30% of Rx FIFO
2995 	 */
2996 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2997 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
2998 		reg &= SRAM_RX_FIFO_LEN_MASK;
2999 		reg *= 8;
3000 		if (reg > 8 * 1024)
3001 			reg -= RX_FIFO_PAUSE_816X_RSVD;
3002 		else
3003 			reg -= RX_BUF_SIZE_MAX;
3004 		reg /= 8;
3005 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3006 		    ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3007 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
3008 		    (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
3009 		    RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3010 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
3011 	} else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
3012 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
3013 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3014 		rxf_hi = (reg * 8) / 10;
3015 		rxf_lo = (reg * 3) / 10;
3016 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3017 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3018 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3019 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3020 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3021 	}
3022 
3023 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3024 		/* Disable RSS until I understand L1C/L2C's RSS logic. */
3025 		CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3026 		CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3027 	}
3028 
3029 	/* Configure RxQ. */
3030 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3031 	    RXQ_CFG_RD_BURST_MASK;
3032 	reg |= RXQ_CFG_RSS_MODE_DIS;
3033 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
3034 		reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3035 		    RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3036 		    RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3037 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3038 	    sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3039  		reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M;
3040 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3041 
3042 	/* Configure DMA parameters. */
3043 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3044 	reg |= sc->alc_rcb;
3045 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3046 		reg |= DMA_CFG_CMB_ENB;
3047 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3048 		reg |= DMA_CFG_SMB_ENB;
3049 	else
3050 		reg |= DMA_CFG_SMB_DIS;
3051 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3052 	    DMA_CFG_RD_BURST_SHIFT;
3053 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3054 	    DMA_CFG_WR_BURST_SHIFT;
3055 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3056 	    DMA_CFG_RD_DELAY_CNT_MASK;
3057 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3058 	    DMA_CFG_WR_DELAY_CNT_MASK;
3059 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3060 		switch (AR816X_REV(sc->alc_rev)) {
3061 		case AR816X_REV_A0:
3062 		case AR816X_REV_A1:
3063 			reg |= DMA_CFG_RD_CHNL_SEL_1;
3064 			break;
3065 		case AR816X_REV_B0:
3066 			/* FALLTHROUGH */
3067 		default:
3068 			reg |= DMA_CFG_RD_CHNL_SEL_3;
3069 			break;
3070 		}
3071 	}
3072 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3073 
3074 	/*
3075 	 * Configure Tx/Rx MACs.
3076 	 *  - Auto-padding for short frames.
3077 	 *  - Enable CRC generation.
3078 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3079 	 *  is followed after detection of link establishment.
3080 	 *  AR813x/AR815x always does checksum computation regardless
3081 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3082 	 *  have bug in protocol field in Rx return structure so
3083 	 *  these controllers can't handle fragmented frames. Disable
3084 	 *  Rx checksum offloading until there is a newer controller
3085 	 *  that has sane implementation.
3086 	 */
3087 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3088 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3089 	    MAC_CFG_PREAMBLE_MASK);
3090 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3091 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3092 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3093 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3094 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3095 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3096 		reg |= MAC_CFG_SPEED_10_100;
3097 	else
3098 		reg |= MAC_CFG_SPEED_1000;
3099 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3100 
3101 	/* Set up the receive filter. */
3102 	alc_iff(sc);
3103 	alc_rxvlan(sc);
3104 
3105 	/* Acknowledge all pending interrupts and clear it. */
3106 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3107 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3108 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3109 
3110 	sc->alc_flags &= ~ALC_FLAG_LINK;
3111 	/* Switch to the current media. */
3112 	mii = &sc->sc_miibus;
3113 	mii_mediachg(mii);
3114 
3115 	callout_schedule(&sc->sc_tick_ch, hz);
3116 
3117 	ifp->if_flags |= IFF_RUNNING;
3118 	ifp->if_flags &= ~IFF_OACTIVE;
3119 
3120 	return (0);
3121 }
3122 
3123 static void
3124 alc_stop(struct ifnet *ifp, int disable)
3125 {
3126 	struct alc_softc *sc = ifp->if_softc;
3127 	struct alc_txdesc *txd;
3128 	struct alc_rxdesc *rxd;
3129 	uint32_t reg;
3130 	int i;
3131 
3132 	callout_stop(&sc->sc_tick_ch);
3133 
3134 	/*
3135 	 * Mark the interface down and cancel the watchdog timer.
3136 	 */
3137 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3138 	ifp->if_timer = 0;
3139 
3140 	sc->alc_flags &= ~ALC_FLAG_LINK;
3141 
3142 	alc_stats_update(sc);
3143 
3144 	mii_down(&sc->sc_miibus);
3145 
3146 	/* Disable interrupts. */
3147 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3148 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3149 
3150 	/* Disable DMA. */
3151 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3152 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3153 	reg |= DMA_CFG_SMB_DIS;
3154 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3155 	DELAY(1000);
3156 
3157 	/* Stop Rx/Tx MACs. */
3158 	alc_stop_mac(sc);
3159 
3160 	/* Disable interrupts which might be touched in taskq handler. */
3161 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3162 
3163 	/* Disable L0s/L1s */
3164 	alc_aspm(sc, 0, IFM_UNKNOWN);
3165 
3166 	/* Reclaim Rx buffers that have been processed. */
3167 	if (sc->alc_cdata.alc_rxhead != NULL)
3168 		m_freem(sc->alc_cdata.alc_rxhead);
3169 	ALC_RXCHAIN_RESET(sc);
3170 	/*
3171 	 * Free Tx/Rx mbufs still in the queues.
3172 	 */
3173 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3174 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3175 		if (rxd->rx_m != NULL) {
3176 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
3177 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3178 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3179 			m_freem(rxd->rx_m);
3180 			rxd->rx_m = NULL;
3181 		}
3182 	}
3183 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3184 		txd = &sc->alc_cdata.alc_txdesc[i];
3185 		if (txd->tx_m != NULL) {
3186 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
3187 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3188 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3189 			m_freem(txd->tx_m);
3190 			txd->tx_m = NULL;
3191 		}
3192 	}
3193 }
3194 
3195 static void
3196 alc_stop_mac(struct alc_softc *sc)
3197 {
3198 	uint32_t reg;
3199 	int i;
3200 
3201 	alc_stop_queue(sc);
3202 	/* Disable Rx/Tx MAC. */
3203 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3204 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3205 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3206 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3207 	}
3208 	for (i = ALC_TIMEOUT; i > 0; i--) {
3209 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3210 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3211 			break;
3212 		DELAY(10);
3213 	}
3214 	if (i == 0)
3215 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3216 		    device_xname(sc->sc_dev), reg);
3217 }
3218 
3219 static void
3220 alc_start_queue(struct alc_softc *sc)
3221 {
3222 	uint32_t qcfg[] = {
3223 		0,
3224 		RXQ_CFG_QUEUE0_ENB,
3225 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3226 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3227 		RXQ_CFG_ENB
3228 	};
3229 	uint32_t cfg;
3230 
3231 	/* Enable RxQ. */
3232 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3233 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3234 		cfg &= ~RXQ_CFG_ENB;
3235 		cfg |= qcfg[1];
3236 	} else
3237 		cfg |= RXQ_CFG_QUEUE0_ENB;
3238 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3239 	/* Enable TxQ. */
3240 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3241 	cfg |= TXQ_CFG_ENB;
3242 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3243 }
3244 
3245 static void
3246 alc_stop_queue(struct alc_softc *sc)
3247 {
3248 	uint32_t reg;
3249 	int i;
3250 
3251 	/* Disable RxQ. */
3252 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3253 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3254 		if ((reg & RXQ_CFG_ENB) != 0) {
3255 			reg &= ~RXQ_CFG_ENB;
3256 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3257 		}
3258 	} else {
3259 		if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3260 			reg &= ~RXQ_CFG_QUEUE0_ENB;
3261 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3262 		}
3263  	}
3264 	/* Disable TxQ. */
3265 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3266 	if ((reg & TXQ_CFG_ENB) != 0) {
3267 		reg &= ~TXQ_CFG_ENB;
3268 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3269 	}
3270 	DELAY(40);
3271 	for (i = ALC_TIMEOUT; i > 0; i--) {
3272 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3273 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3274 			break;
3275 		DELAY(10);
3276 	}
3277 	if (i == 0)
3278 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3279 		    device_xname(sc->sc_dev), reg);
3280 }
3281 
3282 static void
3283 alc_init_tx_ring(struct alc_softc *sc)
3284 {
3285 	struct alc_ring_data *rd;
3286 	struct alc_txdesc *txd;
3287 	int i;
3288 
3289 	sc->alc_cdata.alc_tx_prod = 0;
3290 	sc->alc_cdata.alc_tx_cons = 0;
3291 	sc->alc_cdata.alc_tx_cnt = 0;
3292 
3293 	rd = &sc->alc_rdata;
3294 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3295 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3296 		txd = &sc->alc_cdata.alc_txdesc[i];
3297 		txd->tx_m = NULL;
3298 	}
3299 
3300 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3301 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3302 }
3303 
3304 static int
3305 alc_init_rx_ring(struct alc_softc *sc, bool init)
3306 {
3307 	struct alc_ring_data *rd;
3308 	struct alc_rxdesc *rxd;
3309 	int i;
3310 
3311 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3312 	rd = &sc->alc_rdata;
3313 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3314 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3315 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3316 		rxd->rx_m = NULL;
3317 		rxd->rx_desc = &rd->alc_rx_ring[i];
3318 		if (alc_newbuf(sc, rxd, init) != 0)
3319 			return (ENOBUFS);
3320 	}
3321 
3322 	/*
3323 	 * Since controller does not update Rx descriptors, driver
3324 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3325 	 * is enough to ensure coherence.
3326 	 */
3327 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3328 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3329 	/* Let controller know availability of new Rx buffers. */
3330 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3331 
3332 	return (0);
3333 }
3334 
3335 static void
3336 alc_init_rr_ring(struct alc_softc *sc)
3337 {
3338 	struct alc_ring_data *rd;
3339 
3340 	sc->alc_cdata.alc_rr_cons = 0;
3341 	ALC_RXCHAIN_RESET(sc);
3342 
3343 	rd = &sc->alc_rdata;
3344 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3345 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3346 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
3347 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3348 }
3349 
3350 static void
3351 alc_init_cmb(struct alc_softc *sc)
3352 {
3353 	struct alc_ring_data *rd;
3354 
3355 	rd = &sc->alc_rdata;
3356 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3357 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3358 	    sc->alc_cdata.alc_cmb_map->dm_mapsize,
3359 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3360 }
3361 
3362 static void
3363 alc_init_smb(struct alc_softc *sc)
3364 {
3365 	struct alc_ring_data *rd;
3366 
3367 	rd = &sc->alc_rdata;
3368 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
3369 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3370 	    sc->alc_cdata.alc_smb_map->dm_mapsize,
3371 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3372 }
3373 
3374 static void
3375 alc_rxvlan(struct alc_softc *sc)
3376 {
3377 	uint32_t reg;
3378 
3379 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3380 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3381 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3382 	else
3383 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3384 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3385 }
3386 
3387 static void
3388 alc_iff(struct alc_softc *sc)
3389 {
3390 	struct ethercom *ec = &sc->sc_ec;
3391 	struct ifnet *ifp = &ec->ec_if;
3392 	struct ether_multi *enm;
3393 	struct ether_multistep step;
3394 	uint32_t crc;
3395 	uint32_t mchash[2];
3396 	uint32_t rxcfg;
3397 
3398 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3399 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3400 	ifp->if_flags &= ~IFF_ALLMULTI;
3401 
3402 	/*
3403 	 * Always accept broadcast frames.
3404 	 */
3405 	rxcfg |= MAC_CFG_BCAST;
3406 
3407 	if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
3408 		ifp->if_flags |= IFF_ALLMULTI;
3409 		if (ifp->if_flags & IFF_PROMISC)
3410 			rxcfg |= MAC_CFG_PROMISC;
3411 		else
3412 			rxcfg |= MAC_CFG_ALLMULTI;
3413 		mchash[0] = mchash[1] = 0xFFFFFFFF;
3414 	} else {
3415 		/* Program new filter. */
3416 		memset(mchash, 0, sizeof(mchash));
3417 
3418 		ETHER_FIRST_MULTI(step, ec, enm);
3419 		while (enm != NULL) {
3420 			crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3421 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3422 			ETHER_NEXT_MULTI(step, enm);
3423 		}
3424 	}
3425 
3426 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3427 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3428 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3429 }
3430 
3431 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3432 
3433 #ifdef _MODULE
3434 #include "ioconf.c"
3435 #endif
3436 
3437 static int
3438 if_alc_modcmd(modcmd_t cmd, void *opaque)
3439 {
3440 	int error = 0;
3441 
3442 	switch (cmd) {
3443 	case MODULE_CMD_INIT:
3444 #ifdef _MODULE
3445 		error = config_init_component(cfdriver_ioconf_if_alc,
3446 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3447 #endif
3448 		return error;
3449 	case MODULE_CMD_FINI:
3450 #ifdef _MODULE
3451 		error = config_fini_component(cfdriver_ioconf_if_alc,
3452 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3453 #endif
3454 		return error;
3455 	default:
3456 		return ENOTTY;
3457 	}
3458 }
3459