xref: /netbsd-src/sys/dev/pci/if_alc.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /*	$NetBSD: if_alc.c,v 1.55 2024/07/05 04:31:51 rin Exp $	*/
2 /*	$OpenBSD: if_alc.c,v 1.1 2009/08/08 09:31:13 kevlo Exp $	*/
3 /*-
4  * Copyright (c) 2009, Pyun YongHyeon <yongari@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /* Driver for Atheros AR813x/AR815x PCIe Ethernet. */
31 
32 #ifdef _KERNEL_OPT
33 #include "vlan.h"
34 #endif
35 
36 #include <sys/param.h>
37 #include <sys/proc.h>
38 #include <sys/endian.h>
39 #include <sys/systm.h>
40 #include <sys/types.h>
41 #include <sys/sockio.h>
42 #include <sys/mbuf.h>
43 #include <sys/queue.h>
44 #include <sys/kernel.h>
45 #include <sys/device.h>
46 #include <sys/callout.h>
47 #include <sys/socket.h>
48 #include <sys/module.h>
49 
50 #include <sys/bus.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_llc.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 
59 #ifdef INET
60 #include <netinet/in.h>
61 #include <netinet/in_systm.h>
62 #include <netinet/in_var.h>
63 #include <netinet/ip.h>
64 #endif
65 
66 #include <net/if_types.h>
67 #include <net/if_vlanvar.h>
68 
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 
72 #include <dev/pci/pcireg.h>
73 #include <dev/pci/pcivar.h>
74 #include <dev/pci/pcidevs.h>
75 
76 #include <dev/pci/if_alcreg.h>
77 
78 /*
79  * Devices supported by this driver.
80  */
81 static const struct alc_ident alc_ident_table[] = {
82 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8131, 9 * 1024,
83 		"Atheros AR8131 PCIe Gigabit Ethernet" },
84 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8132, 9 * 1024,
85 		"Atheros AR8132 PCIe Fast Ethernet" },
86 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151, 6 * 1024,
87 		"Atheros AR8151 v1.0 PCIe Gigabit Ethernet" },
88 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8151_V2, 6 * 1024,
89 		"Atheros AR8151 v2.0 PCIe Gigabit Ethernet" },
90 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B, 6 * 1024,
91 		"Atheros AR8152 v1.1 PCIe Fast Ethernet" },
92 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8152_B2, 6 * 1024,
93 		"Atheros AR8152 v2.0 PCIe Fast Ethernet" },
94 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8161, 9 * 1024,
95 		"Atheros AR8161 PCIe Gigabit Ethernet" },
96 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8162, 9 * 1024,
97 		"Atheros AR8162 PCIe Fast Ethernet" },
98 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8171, 9 * 1024,
99 		"Atheros AR8171 PCIe Gigabit Ethernet" },
100 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_AR8172, 9 * 1024,
101 		"Atheros AR8172 PCIe Fast Ethernet" },
102 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2200, 9 * 1024,
103 		"Killer E2200 Gigabit Ethernet" },
104 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2400, 9 * 1024,
105 		"Killer E2400 Gigabit Ethernet" },
106 	{ PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_E2500, 9 * 1024,
107 		"Killer E2500 Gigabit Ethernet" },
108 	{ 0, 0, 0, NULL },
109 };
110 
111 static int	alc_match(device_t, cfdata_t, void *);
112 static void	alc_attach(device_t, device_t, void *);
113 static int	alc_detach(device_t, int);
114 
115 static int	alc_init(struct ifnet *);
116 static int	alc_init_backend(struct ifnet *, bool);
117 static void	alc_start(struct ifnet *);
118 static int	alc_ioctl(struct ifnet *, u_long, void *);
119 static void	alc_watchdog(struct ifnet *);
120 static int	alc_mediachange(struct ifnet *);
121 static void	alc_mediastatus(struct ifnet *, struct ifmediareq *);
122 
123 static void	alc_aspm(struct alc_softc *, int, int);
124 static void	alc_aspm_813x(struct alc_softc *, int);
125 static void	alc_aspm_816x(struct alc_softc *, int);
126 static void	alc_disable_l0s_l1(struct alc_softc *);
127 static int	alc_dma_alloc(struct alc_softc *);
128 static void	alc_dma_free(struct alc_softc *);
129 static void	alc_dsp_fixup(struct alc_softc *, int);
130 static int	alc_encap(struct alc_softc *, struct mbuf **);
131 static const struct alc_ident *
132 		alc_find_ident(struct pci_attach_args *);
133 static void	alc_get_macaddr(struct alc_softc *);
134 static void	alc_get_macaddr_813x(struct alc_softc *);
135 static void	alc_get_macaddr_816x(struct alc_softc *);
136 static void	alc_get_macaddr_par(struct alc_softc *);
137 static void	alc_init_cmb(struct alc_softc *);
138 static void	alc_init_rr_ring(struct alc_softc *);
139 static int	alc_init_rx_ring(struct alc_softc *, bool);
140 static void	alc_init_smb(struct alc_softc *);
141 static void	alc_init_tx_ring(struct alc_softc *);
142 static int	alc_intr(void *);
143 static void	alc_mac_config(struct alc_softc *);
144 static int	alc_mii_readreg_813x(struct alc_softc *, int, int, uint16_t *);
145 static int	alc_mii_readreg_816x(struct alc_softc *, int, int, uint16_t *);
146 static int	alc_mii_writereg_813x(struct alc_softc *, int, int, uint16_t);
147 static int	alc_mii_writereg_816x(struct alc_softc *, int, int, uint16_t);
148 static int	alc_miibus_readreg(device_t, int, int, uint16_t *);
149 static void	alc_miibus_statchg(struct ifnet *);
150 static int	alc_miibus_writereg(device_t, int, int, uint16_t);
151 static int	alc_miidbg_readreg(struct alc_softc *, int, uint16_t *);
152 static int	alc_miidbg_writereg(struct alc_softc *, int, uint16_t);
153 static int	alc_miiext_readreg(struct alc_softc *, int, int, uint16_t *);
154 static int	alc_miiext_writereg(struct alc_softc *, int, int, uint16_t);
155 static int	alc_newbuf(struct alc_softc *, struct alc_rxdesc *, bool);
156 static void	alc_phy_down(struct alc_softc *);
157 static void	alc_phy_reset(struct alc_softc *);
158 static void	alc_phy_reset_813x(struct alc_softc *);
159 static void	alc_phy_reset_816x(struct alc_softc *);
160 static void	alc_reset(struct alc_softc *);
161 static void	alc_rxeof(struct alc_softc *, struct rx_rdesc *);
162 static int	alc_rxintr(struct alc_softc *);
163 static void	alc_iff(struct alc_softc *);
164 static void	alc_rxvlan(struct alc_softc *);
165 static void	alc_start_queue(struct alc_softc *);
166 static void	alc_stats_clear(struct alc_softc *);
167 static void	alc_stats_update(struct alc_softc *);
168 static void	alc_stop(struct ifnet *, int);
169 static void	alc_stop_mac(struct alc_softc *);
170 static void	alc_stop_queue(struct alc_softc *);
171 static void	alc_tick(void *);
172 static void	alc_txeof(struct alc_softc *);
173 static void	alc_init_pcie(struct alc_softc *);
174 
175 static const uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0, 0 };
176 
177 CFATTACH_DECL_NEW(alc, sizeof(struct alc_softc),
178     alc_match, alc_attach, alc_detach, NULL);
179 
180 int alcdebug = 0;
181 #define	DPRINTF(x)	do { if (alcdebug) printf x; } while (0)
182 
183 #define ALC_CSUM_FEATURES	(M_CSUM_TCPv4 | M_CSUM_UDPv4)
184 
185 static int
alc_miibus_readreg(device_t dev,int phy,int reg,uint16_t * val)186 alc_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
187 {
188 	struct alc_softc *sc = device_private(dev);
189 	int v;
190 
191 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
192 		v = alc_mii_readreg_816x(sc, phy, reg, val);
193 	else
194 		v = alc_mii_readreg_813x(sc, phy, reg, val);
195 	return (v);
196 }
197 
198 static int
alc_mii_readreg_813x(struct alc_softc * sc,int phy,int reg,uint16_t * val)199 alc_mii_readreg_813x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
200 {
201 	uint32_t v;
202 	int i;
203 
204 	if (phy != sc->alc_phyaddr)
205 		return -1;
206 
207 	/*
208 	 * For AR8132 fast ethernet controller, do not report 1000baseT
209 	 * capability to mii(4). Even though AR8132 uses the same
210 	 * model/revision number of F1 gigabit PHY, the PHY has no
211 	 * ability to establish 1000baseT link.
212 	 */
213 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && reg == MII_EXTSR) {
214 		*val = 0;
215 		return 0;
216 	}
217 
218 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
221 		DELAY(5);
222 		v = CSR_READ_4(sc, ALC_MDIO);
223 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224 			break;
225 	}
226 
227 	if (i == 0) {
228 		printf("%s: phy read timeout: phy %d, reg %d\n",
229 		    device_xname(sc->sc_dev), phy, reg);
230 		return ETIMEDOUT;
231 	}
232 
233 	*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
234 	return 0;
235 }
236 
237 static int
alc_mii_readreg_816x(struct alc_softc * sc,int phy,int reg,uint16_t * val)238 alc_mii_readreg_816x(struct alc_softc *sc, int phy, int reg, uint16_t *val)
239 {
240 	uint32_t clk, v;
241 	int i;
242 
243 	if (phy != sc->alc_phyaddr)
244 		return -1;
245 
246 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
247 		clk = MDIO_CLK_25_128;
248 	else
249 		clk = MDIO_CLK_25_4;
250 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
251 	    MDIO_SUP_PREAMBLE | clk | MDIO_REG_ADDR(reg));
252 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
253 		DELAY(5);
254 		v = CSR_READ_4(sc, ALC_MDIO);
255 		if ((v & MDIO_OP_BUSY) == 0)
256 			break;
257 	}
258 
259 	if (i == 0) {
260 		printf("%s: phy read timeout: phy %d, reg %d\n",
261 		    device_xname(sc->sc_dev), phy, reg);
262 		return ETIMEDOUT;
263 	}
264 
265 	*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
266 	return 0;
267 }
268 
269 static int
alc_miibus_writereg(device_t dev,int phy,int reg,uint16_t val)270 alc_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
271 {
272 	struct alc_softc *sc = device_private(dev);
273 	int rv;
274 
275 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
276 		rv = alc_mii_writereg_816x(sc, phy, reg, val);
277 	else
278 		rv = alc_mii_writereg_813x(sc, phy, reg, val);
279 
280 	return rv;
281 }
282 
283 static int
alc_mii_writereg_813x(struct alc_softc * sc,int phy,int reg,uint16_t val)284 alc_mii_writereg_813x(struct alc_softc *sc, int phy, int reg, uint16_t val)
285 {
286 	uint32_t v;
287 	int i;
288 
289 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
290 	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
291 	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
292 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
293 		DELAY(5);
294 		v = CSR_READ_4(sc, ALC_MDIO);
295 		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
296 			break;
297 	}
298 
299 	if (i == 0) {
300 		printf("%s: phy write timeout: phy %d, reg %d\n",
301 		    device_xname(sc->sc_dev), phy, reg);
302 		return ETIMEDOUT;
303 	}
304 
305 	return 0;
306 }
307 
308 static int
alc_mii_writereg_816x(struct alc_softc * sc,int phy,int reg,uint16_t val)309 alc_mii_writereg_816x(struct alc_softc *sc, int phy, int reg, uint16_t val)
310 {
311 	uint32_t clk, v;
312 	int i;
313 
314 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
315 		clk = MDIO_CLK_25_128;
316 	else
317 		clk = MDIO_CLK_25_4;
318 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
319 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) | MDIO_REG_ADDR(reg) |
320 	    MDIO_SUP_PREAMBLE | clk);
321 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
322 		DELAY(5);
323 		v = CSR_READ_4(sc, ALC_MDIO);
324 		if ((v & MDIO_OP_BUSY) == 0)
325 			break;
326 	}
327 
328 	if (i == 0) {
329 		printf("%s: phy write timeout: phy %d, reg %d\n",
330 		    device_xname(sc->sc_dev), phy, reg);
331 		return ETIMEDOUT;
332 	}
333 
334 	return 0;
335 }
336 
337 static void
alc_miibus_statchg(struct ifnet * ifp)338 alc_miibus_statchg(struct ifnet *ifp)
339 {
340 	struct alc_softc *sc = ifp->if_softc;
341 	struct mii_data *mii = &sc->sc_miibus;
342 	uint32_t reg;
343 
344 	if ((ifp->if_flags & IFF_RUNNING) == 0)
345 		return;
346 
347 	sc->alc_flags &= ~ALC_FLAG_LINK;
348 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
349 	    (IFM_ACTIVE | IFM_AVALID)) {
350 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
351 		case IFM_10_T:
352 		case IFM_100_TX:
353 			sc->alc_flags |= ALC_FLAG_LINK;
354 			break;
355 		case IFM_1000_T:
356 			if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
357 				sc->alc_flags |= ALC_FLAG_LINK;
358 			break;
359 		default:
360 			break;
361 		}
362 	}
363 	/* Stop Rx/Tx MACs. */
364 	alc_stop_mac(sc);
365 
366 	/* Program MACs with resolved speed/duplex/flow-control. */
367 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
368 		alc_start_queue(sc);
369 		alc_mac_config(sc);
370 		/* Re-enable Tx/Rx MACs. */
371 		reg = CSR_READ_4(sc, ALC_MAC_CFG);
372 		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
373 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
374 	}
375 	alc_aspm(sc, 0, IFM_SUBTYPE(mii->mii_media_active));
376 	alc_dsp_fixup(sc, IFM_SUBTYPE(mii->mii_media_active));
377 }
378 
379 static int
alc_miidbg_readreg(struct alc_softc * sc,int reg,uint16_t * val)380 alc_miidbg_readreg(struct alc_softc *sc, int reg, uint16_t *val)
381 {
382 	int rv;
383 
384 	rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
385 	    reg);
386 	if (rv != 0)
387 		return rv;
388 
389 	return (alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
390 		ALC_MII_DBG_DATA, val));
391 }
392 
393 static int
alc_miidbg_writereg(struct alc_softc * sc,int reg,uint16_t val)394 alc_miidbg_writereg(struct alc_softc *sc, int reg, uint16_t val)
395 {
396 	int rv;
397 
398 	rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
399 	    reg);
400 	if (rv != 0)
401 		return rv;
402 
403 	rv = alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
404 	    val);
405 
406 	return rv;
407 }
408 
409 static int
alc_miiext_readreg(struct alc_softc * sc,int devaddr,int reg,uint16_t * val)410 alc_miiext_readreg(struct alc_softc *sc, int devaddr, int reg, uint16_t *val)
411 {
412 	uint32_t clk, v;
413 	int i;
414 
415 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
416 	    EXT_MDIO_DEVADDR(devaddr));
417 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
418 		clk = MDIO_CLK_25_128;
419 	else
420 		clk = MDIO_CLK_25_4;
421 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
422 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
423 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
424 		DELAY(5);
425 		v = CSR_READ_4(sc, ALC_MDIO);
426 		if ((v & MDIO_OP_BUSY) == 0)
427 			break;
428 	}
429 
430 	if (i == 0) {
431 		printf("%s: phy ext read timeout: %d\n",
432 		    device_xname(sc->sc_dev), reg);
433 		return ETIMEDOUT;
434 	}
435 
436 	*val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
437 	return 0;
438 }
439 
440 static int
alc_miiext_writereg(struct alc_softc * sc,int devaddr,int reg,uint16_t val)441 alc_miiext_writereg(struct alc_softc *sc, int devaddr, int reg, uint16_t val)
442 {
443 	uint32_t clk, v;
444 	int i;
445 
446 	CSR_WRITE_4(sc, ALC_EXT_MDIO, EXT_MDIO_REG(reg) |
447 	    EXT_MDIO_DEVADDR(devaddr));
448 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0)
449 		clk = MDIO_CLK_25_128;
450 	else
451 		clk = MDIO_CLK_25_4;
452 	CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
453 	    ((val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT) |
454 	    MDIO_SUP_PREAMBLE | clk | MDIO_MODE_EXT);
455 	for (i = ALC_PHY_TIMEOUT; i > 0; i--) {
456 		DELAY(5);
457 		v = CSR_READ_4(sc, ALC_MDIO);
458 		if ((v & MDIO_OP_BUSY) == 0)
459 			break;
460 	}
461 
462 	if (i == 0) {
463 		printf("%s: phy ext write timeout: reg %d\n",
464 		    device_xname(sc->sc_dev), reg);
465 		return ETIMEDOUT;
466 	}
467 
468 	return 0;
469 }
470 
471 static void
alc_dsp_fixup(struct alc_softc * sc,int media)472 alc_dsp_fixup(struct alc_softc *sc, int media)
473 {
474 	uint16_t agc, len, val;
475 
476 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
477 		return;
478 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_C0)
479 		return;
480 
481 	/*
482 	 * Vendor PHY magic.
483 	 * 1000BT/AZ, wrong cable length
484 	 */
485 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
486 		alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL6, &len);
487 		len = (len >> EXT_CLDCTL6_CAB_LEN_SHIFT) &
488 		    EXT_CLDCTL6_CAB_LEN_MASK;
489 		/* XXX: used to be (alc >> shift) & mask which is 0 */
490 		alc_miidbg_readreg(sc, MII_DBG_AGC, &agc);
491 		agc &= DBG_AGC_2_VGA_MASK;
492 		agc >>= DBG_AGC_2_VGA_SHIFT;
493 		if ((media == IFM_1000_T && len > EXT_CLDCTL6_CAB_LEN_SHORT1G &&
494 		    agc > DBG_AGC_LONG1G_LIMT) ||
495 		    (media == IFM_100_TX && len > DBG_AGC_LONG100M_LIMT &&
496 		    agc > DBG_AGC_LONG1G_LIMT)) {
497 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
498 			    DBG_AZ_ANADECT_LONG);
499 			alc_miiext_readreg(sc, MII_EXT_ANEG,
500 			    MII_EXT_ANEG_AFE, &val);
501 			val |= ANEG_AFEE_10BT_100M_TH;
502 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
503 			    val);
504 		} else {
505 			alc_miidbg_writereg(sc, MII_DBG_AZ_ANADECT,
506 			    DBG_AZ_ANADECT_DEFAULT);
507 			alc_miiext_readreg(sc, MII_EXT_ANEG,
508 			    MII_EXT_ANEG_AFE, &val);
509 			val &= ~ANEG_AFEE_10BT_100M_TH;
510 			alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE,
511 			    val);
512 		}
513 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
514 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
515 			if (media == IFM_1000_T) {
516 				/*
517 				 * Giga link threshold, raise the tolerance of
518 				 * noise 50%.
519 				 */
520 				alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
521 				val &= ~DBG_MSE20DB_TH_MASK;
522 				val |= (DBG_MSE20DB_TH_HI <<
523 				    DBG_MSE20DB_TH_SHIFT);
524 				alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
525 			} else if (media == IFM_100_TX)
526 				alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
527 				    DBG_MSE16DB_UP);
528 		}
529 	} else {
530 		alc_miiext_readreg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, &val);
531 		val &= ~ANEG_AFEE_10BT_100M_TH;
532 		alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_AFE, val);
533 		if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0 &&
534 		    AR816X_REV(sc->alc_rev) == AR816X_REV_B0) {
535 			alc_miidbg_writereg(sc, MII_DBG_MSE16DB,
536 			    DBG_MSE16DB_DOWN);
537 			alc_miidbg_readreg(sc, MII_DBG_MSE20DB, &val);
538 			val &= ~DBG_MSE20DB_TH_MASK;
539 			val |= (DBG_MSE20DB_TH_DEFAULT << DBG_MSE20DB_TH_SHIFT);
540 			alc_miidbg_writereg(sc, MII_DBG_MSE20DB, val);
541 		}
542 	}
543 }
544 
545 static void
alc_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)546 alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
547 {
548 	struct alc_softc *sc = ifp->if_softc;
549 	struct mii_data *mii = &sc->sc_miibus;
550 
551 	if ((ifp->if_flags & IFF_UP) == 0)
552 		return;
553 
554 	mii_pollstat(mii);
555 	ifmr->ifm_status = mii->mii_media_status;
556 	ifmr->ifm_active = mii->mii_media_active;
557 }
558 
559 static int
alc_mediachange(struct ifnet * ifp)560 alc_mediachange(struct ifnet *ifp)
561 {
562 	struct alc_softc *sc = ifp->if_softc;
563 	struct mii_data *mii = &sc->sc_miibus;
564 	int error;
565 
566 	if (mii->mii_instance != 0) {
567 		struct mii_softc *miisc;
568 
569 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
570 			mii_phy_reset(miisc);
571 	}
572 	error = mii_mediachg(mii);
573 
574 	return (error);
575 }
576 
577 static const struct alc_ident *
alc_find_ident(struct pci_attach_args * pa)578 alc_find_ident(struct pci_attach_args *pa)
579 {
580 	const struct alc_ident *ident;
581 	uint16_t vendor, devid;
582 
583 	vendor = PCI_VENDOR(pa->pa_id);
584 	devid = PCI_PRODUCT(pa->pa_id);
585 	for (ident = alc_ident_table; ident->name != NULL; ident++) {
586 		if (vendor == ident->vendorid && devid == ident->deviceid)
587 			return (ident);
588 	}
589 
590 	return (NULL);
591 }
592 
593 static int
alc_match(device_t dev,cfdata_t match,void * aux)594 alc_match(device_t dev, cfdata_t match, void *aux)
595 {
596 	struct pci_attach_args *pa = aux;
597 
598 	return alc_find_ident(pa) != NULL;
599 }
600 
601 static void
alc_get_macaddr(struct alc_softc * sc)602 alc_get_macaddr(struct alc_softc *sc)
603 {
604 
605 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
606 		alc_get_macaddr_816x(sc);
607 	else
608 		alc_get_macaddr_813x(sc);
609 }
610 
611 static void
alc_get_macaddr_813x(struct alc_softc * sc)612 alc_get_macaddr_813x(struct alc_softc *sc)
613 {
614 	uint32_t opt;
615 	uint16_t val;
616 	int eeprom, i;
617 
618 	eeprom = 0;
619 	opt = CSR_READ_4(sc, ALC_OPT_CFG);
620 	if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 &&
621 	    (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) {
622 		/*
623 		 * EEPROM found, let TWSI reload EEPROM configuration.
624 		 * This will set ethernet address of controller.
625 		 */
626 		eeprom++;
627 		switch (sc->alc_ident->deviceid) {
628 		case PCI_PRODUCT_ATTANSIC_AR8131:
629 		case PCI_PRODUCT_ATTANSIC_AR8132:
630 			if ((opt & OPT_CFG_CLK_ENB) == 0) {
631 				opt |= OPT_CFG_CLK_ENB;
632 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
633 				CSR_READ_4(sc, ALC_OPT_CFG);
634 				DELAY(1000);
635 			}
636 			break;
637 		case PCI_PRODUCT_ATTANSIC_AR8151:
638 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
639 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
640 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
641 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
642 			    ALC_MII_DBG_ADDR, 0x00);
643 			alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
644 			    ALC_MII_DBG_DATA, &val);
645 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
646 			    ALC_MII_DBG_DATA, val & 0xFF7F);
647 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
648 			    ALC_MII_DBG_ADDR, 0x3B);
649 			alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
650 			    ALC_MII_DBG_DATA, &val);
651 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
652 			    ALC_MII_DBG_DATA, val | 0x0008);
653 			DELAY(20);
654 			break;
655 		}
656 
657 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
658 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
659 		CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
660 		CSR_READ_4(sc, ALC_WOL_CFG);
661 
662 		CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) |
663 		    TWSI_CFG_SW_LD_START);
664 		for (i = 100; i > 0; i--) {
665 			DELAY(1000);
666 			if ((CSR_READ_4(sc, ALC_TWSI_CFG) &
667 			    TWSI_CFG_SW_LD_START) == 0)
668 				break;
669 		}
670 		if (i == 0)
671 			printf("%s: reloading EEPROM timeout!\n",
672 			    device_xname(sc->sc_dev));
673 	} else {
674 		if (alcdebug)
675 			printf("%s: EEPROM not found!\n", device_xname(sc->sc_dev));
676 	}
677 	if (eeprom != 0) {
678 		switch (sc->alc_ident->deviceid) {
679 		case PCI_PRODUCT_ATTANSIC_AR8131:
680 		case PCI_PRODUCT_ATTANSIC_AR8132:
681 			if ((opt & OPT_CFG_CLK_ENB) != 0) {
682 				opt &= ~OPT_CFG_CLK_ENB;
683 				CSR_WRITE_4(sc, ALC_OPT_CFG, opt);
684 				CSR_READ_4(sc, ALC_OPT_CFG);
685 				DELAY(1000);
686 			}
687 			break;
688 		case PCI_PRODUCT_ATTANSIC_AR8151:
689 		case PCI_PRODUCT_ATTANSIC_AR8151_V2:
690 		case PCI_PRODUCT_ATTANSIC_AR8152_B:
691 		case PCI_PRODUCT_ATTANSIC_AR8152_B2:
692 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
693 			    ALC_MII_DBG_ADDR, 0x00);
694 			alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
695 			    ALC_MII_DBG_DATA, &val);
696 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
697 			    ALC_MII_DBG_DATA, val | 0x0080);
698 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
699 			    ALC_MII_DBG_ADDR, 0x3B);
700 			alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
701 			    ALC_MII_DBG_DATA, &val);
702 			alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
703 			    ALC_MII_DBG_DATA, val & 0xFFF7);
704 			DELAY(20);
705 			break;
706 		}
707 	}
708 
709 	alc_get_macaddr_par(sc);
710 }
711 
712 static void
alc_get_macaddr_816x(struct alc_softc * sc)713 alc_get_macaddr_816x(struct alc_softc *sc)
714 {
715 	uint32_t reg;
716 	int i, reloaded;
717 
718 	reloaded = 0;
719 	/* Try to reload station address via TWSI. */
720 	for (i = 100; i > 0; i--) {
721 		reg = CSR_READ_4(sc, ALC_SLD);
722 		if ((reg & (SLD_PROGRESS | SLD_START)) == 0)
723 			break;
724 		DELAY(1000);
725 	}
726 	if (i != 0) {
727 		CSR_WRITE_4(sc, ALC_SLD, reg | SLD_START);
728 		for (i = 100; i > 0; i--) {
729 			DELAY(1000);
730 			reg = CSR_READ_4(sc, ALC_SLD);
731 			if ((reg & SLD_START) == 0)
732 				break;
733 		}
734 		if (i != 0)
735 			reloaded++;
736 		else if (alcdebug)
737 			printf("%s: reloading station address via TWSI timed out!\n",
738 			    device_xname(sc->sc_dev));
739 	}
740 
741 	/* Try to reload station address from EEPROM or FLASH. */
742 	if (reloaded == 0) {
743 		reg = CSR_READ_4(sc, ALC_EEPROM_LD);
744 		if ((reg & (EEPROM_LD_EEPROM_EXIST |
745 		    EEPROM_LD_FLASH_EXIST)) != 0) {
746 			for (i = 100; i > 0; i--) {
747 				reg = CSR_READ_4(sc, ALC_EEPROM_LD);
748 				if ((reg & (EEPROM_LD_PROGRESS |
749 				    EEPROM_LD_START)) == 0)
750 					break;
751 				DELAY(1000);
752 			}
753 			if (i != 0) {
754 				CSR_WRITE_4(sc, ALC_EEPROM_LD, reg |
755 				    EEPROM_LD_START);
756 				for (i = 100; i > 0; i--) {
757 					DELAY(1000);
758 					reg = CSR_READ_4(sc, ALC_EEPROM_LD);
759 					if ((reg & EEPROM_LD_START) == 0)
760 						break;
761 				}
762 			} else if (alcdebug)
763 				printf("%s: reloading EEPROM/FLASH timed out!\n",
764 				  device_xname(sc->sc_dev));
765 		}
766 	}
767 
768 	alc_get_macaddr_par(sc);
769 }
770 
771 static void
alc_get_macaddr_par(struct alc_softc * sc)772 alc_get_macaddr_par(struct alc_softc *sc)
773 {
774 	uint32_t ea[2];
775 
776 	ea[0] = CSR_READ_4(sc, ALC_PAR0);
777 	ea[1] = CSR_READ_4(sc, ALC_PAR1);
778 	sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF;
779 	sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF;
780 	sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF;
781 	sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF;
782 	sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF;
783 	sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF;
784 }
785 
786 static void
alc_disable_l0s_l1(struct alc_softc * sc)787 alc_disable_l0s_l1(struct alc_softc *sc)
788 {
789 	uint32_t pmcfg;
790 
791 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
792 		/* Another magic from vendor. */
793 		pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
794 		pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 |
795 		    PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
796 		    PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1);
797 		pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB |
798 		    PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB;
799 		CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
800 	}
801 }
802 
803 static void
alc_phy_reset(struct alc_softc * sc)804 alc_phy_reset(struct alc_softc *sc)
805 {
806 
807 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
808 		alc_phy_reset_816x(sc);
809 	else
810 		alc_phy_reset_813x(sc);
811 }
812 
813 static void
alc_phy_reset_813x(struct alc_softc * sc)814 alc_phy_reset_813x(struct alc_softc *sc)
815 {
816 	uint16_t data;
817 
818 	/* Reset magic from Linux. */
819 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET);
820 	CSR_READ_2(sc, ALC_GPHY_CFG);
821 	DELAY(10 * 1000);
822 
823 	CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
824 	    GPHY_CFG_SEL_ANA_RESET);
825 	CSR_READ_2(sc, ALC_GPHY_CFG);
826 	DELAY(10 * 1000);
827 
828 	/* DSP fixup, Vendor magic. */
829 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
830 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
831 		    ALC_MII_DBG_ADDR, 0x000A);
832 		alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
833 		    ALC_MII_DBG_DATA, &data);
834 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
835 		    ALC_MII_DBG_DATA, data & 0xDFFF);
836 	}
837 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
838 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
839 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
840 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
841 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
842 		    ALC_MII_DBG_ADDR, 0x003B);
843 		alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
844 		    ALC_MII_DBG_DATA, &data);
845 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
846 		    ALC_MII_DBG_DATA, data & 0xFFF7);
847 		DELAY(20 * 1000);
848 	}
849 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151) {
850 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
851 		    ALC_MII_DBG_ADDR, 0x0029);
852 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
853 		    ALC_MII_DBG_DATA, 0x929D);
854 	}
855 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
856 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132 ||
857 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
858 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2) {
859 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
860 		    ALC_MII_DBG_ADDR, 0x0029);
861 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
862 		    ALC_MII_DBG_DATA, 0xB6DD);
863 	}
864 
865 	/* Load DSP codes, vendor magic. */
866 	data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
867 	    ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK);
868 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
869 	    ALC_MII_DBG_ADDR, MII_ANA_CFG18);
870 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
871 	    ALC_MII_DBG_DATA, data);
872 
873 	data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) |
874 	    ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
875 	    ANA_SERDES_EN_LCKDT;
876 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
877 	    ALC_MII_DBG_ADDR, MII_ANA_CFG5);
878 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
879 	    ALC_MII_DBG_DATA, data);
880 
881 	data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) &
882 	    ANA_LONG_CABLE_TH_100_MASK) |
883 	    ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) &
884 	    ANA_SHORT_CABLE_TH_100_SHIFT) |
885 	    ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW;
886 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
887 	    ALC_MII_DBG_ADDR, MII_ANA_CFG54);
888 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
889 	    ALC_MII_DBG_DATA, data);
890 
891 	data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) |
892 	    ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) |
893 	    ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) |
894 	    ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK);
895 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
896 	    ALC_MII_DBG_ADDR, MII_ANA_CFG4);
897 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
898 	    ALC_MII_DBG_DATA, data);
899 
900 	data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) |
901 	    ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB |
902 	    ANA_OEN_125M;
903 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
904 	    ALC_MII_DBG_ADDR, MII_ANA_CFG0);
905 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
906 	    ALC_MII_DBG_DATA, data);
907 	DELAY(1000);
908 
909 	/* Disable hibernation. */
910 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
911 	    0x0029);
912 	alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
913 	    ALC_MII_DBG_DATA, &data);
914 	data &= ~0x8000;
915 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
916 	    data);
917 
918 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR,
919 	    0x000B);
920 	alc_miibus_readreg(sc->sc_dev, sc->alc_phyaddr,
921 	    ALC_MII_DBG_DATA, &data);
922 	data &= ~0x8000;
923 	alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA,
924 	    data);
925 }
926 
927 static void
alc_phy_reset_816x(struct alc_softc * sc)928 alc_phy_reset_816x(struct alc_softc *sc)
929 {
930 	uint32_t val;
931 	uint16_t phyval;
932 
933 	val = CSR_READ_4(sc, ALC_GPHY_CFG);
934 	val &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
935 	    GPHY_CFG_GATE_25M_ENB | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PHY_PLL_ON |
936 	    GPHY_CFG_PWDOWN_HW | GPHY_CFG_100AB_ENB);
937 	val |= GPHY_CFG_SEL_ANA_RESET;
938 #ifdef notyet
939 	val |= GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN | GPHY_CFG_SEL_ANA_RESET;
940 #else
941 	/* Disable PHY hibernation. */
942 	val &= ~(GPHY_CFG_HIB_PULSE | GPHY_CFG_HIB_EN);
943 #endif
944 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val);
945 	DELAY(10);
946 	CSR_WRITE_4(sc, ALC_GPHY_CFG, val | GPHY_CFG_EXT_RESET);
947 	DELAY(800);
948 
949 	/* Vendor PHY magic. */
950 #ifdef notyet
951 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS, DBG_LEGCYPS_DEFAULT);
952 	alc_miidbg_writereg(sc, MII_DBG_SYSMODCTL, DBG_SYSMODCTL_DEFAULT);
953 	alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_VDRVBIAS,
954 	    EXT_VDRVBIAS_DEFAULT);
955 #else
956 	/* Disable PHY hibernation. */
957 	alc_miidbg_writereg(sc, MII_DBG_LEGCYPS,
958 	    DBG_LEGCYPS_DEFAULT & ~DBG_LEGCYPS_ENB);
959 	alc_miidbg_writereg(sc, MII_DBG_HIBNEG,
960 	    DBG_HIBNEG_DEFAULT & ~(DBG_HIBNEG_PSHIB_EN | DBG_HIBNEG_HIB_PULSE));
961 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG, DBG_GREENCFG_DEFAULT);
962 #endif
963 
964 	/* XXX Disable EEE. */
965 	val = CSR_READ_4(sc, ALC_LPI_CTL);
966 	val &= ~LPI_CTL_ENB;
967 	CSR_WRITE_4(sc, ALC_LPI_CTL, val);
968 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_LOCAL_EEEADV, 0);
969 
970 	/* PHY power saving. */
971 	alc_miidbg_writereg(sc, MII_DBG_TST10BTCFG, DBG_TST10BTCFG_DEFAULT);
972 	alc_miidbg_writereg(sc, MII_DBG_SRDSYSMOD, DBG_SRDSYSMOD_DEFAULT);
973 	alc_miidbg_writereg(sc, MII_DBG_TST100BTCFG, DBG_TST100BTCFG_DEFAULT);
974 	alc_miidbg_writereg(sc, MII_DBG_ANACTL, DBG_ANACTL_DEFAULT);
975 	alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
976 	phyval &= ~DBG_GREENCFG2_GATE_DFSE_EN;
977 	alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
978 
979 	/* RTL8139C, 120m issue. */
980 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_NLP78,
981 	    ANEG_NLP78_120M_DEFAULT);
982 	alc_miiext_writereg(sc, MII_EXT_ANEG, MII_EXT_ANEG_S3DIG10,
983 	    ANEG_S3DIG10_DEFAULT);
984 
985 	if ((sc->alc_flags & ALC_FLAG_LINK_WAR) != 0) {
986 		/* Turn off half amplitude. */
987 		alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, &phyval);
988 		phyval |= EXT_CLDCTL3_BP_CABLE1TH_DET_GT;
989 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL3, phyval);
990 		/* Turn off Green feature. */
991 		alc_miidbg_readreg(sc, MII_DBG_GREENCFG2, &phyval);
992 		phyval |= DBG_GREENCFG2_BP_GREEN;
993 		alc_miidbg_writereg(sc, MII_DBG_GREENCFG2, phyval);
994 		/* Turn off half bias. */
995 		alc_miiext_readreg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, &phyval);
996 		val |= EXT_CLDCTL5_BP_VD_HLFBIAS;
997 		alc_miiext_writereg(sc, MII_EXT_PCS, MII_EXT_CLDCTL5, phyval);
998 	}
999 }
1000 
1001 static void
alc_phy_down(struct alc_softc * sc)1002 alc_phy_down(struct alc_softc *sc)
1003 {
1004 	uint32_t gphy;
1005 
1006 	switch (sc->alc_ident->deviceid) {
1007 	case PCI_PRODUCT_ATTANSIC_AR8161:
1008 	case PCI_PRODUCT_ATTANSIC_E2200:
1009 	case PCI_PRODUCT_ATTANSIC_E2400:
1010 	case PCI_PRODUCT_ATTANSIC_E2500:
1011 	case PCI_PRODUCT_ATTANSIC_AR8162:
1012 	case PCI_PRODUCT_ATTANSIC_AR8171:
1013 	case PCI_PRODUCT_ATTANSIC_AR8172:
1014 		gphy = CSR_READ_4(sc, ALC_GPHY_CFG);
1015 		gphy &= ~(GPHY_CFG_EXT_RESET | GPHY_CFG_LED_MODE |
1016 		    GPHY_CFG_100AB_ENB | GPHY_CFG_PHY_PLL_ON);
1017 		gphy |= GPHY_CFG_HIB_EN | GPHY_CFG_HIB_PULSE |
1018 		    GPHY_CFG_SEL_ANA_RESET;
1019 		gphy |= GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW;
1020 		CSR_WRITE_4(sc, ALC_GPHY_CFG, gphy);
1021 		break;
1022 	case PCI_PRODUCT_ATTANSIC_AR8151:
1023 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1024 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1025 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1026 		/*
1027 		 * GPHY power down caused more problems on AR8151 v2.0.
1028 		 * When driver is reloaded after GPHY power down,
1029 		 * accesses to PHY/MAC registers hung the system. Only
1030 		 * cold boot recovered from it.  I'm not sure whether
1031 		 * AR8151 v1.0 also requires this one though.  I don't
1032 		 * have AR8151 v1.0 controller in hand.
1033 		 * The only option left is to isolate the PHY and
1034 		 * initiates power down the PHY which in turn saves
1035 		 * more power when driver is unloaded.
1036 		 */
1037 		alc_miibus_writereg(sc->sc_dev, sc->alc_phyaddr,
1038 		    MII_BMCR, BMCR_ISO | BMCR_PDOWN);
1039 		break;
1040 	default:
1041 		/* Force PHY down. */
1042 		CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET |
1043 		    GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ |
1044 		    GPHY_CFG_PWDOWN_HW);
1045 		DELAY(1000);
1046 		break;
1047 	}
1048 }
1049 
1050 static void
alc_aspm(struct alc_softc * sc,int init,int media)1051 alc_aspm(struct alc_softc *sc, int init, int media)
1052 {
1053 
1054 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
1055 		alc_aspm_816x(sc, init);
1056 	else
1057 		alc_aspm_813x(sc, media);
1058 }
1059 
1060 static void
alc_aspm_813x(struct alc_softc * sc,int media)1061 alc_aspm_813x(struct alc_softc *sc, int media)
1062 {
1063 	uint32_t pmcfg;
1064 	uint16_t linkcfg;
1065 
1066 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1067 	if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) ==
1068 	    (ALC_FLAG_APS | ALC_FLAG_PCIE))
1069 		linkcfg = CSR_READ_2(sc, sc->alc_expcap +
1070 		    PCIE_LCSR);
1071 	else
1072 		linkcfg = 0;
1073 	pmcfg &= ~PM_CFG_SERDES_PD_EX_L1;
1074 	pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK);
1075 	pmcfg |= PM_CFG_MAC_ASPM_CHK;
1076 	pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT);
1077 	pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1078 
1079 	if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1080 		/* Disable extended sync except AR8152 B v1.0 */
1081 		linkcfg &= ~0x80;
1082 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1083 		    sc->alc_rev == ATHEROS_AR8152_B_V10)
1084 			linkcfg |= 0x80;
1085 		CSR_WRITE_2(sc, sc->alc_expcap + PCIE_LCSR,
1086 		    linkcfg);
1087 		pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB |
1088 		    PM_CFG_HOTRST);
1089 		pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT <<
1090 		    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1091 		pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1092 		pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT <<
1093 		    PM_CFG_PM_REQ_TIMER_SHIFT);
1094 		pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV;
1095 	}
1096 
1097 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1098 		if ((sc->alc_flags & ALC_FLAG_L0S) != 0)
1099 			pmcfg |= PM_CFG_ASPM_L0S_ENB;
1100 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1101 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1102 		if ((sc->alc_flags & ALC_FLAG_APS) != 0) {
1103 			if (sc->alc_ident->deviceid ==
1104 			    PCI_PRODUCT_ATTANSIC_AR8152_B)
1105 				pmcfg &= ~PM_CFG_ASPM_L0S_ENB;
1106 			pmcfg &= ~(PM_CFG_SERDES_L1_ENB |
1107 			    PM_CFG_SERDES_PLL_L1_ENB |
1108 			    PM_CFG_SERDES_BUDS_RX_L1_ENB);
1109 			pmcfg |= PM_CFG_CLK_SWH_L1;
1110 			if (media == IFM_100_TX || media == IFM_1000_T) {
1111 				pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK;
1112 				switch (sc->alc_ident->deviceid) {
1113 				case PCI_PRODUCT_ATTANSIC_AR8152_B:
1114 					pmcfg |= (7 <<
1115 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1116 					break;
1117 				case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1118 				case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1119 					pmcfg |= (4 <<
1120 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1121 					break;
1122 				default:
1123 					pmcfg |= (15 <<
1124 					    PM_CFG_L1_ENTRY_TIMER_SHIFT);
1125 					break;
1126 				}
1127 			}
1128 		} else {
1129 			pmcfg |= PM_CFG_SERDES_L1_ENB |
1130 			    PM_CFG_SERDES_PLL_L1_ENB |
1131 			    PM_CFG_SERDES_BUDS_RX_L1_ENB;
1132 			pmcfg &= ~(PM_CFG_CLK_SWH_L1 |
1133 			    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB);
1134 		}
1135 	} else {
1136 		pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB |
1137 		    PM_CFG_SERDES_PLL_L1_ENB);
1138 		pmcfg |= PM_CFG_CLK_SWH_L1;
1139 		if ((sc->alc_flags & ALC_FLAG_L1S) != 0)
1140 			pmcfg |= PM_CFG_ASPM_L1_ENB;
1141 	}
1142 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1143 }
1144 
1145 static void
alc_aspm_816x(struct alc_softc * sc,int init)1146 alc_aspm_816x(struct alc_softc *sc, int init)
1147 {
1148 	uint32_t pmcfg;
1149 
1150 	pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
1151 	pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_816X_MASK;
1152 	pmcfg |= PM_CFG_L1_ENTRY_TIMER_816X_DEFAULT;
1153 	pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK;
1154 	pmcfg |= PM_CFG_PM_REQ_TIMER_816X_DEFAULT;
1155 	pmcfg &= ~PM_CFG_LCKDET_TIMER_MASK;
1156 	pmcfg |= PM_CFG_LCKDET_TIMER_DEFAULT;
1157 	pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_CLK_SWH_L1 | PM_CFG_PCIE_RECV;
1158 	pmcfg &= ~(PM_CFG_RX_L1_AFTER_L0S | PM_CFG_TX_L1_AFTER_L0S |
1159 	    PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB |
1160 	    PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB |
1161 	    PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SA_DLY_ENB |
1162 	    PM_CFG_MAC_ASPM_CHK | PM_CFG_HOTRST);
1163 	if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1164 	    (sc->alc_rev & 0x01) != 0)
1165 		pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB;
1166 	if ((sc->alc_flags & ALC_FLAG_LINK) != 0) {
1167 		/* Link up, enable both L0s, L1s. */
1168 		pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1169 		    PM_CFG_MAC_ASPM_CHK;
1170 	} else {
1171 		if (init != 0)
1172 			pmcfg |= PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB |
1173 			    PM_CFG_MAC_ASPM_CHK;
1174 		else if ((sc->sc_ec.ec_if.if_flags & IFF_RUNNING) != 0)
1175 			pmcfg |= PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK;
1176 	}
1177 	CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
1178 }
1179 
1180 static void
alc_init_pcie(struct alc_softc * sc)1181 alc_init_pcie(struct alc_softc *sc)
1182 {
1183 	const char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" };
1184 	uint32_t cap, ctl, val;
1185 	int state;
1186 
1187 	/* Clear data link and flow-control protocol error. */
1188 	val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV);
1189 	val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP);
1190 	CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val);
1191 
1192 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1193 		CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG,
1194 		    CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB);
1195 		CSR_WRITE_4(sc, ALC_PCIE_PHYMISC,
1196 		    CSR_READ_4(sc, ALC_PCIE_PHYMISC) |
1197 		    PCIE_PHYMISC_FORCE_RCV_DET);
1198 		if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B &&
1199 		    sc->alc_rev == ATHEROS_AR8152_B_V10) {
1200 			val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2);
1201 			val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK |
1202 			    PCIE_PHYMISC2_SERDES_TH_MASK);
1203 			val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT;
1204 			val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT;
1205 			CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val);
1206 		}
1207 		/* Disable ASPM L0S and L1. */
1208 		cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1209 		    sc->alc_expcap + PCIE_LCAP) >> 16;
1210 		if ((cap & PCIE_LCAP_ASPM) != 0) {
1211 			ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1212 			    sc->alc_expcap + PCIE_LCSR) >> 16;
1213 			if ((ctl & 0x08) != 0)
1214 				sc->alc_rcb = DMA_CFG_RCB_128;
1215 			if (alcdebug)
1216 				printf("%s: RCB %u bytes\n",
1217 				    device_xname(sc->sc_dev),
1218 				    sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128);
1219 			state = ctl & 0x03;
1220 			if (state & 0x01)
1221 				sc->alc_flags |= ALC_FLAG_L0S;
1222 			if (state & 0x02)
1223 				sc->alc_flags |= ALC_FLAG_L1S;
1224 			if (alcdebug)
1225 				printf("%s: ASPM %s %s\n",
1226 				    device_xname(sc->sc_dev),
1227 				    aspm_state[state],
1228 				    state == 0 ? "disabled" : "enabled");
1229 			alc_disable_l0s_l1(sc);
1230 		} else {
1231 			aprint_debug_dev(sc->sc_dev, "no ASPM support\n");
1232 		}
1233 	} else {
1234 		val = CSR_READ_4(sc, ALC_PDLL_TRNS1);
1235 		val &= ~PDLL_TRNS1_D3PLLOFF_ENB;
1236 		CSR_WRITE_4(sc, ALC_PDLL_TRNS1, val);
1237 		val = CSR_READ_4(sc, ALC_MASTER_CFG);
1238 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
1239 		    (sc->alc_rev & 0x01) != 0) {
1240 			if ((val & MASTER_WAKEN_25M) == 0 ||
1241 			    (val & MASTER_CLK_SEL_DIS) == 0) {
1242 				val |= MASTER_WAKEN_25M | MASTER_CLK_SEL_DIS;
1243 				CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1244 			}
1245 		} else {
1246 			if ((val & MASTER_WAKEN_25M) == 0 ||
1247 			    (val & MASTER_CLK_SEL_DIS) != 0) {
1248 				val |= MASTER_WAKEN_25M;
1249 				val &= ~MASTER_CLK_SEL_DIS;
1250 				CSR_WRITE_4(sc, ALC_MASTER_CFG, val);
1251 			}
1252 		}
1253 	}
1254 	alc_aspm(sc, 1, IFM_UNKNOWN);
1255 }
1256 
1257 static void
alc_attach(device_t parent,device_t self,void * aux)1258 alc_attach(device_t parent, device_t self, void *aux)
1259 {
1260 
1261 	struct alc_softc *sc = device_private(self);
1262 	struct pci_attach_args *pa = aux;
1263 	pci_chipset_tag_t pc = pa->pa_pc;
1264 	pci_intr_handle_t ih;
1265 	const char *intrstr;
1266 	struct ifnet *ifp;
1267 	struct mii_data * const mii = &sc->sc_miibus;
1268 	pcireg_t memtype;
1269 	uint16_t burst;
1270 	int base, mii_flags, error = 0;
1271 	char intrbuf[PCI_INTRSTR_LEN];
1272 
1273 	sc->alc_ident = alc_find_ident(pa);
1274 	sc->alc_rev = PCI_REVISION(pa->pa_class);
1275 
1276 	aprint_naive("\n");
1277 	aprint_normal(": %s\n", sc->alc_ident->name);
1278 
1279 	sc->sc_dev = self;
1280 	sc->sc_pct = pa->pa_pc;
1281 	sc->sc_pcitag = pa->pa_tag;
1282 
1283 	if (pci_dma64_available(pa))
1284 		sc->sc_dmat = pa->pa_dmat64;
1285 	else
1286 		sc->sc_dmat = pa->pa_dmat;
1287 
1288 	/*
1289 	 * Allocate IO memory
1290 	 */
1291 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR);
1292 	switch (memtype) {
1293 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1294 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
1295 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1296 		break;
1297 	default:
1298 		aprint_error_dev(self, "invalid base address register\n");
1299 		break;
1300 	}
1301 
1302 	if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
1303 	    &sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
1304 		aprint_error_dev(self, "could not map mem space\n");
1305 		return;
1306 	}
1307 
1308 	if (pci_intr_map(pa, &ih) != 0) {
1309 		printf(": can't map interrupt\n");
1310 		goto fail;
1311 	}
1312 
1313 	/*
1314 	 * Allocate IRQ
1315 	 */
1316 	intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
1317 	sc->sc_irq_handle = pci_intr_establish_xname(pc, ih, IPL_NET, alc_intr,
1318 	    sc, device_xname(self));
1319 	if (sc->sc_irq_handle == NULL) {
1320 		printf(": could not establish interrupt");
1321 		if (intrstr != NULL)
1322 			printf(" at %s", intrstr);
1323 		printf("\n");
1324 		goto fail;
1325 	}
1326 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
1327 
1328 	/* Set PHY address. */
1329 	sc->alc_phyaddr = ALC_PHY_ADDR;
1330 
1331 	/* Initialize DMA parameters. */
1332 	sc->alc_dma_rd_burst = 0;
1333 	sc->alc_dma_wr_burst = 0;
1334 	sc->alc_rcb = DMA_CFG_RCB_64;
1335 	if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS,
1336 	    &base, NULL)) {
1337 		sc->alc_flags |= ALC_FLAG_PCIE;
1338 		sc->alc_expcap = base;
1339 		burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
1340 		    base + PCIE_DCSR) >> 16;
1341 		sc->alc_dma_rd_burst = (burst & 0x7000) >> 12;
1342 		sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5;
1343 		if (alcdebug) {
1344 			printf("%s: Read request size : %u bytes.\n",
1345 			    device_xname(sc->sc_dev),
1346 			    alc_dma_burst[sc->alc_dma_rd_burst]);
1347 			printf("%s: TLP payload size : %u bytes.\n",
1348 			    device_xname(sc->sc_dev),
1349 			    alc_dma_burst[sc->alc_dma_wr_burst]);
1350 		}
1351 		if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024)
1352 			sc->alc_dma_rd_burst = 3;
1353 		if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024)
1354 			sc->alc_dma_wr_burst = 3;
1355 		/*
1356 		 * Force maximum payload size to 128 bytes for
1357 		 * E2200/E2400/E2500.
1358 		 * Otherwise it triggers DMA write error.
1359 		 */
1360 		if ((sc->alc_flags & ALC_FLAG_E2X00) != 0)
1361 			sc->alc_dma_wr_burst = 0;
1362 		alc_init_pcie(sc);
1363 	}
1364 
1365 	/* Reset PHY. */
1366 	alc_phy_reset(sc);
1367 
1368 	/* Reset the ethernet controller. */
1369 	alc_stop_mac(sc);
1370 	alc_reset(sc);
1371 
1372 	/*
1373 	 * One odd thing is AR8132 uses the same PHY hardware(F1
1374 	 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports
1375 	 * the PHY supports 1000Mbps but that's not true. The PHY
1376 	 * used in AR8132 can't establish gigabit link even if it
1377 	 * shows the same PHY model/revision number of AR8131.
1378 	 */
1379 	switch (sc->alc_ident->deviceid) {
1380 	case PCI_PRODUCT_ATTANSIC_E2200:
1381 	case PCI_PRODUCT_ATTANSIC_E2400:
1382 	case PCI_PRODUCT_ATTANSIC_E2500:
1383 		sc->alc_flags |= ALC_FLAG_E2X00;
1384 		/* FALLTHROUGH */
1385 	case PCI_PRODUCT_ATTANSIC_AR8161:
1386 		if (PCI_SUBSYS_ID(pci_conf_read(
1387 		   sc->sc_pct, sc->sc_pcitag, PCI_SUBSYS_ID_REG)) == 0x0091 &&
1388 		   sc->alc_rev == 0)
1389 			sc->alc_flags |= ALC_FLAG_LINK_WAR;
1390 		/* FALLTHROUGH */
1391 	case PCI_PRODUCT_ATTANSIC_AR8171:
1392 		sc->alc_flags |= ALC_FLAG_AR816X_FAMILY;
1393 		break;
1394 	case PCI_PRODUCT_ATTANSIC_AR8162:
1395 	case PCI_PRODUCT_ATTANSIC_AR8172:
1396 		sc->alc_flags |= ALC_FLAG_FASTETHER | ALC_FLAG_AR816X_FAMILY;
1397 		break;
1398 	case PCI_PRODUCT_ATTANSIC_AR8152_B:
1399 	case PCI_PRODUCT_ATTANSIC_AR8152_B2:
1400 		sc->alc_flags |= ALC_FLAG_APS;
1401 		/* FALLTHROUGH */
1402 	case PCI_PRODUCT_ATTANSIC_AR8132:
1403 		sc->alc_flags |= ALC_FLAG_FASTETHER;
1404 		break;
1405 	case PCI_PRODUCT_ATTANSIC_AR8151:
1406 	case PCI_PRODUCT_ATTANSIC_AR8151_V2:
1407 		sc->alc_flags |= ALC_FLAG_APS;
1408 		/* FALLTHROUGH */
1409 	default:
1410 		break;
1411 	}
1412 	sc->alc_flags |= ALC_FLAG_JUMBO;
1413 
1414 	/*
1415 	 * It seems that AR813x/AR815x has silicon bug for SMB. In
1416 	 * addition, Atheros said that enabling SMB wouldn't improve
1417 	 * performance. However I think it's bad to access lots of
1418 	 * registers to extract MAC statistics.
1419 	 */
1420 	sc->alc_flags |= ALC_FLAG_SMB_BUG;
1421 	/*
1422 	 * Don't use Tx CMB. It is known to have silicon bug.
1423 	 */
1424 	sc->alc_flags |= ALC_FLAG_CMB_BUG;
1425 	sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >>
1426 	    MASTER_CHIP_REV_SHIFT;
1427 	if (alcdebug) {
1428 		printf("%s: PCI device revision : 0x%04x\n",
1429 		    device_xname(sc->sc_dev), sc->alc_rev);
1430 		printf("%s: Chip id/revision : 0x%04x\n",
1431 		    device_xname(sc->sc_dev), sc->alc_chip_rev);
1432 		printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
1433 		    CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8,
1434 		    CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8);
1435 	}
1436 
1437 	error = alc_dma_alloc(sc);
1438 	if (error)
1439 		goto fail;
1440 
1441 	callout_init(&sc->sc_tick_ch, 0);
1442 	callout_setfunc(&sc->sc_tick_ch, alc_tick, sc);
1443 
1444 	/* Load station address. */
1445 	alc_get_macaddr(sc);
1446 
1447 	aprint_normal_dev(self, "Ethernet address %s\n",
1448 	    ether_sprintf(sc->alc_eaddr));
1449 
1450 	ifp = &sc->sc_ec.ec_if;
1451 	ifp->if_softc = sc;
1452 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1453 	ifp->if_init = alc_init;
1454 	ifp->if_ioctl = alc_ioctl;
1455 	ifp->if_start = alc_start;
1456 	ifp->if_stop = alc_stop;
1457 	ifp->if_watchdog = alc_watchdog;
1458 	IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1);
1459 	IFQ_SET_READY(&ifp->if_snd);
1460 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
1461 
1462 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
1463 
1464 #ifdef ALC_CHECKSUM
1465 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
1466 				IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
1467 				IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
1468 #endif
1469 
1470 #if NVLAN > 0
1471 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
1472 	sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
1473 #endif
1474 
1475 	/*
1476 	 * XXX
1477 	 * It seems enabling Tx checksum offloading makes more trouble.
1478 	 * Sometimes the controller does not receive any frames when
1479 	 * Tx checksum offloading is enabled. I'm not sure whether this
1480 	 * is a bug in Tx checksum offloading logic or I got broken
1481 	 * sample boards. To safety, don't enable Tx checksum offloading
1482 	 * by default but give chance to users to toggle it if they know
1483 	 * their controllers work without problems.
1484 	 * Fortunately, Tx checksum offloading for AR816x family
1485 	 * seems to work.
1486 	 */
1487 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
1488 		ifp->if_capenable &= ~IFCAP_CSUM_IPv4_Tx;
1489 		ifp->if_capabilities &= ~ALC_CSUM_FEATURES;
1490 	}
1491 
1492 	/* Set up MII bus. */
1493 	mii->mii_ifp = ifp;
1494 	mii->mii_readreg = alc_miibus_readreg;
1495 	mii->mii_writereg = alc_miibus_writereg;
1496 	mii->mii_statchg = alc_miibus_statchg;
1497 
1498 	sc->sc_ec.ec_mii = mii;
1499 	ifmedia_init(&mii->mii_media, 0, alc_mediachange, alc_mediastatus);
1500 	mii_flags = 0;
1501 	if ((sc->alc_flags & ALC_FLAG_JUMBO) != 0)
1502 		mii_flags |= MIIF_DOPAUSE;
1503 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
1504 		MII_OFFSET_ANY, mii_flags);
1505 
1506 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
1507 		printf("%s: no PHY found!\n", device_xname(sc->sc_dev));
1508 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1509 		    0, NULL);
1510 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1511 	} else
1512 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1513 
1514 	if_attach(ifp);
1515 	if_deferred_start_init(ifp, NULL);
1516 	ether_ifattach(ifp, sc->alc_eaddr);
1517 
1518 	if (!pmf_device_register(self, NULL, NULL))
1519 		aprint_error_dev(self, "couldn't establish power handler\n");
1520 	else
1521 		pmf_class_network_register(self, ifp);
1522 
1523 	return;
1524 fail:
1525 	alc_dma_free(sc);
1526 	if (sc->sc_irq_handle != NULL) {
1527 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1528 		sc->sc_irq_handle = NULL;
1529 	}
1530 	if (sc->sc_mem_size) {
1531 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1532 		sc->sc_mem_size = 0;
1533 	}
1534 }
1535 
1536 static int
alc_detach(device_t self,int flags)1537 alc_detach(device_t self, int flags)
1538 {
1539 	struct alc_softc *sc = device_private(self);
1540 	struct ifnet *ifp = &sc->sc_ec.ec_if;
1541 	int s;
1542 
1543 	s = splnet();
1544 	alc_stop(ifp, 0);
1545 	splx(s);
1546 
1547 	mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
1548 
1549 	ether_ifdetach(ifp);
1550 	if_detach(ifp);
1551 	alc_dma_free(sc);
1552 
1553 	/* Delete all remaining media. */
1554 	ifmedia_fini(&sc->sc_miibus.mii_media);
1555 
1556 	alc_phy_down(sc);
1557 	if (sc->sc_irq_handle != NULL) {
1558 		pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
1559 		sc->sc_irq_handle = NULL;
1560 	}
1561 	if (sc->sc_mem_size) {
1562 		bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
1563 		sc->sc_mem_size = 0;
1564 	}
1565 
1566 	return (0);
1567 }
1568 
1569 static int
alc_dma_alloc(struct alc_softc * sc)1570 alc_dma_alloc(struct alc_softc *sc)
1571 {
1572 	struct alc_txdesc *txd;
1573 	struct alc_rxdesc *rxd;
1574 	int nsegs, error, i;
1575 
1576 	/*
1577 	 * Create DMA stuffs for TX ring
1578 	 */
1579 	error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1,
1580 	    ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map);
1581 	if (error) {
1582 		sc->alc_cdata.alc_tx_ring_map = NULL;
1583 		return (ENOBUFS);
1584 	}
1585 
1586 	/* Allocate DMA'able memory for TX ring */
1587 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ,
1588 	    PAGE_SIZE, 0, &sc->alc_rdata.alc_tx_ring_seg, 1,
1589 	    &nsegs, BUS_DMA_NOWAIT);
1590 	if (error) {
1591 		printf("%s: could not allocate DMA'able memory for Tx ring.\n",
1592 		    device_xname(sc->sc_dev));
1593 		return error;
1594 	}
1595 
1596 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg,
1597 	    nsegs, ALC_TX_RING_SZ, (void **)&sc->alc_rdata.alc_tx_ring,
1598 	    BUS_DMA_NOWAIT);
1599 	if (error)
1600 		return (ENOBUFS);
1601 
1602 	/* Load the DMA map for Tx ring. */
1603 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map,
1604 	    sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
1605 	if (error) {
1606 		printf("%s: could not load DMA'able memory for Tx ring.\n",
1607 		    device_xname(sc->sc_dev));
1608 		bus_dmamem_free(sc->sc_dmat,
1609 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1610 		return error;
1611 	}
1612 
1613 	sc->alc_rdata.alc_tx_ring_paddr =
1614 	    sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr;
1615 
1616 	/*
1617 	 * Create DMA stuffs for RX ring
1618 	 */
1619 	error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1,
1620 	    ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map);
1621 	if (error)
1622 		return (ENOBUFS);
1623 
1624 	/* Allocate DMA'able memory for RX ring */
1625 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ,
1626 	    PAGE_SIZE, 0, &sc->alc_rdata.alc_rx_ring_seg, 1,
1627 	    &nsegs, BUS_DMA_NOWAIT);
1628 	if (error) {
1629 		printf("%s: could not allocate DMA'able memory for Rx ring.\n",
1630 		    device_xname(sc->sc_dev));
1631 		return error;
1632 	}
1633 
1634 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg,
1635 	    nsegs, ALC_RX_RING_SZ, (void **)&sc->alc_rdata.alc_rx_ring,
1636 	    BUS_DMA_NOWAIT);
1637 	if (error)
1638 		return (ENOBUFS);
1639 
1640 	/* Load the DMA map for Rx ring. */
1641 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map,
1642 	    sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK);
1643 	if (error) {
1644 		printf("%s: could not load DMA'able memory for Rx ring.\n",
1645 		    device_xname(sc->sc_dev));
1646 		bus_dmamem_free(sc->sc_dmat,
1647 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1648 		return error;
1649 	}
1650 
1651 	sc->alc_rdata.alc_rx_ring_paddr =
1652 	    sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr;
1653 
1654 	/*
1655 	 * Create DMA stuffs for RX return ring
1656 	 */
1657 	error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1,
1658 	    ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map);
1659 	if (error)
1660 		return (ENOBUFS);
1661 
1662 	/* Allocate DMA'able memory for RX return ring */
1663 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ,
1664 	    PAGE_SIZE, 0, &sc->alc_rdata.alc_rr_ring_seg, 1,
1665 	    &nsegs, BUS_DMA_NOWAIT);
1666 	if (error) {
1667 		printf("%s: could not allocate DMA'able memory for Rx "
1668 		    "return ring.\n", device_xname(sc->sc_dev));
1669 		return error;
1670 	}
1671 
1672 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg,
1673 	    nsegs, ALC_RR_RING_SZ, (void **)&sc->alc_rdata.alc_rr_ring,
1674 	    BUS_DMA_NOWAIT);
1675 	if (error)
1676 		return (ENOBUFS);
1677 
1678 	/*  Load the DMA map for Rx return ring. */
1679 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map,
1680 	    sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK);
1681 	if (error) {
1682 		printf("%s: could not load DMA'able memory for Rx return ring."
1683 		    "\n", device_xname(sc->sc_dev));
1684 		bus_dmamem_free(sc->sc_dmat,
1685 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1686 		return error;
1687 	}
1688 
1689 	sc->alc_rdata.alc_rr_ring_paddr =
1690 	    sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr;
1691 
1692 	/*
1693 	 * All of the memory we allocated for the Rx ring / Rx Return
1694 	 * ring need to be in the same 4GB segment.  Make sure this is
1695 	 * so.
1696 	 *
1697 	 * XXX We don't care WHAT 4GB segment they're in, just that
1698 	 * XXX they're all in the same one.  Need some bus_dma API
1699 	 * XXX help to make this easier to enforce when we actually
1700 	 * XXX perform the allocation.
1701 	 */
1702 	if (ALC_ADDR_HI(sc->alc_rdata.alc_rx_ring_paddr) !=
1703 	    ALC_ADDR_HI(sc->alc_rdata.alc_rr_ring_paddr)) {
1704 		aprint_error_dev(sc->sc_dev,
1705 		    "Rx control data allocation constraints failed\n");
1706 		return ENOBUFS;
1707 	}
1708 
1709 	/*
1710 	 * Create DMA stuffs for CMB block
1711 	 */
1712 	error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1,
1713 	    ALC_CMB_SZ, 0, BUS_DMA_NOWAIT,
1714 	    &sc->alc_cdata.alc_cmb_map);
1715 	if (error)
1716 		return (ENOBUFS);
1717 
1718 	/* Allocate DMA'able memory for CMB block */
1719 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ,
1720 	    PAGE_SIZE, 0, &sc->alc_rdata.alc_cmb_seg, 1,
1721 	    &nsegs, BUS_DMA_NOWAIT);
1722 	if (error) {
1723 		printf("%s: could not allocate DMA'able memory for "
1724 		    "CMB block\n", device_xname(sc->sc_dev));
1725 		return error;
1726 	}
1727 
1728 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg,
1729 	    nsegs, ALC_CMB_SZ, (void **)&sc->alc_rdata.alc_cmb,
1730 	    BUS_DMA_NOWAIT);
1731 	if (error)
1732 		return (ENOBUFS);
1733 
1734 	/*  Load the DMA map for CMB block. */
1735 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map,
1736 	    sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL,
1737 	    BUS_DMA_WAITOK);
1738 	if (error) {
1739 		printf("%s: could not load DMA'able memory for CMB block\n",
1740 		    device_xname(sc->sc_dev));
1741 		bus_dmamem_free(sc->sc_dmat,
1742 		    &sc->alc_rdata.alc_cmb_seg, 1);
1743 		return error;
1744 	}
1745 
1746 	sc->alc_rdata.alc_cmb_paddr =
1747 	    sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr;
1748 
1749 	/*
1750 	 * Create DMA stuffs for SMB block
1751 	 */
1752 	error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1,
1753 	    ALC_SMB_SZ, 0, BUS_DMA_NOWAIT,
1754 	    &sc->alc_cdata.alc_smb_map);
1755 	if (error)
1756 		return (ENOBUFS);
1757 
1758 	/* Allocate DMA'able memory for SMB block */
1759 	error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ,
1760 	    PAGE_SIZE, 0, &sc->alc_rdata.alc_smb_seg, 1,
1761 	    &nsegs, BUS_DMA_NOWAIT);
1762 	if (error) {
1763 		printf("%s: could not allocate DMA'able memory for "
1764 		    "SMB block\n", device_xname(sc->sc_dev));
1765 		return error;
1766 	}
1767 
1768 	error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg,
1769 	    nsegs, ALC_SMB_SZ, (void **)&sc->alc_rdata.alc_smb,
1770 	    BUS_DMA_NOWAIT);
1771 	if (error)
1772 		return (ENOBUFS);
1773 
1774 	/*  Load the DMA map for SMB block */
1775 	error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map,
1776 	    sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL,
1777 	    BUS_DMA_WAITOK);
1778 	if (error) {
1779 		printf("%s: could not load DMA'able memory for SMB block\n",
1780 		    device_xname(sc->sc_dev));
1781 		bus_dmamem_free(sc->sc_dmat,
1782 		    &sc->alc_rdata.alc_smb_seg, 1);
1783 		return error;
1784 	}
1785 
1786 	sc->alc_rdata.alc_smb_paddr =
1787 	    sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr;
1788 
1789 
1790 	/* Create DMA maps for Tx buffers. */
1791 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1792 		txd = &sc->alc_cdata.alc_txdesc[i];
1793 		txd->tx_m = NULL;
1794 		txd->tx_dmamap = NULL;
1795 		error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE,
1796 		    ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
1797 		    &txd->tx_dmamap);
1798 		if (error) {
1799 			printf("%s: could not create Tx dmamap.\n",
1800 			    device_xname(sc->sc_dev));
1801 			return error;
1802 		}
1803 	}
1804 
1805 	/* Create DMA maps for Rx buffers. */
1806 	error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
1807 	    BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap);
1808 	if (error) {
1809 		printf("%s: could not create spare Rx dmamap.\n",
1810 		    device_xname(sc->sc_dev));
1811 		return error;
1812 	}
1813 
1814 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1815 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1816 		rxd->rx_m = NULL;
1817 		rxd->rx_dmamap = NULL;
1818 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1819 		    MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
1820 		if (error) {
1821 			printf("%s: could not create Rx dmamap.\n",
1822 			    device_xname(sc->sc_dev));
1823 			return error;
1824 		}
1825 	}
1826 
1827 	return (0);
1828 }
1829 
1830 static void
alc_dma_free(struct alc_softc * sc)1831 alc_dma_free(struct alc_softc *sc)
1832 {
1833 	struct alc_txdesc *txd;
1834 	struct alc_rxdesc *rxd;
1835 	int i;
1836 
1837 	/* Tx buffers */
1838 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
1839 		txd = &sc->alc_cdata.alc_txdesc[i];
1840 		if (txd->tx_dmamap != NULL) {
1841 			bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
1842 			txd->tx_dmamap = NULL;
1843 		}
1844 	}
1845 	/* Rx buffers */
1846 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
1847 		rxd = &sc->alc_cdata.alc_rxdesc[i];
1848 		if (rxd->rx_dmamap != NULL) {
1849 			bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
1850 			rxd->rx_dmamap = NULL;
1851 		}
1852 	}
1853 	if (sc->alc_cdata.alc_rx_sparemap != NULL) {
1854 		bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap);
1855 		sc->alc_cdata.alc_rx_sparemap = NULL;
1856 	}
1857 
1858 	/* Tx ring. */
1859 	if (sc->alc_cdata.alc_tx_ring_map != NULL)
1860 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map);
1861 	if (sc->alc_cdata.alc_tx_ring_map != NULL &&
1862 	    sc->alc_rdata.alc_tx_ring != NULL)
1863 		bus_dmamem_free(sc->sc_dmat,
1864 		    &sc->alc_rdata.alc_tx_ring_seg, 1);
1865 	sc->alc_rdata.alc_tx_ring = NULL;
1866 	sc->alc_cdata.alc_tx_ring_map = NULL;
1867 
1868 	/* Rx ring. */
1869 	if (sc->alc_cdata.alc_rx_ring_map != NULL)
1870 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map);
1871 	if (sc->alc_cdata.alc_rx_ring_map != NULL &&
1872 	    sc->alc_rdata.alc_rx_ring != NULL)
1873 		bus_dmamem_free(sc->sc_dmat,
1874 		    &sc->alc_rdata.alc_rx_ring_seg, 1);
1875 	sc->alc_rdata.alc_rx_ring = NULL;
1876 	sc->alc_cdata.alc_rx_ring_map = NULL;
1877 
1878 	/* Rx return ring. */
1879 	if (sc->alc_cdata.alc_rr_ring_map != NULL)
1880 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map);
1881 	if (sc->alc_cdata.alc_rr_ring_map != NULL &&
1882 	    sc->alc_rdata.alc_rr_ring != NULL)
1883 		bus_dmamem_free(sc->sc_dmat,
1884 		    &sc->alc_rdata.alc_rr_ring_seg, 1);
1885 	sc->alc_rdata.alc_rr_ring = NULL;
1886 	sc->alc_cdata.alc_rr_ring_map = NULL;
1887 
1888 	/* CMB block */
1889 	if (sc->alc_cdata.alc_cmb_map != NULL)
1890 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map);
1891 	if (sc->alc_cdata.alc_cmb_map != NULL &&
1892 	    sc->alc_rdata.alc_cmb != NULL)
1893 		bus_dmamem_free(sc->sc_dmat,
1894 		    &sc->alc_rdata.alc_cmb_seg, 1);
1895 	sc->alc_rdata.alc_cmb = NULL;
1896 	sc->alc_cdata.alc_cmb_map = NULL;
1897 
1898 	/* SMB block */
1899 	if (sc->alc_cdata.alc_smb_map != NULL)
1900 		bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map);
1901 	if (sc->alc_cdata.alc_smb_map != NULL &&
1902 	    sc->alc_rdata.alc_smb != NULL)
1903 		bus_dmamem_free(sc->sc_dmat,
1904 		    &sc->alc_rdata.alc_smb_seg, 1);
1905 	sc->alc_rdata.alc_smb = NULL;
1906 	sc->alc_cdata.alc_smb_map = NULL;
1907 }
1908 
1909 static int
alc_encap(struct alc_softc * sc,struct mbuf ** m_head)1910 alc_encap(struct alc_softc *sc, struct mbuf **m_head)
1911 {
1912 	struct alc_txdesc *txd, *txd_last;
1913 	struct tx_desc *desc;
1914 	struct mbuf *m;
1915 	bus_dmamap_t map;
1916 	uint32_t cflags, poff, vtag;
1917 	int error, idx, nsegs, prod;
1918 
1919 	m = *m_head;
1920 	cflags = vtag = 0;
1921 	poff = 0;
1922 
1923 	prod = sc->alc_cdata.alc_tx_prod;
1924 	txd = &sc->alc_cdata.alc_txdesc[prod];
1925 	txd_last = txd;
1926 	map = txd->tx_dmamap;
1927 
1928 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
1929 
1930 	if (error == EFBIG) {
1931 		error = 0;
1932 
1933 		*m_head = m_pullup(*m_head, MHLEN);
1934 		if (*m_head == NULL) {
1935 			printf("%s: can't defrag TX mbuf\n",
1936 			    device_xname(sc->sc_dev));
1937 			return ENOBUFS;
1938 		}
1939 
1940 		error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
1941 		    BUS_DMA_NOWAIT);
1942 
1943 		if (error != 0) {
1944 			printf("%s: could not load defragged TX mbuf\n",
1945 			    device_xname(sc->sc_dev));
1946 			m_freem(*m_head);
1947 			*m_head = NULL;
1948 			return error;
1949 		}
1950 	} else if (error) {
1951 		printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
1952 		return (error);
1953 	}
1954 
1955 	nsegs = map->dm_nsegs;
1956 
1957 	if (nsegs == 0) {
1958 		m_freem(*m_head);
1959 		*m_head = NULL;
1960 		return (EIO);
1961 	}
1962 
1963 	/* Check descriptor overrun. */
1964 	if (sc->alc_cdata.alc_tx_cnt + nsegs >= ALC_TX_RING_CNT - 3) {
1965 		bus_dmamap_unload(sc->sc_dmat, map);
1966 		return (ENOBUFS);
1967 	}
1968 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1969 	    BUS_DMASYNC_PREWRITE);
1970 
1971 	m = *m_head;
1972 	desc = NULL;
1973 	idx = 0;
1974 #if NVLAN > 0
1975 	/* Configure VLAN hardware tag insertion. */
1976 	if (vlan_has_tag(m)) {
1977 		vtag = htons(vlan_get_tag(m));
1978 		vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK;
1979 		cflags |= TD_INS_VLAN_TAG;
1980 	}
1981 #endif
1982 	/* Configure Tx checksum offload. */
1983 	if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) {
1984 		cflags |= TD_CUSTOM_CSUM;
1985 		/* Set checksum start offset. */
1986 		cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) &
1987 		    TD_PLOAD_OFFSET_MASK;
1988 	}
1989 	for (; idx < nsegs; idx++) {
1990 		desc = &sc->alc_rdata.alc_tx_ring[prod];
1991 		desc->len =
1992 		    htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag);
1993 		desc->flags = htole32(cflags);
1994 		desc->addr = htole64(map->dm_segs[idx].ds_addr);
1995 		sc->alc_cdata.alc_tx_cnt++;
1996 		ALC_DESC_INC(prod, ALC_TX_RING_CNT);
1997 	}
1998 	/* Update producer index. */
1999 	sc->alc_cdata.alc_tx_prod = prod;
2000 
2001 	/* Finally set EOP on the last descriptor. */
2002 	prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT;
2003 	desc = &sc->alc_rdata.alc_tx_ring[prod];
2004 	desc->flags |= htole32(TD_EOP);
2005 
2006 	/* Swap dmamap of the first and the last. */
2007 	txd = &sc->alc_cdata.alc_txdesc[prod];
2008 	map = txd_last->tx_dmamap;
2009 	txd_last->tx_dmamap = txd->tx_dmamap;
2010 	txd->tx_dmamap = map;
2011 	txd->tx_m = m;
2012 
2013 	return (0);
2014 }
2015 
2016 static void
alc_start(struct ifnet * ifp)2017 alc_start(struct ifnet *ifp)
2018 {
2019 	struct alc_softc *sc = ifp->if_softc;
2020 	struct mbuf *m_head;
2021 	int enq;
2022 
2023 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2024 		return;
2025 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0)
2026 		return;
2027 
2028 	/* Reclaim transmitted frames. */
2029 	if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT)
2030 		alc_txeof(sc);
2031 
2032 	enq = 0;
2033 	for (;;) {
2034 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
2035 		if (m_head == NULL)
2036 			break;
2037 
2038 		/*
2039 		 * Pack the data into the transmit ring. If we
2040 		 * don't have room, set the OACTIVE flag and wait
2041 		 * for the NIC to drain the ring.
2042 		 */
2043 		if (alc_encap(sc, &m_head)) {
2044 			if (m_head == NULL)
2045 				break;
2046 			ifp->if_flags |= IFF_OACTIVE;
2047 			break;
2048 		}
2049 		enq = 1;
2050 
2051 		/*
2052 		 * If there's a BPF listener, bounce a copy of this frame
2053 		 * to him.
2054 		 */
2055 		bpf_mtap(ifp, m_head, BPF_D_OUT);
2056 	}
2057 
2058 	if (enq) {
2059 		/* Sync descriptors. */
2060 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2061 		    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2062 		    BUS_DMASYNC_PREWRITE);
2063 		/* Kick. Assume we're using normal Tx priority queue. */
2064 		CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX,
2065 		    (sc->alc_cdata.alc_tx_prod <<
2066 		    MBOX_TD_PROD_LO_IDX_SHIFT) &
2067 		    MBOX_TD_PROD_LO_IDX_MASK);
2068 		/* Set a timeout in case the chip goes out to lunch. */
2069 		ifp->if_timer = ALC_TX_TIMEOUT;
2070 	}
2071 }
2072 
2073 static void
alc_watchdog(struct ifnet * ifp)2074 alc_watchdog(struct ifnet *ifp)
2075 {
2076 	struct alc_softc *sc = ifp->if_softc;
2077 
2078 	if ((sc->alc_flags & ALC_FLAG_LINK) == 0) {
2079 		printf("%s: watchdog timeout (missed link)\n",
2080 		    device_xname(sc->sc_dev));
2081 		if_statinc(ifp, if_oerrors);
2082 		alc_init_backend(ifp, false);
2083 		return;
2084 	}
2085 
2086 	printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
2087 	if_statinc(ifp, if_oerrors);
2088 	alc_init_backend(ifp, false);
2089 	alc_start(ifp);
2090 }
2091 
2092 static int
alc_ioctl(struct ifnet * ifp,u_long cmd,void * data)2093 alc_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2094 {
2095 	struct alc_softc *sc = ifp->if_softc;
2096 	int s, error = 0;
2097 
2098 	s = splnet();
2099 
2100 	switch (cmd) {
2101 	case SIOCSIFADDR:
2102 		error = ether_ioctl(ifp, cmd, data);
2103 		ifp->if_flags |= IFF_UP;
2104 		if (!(ifp->if_flags & IFF_RUNNING))
2105 			alc_init(ifp);
2106 		break;
2107 
2108 	case SIOCSIFFLAGS:
2109 		error = ether_ioctl(ifp, cmd, data);
2110 		if (ifp->if_flags & IFF_UP) {
2111 			if (ifp->if_flags & IFF_RUNNING)
2112 				error = ENETRESET;
2113 			else
2114 				alc_init(ifp);
2115 		} else {
2116 			if (ifp->if_flags & IFF_RUNNING)
2117 				alc_stop(ifp, 0);
2118 		}
2119 		break;
2120 
2121 	default:
2122 		error = ether_ioctl(ifp, cmd, data);
2123 		break;
2124 	}
2125 
2126 	if (error == ENETRESET) {
2127 		if (ifp->if_flags & IFF_RUNNING)
2128 			alc_iff(sc);
2129 		error = 0;
2130 	}
2131 
2132 	splx(s);
2133 	return (error);
2134 }
2135 
2136 static void
alc_mac_config(struct alc_softc * sc)2137 alc_mac_config(struct alc_softc *sc)
2138 {
2139 	struct mii_data *mii;
2140 	uint32_t reg;
2141 
2142 	mii = &sc->sc_miibus;
2143 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
2144 	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2145 	    MAC_CFG_SPEED_MASK);
2146 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
2147 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
2148 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
2149 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
2150 	/* Reprogram MAC with resolved speed/duplex. */
2151 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2152 	case IFM_10_T:
2153 	case IFM_100_TX:
2154 		reg |= MAC_CFG_SPEED_10_100;
2155 		break;
2156 	case IFM_1000_T:
2157 		reg |= MAC_CFG_SPEED_1000;
2158 		break;
2159 	}
2160 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2161 		reg |= MAC_CFG_FULL_DUPLEX;
2162 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2163 			reg |= MAC_CFG_TX_FC;
2164 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2165 			reg |= MAC_CFG_RX_FC;
2166 	}
2167 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
2168 }
2169 
2170 static void
alc_stats_clear(struct alc_softc * sc)2171 alc_stats_clear(struct alc_softc *sc)
2172 {
2173 	struct smb sb, *smb;
2174 	uint32_t *reg;
2175 	int i;
2176 
2177 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2178 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2179 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2180 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2181 		smb = sc->alc_rdata.alc_smb;
2182 		/* Update done, clear. */
2183 		smb->updated = 0;
2184 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2185 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2186 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2187 	} else {
2188 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2189 		    reg++) {
2190 			CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2191 			i += sizeof(uint32_t);
2192 		}
2193 		/* Read Tx statistics. */
2194 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2195 		    reg++) {
2196 			CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2197 			i += sizeof(uint32_t);
2198 		}
2199 	}
2200 }
2201 
2202 static void
alc_stats_update(struct alc_softc * sc)2203 alc_stats_update(struct alc_softc *sc)
2204 {
2205 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2206 	struct alc_hw_stats *stat;
2207 	struct smb sb, *smb;
2208 	uint32_t *reg;
2209 	int i;
2210 
2211 	stat = &sc->alc_stats;
2212 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2213 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2214 		    sc->alc_cdata.alc_smb_map->dm_mapsize,
2215 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2216 		smb = sc->alc_rdata.alc_smb;
2217 		if (smb->updated == 0)
2218 			return;
2219 	} else {
2220 		smb = &sb;
2221 		/* Read Rx statistics. */
2222 		for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered;
2223 		    reg++) {
2224 			*reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i);
2225 			i += sizeof(uint32_t);
2226 		}
2227 		/* Read Tx statistics. */
2228 		for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes;
2229 		    reg++) {
2230 			*reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i);
2231 			i += sizeof(uint32_t);
2232 		}
2233 	}
2234 
2235 	/* Rx stats. */
2236 	stat->rx_frames += smb->rx_frames;
2237 	stat->rx_bcast_frames += smb->rx_bcast_frames;
2238 	stat->rx_mcast_frames += smb->rx_mcast_frames;
2239 	stat->rx_pause_frames += smb->rx_pause_frames;
2240 	stat->rx_control_frames += smb->rx_control_frames;
2241 	stat->rx_crcerrs += smb->rx_crcerrs;
2242 	stat->rx_lenerrs += smb->rx_lenerrs;
2243 	stat->rx_bytes += smb->rx_bytes;
2244 	stat->rx_runts += smb->rx_runts;
2245 	stat->rx_fragments += smb->rx_fragments;
2246 	stat->rx_pkts_64 += smb->rx_pkts_64;
2247 	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2248 	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2249 	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2250 	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2251 	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2252 	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2253 	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2254 	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2255 	stat->rx_rrs_errs += smb->rx_rrs_errs;
2256 	stat->rx_alignerrs += smb->rx_alignerrs;
2257 	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2258 	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2259 	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2260 
2261 	/* Tx stats. */
2262 	stat->tx_frames += smb->tx_frames;
2263 	stat->tx_bcast_frames += smb->tx_bcast_frames;
2264 	stat->tx_mcast_frames += smb->tx_mcast_frames;
2265 	stat->tx_pause_frames += smb->tx_pause_frames;
2266 	stat->tx_excess_defer += smb->tx_excess_defer;
2267 	stat->tx_control_frames += smb->tx_control_frames;
2268 	stat->tx_deferred += smb->tx_deferred;
2269 	stat->tx_bytes += smb->tx_bytes;
2270 	stat->tx_pkts_64 += smb->tx_pkts_64;
2271 	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2272 	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2273 	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2274 	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2275 	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2276 	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2277 	stat->tx_single_colls += smb->tx_single_colls;
2278 	stat->tx_multi_colls += smb->tx_multi_colls;
2279 	stat->tx_late_colls += smb->tx_late_colls;
2280 	stat->tx_excess_colls += smb->tx_excess_colls;
2281 	stat->tx_underrun += smb->tx_underrun;
2282 	stat->tx_desc_underrun += smb->tx_desc_underrun;
2283 	stat->tx_lenerrs += smb->tx_lenerrs;
2284 	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2285 	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2286 	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2287 
2288 	/* Update counters in ifnet. */
2289 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
2290 
2291 	if_statadd_ref(ifp, nsr, if_opackets, smb->tx_frames);
2292 
2293 	if_statadd_ref(ifp, nsr, if_collisions,
2294 	    smb->tx_single_colls +
2295 	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2296 	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2297 
2298 	if_statadd_ref(ifp, nsr, if_oerrors,
2299 	    smb->tx_late_colls + smb->tx_excess_colls +
2300 	    smb->tx_underrun + smb->tx_pkts_truncated);
2301 
2302 	if_statadd_ref(ifp, nsr, if_ierrors,
2303 	    smb->rx_crcerrs + smb->rx_lenerrs +
2304 	    smb->rx_runts + smb->rx_pkts_truncated +
2305 	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2306 	    smb->rx_alignerrs);
2307 
2308 	IF_STAT_PUTREF(ifp);
2309 
2310 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) {
2311 		/* Update done, clear. */
2312 		smb->updated = 0;
2313 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
2314 		sc->alc_cdata.alc_smb_map->dm_mapsize,
2315 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2316 	}
2317 }
2318 
2319 static int
alc_intr(void * arg)2320 alc_intr(void *arg)
2321 {
2322 	struct alc_softc *sc = arg;
2323 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2324 	uint32_t status;
2325 
2326 	status = CSR_READ_4(sc, ALC_INTR_STATUS);
2327 	if ((status & ALC_INTRS) == 0)
2328 		return (0);
2329 
2330 	/* Acknowledge and disable interrupts. */
2331 	CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT);
2332 
2333 	if (ifp->if_flags & IFF_RUNNING) {
2334 		if (status & INTR_RX_PKT) {
2335 			int error;
2336 
2337 			error = alc_rxintr(sc);
2338 			if (error) {
2339 				alc_init_backend(ifp, false);
2340 				return (0);
2341 			}
2342 		}
2343 
2344 		if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST |
2345 		    INTR_TXQ_TO_RST)) {
2346 			if (status & INTR_DMA_RD_TO_RST)
2347 				printf("%s: DMA read error! -- resetting\n",
2348 				    device_xname(sc->sc_dev));
2349 			if (status & INTR_DMA_WR_TO_RST)
2350 				printf("%s: DMA write error! -- resetting\n",
2351 				    device_xname(sc->sc_dev));
2352 			if (status & INTR_TXQ_TO_RST)
2353 				printf("%s: TxQ reset! -- resetting\n",
2354 				    device_xname(sc->sc_dev));
2355 			alc_init_backend(ifp, false);
2356 			return (0);
2357 		}
2358 
2359 		alc_txeof(sc);
2360 		if_schedule_deferred_start(ifp);
2361 	}
2362 
2363 	/* Re-enable interrupts. */
2364 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF);
2365 	return (1);
2366 }
2367 
2368 static void
alc_txeof(struct alc_softc * sc)2369 alc_txeof(struct alc_softc *sc)
2370 {
2371 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2372 	struct alc_txdesc *txd;
2373 	uint32_t cons, prod;
2374 	int prog;
2375 
2376 	if (sc->alc_cdata.alc_tx_cnt == 0)
2377 		return;
2378 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
2379 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize,
2380 	    BUS_DMASYNC_POSTREAD);
2381 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2382 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2383 		    sc->alc_cdata.alc_cmb_map->dm_mapsize,
2384 		    BUS_DMASYNC_POSTREAD);
2385 		prod = sc->alc_rdata.alc_cmb->cons;
2386 	} else
2387 		prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX);
2388 	/* Assume we're using normal Tx priority queue. */
2389 	prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >>
2390 	    MBOX_TD_CONS_LO_IDX_SHIFT;
2391 	cons = sc->alc_cdata.alc_tx_cons;
2392 	/*
2393 	 * Go through our Tx list and free mbufs for those
2394 	 * frames which have been transmitted.
2395 	 */
2396 	for (prog = 0; cons != prod; prog++,
2397 	    ALC_DESC_INC(cons, ALC_TX_RING_CNT)) {
2398 		if (sc->alc_cdata.alc_tx_cnt <= 0)
2399 			break;
2400 		prog++;
2401 		ifp->if_flags &= ~IFF_OACTIVE;
2402 		sc->alc_cdata.alc_tx_cnt--;
2403 		txd = &sc->alc_cdata.alc_txdesc[cons];
2404 		if (txd->tx_m != NULL) {
2405 			/* Reclaim transmitted mbufs. */
2406 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
2407 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2408 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
2409 			m_freem(txd->tx_m);
2410 			txd->tx_m = NULL;
2411 		}
2412 	}
2413 
2414 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
2415 	    bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
2416 		sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2417 	sc->alc_cdata.alc_tx_cons = cons;
2418 	/*
2419 	 * Unarm watchdog timer only when there is no pending
2420 	 * frames in Tx queue.
2421 	 */
2422 	if (sc->alc_cdata.alc_tx_cnt == 0)
2423 		ifp->if_timer = 0;
2424 }
2425 
2426 static int
alc_newbuf(struct alc_softc * sc,struct alc_rxdesc * rxd,bool init)2427 alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd, bool init)
2428 {
2429 	struct mbuf *m;
2430 	bus_dmamap_t map;
2431 	int error;
2432 
2433 	MGETHDR(m, init ? M_WAITOK : M_DONTWAIT, MT_DATA);
2434 	if (m == NULL)
2435 		return (ENOBUFS);
2436 	MCLGET(m, init ? M_WAITOK : M_DONTWAIT);
2437 	if (!(m->m_flags & M_EXT)) {
2438 		m_freem(m);
2439 		return (ENOBUFS);
2440 	}
2441 
2442 	m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX;
2443 
2444 	error = bus_dmamap_load_mbuf(sc->sc_dmat,
2445 	    sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT);
2446 
2447 	if (error != 0) {
2448 		m_freem(m);
2449 
2450 		if (init)
2451 			printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
2452 
2453 		return (error);
2454 	}
2455 
2456 	if (rxd->rx_m != NULL) {
2457 		bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
2458 		    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2459 		bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
2460 	}
2461 	map = rxd->rx_dmamap;
2462 	rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap;
2463 	sc->alc_cdata.alc_rx_sparemap = map;
2464 	bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize,
2465 	    BUS_DMASYNC_PREREAD);
2466 	rxd->rx_m = m;
2467 	rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
2468 	return (0);
2469 }
2470 
2471 static int
alc_rxintr(struct alc_softc * sc)2472 alc_rxintr(struct alc_softc *sc)
2473 {
2474 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2475 	struct rx_rdesc *rrd;
2476 	uint32_t nsegs, status;
2477 	int rr_cons, prog;
2478 
2479 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2480 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2481 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2482 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2483 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2484 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2485 	rr_cons = sc->alc_cdata.alc_rr_cons;
2486 	for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) {
2487 		rrd = &sc->alc_rdata.alc_rr_ring[rr_cons];
2488 		status = le32toh(rrd->status);
2489 		if ((status & RRD_VALID) == 0)
2490 			break;
2491 		nsegs = RRD_RD_CNT(le32toh(rrd->rdinfo));
2492 		if (nsegs == 0) {
2493 			/* This should not happen! */
2494 			if (alcdebug)
2495 				printf("%s: unexpected segment count -- "
2496 				    "resetting\n", device_xname(sc->sc_dev));
2497 			return (EIO);
2498 		}
2499 		alc_rxeof(sc, rrd);
2500 		/* Clear Rx return status. */
2501 		rrd->status = 0;
2502 		ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT);
2503 		sc->alc_cdata.alc_rx_cons += nsegs;
2504 		sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT;
2505 		prog += nsegs;
2506 	}
2507 
2508 	if (prog > 0) {
2509 		/* Update the consumer index. */
2510 		sc->alc_cdata.alc_rr_cons = rr_cons;
2511 		/* Sync Rx return descriptors. */
2512 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
2513 		    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
2514 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2515 		/*
2516 		 * Sync updated Rx descriptors such that controller see
2517 		 * modified buffer addresses.
2518 		 */
2519 		bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
2520 		    sc->alc_cdata.alc_rx_ring_map->dm_mapsize,
2521 		    BUS_DMASYNC_PREWRITE);
2522 		/*
2523 		 * Let controller know availability of new Rx buffers.
2524 		 * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors
2525 		 * it may be possible to update ALC_MBOX_RD0_PROD_IDX
2526 		 * only when Rx buffer pre-fetching is required. In
2527 		 * addition we already set ALC_RX_RD_FREE_THRESH to
2528 		 * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However
2529 		 * it still seems that pre-fetching needs more
2530 		 * experimentation.
2531 		 */
2532 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX,
2533 		    sc->alc_cdata.alc_rx_cons);
2534 	}
2535 
2536 	return (0);
2537 }
2538 
2539 /* Receive a frame. */
2540 static void
alc_rxeof(struct alc_softc * sc,struct rx_rdesc * rrd)2541 alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd)
2542 {
2543 	struct ifnet *ifp = &sc->sc_ec.ec_if;
2544 	struct alc_rxdesc *rxd;
2545 	struct mbuf *mp, *m;
2546 	uint32_t rdinfo, status;
2547 	int count, nsegs, rx_cons;
2548 
2549 	status = le32toh(rrd->status);
2550 	rdinfo = le32toh(rrd->rdinfo);
2551 	rx_cons = RRD_RD_IDX(rdinfo);
2552 	nsegs = RRD_RD_CNT(rdinfo);
2553 
2554 	sc->alc_cdata.alc_rxlen = RRD_BYTES(status);
2555 	if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) {
2556 		/*
2557 		 * We want to pass the following frames to upper
2558 		 * layer regardless of error status of Rx return
2559 		 * ring.
2560 		 *
2561 		 *  o IP/TCP/UDP checksum is bad.
2562 		 *  o frame length and protocol specific length
2563 		 *     does not match.
2564 		 *
2565 		 *  Force network stack compute checksum for
2566 		 *  errored frames.
2567 		 */
2568 		status |= RRD_TCP_UDPCSUM_NOK | RRD_IPCSUM_NOK;
2569 		if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN |
2570 		    RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0)
2571 			return;
2572 	}
2573 
2574 	for (count = 0; count < nsegs; count++,
2575 	    ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) {
2576 		rxd = &sc->alc_cdata.alc_rxdesc[rx_cons];
2577 		mp = rxd->rx_m;
2578 		/* Add a new receive buffer to the ring. */
2579 		if (alc_newbuf(sc, rxd, false) != 0) {
2580 			if_statinc(ifp, if_iqdrops);
2581 			/* Reuse Rx buffers. */
2582 			m_freem(sc->alc_cdata.alc_rxhead);
2583 			break;
2584 		}
2585 
2586 		/*
2587 		 * Assume we've received a full sized frame.
2588 		 * Actual size is fixed when we encounter the end of
2589 		 * multi-segmented frame.
2590 		 */
2591 		mp->m_len = sc->alc_buf_size;
2592 
2593 		/* Chain received mbufs. */
2594 		if (sc->alc_cdata.alc_rxhead == NULL) {
2595 			sc->alc_cdata.alc_rxhead = mp;
2596 			sc->alc_cdata.alc_rxtail = mp;
2597 		} else {
2598 			m_remove_pkthdr(mp);
2599 			sc->alc_cdata.alc_rxprev_tail =
2600 			    sc->alc_cdata.alc_rxtail;
2601 			sc->alc_cdata.alc_rxtail->m_next = mp;
2602 			sc->alc_cdata.alc_rxtail = mp;
2603 		}
2604 
2605 		if (count == nsegs - 1) {
2606 			/* Last desc. for this frame. */
2607 			m = sc->alc_cdata.alc_rxhead;
2608 			KASSERT(m->m_flags & M_PKTHDR);
2609 			/*
2610 			 * It seems that L1C/L2C controller has no way
2611 			 * to tell hardware to strip CRC bytes.
2612 			 */
2613 			m->m_pkthdr.len =
2614 			    sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN;
2615 			if (nsegs > 1) {
2616 				/* Set last mbuf size. */
2617 				mp->m_len = sc->alc_cdata.alc_rxlen -
2618 				    (nsegs - 1) * sc->alc_buf_size;
2619 				/* Remove the CRC bytes in chained mbufs. */
2620 				if (mp->m_len <= ETHER_CRC_LEN) {
2621 					sc->alc_cdata.alc_rxtail =
2622 					    sc->alc_cdata.alc_rxprev_tail;
2623 					sc->alc_cdata.alc_rxtail->m_len -=
2624 					    (ETHER_CRC_LEN - mp->m_len);
2625 					sc->alc_cdata.alc_rxtail->m_next = NULL;
2626 					m_freem(mp);
2627 				} else {
2628 					mp->m_len -= ETHER_CRC_LEN;
2629 				}
2630 			} else
2631 				m->m_len = m->m_pkthdr.len;
2632 			m_set_rcvif(m, ifp);
2633 #if NVLAN > 0
2634 			/*
2635 			 * Due to hardware bugs, Rx checksum offloading
2636 			 * was intentionally disabled.
2637 			 */
2638 			if (status & RRD_VLAN_TAG) {
2639 				uint32_t vtag = RRD_VLAN(le32toh(rrd->vtag));
2640 				vlan_set_tag(m, ntohs(vtag));
2641 			}
2642 #endif
2643 
2644 			/* Pass it on. */
2645 			if_percpuq_enqueue(ifp->if_percpuq, m);
2646 		}
2647 	}
2648 	/* Reset mbuf chains. */
2649 	ALC_RXCHAIN_RESET(sc);
2650 }
2651 
2652 static void
alc_tick(void * xsc)2653 alc_tick(void *xsc)
2654 {
2655 	struct alc_softc *sc = xsc;
2656 	struct mii_data *mii = &sc->sc_miibus;
2657 	int s;
2658 
2659 	s = splnet();
2660 	mii_tick(mii);
2661 	alc_stats_update(sc);
2662 	splx(s);
2663 
2664 	callout_schedule(&sc->sc_tick_ch, hz);
2665 }
2666 
2667 static void
alc_osc_reset(struct alc_softc * sc)2668 alc_osc_reset(struct alc_softc *sc)
2669 {
2670 	uint32_t reg;
2671 
2672 	reg = CSR_READ_4(sc, ALC_MISC3);
2673 	reg &= ~MISC3_25M_BY_SW;
2674 	reg |= MISC3_25M_NOTO_INTNL;
2675 	CSR_WRITE_4(sc, ALC_MISC3, reg);
2676 
2677 	reg = CSR_READ_4(sc, ALC_MISC);
2678 	if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0) {
2679 		/*
2680 		 * Restore over-current protection default value.
2681 		 * This value could be reset by MAC reset.
2682 		 */
2683 		reg &= ~MISC_PSW_OCP_MASK;
2684 		reg |= (MISC_PSW_OCP_DEFAULT << MISC_PSW_OCP_SHIFT);
2685 		reg &= ~MISC_INTNLOSC_OPEN;
2686 		CSR_WRITE_4(sc, ALC_MISC, reg);
2687 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2688 		reg = CSR_READ_4(sc, ALC_MISC2);
2689 		reg &= ~MISC2_CALB_START;
2690 		CSR_WRITE_4(sc, ALC_MISC2, reg);
2691 		CSR_WRITE_4(sc, ALC_MISC2, reg | MISC2_CALB_START);
2692 
2693 	} else {
2694 		reg &= ~MISC_INTNLOSC_OPEN;
2695 		/* Disable isolate for revision A devices. */
2696 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2697 			reg &= ~MISC_ISO_ENB;
2698 		CSR_WRITE_4(sc, ALC_MISC, reg | MISC_INTNLOSC_OPEN);
2699 		CSR_WRITE_4(sc, ALC_MISC, reg);
2700 	}
2701 
2702 	DELAY(20);
2703 }
2704 
2705 static void
alc_reset(struct alc_softc * sc)2706 alc_reset(struct alc_softc *sc)
2707 {
2708 	uint32_t pmcfg, reg;
2709 	int i;
2710 
2711 	pmcfg = 0;
2712 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2713 		/* Reset workaround. */
2714 		CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, 1);
2715 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2716 		    (sc->alc_rev & 0x01) != 0) {
2717 			/* Disable L0s/L1s before reset. */
2718 			pmcfg = CSR_READ_4(sc, ALC_PM_CFG);
2719 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2720 			    != 0) {
2721 				pmcfg &= ~(PM_CFG_ASPM_L0S_ENB |
2722 				    PM_CFG_ASPM_L1_ENB);
2723 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2724 			}
2725 		}
2726 	}
2727 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2728 	reg |= MASTER_OOB_DIS_OFF | MASTER_RESET;
2729 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2730 
2731 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2732 		for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2733 			DELAY(10);
2734 			if (CSR_READ_4(sc, ALC_MBOX_RD0_PROD_IDX) == 0)
2735 				break;
2736 		}
2737 		if (i == 0)
2738 			printf("%s: MAC reset timeout!\n", device_xname(sc->sc_dev));
2739 	}
2740 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2741 		DELAY(10);
2742 		if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0)
2743 			break;
2744 	}
2745 	if (i == 0)
2746 		printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
2747 
2748 	for (i = ALC_RESET_TIMEOUT; i > 0; i--) {
2749 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
2750 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC |
2751 		    IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
2752 			break;
2753 		DELAY(10);
2754 	}
2755 	if (i == 0)
2756 		printf("%s: reset timeout(0x%08x)!\n",
2757 		    device_xname(sc->sc_dev), reg);
2758 
2759 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2760 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1 &&
2761 		    (sc->alc_rev & 0x01) != 0) {
2762 			reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2763 			reg |= MASTER_CLK_SEL_DIS;
2764 			CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2765 			/* Restore L0s/L1s config. */
2766 			if ((pmcfg & (PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB))
2767 			    != 0)
2768 				CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg);
2769 		}
2770 
2771 		alc_osc_reset(sc);
2772 		reg = CSR_READ_4(sc, ALC_MISC3);
2773 		reg &= ~MISC3_25M_BY_SW;
2774 		reg |= MISC3_25M_NOTO_INTNL;
2775 		CSR_WRITE_4(sc, ALC_MISC3, reg);
2776 		reg = CSR_READ_4(sc, ALC_MISC);
2777 		reg &= ~MISC_INTNLOSC_OPEN;
2778 		if (AR816X_REV(sc->alc_rev) <= AR816X_REV_A1)
2779 			reg &= ~MISC_ISO_ENB;
2780 		CSR_WRITE_4(sc, ALC_MISC, reg);
2781 		DELAY(20);
2782 	}
2783 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
2784 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
2785 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2)
2786 		CSR_WRITE_4(sc, ALC_SERDES_LOCK,
2787 		    CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN |
2788 		    SERDES_PHY_CLK_SLOWDOWN);
2789 }
2790 
2791 static int
alc_init(struct ifnet * ifp)2792 alc_init(struct ifnet *ifp)
2793 {
2794 
2795 	return alc_init_backend(ifp, true);
2796 }
2797 
2798 static int
alc_init_backend(struct ifnet * ifp,bool init)2799 alc_init_backend(struct ifnet *ifp, bool init)
2800 {
2801 	struct alc_softc *sc = ifp->if_softc;
2802 	struct mii_data *mii;
2803 	uint8_t eaddr[ETHER_ADDR_LEN];
2804 	bus_addr_t paddr;
2805 	uint32_t reg, rxf_hi, rxf_lo;
2806 	int error;
2807 
2808 	/*
2809 	 * Cancel any pending I/O.
2810 	 */
2811 	alc_stop(ifp, 0);
2812 	/*
2813 	 * Reset the chip to a known state.
2814 	 */
2815 	alc_reset(sc);
2816 
2817 	/* Initialize Rx descriptors. */
2818 	error = alc_init_rx_ring(sc, init);
2819 	if (error != 0) {
2820 		printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
2821 		alc_stop(ifp, 0);
2822 		return (error);
2823 	}
2824 	alc_init_rr_ring(sc);
2825 	alc_init_tx_ring(sc);
2826 	alc_init_cmb(sc);
2827 	alc_init_smb(sc);
2828 
2829 	/* Enable all clocks. */
2830 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2831 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, CLK_GATING_DMAW_ENB |
2832 		    CLK_GATING_DMAR_ENB | CLK_GATING_TXQ_ENB |
2833 		    CLK_GATING_RXQ_ENB | CLK_GATING_TXMAC_ENB |
2834 		    CLK_GATING_RXMAC_ENB);
2835 		if (AR816X_REV(sc->alc_rev) >= AR816X_REV_B0)
2836 			CSR_WRITE_4(sc, ALC_IDLE_DECISN_TIMER,
2837 			    IDLE_DECISN_TIMER_DEFAULT_1MS);
2838 	} else
2839 		CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0);
2840 
2841 	/* Reprogram the station address. */
2842 	memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
2843 	CSR_WRITE_4(sc, ALC_PAR0, (uint32_t)eaddr[2] << 24
2844 	    | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2845 	CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]);
2846 	/*
2847 	 * Clear WOL status and disable all WOL feature as WOL
2848 	 * would interfere Rx operation under normal environments.
2849 	 */
2850 	CSR_READ_4(sc, ALC_WOL_CFG);
2851 	CSR_WRITE_4(sc, ALC_WOL_CFG, 0);
2852 	/* Set Tx descriptor base addresses. */
2853 	paddr = sc->alc_rdata.alc_tx_ring_paddr;
2854 	CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2855 	CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2856 	/* We don't use high priority ring. */
2857 	CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0);
2858 	/* Set Tx descriptor counter. */
2859 	CSR_WRITE_4(sc, ALC_TD_RING_CNT,
2860 	    (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK);
2861 	/* Set Rx descriptor base addresses. */
2862 	paddr = sc->alc_rdata.alc_rx_ring_paddr;
2863 	CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2864 	CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2865 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2866 		/* We use one Rx ring. */
2867 		CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0);
2868 		CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0);
2869 		CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0);
2870 	}
2871 	/* Set Rx descriptor counter. */
2872 	CSR_WRITE_4(sc, ALC_RD_RING_CNT,
2873 	    (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK);
2874 
2875 	/*
2876 	 * Let hardware split jumbo frames into alc_max_buf_sized chunks.
2877 	 * if it do not fit the buffer size. Rx return descriptor holds
2878 	 * a counter that indicates how many fragments were made by the
2879 	 * hardware. The buffer size should be multiple of 8 bytes.
2880 	 * Since hardware has limit on the size of buffer size, always
2881 	 * use the maximum value.
2882 	 * For strict-alignment architectures make sure to reduce buffer
2883 	 * size by 8 bytes to make room for alignment fixup.
2884 	 */
2885 	sc->alc_buf_size = RX_BUF_SIZE_MAX;
2886 	CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size);
2887 
2888 	paddr = sc->alc_rdata.alc_rr_ring_paddr;
2889 	/* Set Rx return descriptor base addresses. */
2890 	CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr));
2891 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2892 		/* We use one Rx return ring. */
2893 		CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0);
2894 		CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0);
2895 		CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0);
2896 	}
2897 	/* Set Rx return descriptor counter. */
2898 	CSR_WRITE_4(sc, ALC_RRD_RING_CNT,
2899 	    (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK);
2900 	paddr = sc->alc_rdata.alc_cmb_paddr;
2901 	CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2902 	paddr = sc->alc_rdata.alc_smb_paddr;
2903 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr));
2904 	CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr));
2905 
2906 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B) {
2907 		/* Reconfigure SRAM - Vendor magic. */
2908 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0);
2909 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100);
2910 		CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000);
2911 		CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0);
2912 		CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0);
2913 		CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0);
2914 		CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000);
2915 		CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000);
2916 	}
2917 
2918 	/* Tell hardware that we're ready to load DMA blocks. */
2919 	CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD);
2920 
2921 	/* Configure interrupt moderation timer. */
2922 	sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT;
2923 	sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT;
2924 	reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT;
2925 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0)
2926 		reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT;
2927 	CSR_WRITE_4(sc, ALC_IM_TIMER, reg);
2928 	/*
2929 	 * We don't want to automatic interrupt clear as task queue
2930 	 * for the interrupt should know interrupt status.
2931 	 */
2932 	reg = CSR_READ_4(sc, ALC_MASTER_CFG);
2933 	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2934 	reg |= MASTER_SA_TIMER_ENB;
2935 	if (ALC_USECS(sc->alc_int_rx_mod) != 0)
2936 		reg |= MASTER_IM_RX_TIMER_ENB;
2937 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0 &&
2938 	    ALC_USECS(sc->alc_int_tx_mod) != 0)
2939 		reg |= MASTER_IM_TX_TIMER_ENB;
2940 	CSR_WRITE_4(sc, ALC_MASTER_CFG, reg);
2941 	/*
2942 	 * Disable interrupt re-trigger timer. We don't want automatic
2943 	 * re-triggering of un-ACKed interrupts.
2944 	 */
2945 	CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0));
2946 	/* Configure CMB. */
2947 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
2948 		CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, ALC_TX_RING_CNT / 3);
2949 		CSR_WRITE_4(sc, ALC_CMB_TX_TIMER,
2950 		    ALC_USECS(sc->alc_int_tx_mod));
2951 	} else {
2952 		if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) {
2953 			CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4);
2954 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000));
2955 		} else
2956 			CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0));
2957 	}
2958 	/*
2959 	 * Hardware can be configured to issue SMB interrupt based
2960 	 * on programmed interval. Since there is a callout that is
2961 	 * invoked for every hz in driver we use that instead of
2962 	 * relying on periodic SMB interrupt.
2963 	 */
2964 	CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0));
2965 	/* Clear MAC statistics. */
2966 	alc_stats_clear(sc);
2967 
2968 	/*
2969 	 * Always use maximum frame size that controller can support.
2970 	 * Otherwise received frames that has larger frame length
2971 	 * than alc(4) MTU would be silently dropped in hardware. This
2972 	 * would make path-MTU discovery hard as sender wouldn't get
2973 	 * any responses from receiver. alc(4) supports
2974 	 * multi-fragmented frames on Rx path so it has no issue on
2975 	 * assembling fragmented frames. Using maximum frame size also
2976 	 * removes the need to reinitialize hardware when interface
2977 	 * MTU configuration was changed.
2978 	 *
2979 	 * Be conservative in what you do, be liberal in what you
2980 	 * accept from others - RFC 793.
2981 	 */
2982 	CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_ident->max_framelen);
2983 
2984 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
2985 		/* Disable header split(?) */
2986 		CSR_WRITE_4(sc, ALC_HDS_CFG, 0);
2987 
2988 		/* Configure IPG/IFG parameters. */
2989 		CSR_WRITE_4(sc, ALC_IPG_IFG_CFG,
2990 		    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) &
2991 		    IPG_IFG_IPGT_MASK) |
2992 		    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) &
2993 		    IPG_IFG_MIFG_MASK) |
2994 		    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) &
2995 		    IPG_IFG_IPG1_MASK) |
2996 		    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) &
2997 		    IPG_IFG_IPG2_MASK));
2998 		/* Set parameters for half-duplex media. */
2999 		CSR_WRITE_4(sc, ALC_HDPX_CFG,
3000 		    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
3001 		    HDPX_CFG_LCOL_MASK) |
3002 		    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
3003 		    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
3004 		    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
3005 		    HDPX_CFG_ABEBT_MASK) |
3006 		    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
3007 		    HDPX_CFG_JAMIPG_MASK));
3008 	}
3009 
3010 	/*
3011 	 * Set TSO/checksum offload threshold. For frames that is
3012 	 * larger than this threshold, hardware wouldn't do
3013 	 * TSO/checksum offloading.
3014 	 */
3015 	reg = (sc->alc_ident->max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) &
3016 	    TSO_OFFLOAD_THRESH_MASK;
3017 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0)
3018 		reg |= TSO_OFFLOAD_ERRLGPKT_DROP_ENB;
3019 	CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, reg);
3020 	/* Configure TxQ. */
3021 	reg = (alc_dma_burst[sc->alc_dma_rd_burst] <<
3022 	    TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK;
3023 	if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B ||
3024 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3025 		reg >>= 1;
3026 	reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) &
3027 	    TXQ_CFG_TD_BURST_MASK;
3028 	reg |= TXQ_CFG_IP_OPTION_ENB | TXQ_CFG_8023_ENB;
3029 	CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE);
3030 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3031 		reg = (TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q1_BURST_SHIFT |
3032 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q2_BURST_SHIFT |
3033 		    TXQ_CFG_TD_BURST_DEFAULT << HQTD_CFG_Q3_BURST_SHIFT |
3034 		    HQTD_CFG_BURST_ENB);
3035 		CSR_WRITE_4(sc, ALC_HQTD_CFG, reg);
3036 		reg = WRR_PRI_RESTRICT_NONE;
3037 		reg |= (WRR_PRI_DEFAULT << WRR_PRI0_SHIFT |
3038 		    WRR_PRI_DEFAULT << WRR_PRI1_SHIFT |
3039 		    WRR_PRI_DEFAULT << WRR_PRI2_SHIFT |
3040 		    WRR_PRI_DEFAULT << WRR_PRI3_SHIFT);
3041 		CSR_WRITE_4(sc, ALC_WRR, reg);
3042 	} else {
3043 		/* Configure Rx free descriptor pre-fetching. */
3044 		CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH,
3045 		    ((RX_RD_FREE_THRESH_HI_DEFAULT <<
3046 		    RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) |
3047 		    ((RX_RD_FREE_THRESH_LO_DEFAULT <<
3048 		    RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK));
3049 	}
3050 
3051 	/*
3052 	 * Configure flow control parameters.
3053 	 * XON  : 80% of Rx FIFO
3054 	 * XOFF : 30% of Rx FIFO
3055 	 */
3056 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3057 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3058 		reg &= SRAM_RX_FIFO_LEN_MASK;
3059 		reg *= 8;
3060 		if (reg > 8 * 1024)
3061 			reg -= RX_FIFO_PAUSE_816X_RSVD;
3062 		else
3063 			reg -= RX_BUF_SIZE_MAX;
3064 		reg /= 8;
3065 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3066 		    ((reg << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3067 		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
3068 		    (((RX_FIFO_PAUSE_816X_RSVD / 8) <<
3069 		    RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3070 		    RX_FIFO_PAUSE_THRESH_HI_MASK));
3071 	} else if (sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8131 ||
3072 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8132) {
3073 		reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN);
3074 		rxf_hi = (reg * 8) / 10;
3075 		rxf_lo = (reg * 3) / 10;
3076 		CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH,
3077 		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
3078 		     RX_FIFO_PAUSE_THRESH_LO_MASK) |
3079 		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
3080 		     RX_FIFO_PAUSE_THRESH_HI_MASK));
3081 	}
3082 
3083 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3084 		/* Disable RSS until I understand L1C/L2C's RSS logic. */
3085 		CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0);
3086 		CSR_WRITE_4(sc, ALC_RSS_CPU, 0);
3087 	}
3088 
3089 	/* Configure RxQ. */
3090 	reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
3091 	    RXQ_CFG_RD_BURST_MASK;
3092 	reg |= RXQ_CFG_RSS_MODE_DIS;
3093 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3094 		reg |= (RXQ_CFG_816X_IDT_TBL_SIZE_DEFAULT <<
3095 		    RXQ_CFG_816X_IDT_TBL_SIZE_SHIFT) &
3096 		    RXQ_CFG_816X_IDT_TBL_SIZE_MASK;
3097 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0)
3098 			reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3099 	} else {
3100 		if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0 &&
3101 		    sc->alc_ident->deviceid != PCI_PRODUCT_ATTANSIC_AR8151_V2)
3102 			reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_100M;
3103 	}
3104 	CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3105 
3106 	/* Configure DMA parameters. */
3107 	reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI;
3108 	reg |= sc->alc_rcb;
3109 	if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0)
3110 		reg |= DMA_CFG_CMB_ENB;
3111 	if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0)
3112 		reg |= DMA_CFG_SMB_ENB;
3113 	else
3114 		reg |= DMA_CFG_SMB_DIS;
3115 	reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) <<
3116 	    DMA_CFG_RD_BURST_SHIFT;
3117 	reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) <<
3118 	    DMA_CFG_WR_BURST_SHIFT;
3119 	reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
3120 	    DMA_CFG_RD_DELAY_CNT_MASK;
3121 	reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
3122 	    DMA_CFG_WR_DELAY_CNT_MASK;
3123 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0) {
3124 		switch (AR816X_REV(sc->alc_rev)) {
3125 		case AR816X_REV_A0:
3126 		case AR816X_REV_A1:
3127 			reg |= DMA_CFG_RD_CHNL_SEL_2;
3128 			break;
3129 		case AR816X_REV_B0:
3130 			/* FALLTHROUGH */
3131 		default:
3132 			reg |= DMA_CFG_RD_CHNL_SEL_4;
3133 			break;
3134 		}
3135 	}
3136 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3137 
3138 	/*
3139 	 * Configure Tx/Rx MACs.
3140 	 *  - Auto-padding for short frames.
3141 	 *  - Enable CRC generation.
3142 	 *  Actual reconfiguration of MAC for resolved speed/duplex
3143 	 *  is followed after detection of link establishment.
3144 	 *  AR813x/AR815x always does checksum computation regardless
3145 	 *  of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to
3146 	 *  have bug in protocol field in Rx return structure so
3147 	 *  these controllers can't handle fragmented frames. Disable
3148 	 *  Rx checksum offloading until there is a newer controller
3149 	 *  that has sane implementation.
3150 	 */
3151 	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
3152 	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
3153 	    MAC_CFG_PREAMBLE_MASK);
3154 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) != 0 ||
3155 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151 ||
3156 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8151_V2 ||
3157 	    sc->alc_ident->deviceid == PCI_PRODUCT_ATTANSIC_AR8152_B2)
3158 		reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW;
3159 	if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0)
3160 		reg |= MAC_CFG_SPEED_10_100;
3161 	else
3162 		reg |= MAC_CFG_SPEED_1000;
3163 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3164 
3165 	/* Set up the receive filter. */
3166 	alc_iff(sc);
3167 	alc_rxvlan(sc);
3168 
3169 	/* Acknowledge all pending interrupts and clear it. */
3170 	CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS);
3171 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3172 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0);
3173 
3174 	sc->alc_flags &= ~ALC_FLAG_LINK;
3175 	/* Switch to the current media. */
3176 	mii = &sc->sc_miibus;
3177 	mii_mediachg(mii);
3178 
3179 	callout_schedule(&sc->sc_tick_ch, hz);
3180 
3181 	ifp->if_flags |= IFF_RUNNING;
3182 	ifp->if_flags &= ~IFF_OACTIVE;
3183 
3184 	return (0);
3185 }
3186 
3187 static void
alc_stop(struct ifnet * ifp,int disable)3188 alc_stop(struct ifnet *ifp, int disable)
3189 {
3190 	struct alc_softc *sc = ifp->if_softc;
3191 	struct alc_txdesc *txd;
3192 	struct alc_rxdesc *rxd;
3193 	uint32_t reg;
3194 	int i;
3195 
3196 	callout_stop(&sc->sc_tick_ch);
3197 
3198 	/*
3199 	 * Mark the interface down and cancel the watchdog timer.
3200 	 */
3201 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3202 	ifp->if_timer = 0;
3203 
3204 	sc->alc_flags &= ~ALC_FLAG_LINK;
3205 
3206 	alc_stats_update(sc);
3207 
3208 	mii_down(&sc->sc_miibus);
3209 
3210 	/* Disable interrupts. */
3211 	CSR_WRITE_4(sc, ALC_INTR_MASK, 0);
3212 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3213 
3214 	/* Disable DMA. */
3215 	reg = CSR_READ_4(sc, ALC_DMA_CFG);
3216 	reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB);
3217 	reg |= DMA_CFG_SMB_DIS;
3218 	CSR_WRITE_4(sc, ALC_DMA_CFG, reg);
3219 	DELAY(1000);
3220 
3221 	/* Stop Rx/Tx MACs. */
3222 	alc_stop_mac(sc);
3223 
3224 	/* Disable interrupts which might be touched in taskq handler. */
3225 	CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF);
3226 
3227 	/* Disable L0s/L1s */
3228 	alc_aspm(sc, 0, IFM_UNKNOWN);
3229 
3230 	/* Reclaim Rx buffers that have been processed. */
3231 	m_freem(sc->alc_cdata.alc_rxhead);
3232 	ALC_RXCHAIN_RESET(sc);
3233 	/*
3234 	 * Free Tx/Rx mbufs still in the queues.
3235 	 */
3236 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3237 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3238 		if (rxd->rx_m != NULL) {
3239 			bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
3240 			    rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
3241 			bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
3242 			m_freem(rxd->rx_m);
3243 			rxd->rx_m = NULL;
3244 		}
3245 	}
3246 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3247 		txd = &sc->alc_cdata.alc_txdesc[i];
3248 		if (txd->tx_m != NULL) {
3249 			bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0,
3250 			    txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3251 			bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
3252 			m_freem(txd->tx_m);
3253 			txd->tx_m = NULL;
3254 		}
3255 	}
3256 }
3257 
3258 static void
alc_stop_mac(struct alc_softc * sc)3259 alc_stop_mac(struct alc_softc *sc)
3260 {
3261 	uint32_t reg;
3262 	int i;
3263 
3264 	alc_stop_queue(sc);
3265 	/* Disable Rx/Tx MAC. */
3266 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3267 	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
3268 		reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
3269 		CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3270 	}
3271 	for (i = ALC_TIMEOUT; i > 0; i--) {
3272 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3273 		if ((reg & (IDLE_STATUS_RXMAC | IDLE_STATUS_TXMAC)) == 0)
3274 			break;
3275 		DELAY(10);
3276 	}
3277 	if (i == 0)
3278 		printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n",
3279 		    device_xname(sc->sc_dev), reg);
3280 }
3281 
3282 static void
alc_start_queue(struct alc_softc * sc)3283 alc_start_queue(struct alc_softc *sc)
3284 {
3285 	uint32_t qcfg[] = {
3286 		0,
3287 		RXQ_CFG_QUEUE0_ENB,
3288 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB,
3289 		RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB,
3290 		RXQ_CFG_ENB
3291 	};
3292 	uint32_t cfg;
3293 
3294 	/* Enable RxQ. */
3295 	cfg = CSR_READ_4(sc, ALC_RXQ_CFG);
3296 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3297 		cfg &= ~RXQ_CFG_ENB;
3298 		cfg |= qcfg[1];
3299 	} else
3300 		cfg |= RXQ_CFG_QUEUE0_ENB;
3301 	CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg);
3302 	/* Enable TxQ. */
3303 	cfg = CSR_READ_4(sc, ALC_TXQ_CFG);
3304 	cfg |= TXQ_CFG_ENB;
3305 	CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg);
3306 }
3307 
3308 static void
alc_stop_queue(struct alc_softc * sc)3309 alc_stop_queue(struct alc_softc *sc)
3310 {
3311 	uint32_t reg;
3312 	int i;
3313 
3314 	/* Disable RxQ. */
3315 	reg = CSR_READ_4(sc, ALC_RXQ_CFG);
3316 	if ((sc->alc_flags & ALC_FLAG_AR816X_FAMILY) == 0) {
3317 		if ((reg & RXQ_CFG_ENB) != 0) {
3318 			reg &= ~RXQ_CFG_ENB;
3319 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3320 		}
3321 	} else {
3322 		if ((reg & RXQ_CFG_QUEUE0_ENB) != 0) {
3323 			reg &= ~RXQ_CFG_QUEUE0_ENB;
3324 			CSR_WRITE_4(sc, ALC_RXQ_CFG, reg);
3325 		}
3326 	}
3327 	/* Disable TxQ. */
3328 	reg = CSR_READ_4(sc, ALC_TXQ_CFG);
3329 	if ((reg & TXQ_CFG_ENB) != 0) {
3330 		reg &= ~TXQ_CFG_ENB;
3331 		CSR_WRITE_4(sc, ALC_TXQ_CFG, reg);
3332 	}
3333 	DELAY(40);
3334 	for (i = ALC_TIMEOUT; i > 0; i--) {
3335 		reg = CSR_READ_4(sc, ALC_IDLE_STATUS);
3336 		if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0)
3337 			break;
3338 		DELAY(10);
3339 	}
3340 	if (i == 0)
3341 		printf("%s: could not disable RxQ/TxQ (0x%08x)!\n",
3342 		    device_xname(sc->sc_dev), reg);
3343 }
3344 
3345 static void
alc_init_tx_ring(struct alc_softc * sc)3346 alc_init_tx_ring(struct alc_softc *sc)
3347 {
3348 	struct alc_ring_data *rd;
3349 	struct alc_txdesc *txd;
3350 	int i;
3351 
3352 	sc->alc_cdata.alc_tx_prod = 0;
3353 	sc->alc_cdata.alc_tx_cons = 0;
3354 	sc->alc_cdata.alc_tx_cnt = 0;
3355 
3356 	rd = &sc->alc_rdata;
3357 	memset(rd->alc_tx_ring, 0, ALC_TX_RING_SZ);
3358 	for (i = 0; i < ALC_TX_RING_CNT; i++) {
3359 		txd = &sc->alc_cdata.alc_txdesc[i];
3360 		txd->tx_m = NULL;
3361 	}
3362 
3363 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0,
3364 	    sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3365 }
3366 
3367 static int
alc_init_rx_ring(struct alc_softc * sc,bool init)3368 alc_init_rx_ring(struct alc_softc *sc, bool init)
3369 {
3370 	struct alc_ring_data *rd;
3371 	struct alc_rxdesc *rxd;
3372 	int i;
3373 
3374 	sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1;
3375 	rd = &sc->alc_rdata;
3376 	memset(rd->alc_rx_ring, 0, ALC_RX_RING_SZ);
3377 	for (i = 0; i < ALC_RX_RING_CNT; i++) {
3378 		rxd = &sc->alc_cdata.alc_rxdesc[i];
3379 		rxd->rx_m = NULL;
3380 		rxd->rx_desc = &rd->alc_rx_ring[i];
3381 		if (alc_newbuf(sc, rxd, init) != 0)
3382 			return (ENOBUFS);
3383 	}
3384 
3385 	/*
3386 	 * Since controller does not update Rx descriptors, driver
3387 	 * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE
3388 	 * is enough to ensure coherence.
3389 	 */
3390 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0,
3391 	    sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
3392 	/* Let controller know availability of new Rx buffers. */
3393 	CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons);
3394 
3395 	return (0);
3396 }
3397 
3398 static void
alc_init_rr_ring(struct alc_softc * sc)3399 alc_init_rr_ring(struct alc_softc *sc)
3400 {
3401 	struct alc_ring_data *rd;
3402 
3403 	sc->alc_cdata.alc_rr_cons = 0;
3404 	ALC_RXCHAIN_RESET(sc);
3405 
3406 	rd = &sc->alc_rdata;
3407 	memset(rd->alc_rr_ring, 0, ALC_RR_RING_SZ);
3408 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0,
3409 	    sc->alc_cdata.alc_rr_ring_map->dm_mapsize,
3410 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3411 }
3412 
3413 static void
alc_init_cmb(struct alc_softc * sc)3414 alc_init_cmb(struct alc_softc *sc)
3415 {
3416 	struct alc_ring_data *rd;
3417 
3418 	rd = &sc->alc_rdata;
3419 	memset(rd->alc_cmb, 0, ALC_CMB_SZ);
3420 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0,
3421 	    sc->alc_cdata.alc_cmb_map->dm_mapsize,
3422 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3423 }
3424 
3425 static void
alc_init_smb(struct alc_softc * sc)3426 alc_init_smb(struct alc_softc *sc)
3427 {
3428 	struct alc_ring_data *rd;
3429 
3430 	rd = &sc->alc_rdata;
3431 	memset(rd->alc_smb, 0, ALC_SMB_SZ);
3432 	bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0,
3433 	    sc->alc_cdata.alc_smb_map->dm_mapsize,
3434 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3435 }
3436 
3437 static void
alc_rxvlan(struct alc_softc * sc)3438 alc_rxvlan(struct alc_softc *sc)
3439 {
3440 	uint32_t reg;
3441 
3442 	reg = CSR_READ_4(sc, ALC_MAC_CFG);
3443 	if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
3444 		reg |= MAC_CFG_VLAN_TAG_STRIP;
3445 	else
3446 		reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3447 	CSR_WRITE_4(sc, ALC_MAC_CFG, reg);
3448 }
3449 
3450 static void
alc_iff(struct alc_softc * sc)3451 alc_iff(struct alc_softc *sc)
3452 {
3453 	struct ethercom *ec = &sc->sc_ec;
3454 	struct ifnet *ifp = &ec->ec_if;
3455 	struct ether_multi *enm;
3456 	struct ether_multistep step;
3457 	uint32_t crc;
3458 	uint32_t mchash[2];
3459 	uint32_t rxcfg;
3460 
3461 	rxcfg = CSR_READ_4(sc, ALC_MAC_CFG);
3462 	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3463 	ifp->if_flags &= ~IFF_ALLMULTI;
3464 
3465 	/*
3466 	 * Always accept broadcast frames.
3467 	 */
3468 	rxcfg |= MAC_CFG_BCAST;
3469 
3470 	/* Program new filter. */
3471 	if ((ifp->if_flags & IFF_PROMISC) != 0)
3472 		goto update;
3473 
3474 	memset(mchash, 0, sizeof(mchash));
3475 
3476 	ETHER_LOCK(ec);
3477 	ETHER_FIRST_MULTI(step, ec, enm);
3478 	while (enm != NULL) {
3479 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
3480 			/* XXX Use ETHER_F_ALLMULTI in future. */
3481 			ifp->if_flags |= IFF_ALLMULTI;
3482 			ETHER_UNLOCK(ec);
3483 			goto update;
3484 		}
3485 		crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
3486 		mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
3487 		ETHER_NEXT_MULTI(step, enm);
3488 	}
3489 	ETHER_UNLOCK(ec);
3490 
3491 update:
3492 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3493 		if (ifp->if_flags & IFF_PROMISC) {
3494 			rxcfg |= MAC_CFG_PROMISC;
3495 			/* XXX Use ETHER_F_ALLMULTI in future. */
3496 			ifp->if_flags |= IFF_ALLMULTI;
3497 		} else
3498 			rxcfg |= MAC_CFG_ALLMULTI;
3499 		mchash[0] = mchash[1] = 0xFFFFFFFF;
3500 	}
3501 	CSR_WRITE_4(sc, ALC_MAR0, mchash[0]);
3502 	CSR_WRITE_4(sc, ALC_MAR1, mchash[1]);
3503 	CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg);
3504 }
3505 
3506 MODULE(MODULE_CLASS_DRIVER, if_alc, "pci");
3507 
3508 #ifdef _MODULE
3509 #include "ioconf.c"
3510 #endif
3511 
3512 static int
if_alc_modcmd(modcmd_t cmd,void * opaque)3513 if_alc_modcmd(modcmd_t cmd, void *opaque)
3514 {
3515 	int error = 0;
3516 
3517 	switch (cmd) {
3518 	case MODULE_CMD_INIT:
3519 #ifdef _MODULE
3520 		error = config_init_component(cfdriver_ioconf_if_alc,
3521 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3522 #endif
3523 		return error;
3524 	case MODULE_CMD_FINI:
3525 #ifdef _MODULE
3526 		error = config_fini_component(cfdriver_ioconf_if_alc,
3527 		    cfattach_ioconf_if_alc, cfdata_ioconf_if_alc);
3528 #endif
3529 		return error;
3530 	default:
3531 		return ENOTTY;
3532 	}
3533 }
3534