xref: /netbsd-src/sys/dev/ic/gem.c (revision deb6f0161a9109e7de9b519dc8dfb9478668dcdd)
1 /*	$NetBSD: gem.c,v 1.111 2018/09/03 16:29:31 riastradh Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.111 2018/09/03 16:29:31 riastradh Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <net/bpf.h>
73 
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 static void	gem_inten(struct gem_softc *);
87 static void	gem_start(struct ifnet *);
88 static void	gem_stop(struct ifnet *, int);
89 int		gem_ioctl(struct ifnet *, u_long, void *);
90 void		gem_tick(void *);
91 void		gem_watchdog(struct ifnet *);
92 void		gem_rx_watchdog(void *);
93 void		gem_pcs_start(struct gem_softc *sc);
94 void		gem_pcs_stop(struct gem_softc *sc, int);
95 int		gem_init(struct ifnet *);
96 void		gem_init_regs(struct gem_softc *sc);
97 static int	gem_ringsize(int sz);
98 static int	gem_meminit(struct gem_softc *);
99 void		gem_mifinit(struct gem_softc *);
100 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 		    u_int32_t, u_int32_t);
102 void		gem_reset(struct gem_softc *);
103 int		gem_reset_rx(struct gem_softc *sc);
104 static void	gem_reset_rxdma(struct gem_softc *sc);
105 static void	gem_rx_common(struct gem_softc *sc);
106 int		gem_reset_tx(struct gem_softc *sc);
107 int		gem_disable_rx(struct gem_softc *sc);
108 int		gem_disable_tx(struct gem_softc *sc);
109 static void	gem_rxdrain(struct gem_softc *sc);
110 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void		gem_setladrf(struct gem_softc *);
112 
113 /* MII methods & callbacks */
114 static int	gem_mii_readreg(device_t, int, int);
115 static void	gem_mii_writereg(device_t, int, int, int);
116 static void	gem_mii_statchg(struct ifnet *);
117 
118 static int	gem_ifflags_cb(struct ethercom *);
119 
120 void		gem_statuschange(struct gem_softc *);
121 
122 int		gem_ser_mediachange(struct ifnet *);
123 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124 
125 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126 
127 struct mbuf	*gem_get(struct gem_softc *, int, int);
128 int		gem_put(struct gem_softc *, int, struct mbuf *);
129 void		gem_read(struct gem_softc *, int, int);
130 int		gem_pint(struct gem_softc *);
131 int		gem_eint(struct gem_softc *, u_int);
132 int		gem_rint(struct gem_softc *);
133 int		gem_tint(struct gem_softc *);
134 void		gem_power(int, void *);
135 
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 				printf x
140 #else
141 #define	DPRINTF(sc, x)	/* nothing */
142 #endif
143 
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 	int i;
150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 	bus_space_tag_t t = sc->sc_bustag;
152 	bus_space_handle_t h = sc->sc_h1;
153 
154 	/*
155 	 * Free any resources we've allocated during the attach.
156 	 * Do this in reverse order and fall through.
157 	 */
158 	switch (sc->sc_att_stage) {
159 	case GEM_ATT_BACKEND_2:
160 	case GEM_ATT_BACKEND_1:
161 	case GEM_ATT_FINISHED:
162 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 		gem_stop(&sc->sc_ethercom.ec_if, 1);
164 
165 #ifdef GEM_COUNTERS
166 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 			evcnt_detach(&sc->sc_ev_rxhist[i]);
168 		evcnt_detach(&sc->sc_ev_rxnobuf);
169 		evcnt_detach(&sc->sc_ev_rxfull);
170 		evcnt_detach(&sc->sc_ev_rxint);
171 		evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 		evcnt_detach(&sc->sc_ev_intr);
174 
175 		rnd_detach_source(&sc->rnd_source);
176 		ether_ifdetach(ifp);
177 		if_detach(ifp);
178 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179 
180 		callout_destroy(&sc->sc_tick_ch);
181 		callout_destroy(&sc->sc_rx_watchdog);
182 
183 		/*FALLTHROUGH*/
184 	case GEM_ATT_MII:
185 		sc->sc_att_stage = GEM_ATT_MII;
186 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 		/*FALLTHROUGH*/
188 	case GEM_ATT_7:
189 		for (i = 0; i < GEM_NRXDESC; i++) {
190 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 				bus_dmamap_destroy(sc->sc_dmatag,
192 				    sc->sc_rxsoft[i].rxs_dmamap);
193 		}
194 		/*FALLTHROUGH*/
195 	case GEM_ATT_6:
196 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 				bus_dmamap_destroy(sc->sc_dmatag,
199 				    sc->sc_txsoft[i].txs_dmamap);
200 		}
201 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 		/*FALLTHROUGH*/
203 	case GEM_ATT_5:
204 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 		/*FALLTHROUGH*/
206 	case GEM_ATT_4:
207 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 		/*FALLTHROUGH*/
209 	case GEM_ATT_3:
210 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 		/*FALLTHROUGH*/
212 	case GEM_ATT_2:
213 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 		    sizeof(struct gem_control_data));
215 		/*FALLTHROUGH*/
216 	case GEM_ATT_1:
217 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 		/*FALLTHROUGH*/
219 	case GEM_ATT_0:
220 		sc->sc_att_stage = GEM_ATT_0;
221 		/*FALLTHROUGH*/
222 	case GEM_ATT_BACKEND_0:
223 		break;
224 	}
225 	return 0;
226 }
227 
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 	cfattach_t ca = device_cfattach(sc->sc_dev);
232 
233 	sc->sc_att_stage = stage;
234 	(*ca->ca_detach)(sc->sc_dev, 0);
235 }
236 
237 /*
238  * gem_attach:
239  *
240  *	Attach a Gem interface to the system.
241  */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 	struct mii_data *mii = &sc->sc_mii;
247 	bus_space_tag_t t = sc->sc_bustag;
248 	bus_space_handle_t h = sc->sc_h1;
249 	struct ifmedia_entry *ifm;
250 	int i, error, phyaddr;
251 	u_int32_t v;
252 	char *nullbuf;
253 
254 	/* Make sure the chip is stopped. */
255 	ifp->if_softc = sc;
256 	gem_reset(sc);
257 
258 	/*
259 	 * Allocate the control data structures, and create and load the
260 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 	 */
263 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 		aprint_error_dev(sc->sc_dev,
267 		   "unable to allocate control data, error = %d\n",
268 		    error);
269 		gem_partial_detach(sc, GEM_ATT_0);
270 		return;
271 	}
272 
273 	/* XXX should map this in with correct endianness */
274 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 	    BUS_DMA_COHERENT)) != 0) {
277 		aprint_error_dev(sc->sc_dev,
278 		    "unable to map control data, error = %d\n", error);
279 		gem_partial_detach(sc, GEM_ATT_1);
280 		return;
281 	}
282 
283 	nullbuf =
284 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285 
286 	if ((error = bus_dmamap_create(sc->sc_dmatag,
287 	    sizeof(struct gem_control_data), 1,
288 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 		aprint_error_dev(sc->sc_dev,
290 		    "unable to create control data DMA map, error = %d\n",
291 		    error);
292 		gem_partial_detach(sc, GEM_ATT_2);
293 		return;
294 	}
295 
296 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 	    0)) != 0) {
299 		aprint_error_dev(sc->sc_dev,
300 		    "unable to load control data DMA map, error = %d\n",
301 		    error);
302 		gem_partial_detach(sc, GEM_ATT_3);
303 		return;
304 	}
305 
306 	memset(nullbuf, 0, ETHER_MIN_TX);
307 	if ((error = bus_dmamap_create(sc->sc_dmatag,
308 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 		aprint_error_dev(sc->sc_dev,
310 		    "unable to create padding DMA map, error = %d\n", error);
311 		gem_partial_detach(sc, GEM_ATT_4);
312 		return;
313 	}
314 
315 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 		aprint_error_dev(sc->sc_dev,
318 		    "unable to load padding DMA map, error = %d\n", error);
319 		gem_partial_detach(sc, GEM_ATT_5);
320 		return;
321 	}
322 
323 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 	    BUS_DMASYNC_PREWRITE);
325 
326 	/*
327 	 * Initialize the transmit job descriptors.
328 	 */
329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
331 
332 	/*
333 	 * Create the transmit buffer DMA maps.
334 	 */
335 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 		struct gem_txsoft *txs;
337 
338 		txs = &sc->sc_txsoft[i];
339 		txs->txs_mbuf = NULL;
340 		if ((error = bus_dmamap_create(sc->sc_dmatag,
341 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 		    ETHER_MAX_LEN_JUMBO, 0, 0,
343 		    &txs->txs_dmamap)) != 0) {
344 			aprint_error_dev(sc->sc_dev,
345 			    "unable to create tx DMA map %d, error = %d\n",
346 			    i, error);
347 			gem_partial_detach(sc, GEM_ATT_6);
348 			return;
349 		}
350 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 	}
352 
353 	/*
354 	 * Create the receive buffer DMA maps.
355 	 */
356 	for (i = 0; i < GEM_NRXDESC; i++) {
357 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 			aprint_error_dev(sc->sc_dev,
360 			    "unable to create rx DMA map %d, error = %d\n",
361 			    i, error);
362 			gem_partial_detach(sc, GEM_ATT_7);
363 			return;
364 		}
365 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 	}
367 
368 	/* Initialize ifmedia structures and MII info */
369 	mii->mii_ifp = ifp;
370 	mii->mii_readreg = gem_mii_readreg;
371 	mii->mii_writereg = gem_mii_writereg;
372 	mii->mii_statchg = gem_mii_statchg;
373 
374 	sc->sc_ethercom.ec_mii = mii;
375 
376 	/*
377 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
378 	 * Section 3.2.1 `Initialization Sequence'.
379 	 * However, we can't assume SERDES or Serialink if neither
380 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
382 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 	 * Also, for variants that report 2 PHY's, we prefer the external
384 	 * PHY over the internal PHY, so we look for that first.
385 	 */
386 	gem_mifinit(sc);
387 
388 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 		    ether_mediastatus);
391 		/* Look for external PHY */
392 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 			    sc->sc_mif_config);
396 			switch (sc->sc_variant) {
397 			case GEM_SUN_ERI:
398 				phyaddr = GEM_PHYAD_EXTERNAL;
399 				break;
400 			default:
401 				phyaddr = MII_PHY_ANY;
402 				break;
403 			}
404 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
406 		}
407 #ifdef GEM_DEBUG
408 		  else
409 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 		/* Look for internal PHY if no external PHY was found */
412 		if (LIST_EMPTY(&mii->mii_phys) &&
413 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
414 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
415 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
416 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
417 			    sc->sc_mif_config);
418 			switch (sc->sc_variant) {
419 			case GEM_SUN_ERI:
420 			case GEM_APPLE_K2_GMAC:
421 				phyaddr = GEM_PHYAD_INTERNAL;
422 				break;
423 			case GEM_APPLE_GMAC:
424 				phyaddr = GEM_PHYAD_EXTERNAL;
425 				break;
426 			default:
427 				phyaddr = MII_PHY_ANY;
428 				break;
429 			}
430 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
431 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
432 #ifdef GEM_DEBUG
433 			if (!LIST_EMPTY(&mii->mii_phys))
434 				aprint_debug_dev(sc->sc_dev,
435 				    "using internal PHY\n");
436 #endif
437 		}
438 		if (LIST_EMPTY(&mii->mii_phys)) {
439 				/* No PHY attached */
440 				aprint_error_dev(sc->sc_dev,
441 				    "PHY probe failed\n");
442 				gem_partial_detach(sc, GEM_ATT_MII);
443 				return;
444 		} else {
445 			struct mii_softc *child;
446 
447 			/*
448 			 * Walk along the list of attached MII devices and
449 			 * establish an `MII instance' to `PHY number'
450 			 * mapping.
451 			 */
452 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
453 				/*
454 				 * Note: we support just one PHY: the internal
455 				 * or external MII is already selected for us
456 				 * by the GEM_MIF_CONFIG  register.
457 				 */
458 				if (child->mii_phy > 1 || child->mii_inst > 0) {
459 					aprint_error_dev(sc->sc_dev,
460 					    "cannot accommodate MII device"
461 					    " %s at PHY %d, instance %d\n",
462 					       device_xname(child->mii_dev),
463 					       child->mii_phy, child->mii_inst);
464 					continue;
465 				}
466 				sc->sc_phys[child->mii_inst] = child->mii_phy;
467 			}
468 
469 			if (sc->sc_variant != GEM_SUN_ERI)
470 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
471 				    GEM_MII_DATAPATH_MII);
472 
473 			/*
474 			 * XXX - we can really do the following ONLY if the
475 			 * PHY indeed has the auto negotiation capability!!
476 			 */
477 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
478 		}
479 	} else {
480 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
481 		    gem_ser_mediastatus);
482 		/* SERDES or Serialink */
483 		if (sc->sc_flags & GEM_SERDES) {
484 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
485 			    GEM_MII_DATAPATH_SERDES);
486 		} else {
487 			sc->sc_flags |= GEM_SERIAL;
488 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
489 			    GEM_MII_DATAPATH_SERIAL);
490 		}
491 
492 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
493 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
494 
495 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
496 		/* Check for FDX and HDX capabilities */
497 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
498 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
499 			ifmedia_add(&sc->sc_mii.mii_media,
500 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
501 			aprint_normal("1000baseSX-FDX, ");
502 		}
503 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
504 			ifmedia_add(&sc->sc_mii.mii_media,
505 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
506 			aprint_normal("1000baseSX-HDX, ");
507 		}
508 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
509 		sc->sc_mii_media = IFM_AUTO;
510 		aprint_normal("auto\n");
511 
512 		gem_pcs_stop(sc, 1);
513 	}
514 
515 	/*
516 	 * From this point forward, the attachment cannot fail.  A failure
517 	 * before this point releases all resources that may have been
518 	 * allocated.
519 	 */
520 
521 	/* Announce ourselves. */
522 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
523 	    ether_sprintf(enaddr));
524 
525 	/* Get RX FIFO size */
526 	sc->sc_rxfifosize = 64 *
527 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
528 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
529 
530 	/* Get TX FIFO size */
531 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
532 	aprint_normal(", %uKB TX fifo\n", v / 16);
533 
534 	/* Initialize ifnet structure. */
535 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
536 	ifp->if_softc = sc;
537 	ifp->if_flags =
538 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
539 	sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 	/*
542 	 * The GEM hardware supports basic TCP checksum offloading only.
543 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 	 * have bugs in the receive checksum, so don't enable it for now.
545 	 */
546 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 	    (GEM_IS_APPLE(sc) &&
548 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 	ifp->if_start = gem_start;
553 	ifp->if_ioctl = gem_ioctl;
554 	ifp->if_watchdog = gem_watchdog;
555 	ifp->if_stop = gem_stop;
556 	ifp->if_init = gem_init;
557 	IFQ_SET_READY(&ifp->if_snd);
558 
559 	/*
560 	 * If we support GigE media, we support jumbo frames too.
561 	 * Unless we are Apple.
562 	 */
563 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
564 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
565 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
566 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
567 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
568 			if (!GEM_IS_APPLE(sc))
569 				sc->sc_ethercom.ec_capabilities
570 				    |= ETHERCAP_JUMBO_MTU;
571 			sc->sc_flags |= GEM_GIGABIT;
572 			break;
573 		}
574 	}
575 
576 	/* claim 802.1q capability */
577 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578 
579 	/* Attach the interface. */
580 	if_attach(ifp);
581 	if_deferred_start_init(ifp, NULL);
582 	ether_ifattach(ifp, enaddr);
583 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584 
585 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
587 
588 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 	    NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
617 #endif
618 
619 	callout_init(&sc->sc_tick_ch, 0);
620 	callout_init(&sc->sc_rx_watchdog, 0);
621 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
622 
623 	sc->sc_att_stage = GEM_ATT_FINISHED;
624 
625 	return;
626 }
627 
628 void
629 gem_tick(void *arg)
630 {
631 	struct gem_softc *sc = arg;
632 	int s;
633 
634 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
635 		/*
636 		 * We have to reset everything if we failed to get a
637 		 * PCS interrupt.  Restarting the callout is handled
638 		 * in gem_pcs_start().
639 		 */
640 		gem_init(&sc->sc_ethercom.ec_if);
641 	} else {
642 		s = splnet();
643 		mii_tick(&sc->sc_mii);
644 		splx(s);
645 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
646 	}
647 }
648 
649 static int
650 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
651 {
652 	int i;
653 	u_int32_t reg;
654 
655 	for (i = TRIES; i--; DELAY(100)) {
656 		reg = bus_space_read_4(sc->sc_bustag, h, r);
657 		if ((reg & clr) == 0 && (reg & set) == set)
658 			return (1);
659 	}
660 	return (0);
661 }
662 
663 void
664 gem_reset(struct gem_softc *sc)
665 {
666 	bus_space_tag_t t = sc->sc_bustag;
667 	bus_space_handle_t h = sc->sc_h2;
668 	int s;
669 
670 	s = splnet();
671 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
672 	gem_reset_rx(sc);
673 	gem_reset_tx(sc);
674 
675 	/* Do a full reset */
676 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
677 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
678 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
679 	splx(s);
680 }
681 
682 
683 /*
684  * gem_rxdrain:
685  *
686  *	Drain the receive queue.
687  */
688 static void
689 gem_rxdrain(struct gem_softc *sc)
690 {
691 	struct gem_rxsoft *rxs;
692 	int i;
693 
694 	for (i = 0; i < GEM_NRXDESC; i++) {
695 		rxs = &sc->sc_rxsoft[i];
696 		if (rxs->rxs_mbuf != NULL) {
697 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
698 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
699 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
700 			m_freem(rxs->rxs_mbuf);
701 			rxs->rxs_mbuf = NULL;
702 		}
703 	}
704 }
705 
706 /*
707  * Reset the whole thing.
708  */
709 static void
710 gem_stop(struct ifnet *ifp, int disable)
711 {
712 	struct gem_softc *sc = ifp->if_softc;
713 	struct gem_txsoft *txs;
714 
715 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
716 
717 	callout_halt(&sc->sc_tick_ch, NULL);
718 	callout_halt(&sc->sc_rx_watchdog, NULL);
719 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
720 		gem_pcs_stop(sc, disable);
721 	else
722 		mii_down(&sc->sc_mii);
723 
724 	/* XXX - Should we reset these instead? */
725 	gem_disable_tx(sc);
726 	gem_disable_rx(sc);
727 
728 	/*
729 	 * Release any queued transmit buffers.
730 	 */
731 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
732 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
733 		if (txs->txs_mbuf != NULL) {
734 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
735 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
736 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
737 			m_freem(txs->txs_mbuf);
738 			txs->txs_mbuf = NULL;
739 		}
740 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
741 	}
742 
743 	/*
744 	 * Mark the interface down and cancel the watchdog timer.
745 	 */
746 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
747 	sc->sc_if_flags = ifp->if_flags;
748 	ifp->if_timer = 0;
749 
750 	if (disable)
751 		gem_rxdrain(sc);
752 }
753 
754 
755 /*
756  * Reset the receiver
757  */
758 int
759 gem_reset_rx(struct gem_softc *sc)
760 {
761 	bus_space_tag_t t = sc->sc_bustag;
762 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
763 
764 	/*
765 	 * Resetting while DMA is in progress can cause a bus hang, so we
766 	 * disable DMA first.
767 	 */
768 	gem_disable_rx(sc);
769 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
770 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
771 	/* Wait till it finishes */
772 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
773 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
774 	/* Wait 5ms extra. */
775 	delay(5000);
776 
777 	/* Finally, reset the ERX */
778 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
779 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
780 	/* Wait till it finishes */
781 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
782 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
783 		return (1);
784 	}
785 	return (0);
786 }
787 
788 
789 /*
790  * Reset the receiver DMA engine.
791  *
792  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
793  * etc in order to reset the receiver DMA engine only and not do a full
794  * reset which amongst others also downs the link and clears the FIFOs.
795  */
796 static void
797 gem_reset_rxdma(struct gem_softc *sc)
798 {
799 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
800 	bus_space_tag_t t = sc->sc_bustag;
801 	bus_space_handle_t h = sc->sc_h1;
802 	int i;
803 
804 	if (gem_reset_rx(sc) != 0) {
805 		gem_init(ifp);
806 		return;
807 	}
808 	for (i = 0; i < GEM_NRXDESC; i++)
809 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
810 			GEM_UPDATE_RXDESC(sc, i);
811 	sc->sc_rxptr = 0;
812 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
813 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
814 
815 	/* Reprogram Descriptor Ring Base Addresses */
816 	/* NOTE: we use only 32-bit DMA addresses here. */
817 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
818 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
819 
820 	/* Redo ERX Configuration */
821 	gem_rx_common(sc);
822 
823 	/* Give the reciever a swift kick */
824 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
825 }
826 
827 /*
828  * Common RX configuration for gem_init() and gem_reset_rxdma().
829  */
830 static void
831 gem_rx_common(struct gem_softc *sc)
832 {
833 	bus_space_tag_t t = sc->sc_bustag;
834 	bus_space_handle_t h = sc->sc_h1;
835 	u_int32_t v;
836 
837 	/* Encode Receive Descriptor ring size: four possible values */
838 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
839 
840 	/* Set receive h/w checksum offset */
841 #ifdef INET
842 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
843 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
844 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
845 #endif
846 
847 	/* Enable RX DMA */
848 	bus_space_write_4(t, h, GEM_RX_CONFIG,
849 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
850 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
851 
852 	/*
853 	 * The following value is for an OFF Threshold of about 3/4 full
854 	 * and an ON Threshold of 1/4 full.
855 	 */
856 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
857 	    (3 * sc->sc_rxfifosize / 256) |
858 	    ((sc->sc_rxfifosize / 256) << 12));
859 	bus_space_write_4(t, h, GEM_RX_BLANKING,
860 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
861 }
862 
863 /*
864  * Reset the transmitter
865  */
866 int
867 gem_reset_tx(struct gem_softc *sc)
868 {
869 	bus_space_tag_t t = sc->sc_bustag;
870 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
871 
872 	/*
873 	 * Resetting while DMA is in progress can cause a bus hang, so we
874 	 * disable DMA first.
875 	 */
876 	gem_disable_tx(sc);
877 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
878 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
879 	/* Wait till it finishes */
880 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
881 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
882 	/* Wait 5ms extra. */
883 	delay(5000);
884 
885 	/* Finally, reset the ETX */
886 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
887 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
888 	/* Wait till it finishes */
889 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
890 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
891 		return (1);
892 	}
893 	return (0);
894 }
895 
896 /*
897  * disable receiver.
898  */
899 int
900 gem_disable_rx(struct gem_softc *sc)
901 {
902 	bus_space_tag_t t = sc->sc_bustag;
903 	bus_space_handle_t h = sc->sc_h1;
904 	u_int32_t cfg;
905 
906 	/* Flip the enable bit */
907 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
908 	cfg &= ~GEM_MAC_RX_ENABLE;
909 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
910 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
911 	/* Wait for it to finish */
912 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
913 }
914 
915 /*
916  * disable transmitter.
917  */
918 int
919 gem_disable_tx(struct gem_softc *sc)
920 {
921 	bus_space_tag_t t = sc->sc_bustag;
922 	bus_space_handle_t h = sc->sc_h1;
923 	u_int32_t cfg;
924 
925 	/* Flip the enable bit */
926 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
927 	cfg &= ~GEM_MAC_TX_ENABLE;
928 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
929 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
930 	/* Wait for it to finish */
931 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
932 }
933 
934 /*
935  * Initialize interface.
936  */
937 int
938 gem_meminit(struct gem_softc *sc)
939 {
940 	struct gem_rxsoft *rxs;
941 	int i, error;
942 
943 	/*
944 	 * Initialize the transmit descriptor ring.
945 	 */
946 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
947 	for (i = 0; i < GEM_NTXDESC; i++) {
948 		sc->sc_txdescs[i].gd_flags = 0;
949 		sc->sc_txdescs[i].gd_addr = 0;
950 	}
951 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
952 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
953 	sc->sc_txfree = GEM_NTXDESC-1;
954 	sc->sc_txnext = 0;
955 	sc->sc_txwin = 0;
956 
957 	/*
958 	 * Initialize the receive descriptor and receive job
959 	 * descriptor rings.
960 	 */
961 	for (i = 0; i < GEM_NRXDESC; i++) {
962 		rxs = &sc->sc_rxsoft[i];
963 		if (rxs->rxs_mbuf == NULL) {
964 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
965 				aprint_error_dev(sc->sc_dev,
966 				    "unable to allocate or map rx "
967 				    "buffer %d, error = %d\n",
968 				    i, error);
969 				/*
970 				 * XXX Should attempt to run with fewer receive
971 				 * XXX buffers instead of just failing.
972 				 */
973 				gem_rxdrain(sc);
974 				return (1);
975 			}
976 		} else
977 			GEM_INIT_RXDESC(sc, i);
978 	}
979 	sc->sc_rxptr = 0;
980 	sc->sc_meminited = 1;
981 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
982 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
983 
984 	return (0);
985 }
986 
987 static int
988 gem_ringsize(int sz)
989 {
990 	switch (sz) {
991 	case 32:
992 		return GEM_RING_SZ_32;
993 	case 64:
994 		return GEM_RING_SZ_64;
995 	case 128:
996 		return GEM_RING_SZ_128;
997 	case 256:
998 		return GEM_RING_SZ_256;
999 	case 512:
1000 		return GEM_RING_SZ_512;
1001 	case 1024:
1002 		return GEM_RING_SZ_1024;
1003 	case 2048:
1004 		return GEM_RING_SZ_2048;
1005 	case 4096:
1006 		return GEM_RING_SZ_4096;
1007 	case 8192:
1008 		return GEM_RING_SZ_8192;
1009 	default:
1010 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1011 		return GEM_RING_SZ_32;
1012 	}
1013 }
1014 
1015 
1016 /*
1017  * Start PCS
1018  */
1019 void
1020 gem_pcs_start(struct gem_softc *sc)
1021 {
1022 	bus_space_tag_t t = sc->sc_bustag;
1023 	bus_space_handle_t h = sc->sc_h1;
1024 	uint32_t v;
1025 
1026 #ifdef GEM_DEBUG
1027 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1028 #endif
1029 
1030 	/*
1031 	 * Set up.  We must disable the MII before modifying the
1032 	 * GEM_MII_ANAR register
1033 	 */
1034 	if (sc->sc_flags & GEM_SERDES) {
1035 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1036 		    GEM_MII_DATAPATH_SERDES);
1037 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1038 		    GEM_MII_SLINK_LOOPBACK);
1039 	} else {
1040 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1041 		    GEM_MII_DATAPATH_SERIAL);
1042 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1043 	}
1044 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1045 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1046 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1047 	if (sc->sc_mii_media == IFM_AUTO)
1048 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1049 	else if (sc->sc_mii_media == IFM_FDX) {
1050 		v |= GEM_MII_ANEG_FUL_DUPLX;
1051 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1052 	} else if (sc->sc_mii_media == IFM_HDX) {
1053 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1054 		v |= GEM_MII_ANEG_HLF_DUPLX;
1055 	}
1056 
1057 	/* Configure link. */
1058 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1059 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1060 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1061 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1062 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1063 
1064 	/* Start the 10 second timer */
1065 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1066 }
1067 
1068 /*
1069  * Stop PCS
1070  */
1071 void
1072 gem_pcs_stop(struct gem_softc *sc, int disable)
1073 {
1074 	bus_space_tag_t t = sc->sc_bustag;
1075 	bus_space_handle_t h = sc->sc_h1;
1076 
1077 #ifdef GEM_DEBUG
1078 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1079 #endif
1080 
1081 	/* Tell link partner that we're going away */
1082 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1083 
1084 	/*
1085 	 * Disable PCS MII.  The documentation suggests that setting
1086 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1087 	 * negotiation will shut down the link.  However, it appears
1088 	 * that we also need to unset the datapath mode.
1089 	 */
1090 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1091 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1092 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1093 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1094 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1095 
1096 	if (disable) {
1097 		if (sc->sc_flags & GEM_SERDES)
1098 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1099 				GEM_MII_SLINK_POWER_OFF);
1100 		else
1101 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1102 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1103 	}
1104 
1105 	sc->sc_flags &= ~GEM_LINK;
1106 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1107 	sc->sc_mii.mii_media_status = IFM_AVALID;
1108 }
1109 
1110 
1111 /*
1112  * Initialization of interface; set up initialization block
1113  * and transmit/receive descriptor rings.
1114  */
1115 int
1116 gem_init(struct ifnet *ifp)
1117 {
1118 	struct gem_softc *sc = ifp->if_softc;
1119 	bus_space_tag_t t = sc->sc_bustag;
1120 	bus_space_handle_t h = sc->sc_h1;
1121 	int rc = 0, s;
1122 	u_int max_frame_size;
1123 	u_int32_t v;
1124 
1125 	s = splnet();
1126 
1127 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1128 	/*
1129 	 * Initialization sequence. The numbered steps below correspond
1130 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1131 	 * Channel Engine manual (part of the PCIO manual).
1132 	 * See also the STP2002-STQ document from Sun Microsystems.
1133 	 */
1134 
1135 	/* step 1 & 2. Reset the Ethernet Channel */
1136 	gem_stop(ifp, 0);
1137 	gem_reset(sc);
1138 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1139 
1140 	/* Re-initialize the MIF */
1141 	gem_mifinit(sc);
1142 
1143 	/* Set up correct datapath for non-SERDES/Serialink */
1144 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1145 	    sc->sc_variant != GEM_SUN_ERI)
1146 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1147 		    GEM_MII_DATAPATH_MII);
1148 
1149 	/* Call MI reset function if any */
1150 	if (sc->sc_hwreset)
1151 		(*sc->sc_hwreset)(sc);
1152 
1153 	/* step 3. Setup data structures in host memory */
1154 	if (gem_meminit(sc) != 0) {
1155 		splx(s);
1156 		return 1;
1157 	}
1158 
1159 	/* step 4. TX MAC registers & counters */
1160 	gem_init_regs(sc);
1161 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1162 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1163 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1164 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1165 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1166 	    max_frame_size|/* burst size */(0x2000<<16));
1167 
1168 	/* step 5. RX MAC registers & counters */
1169 	gem_setladrf(sc);
1170 
1171 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1172 	/* NOTE: we use only 32-bit DMA addresses here. */
1173 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1174 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1175 
1176 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1177 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1178 
1179 	/* step 8. Global Configuration & Interrupt Mask */
1180 	gem_inten(sc);
1181 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1182 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1183 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1184 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1185 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1186 
1187 	/* step 9. ETX Configuration: use mostly default values */
1188 
1189 	/* Enable TX DMA */
1190 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1191 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1192 	    v | GEM_TX_CONFIG_TXDMA_EN |
1193 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1194 	    GEM_TX_CONFIG_TXFIFO_TH));
1195 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1196 
1197 	/* step 10. ERX Configuration */
1198 	gem_rx_common(sc);
1199 
1200 	/* step 11. Configure Media */
1201 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1202 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1203 		goto out;
1204 
1205 	/* step 12. RX_MAC Configuration Register */
1206 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1207 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1208 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1209 
1210 	/* step 14. Issue Transmit Pending command */
1211 
1212 	/* Call MI initialization function if any */
1213 	if (sc->sc_hwinit)
1214 		(*sc->sc_hwinit)(sc);
1215 
1216 
1217 	/* step 15.  Give the reciever a swift kick */
1218 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1219 
1220 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1221 		/* Configure PCS */
1222 		gem_pcs_start(sc);
1223 	else
1224 		/* Start the one second timer. */
1225 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1226 
1227 	sc->sc_flags &= ~GEM_LINK;
1228 	ifp->if_flags |= IFF_RUNNING;
1229 	ifp->if_flags &= ~IFF_OACTIVE;
1230 	ifp->if_timer = 0;
1231 	sc->sc_if_flags = ifp->if_flags;
1232 out:
1233 	splx(s);
1234 
1235 	return (0);
1236 }
1237 
1238 void
1239 gem_init_regs(struct gem_softc *sc)
1240 {
1241 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1242 	bus_space_tag_t t = sc->sc_bustag;
1243 	bus_space_handle_t h = sc->sc_h1;
1244 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1245 	u_int32_t v;
1246 
1247 	/* These regs are not cleared on reset */
1248 	if (!sc->sc_inited) {
1249 
1250 		/* Load recommended values */
1251 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1252 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1253 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1254 
1255 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1256 		/* Max frame and max burst size */
1257 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1258 		    ETHER_MAX_LEN | (0x2000<<16));
1259 
1260 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1261 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1262 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1263 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1264 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1265 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1266 
1267 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1268 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1269 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1270 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1271 
1272 		/* MAC control addr set to 01:80:c2:00:00:01 */
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1274 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1275 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1276 
1277 		/* MAC filter addr set to 0:0:0:0:0:0 */
1278 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1279 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1280 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1281 
1282 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1283 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1284 
1285 		sc->sc_inited = 1;
1286 	}
1287 
1288 	/* Counters need to be zeroed */
1289 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1290 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1291 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1292 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1293 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1295 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1296 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1297 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1298 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1299 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1300 
1301 	/* Set XOFF PAUSE time. */
1302 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1303 
1304 	/*
1305 	 * Set the internal arbitration to "infinite" bursts of the
1306 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1307 	 * split up in cache line size chunks. This greatly improves
1308 	 * especially RX performance.
1309 	 * Enable silicon bug workarounds for the Apple variants.
1310 	 */
1311 	bus_space_write_4(t, h, GEM_CONFIG,
1312 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1313 	    ((sc->sc_flags & GEM_PCI) ?
1314 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1315 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1316 
1317 	/*
1318 	 * Set the station address.
1319 	 */
1320 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1321 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1322 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1323 
1324 	/*
1325 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1326 	 */
1327 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1328 	v = GEM_MAC_XIF_TX_MII_ENA;
1329 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1330 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1331 			v |= GEM_MAC_XIF_FDPLX_LED;
1332 				if (sc->sc_flags & GEM_GIGABIT)
1333 					v |= GEM_MAC_XIF_GMII_MODE;
1334 		}
1335 	} else {
1336 		v |= GEM_MAC_XIF_GMII_MODE;
1337 	}
1338 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1339 }
1340 
1341 #ifdef GEM_DEBUG
1342 static void
1343 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1344 {
1345 	int i;
1346 
1347 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1348 		printf("descriptor %d:\t", i);
1349 		printf("gd_flags:   0x%016" PRIx64 "\t",
1350 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1351 		printf("gd_addr: 0x%016" PRIx64 "\n",
1352 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1353 		if (i == lastdesc)
1354 			break;
1355 	}
1356 }
1357 #endif
1358 
1359 static void
1360 gem_start(struct ifnet *ifp)
1361 {
1362 	struct gem_softc *sc = ifp->if_softc;
1363 	struct mbuf *m0, *m;
1364 	struct gem_txsoft *txs;
1365 	bus_dmamap_t dmamap;
1366 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1367 #ifdef GEM_DEBUG
1368 	int otxnext;
1369 #endif
1370 	uint64_t flags = 0;
1371 
1372 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1373 		return;
1374 
1375 	/*
1376 	 * Remember the previous number of free descriptors and
1377 	 * the first descriptor we'll use.
1378 	 */
1379 	ofree = sc->sc_txfree;
1380 #ifdef GEM_DEBUG
1381 	otxnext = sc->sc_txnext;
1382 #endif
1383 
1384 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1385 	    device_xname(sc->sc_dev), ofree, otxnext));
1386 
1387 	/*
1388 	 * Loop through the send queue, setting up transmit descriptors
1389 	 * until we drain the queue, or use up all available transmit
1390 	 * descriptors.
1391 	 */
1392 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1393 	    sc->sc_txfree != 0) {
1394 		/*
1395 		 * Grab a packet off the queue.
1396 		 */
1397 		IFQ_POLL(&ifp->if_snd, m0);
1398 		if (m0 == NULL)
1399 			break;
1400 		m = NULL;
1401 
1402 		dmamap = txs->txs_dmamap;
1403 
1404 		/*
1405 		 * Load the DMA map.  If this fails, the packet either
1406 		 * didn't fit in the alloted number of segments, or we were
1407 		 * short on resources.  In this case, we'll copy and try
1408 		 * again.
1409 		 */
1410 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1411 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1412 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1413 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1414 			if (m0->m_pkthdr.len > MCLBYTES) {
1415 				aprint_error_dev(sc->sc_dev,
1416 				    "unable to allocate jumbo Tx cluster\n");
1417 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1418 				m_freem(m0);
1419 				continue;
1420 			}
1421 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1422 			if (m == NULL) {
1423 				aprint_error_dev(sc->sc_dev,
1424 				    "unable to allocate Tx mbuf\n");
1425 				break;
1426 			}
1427 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1428 			if (m0->m_pkthdr.len > MHLEN) {
1429 				MCLGET(m, M_DONTWAIT);
1430 				if ((m->m_flags & M_EXT) == 0) {
1431 					aprint_error_dev(sc->sc_dev,
1432 					    "unable to allocate Tx cluster\n");
1433 					m_freem(m);
1434 					break;
1435 				}
1436 			}
1437 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1438 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1439 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1440 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1441 			if (error) {
1442 				aprint_error_dev(sc->sc_dev,
1443 				    "unable to load Tx buffer, error = %d\n",
1444 				    error);
1445 				break;
1446 			}
1447 		}
1448 
1449 		/*
1450 		 * Ensure we have enough descriptors free to describe
1451 		 * the packet.
1452 		 */
1453 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1454 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1455 			/*
1456 			 * Not enough free descriptors to transmit this
1457 			 * packet.  We haven't committed to anything yet,
1458 			 * so just unload the DMA map, put the packet
1459 			 * back on the queue, and punt.  Notify the upper
1460 			 * layer that there are no more slots left.
1461 			 *
1462 			 * XXX We could allocate an mbuf and copy, but
1463 			 * XXX it is worth it?
1464 			 */
1465 			ifp->if_flags |= IFF_OACTIVE;
1466 			sc->sc_if_flags = ifp->if_flags;
1467 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1468 			if (m != NULL)
1469 				m_freem(m);
1470 			break;
1471 		}
1472 
1473 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1474 		if (m != NULL) {
1475 			m_freem(m0);
1476 			m0 = m;
1477 		}
1478 
1479 		/*
1480 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1481 		 */
1482 
1483 		/* Sync the DMA map. */
1484 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1485 		    BUS_DMASYNC_PREWRITE);
1486 
1487 		/*
1488 		 * Initialize the transmit descriptors.
1489 		 */
1490 		firsttx = sc->sc_txnext;
1491 		for (nexttx = firsttx, seg = 0;
1492 		     seg < dmamap->dm_nsegs;
1493 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1494 
1495 			/*
1496 			 * If this is the first descriptor we're
1497 			 * enqueueing, set the start of packet flag,
1498 			 * and the checksum stuff if we want the hardware
1499 			 * to do it.
1500 			 */
1501 			sc->sc_txdescs[nexttx].gd_addr =
1502 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1503 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1504 			if (nexttx == firsttx) {
1505 				flags |= GEM_TD_START_OF_PACKET;
1506 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1507 					sc->sc_txwin = 0;
1508 					flags |= GEM_TD_INTERRUPT_ME;
1509 				}
1510 
1511 #ifdef INET
1512 				/* h/w checksum */
1513 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1514 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1515 					struct ether_header *eh;
1516 					uint16_t offset, start;
1517 
1518 					eh = mtod(m0, struct ether_header *);
1519 					switch (ntohs(eh->ether_type)) {
1520 					case ETHERTYPE_IP:
1521 						start = ETHER_HDR_LEN;
1522 						break;
1523 					case ETHERTYPE_VLAN:
1524 						start = ETHER_HDR_LEN +
1525 							ETHER_VLAN_ENCAP_LEN;
1526 						break;
1527 					default:
1528 						/* unsupported, drop it */
1529 						m_free(m0);
1530 						continue;
1531 					}
1532 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1533 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1534 					flags |= (start <<
1535 						  GEM_TD_CXSUM_STARTSHFT) |
1536 						 (offset <<
1537 						  GEM_TD_CXSUM_STUFFSHFT) |
1538 						 GEM_TD_CXSUM_ENABLE;
1539 				}
1540 #endif
1541 			}
1542 			if (seg == dmamap->dm_nsegs - 1) {
1543 				flags |= GEM_TD_END_OF_PACKET;
1544 			} else {
1545 				/* last flag set outside of loop */
1546 				sc->sc_txdescs[nexttx].gd_flags =
1547 					GEM_DMA_WRITE(sc, flags);
1548 			}
1549 			lasttx = nexttx;
1550 		}
1551 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1552 			/* add padding buffer at end of chain */
1553 			flags &= ~GEM_TD_END_OF_PACKET;
1554 			sc->sc_txdescs[lasttx].gd_flags =
1555 			    GEM_DMA_WRITE(sc, flags);
1556 
1557 			sc->sc_txdescs[nexttx].gd_addr =
1558 			    GEM_DMA_WRITE(sc,
1559 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1560 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1561 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1562 			lasttx = nexttx;
1563 			nexttx = GEM_NEXTTX(nexttx);
1564 			seg++;
1565 		}
1566 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1567 
1568 		KASSERT(lasttx != -1);
1569 
1570 		/*
1571 		 * Store a pointer to the packet so we can free it later,
1572 		 * and remember what txdirty will be once the packet is
1573 		 * done.
1574 		 */
1575 		txs->txs_mbuf = m0;
1576 		txs->txs_firstdesc = sc->sc_txnext;
1577 		txs->txs_lastdesc = lasttx;
1578 		txs->txs_ndescs = seg;
1579 
1580 #ifdef GEM_DEBUG
1581 		if (ifp->if_flags & IFF_DEBUG) {
1582 			printf("     gem_start %p transmit chain:\n", txs);
1583 			gem_txsoft_print(sc, txs->txs_firstdesc,
1584 			    txs->txs_lastdesc);
1585 		}
1586 #endif
1587 
1588 		/* Sync the descriptors we're using. */
1589 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1590 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1591 
1592 		/* Advance the tx pointer. */
1593 		sc->sc_txfree -= txs->txs_ndescs;
1594 		sc->sc_txnext = nexttx;
1595 
1596 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1597 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1598 
1599 		/*
1600 		 * Pass the packet to any BPF listeners.
1601 		 */
1602 		bpf_mtap(ifp, m0, BPF_D_OUT);
1603 	}
1604 
1605 	if (txs == NULL || sc->sc_txfree == 0) {
1606 		/* No more slots left; notify upper layer. */
1607 		ifp->if_flags |= IFF_OACTIVE;
1608 		sc->sc_if_flags = ifp->if_flags;
1609 	}
1610 
1611 	if (sc->sc_txfree != ofree) {
1612 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1613 		    device_xname(sc->sc_dev), lasttx, otxnext));
1614 		/*
1615 		 * The entire packet chain is set up.
1616 		 * Kick the transmitter.
1617 		 */
1618 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1619 			device_xname(sc->sc_dev), nexttx));
1620 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1621 			sc->sc_txnext);
1622 
1623 		/* Set a watchdog timer in case the chip flakes out. */
1624 		ifp->if_timer = 5;
1625 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1626 			device_xname(sc->sc_dev), ifp->if_timer));
1627 	}
1628 }
1629 
1630 /*
1631  * Transmit interrupt.
1632  */
1633 int
1634 gem_tint(struct gem_softc *sc)
1635 {
1636 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1637 	bus_space_tag_t t = sc->sc_bustag;
1638 	bus_space_handle_t mac = sc->sc_h1;
1639 	struct gem_txsoft *txs;
1640 	int txlast;
1641 	int progress = 0;
1642 	u_int32_t v;
1643 
1644 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1645 
1646 	/* Unload collision counters ... */
1647 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1648 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1649 	ifp->if_collisions += v +
1650 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1651 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1652 	ifp->if_oerrors += v;
1653 
1654 	/* ... then clear the hardware counters. */
1655 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1656 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1657 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1658 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1659 
1660 	/*
1661 	 * Go through our Tx list and free mbufs for those
1662 	 * frames that have been transmitted.
1663 	 */
1664 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1665 		/*
1666 		 * In theory, we could harvest some descriptors before
1667 		 * the ring is empty, but that's a bit complicated.
1668 		 *
1669 		 * GEM_TX_COMPLETION points to the last descriptor
1670 		 * processed +1.
1671 		 *
1672 		 * Let's assume that the NIC writes back to the Tx
1673 		 * descriptors before it updates the completion
1674 		 * register.  If the NIC has posted writes to the
1675 		 * Tx descriptors, PCI ordering requires that the
1676 		 * posted writes flush to RAM before the register-read
1677 		 * finishes.  So let's read the completion register,
1678 		 * before syncing the descriptors, so that we
1679 		 * examine Tx descriptors that are at least as
1680 		 * current as the completion register.
1681 		 */
1682 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1683 		DPRINTF(sc,
1684 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1685 				txs->txs_lastdesc, txlast));
1686 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1687 			if (txlast >= txs->txs_firstdesc &&
1688 			    txlast <= txs->txs_lastdesc)
1689 				break;
1690 		} else if (txlast >= txs->txs_firstdesc ||
1691 			   txlast <= txs->txs_lastdesc)
1692 			break;
1693 
1694 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1695 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1696 
1697 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1698 		if (ifp->if_flags & IFF_DEBUG) {
1699 			printf("    txsoft %p transmit chain:\n", txs);
1700 			gem_txsoft_print(sc, txs->txs_firstdesc,
1701 			    txs->txs_lastdesc);
1702 		}
1703 #endif
1704 
1705 
1706 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1707 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1708 
1709 		sc->sc_txfree += txs->txs_ndescs;
1710 
1711 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1712 		    0, txs->txs_dmamap->dm_mapsize,
1713 		    BUS_DMASYNC_POSTWRITE);
1714 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1715 		if (txs->txs_mbuf != NULL) {
1716 			m_freem(txs->txs_mbuf);
1717 			txs->txs_mbuf = NULL;
1718 		}
1719 
1720 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1721 
1722 		ifp->if_opackets++;
1723 		progress = 1;
1724 	}
1725 
1726 #if 0
1727 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1728 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1729 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1730 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1731 			GEM_TX_DATA_PTR_HI) << 32) |
1732 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1733 			GEM_TX_DATA_PTR_LO),
1734 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1735 #endif
1736 
1737 	if (progress) {
1738 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1739 			sc->sc_txwin = 0;
1740 
1741 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1742 		ifp->if_flags &= ~IFF_OACTIVE;
1743 		sc->sc_if_flags = ifp->if_flags;
1744 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1745 		if_schedule_deferred_start(ifp);
1746 	}
1747 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1748 		device_xname(sc->sc_dev), ifp->if_timer));
1749 
1750 	return (1);
1751 }
1752 
1753 /*
1754  * Receive interrupt.
1755  */
1756 int
1757 gem_rint(struct gem_softc *sc)
1758 {
1759 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1760 	bus_space_tag_t t = sc->sc_bustag;
1761 	bus_space_handle_t h = sc->sc_h1;
1762 	struct gem_rxsoft *rxs;
1763 	struct mbuf *m;
1764 	u_int64_t rxstat;
1765 	u_int32_t rxcomp;
1766 	int i, len, progress = 0;
1767 
1768 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1769 
1770 	/*
1771 	 * Ignore spurious interrupt that sometimes occurs before
1772 	 * we are set up when we network boot.
1773 	 */
1774 	if (!sc->sc_meminited)
1775 		return 1;
1776 
1777 	/*
1778 	 * Read the completion register once.  This limits
1779 	 * how long the following loop can execute.
1780 	 */
1781 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1782 
1783 	/*
1784 	 * XXX Read the lastrx only once at the top for speed.
1785 	 */
1786 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1787 		sc->sc_rxptr, rxcomp));
1788 
1789 	/*
1790 	 * Go into the loop at least once.
1791 	 */
1792 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1793 	     i = GEM_NEXTRX(i)) {
1794 		rxs = &sc->sc_rxsoft[i];
1795 
1796 		GEM_CDRXSYNC(sc, i,
1797 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1798 
1799 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1800 
1801 		if (rxstat & GEM_RD_OWN) {
1802 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1803 			/*
1804 			 * We have processed all of the receive buffers.
1805 			 */
1806 			break;
1807 		}
1808 
1809 		progress++;
1810 
1811 		if (rxstat & GEM_RD_BAD_CRC) {
1812 			ifp->if_ierrors++;
1813 			aprint_error_dev(sc->sc_dev,
1814 			    "receive error: CRC error\n");
1815 			GEM_INIT_RXDESC(sc, i);
1816 			continue;
1817 		}
1818 
1819 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1820 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1821 #ifdef GEM_DEBUG
1822 		if (ifp->if_flags & IFF_DEBUG) {
1823 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1824 			printf("gd_flags: 0x%016llx\t", (long long)
1825 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1826 			printf("gd_addr: 0x%016llx\n", (long long)
1827 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1828 		}
1829 #endif
1830 
1831 		/* No errors; receive the packet. */
1832 		len = GEM_RD_BUFLEN(rxstat);
1833 
1834 		/*
1835 		 * Allocate a new mbuf cluster.  If that fails, we are
1836 		 * out of memory, and must drop the packet and recycle
1837 		 * the buffer that's already attached to this descriptor.
1838 		 */
1839 		m = rxs->rxs_mbuf;
1840 		if (gem_add_rxbuf(sc, i) != 0) {
1841 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1842 			ifp->if_ierrors++;
1843 			aprint_error_dev(sc->sc_dev,
1844 			    "receive error: RX no buffer space\n");
1845 			GEM_INIT_RXDESC(sc, i);
1846 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1847 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1848 			continue;
1849 		}
1850 		m->m_data += 2; /* We're already off by two */
1851 
1852 		m_set_rcvif(m, ifp);
1853 		m->m_pkthdr.len = m->m_len = len;
1854 
1855 #ifdef INET
1856 		/* hardware checksum */
1857 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1858 			struct ether_header *eh;
1859 			struct ip *ip;
1860 			int32_t hlen, pktlen;
1861 
1862 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1863 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1864 					 ETHER_VLAN_ENCAP_LEN;
1865 				eh = (struct ether_header *) (mtod(m, char *) +
1866 					ETHER_VLAN_ENCAP_LEN);
1867 			} else {
1868 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1869 				eh = mtod(m, struct ether_header *);
1870 			}
1871 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1872 				goto swcsum;
1873 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1874 
1875 			/* IPv4 only */
1876 			if (ip->ip_v != IPVERSION)
1877 				goto swcsum;
1878 
1879 			hlen = ip->ip_hl << 2;
1880 			if (hlen < sizeof(struct ip))
1881 				goto swcsum;
1882 
1883 			/*
1884 			 * bail if too short, has random trailing garbage,
1885 			 * truncated, fragment, or has ethernet pad.
1886 			 */
1887 			if ((ntohs(ip->ip_len) < hlen) ||
1888 			    (ntohs(ip->ip_len) != pktlen) ||
1889 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1890 				goto swcsum;
1891 
1892 			switch (ip->ip_p) {
1893 			case IPPROTO_TCP:
1894 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1895 					goto swcsum;
1896 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1897 					goto swcsum;
1898 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1899 				break;
1900 			case IPPROTO_UDP:
1901 				/* FALLTHROUGH */
1902 			default:
1903 				goto swcsum;
1904 			}
1905 
1906 			/* the uncomplemented sum is expected */
1907 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1908 
1909 			/* if the pkt had ip options, we have to deduct them */
1910 			if (hlen > sizeof(struct ip)) {
1911 				uint16_t *opts;
1912 				uint32_t optsum, temp;
1913 
1914 				optsum = 0;
1915 				temp = hlen - sizeof(struct ip);
1916 				opts = (uint16_t *) ((char *) ip +
1917 					sizeof(struct ip));
1918 
1919 				while (temp > 1) {
1920 					optsum += ntohs(*opts++);
1921 					temp -= 2;
1922 				}
1923 				while (optsum >> 16)
1924 					optsum = (optsum >> 16) +
1925 						 (optsum & 0xffff);
1926 
1927 				/* Deduct ip opts sum from hwsum. */
1928 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1929 
1930 				while (m->m_pkthdr.csum_data >> 16)
1931 					m->m_pkthdr.csum_data =
1932 						(m->m_pkthdr.csum_data >> 16) +
1933 						(m->m_pkthdr.csum_data &
1934 						 0xffff);
1935 			}
1936 
1937 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1938 						  M_CSUM_NO_PSEUDOHDR;
1939 		} else
1940 swcsum:
1941 			m->m_pkthdr.csum_flags = 0;
1942 #endif
1943 		/* Pass it on. */
1944 		if_percpuq_enqueue(ifp->if_percpuq, m);
1945 	}
1946 
1947 	if (progress) {
1948 		/* Update the receive pointer. */
1949 		if (i == sc->sc_rxptr) {
1950 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1951 #ifdef GEM_DEBUG
1952 			if (ifp->if_flags & IFF_DEBUG)
1953 				printf("%s: rint: ring wrap\n",
1954 				    device_xname(sc->sc_dev));
1955 #endif
1956 		}
1957 		sc->sc_rxptr = i;
1958 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1959 	}
1960 #ifdef GEM_COUNTERS
1961 	if (progress <= 4) {
1962 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1963 	} else if (progress < 32) {
1964 		if (progress < 16)
1965 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1966 		else
1967 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1968 
1969 	} else {
1970 		if (progress < 64)
1971 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1972 		else
1973 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1974 	}
1975 #endif
1976 
1977 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1978 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1979 
1980 	/* Read error counters ... */
1981 	ifp->if_ierrors +=
1982 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1983 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1984 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1985 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1986 
1987 	/* ... then clear the hardware counters. */
1988 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1989 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1990 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1991 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1992 
1993 	return (1);
1994 }
1995 
1996 
1997 /*
1998  * gem_add_rxbuf:
1999  *
2000  *	Add a receive buffer to the indicated descriptor.
2001  */
2002 int
2003 gem_add_rxbuf(struct gem_softc *sc, int idx)
2004 {
2005 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2006 	struct mbuf *m;
2007 	int error;
2008 
2009 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2010 	if (m == NULL)
2011 		return (ENOBUFS);
2012 
2013 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2014 	MCLGET(m, M_DONTWAIT);
2015 	if ((m->m_flags & M_EXT) == 0) {
2016 		m_freem(m);
2017 		return (ENOBUFS);
2018 	}
2019 
2020 #ifdef GEM_DEBUG
2021 /* bzero the packet to check DMA */
2022 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2023 #endif
2024 
2025 	if (rxs->rxs_mbuf != NULL)
2026 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2027 
2028 	rxs->rxs_mbuf = m;
2029 
2030 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2031 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2032 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2033 	if (error) {
2034 		aprint_error_dev(sc->sc_dev,
2035 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2036 		panic("gem_add_rxbuf");	/* XXX */
2037 	}
2038 
2039 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2040 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2041 
2042 	GEM_INIT_RXDESC(sc, idx);
2043 
2044 	return (0);
2045 }
2046 
2047 
2048 int
2049 gem_eint(struct gem_softc *sc, u_int status)
2050 {
2051 	char bits[128];
2052 	u_int32_t r, v;
2053 
2054 	if ((status & GEM_INTR_MIF) != 0) {
2055 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2056 		return (1);
2057 	}
2058 
2059 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2060 		gem_reset_rxdma(sc);
2061 		return (1);
2062 	}
2063 
2064 	if (status & GEM_INTR_BERR) {
2065 		if (sc->sc_flags & GEM_PCI)
2066 			r = GEM_ERROR_STATUS;
2067 		else
2068 			r = GEM_SBUS_ERROR_STATUS;
2069 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2070 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2071 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2072 		    v);
2073 		return (1);
2074 	}
2075 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2076 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2077 
2078 	return (1);
2079 }
2080 
2081 
2082 /*
2083  * PCS interrupts.
2084  * We should receive these when the link status changes, but sometimes
2085  * we don't receive them for link up.  We compensate for this in the
2086  * gem_tick() callout.
2087  */
2088 int
2089 gem_pint(struct gem_softc *sc)
2090 {
2091 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2092 	bus_space_tag_t t = sc->sc_bustag;
2093 	bus_space_handle_t h = sc->sc_h1;
2094 	u_int32_t v, v2;
2095 
2096 	/*
2097 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2098 	 * latched, so we have to read it twice.  There is only one bit in
2099 	 * use, so the value is meaningless.
2100 	 */
2101 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2102 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2103 
2104 	if ((ifp->if_flags & IFF_UP) == 0)
2105 		return 1;
2106 
2107 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2108 		return 1;
2109 
2110 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2111 	/* If we see remote fault, our link partner is probably going away */
2112 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2113 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2114 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2115 	/* Otherwise, we may need to wait after auto-negotiation completes */
2116 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2117 	    GEM_MII_STATUS_ANEG_CPT) {
2118 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2119 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2120 	}
2121 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2122 		if (sc->sc_flags & GEM_LINK) {
2123 			return 1;
2124 		}
2125 		callout_stop(&sc->sc_tick_ch);
2126 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2127 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2128 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2129 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2130 		v &= v2;
2131 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2132 			sc->sc_mii.mii_media_active |= IFM_FDX;
2133 #ifdef GEM_DEBUG
2134 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2135 #endif
2136 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2137 			sc->sc_mii.mii_media_active |= IFM_HDX;
2138 #ifdef GEM_DEBUG
2139 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2140 #endif
2141 		} else {
2142 #ifdef GEM_DEBUG
2143 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2144 #endif
2145 		}
2146 		gem_statuschange(sc);
2147 	} else {
2148 		if ((sc->sc_flags & GEM_LINK) == 0) {
2149 			return 1;
2150 		}
2151 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2152 		sc->sc_mii.mii_media_status = IFM_AVALID;
2153 #ifdef GEM_DEBUG
2154 			aprint_debug_dev(sc->sc_dev, "link down\n");
2155 #endif
2156 		gem_statuschange(sc);
2157 
2158 		/* Start the 10 second timer */
2159 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2160 	}
2161 	return 1;
2162 }
2163 
2164 
2165 
2166 int
2167 gem_intr(void *v)
2168 {
2169 	struct gem_softc *sc = v;
2170 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2171 	bus_space_tag_t t = sc->sc_bustag;
2172 	bus_space_handle_t h = sc->sc_h1;
2173 	u_int32_t status;
2174 	int r = 0;
2175 #ifdef GEM_DEBUG
2176 	char bits[128];
2177 #endif
2178 
2179 	/* XXX We should probably mask out interrupts until we're done */
2180 
2181 	sc->sc_ev_intr.ev_count++;
2182 
2183 	status = bus_space_read_4(t, h, GEM_STATUS);
2184 #ifdef GEM_DEBUG
2185 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2186 #endif
2187 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2188 		device_xname(sc->sc_dev), (status >> 19), bits));
2189 
2190 
2191 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2192 		r |= gem_eint(sc, status);
2193 
2194 	/* We don't bother with GEM_INTR_TX_DONE */
2195 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2196 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2197 		r |= gem_tint(sc);
2198 	}
2199 
2200 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2201 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2202 		r |= gem_rint(sc);
2203 	}
2204 
2205 	/* We should eventually do more than just print out error stats. */
2206 	if (status & GEM_INTR_TX_MAC) {
2207 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2208 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2209 			printf("%s: MAC tx fault, status %x\n",
2210 			    device_xname(sc->sc_dev), txstat);
2211 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2212 			gem_init(ifp);
2213 	}
2214 	if (status & GEM_INTR_RX_MAC) {
2215 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2216 		/*
2217 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2218 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2219 		 * silicon bug so handle them silently.  So if we detect
2220 		 * an RX FIFO overflow, we fire off a timer, and check
2221 		 * whether we're still making progress by looking at the
2222 		 * RX FIFO write and read pointers.
2223 		 */
2224 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2225 			ifp->if_ierrors++;
2226 			aprint_error_dev(sc->sc_dev,
2227 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2228 			sc->sc_rx_fifo_wr_ptr =
2229 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2230 			sc->sc_rx_fifo_rd_ptr =
2231 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2232 			callout_schedule(&sc->sc_rx_watchdog, 400);
2233 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2234 			printf("%s: MAC rx fault, status 0x%02x\n",
2235 			    device_xname(sc->sc_dev), rxstat);
2236 	}
2237 	if (status & GEM_INTR_PCS) {
2238 		r |= gem_pint(sc);
2239 	}
2240 
2241 /* Do we need to do anything with these?
2242 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2243 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2244 		if ((status2 & GEM_MAC_PAUSED) != 0)
2245 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2246 			    GEM_MAC_PAUSE_TIME(status2));
2247 		if ((status2 & GEM_MAC_PAUSE) != 0)
2248 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2249 		if ((status2 & GEM_MAC_RESUME) != 0)
2250 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2251 	}
2252 	if ((status & GEM_INTR_MIF) != 0)
2253 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2254 */
2255 	rnd_add_uint32(&sc->rnd_source, status);
2256 	return (r);
2257 }
2258 
2259 void
2260 gem_rx_watchdog(void *arg)
2261 {
2262 	struct gem_softc *sc = arg;
2263 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2264 	bus_space_tag_t t = sc->sc_bustag;
2265 	bus_space_handle_t h = sc->sc_h1;
2266 	u_int32_t rx_fifo_wr_ptr;
2267 	u_int32_t rx_fifo_rd_ptr;
2268 	u_int32_t state;
2269 
2270 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2271 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2272 		return;
2273 	}
2274 
2275 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2276 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2277 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2278 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2279 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2280 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2281 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2282 	{
2283 		/*
2284 		 * The RX state machine is still in overflow state and
2285 		 * the RX FIFO write and read pointers seem to be
2286 		 * stuck.  Whack the chip over the head to get things
2287 		 * going again.
2288 		 */
2289 		aprint_error_dev(sc->sc_dev,
2290 		    "receiver stuck in overflow, resetting\n");
2291 		gem_init(ifp);
2292 	} else {
2293 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2294 			aprint_error_dev(sc->sc_dev,
2295 				"rx_watchdog: not in overflow state: 0x%x\n",
2296 				state);
2297 		}
2298 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2299 			aprint_error_dev(sc->sc_dev,
2300 				"rx_watchdog: wr & rd ptr different\n");
2301 		}
2302 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2303 			aprint_error_dev(sc->sc_dev,
2304 				"rx_watchdog: wr pointer != saved\n");
2305 		}
2306 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2307 			aprint_error_dev(sc->sc_dev,
2308 				"rx_watchdog: rd pointer != saved\n");
2309 		}
2310 		aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2311 		gem_init(ifp);
2312 	}
2313 }
2314 
2315 void
2316 gem_watchdog(struct ifnet *ifp)
2317 {
2318 	struct gem_softc *sc = ifp->if_softc;
2319 
2320 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2321 		"GEM_MAC_RX_CONFIG %x\n",
2322 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2323 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2324 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2325 
2326 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2327 	++ifp->if_oerrors;
2328 
2329 	/* Try to get more packets going. */
2330 	gem_init(ifp);
2331 	gem_start(ifp);
2332 }
2333 
2334 /*
2335  * Initialize the MII Management Interface
2336  */
2337 void
2338 gem_mifinit(struct gem_softc *sc)
2339 {
2340 	bus_space_tag_t t = sc->sc_bustag;
2341 	bus_space_handle_t mif = sc->sc_h1;
2342 
2343 	/* Configure the MIF in frame mode */
2344 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2345 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2346 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2347 }
2348 
2349 /*
2350  * MII interface
2351  *
2352  * The GEM MII interface supports at least three different operating modes:
2353  *
2354  * Bitbang mode is implemented using data, clock and output enable registers.
2355  *
2356  * Frame mode is implemented by loading a complete frame into the frame
2357  * register and polling the valid bit for completion.
2358  *
2359  * Polling mode uses the frame register but completion is indicated by
2360  * an interrupt.
2361  *
2362  */
2363 static int
2364 gem_mii_readreg(device_t self, int phy, int reg)
2365 {
2366 	struct gem_softc *sc = device_private(self);
2367 	bus_space_tag_t t = sc->sc_bustag;
2368 	bus_space_handle_t mif = sc->sc_h1;
2369 	int n;
2370 	u_int32_t v;
2371 
2372 #ifdef GEM_DEBUG1
2373 	if (sc->sc_debug)
2374 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2375 #endif
2376 
2377 	/* Construct the frame command */
2378 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2379 		GEM_MIF_FRAME_READ;
2380 
2381 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2382 	for (n = 0; n < 100; n++) {
2383 		DELAY(1);
2384 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2385 		if (v & GEM_MIF_FRAME_TA0)
2386 			return (v & GEM_MIF_FRAME_DATA);
2387 	}
2388 
2389 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2390 	return (0);
2391 }
2392 
2393 static void
2394 gem_mii_writereg(device_t self, int phy, int reg, int val)
2395 {
2396 	struct gem_softc *sc = device_private(self);
2397 	bus_space_tag_t t = sc->sc_bustag;
2398 	bus_space_handle_t mif = sc->sc_h1;
2399 	int n;
2400 	u_int32_t v;
2401 
2402 #ifdef GEM_DEBUG1
2403 	if (sc->sc_debug)
2404 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2405 			phy, reg, val);
2406 #endif
2407 
2408 	/* Construct the frame command */
2409 	v = GEM_MIF_FRAME_WRITE			|
2410 	    (phy << GEM_MIF_PHY_SHIFT)		|
2411 	    (reg << GEM_MIF_REG_SHIFT)		|
2412 	    (val & GEM_MIF_FRAME_DATA);
2413 
2414 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2415 	for (n = 0; n < 100; n++) {
2416 		DELAY(1);
2417 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2418 		if (v & GEM_MIF_FRAME_TA0)
2419 			return;
2420 	}
2421 
2422 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2423 }
2424 
2425 static void
2426 gem_mii_statchg(struct ifnet *ifp)
2427 {
2428 	struct gem_softc *sc = ifp->if_softc;
2429 #ifdef GEM_DEBUG
2430 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2431 #endif
2432 
2433 #ifdef GEM_DEBUG
2434 	if (sc->sc_debug)
2435 		printf("gem_mii_statchg: status change: phy = %d\n",
2436 			sc->sc_phys[instance]);
2437 #endif
2438 	gem_statuschange(sc);
2439 }
2440 
2441 /*
2442  * Common status change for gem_mii_statchg() and gem_pint()
2443  */
2444 void
2445 gem_statuschange(struct gem_softc* sc)
2446 {
2447 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2448 	bus_space_tag_t t = sc->sc_bustag;
2449 	bus_space_handle_t mac = sc->sc_h1;
2450 	int gigabit;
2451 	u_int32_t rxcfg, txcfg, v;
2452 
2453 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2454 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2455 		sc->sc_flags |= GEM_LINK;
2456 	else
2457 		sc->sc_flags &= ~GEM_LINK;
2458 
2459 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2460 		gigabit = 1;
2461 	else
2462 		gigabit = 0;
2463 
2464 	/*
2465 	 * The configuration done here corresponds to the steps F) and
2466 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2467 	 * of the initialization sequence outlined in section 3.2.1 of
2468 	 * the GEM Gigabit Ethernet ASIC Specification.
2469 	 */
2470 
2471 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2472 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2473 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2474 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2475 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2476 	else if (gigabit) {
2477 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2478 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2479 	}
2480 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2481 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2482 	    BUS_SPACE_BARRIER_WRITE);
2483 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2484 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2485 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2486 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2487 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2488 	    BUS_SPACE_BARRIER_WRITE);
2489 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2490 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2491 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2492 
2493 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2494 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2495 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2496 
2497 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2498 	    gigabit != 0)
2499 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2500 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2501 	else
2502 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2503 		    GEM_MAC_SLOT_TIME_NORMAL);
2504 
2505 	/* XIF Configuration */
2506 	if (sc->sc_flags & GEM_LINK)
2507 		v = GEM_MAC_XIF_LINK_LED;
2508 	else
2509 		v = 0;
2510 	v |= GEM_MAC_XIF_TX_MII_ENA;
2511 
2512 	/* If an external transceiver is connected, enable its MII drivers */
2513 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2514 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2515 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2516 			if (gigabit)
2517 				v |= GEM_MAC_XIF_GMII_MODE;
2518 			else
2519 				v &= ~GEM_MAC_XIF_GMII_MODE;
2520 		} else
2521 			/* Internal MII needs buf enable */
2522 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2523 		/* MII needs echo disable if half duplex. */
2524 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2525 			/* turn on full duplex LED */
2526 			v |= GEM_MAC_XIF_FDPLX_LED;
2527 		else
2528 			/* half duplex -- disable echo */
2529 			v |= GEM_MAC_XIF_ECHO_DISABL;
2530 	} else {
2531 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2532 			v |= GEM_MAC_XIF_FDPLX_LED;
2533 		v |= GEM_MAC_XIF_GMII_MODE;
2534 	}
2535 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2536 
2537 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2538 	    (sc->sc_flags & GEM_LINK) != 0) {
2539 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2540 		    txcfg | GEM_MAC_TX_ENABLE);
2541 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2542 		    rxcfg | GEM_MAC_RX_ENABLE);
2543 	}
2544 }
2545 
2546 int
2547 gem_ser_mediachange(struct ifnet *ifp)
2548 {
2549 	struct gem_softc *sc = ifp->if_softc;
2550 	u_int s, t;
2551 
2552 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2553 		return EINVAL;
2554 
2555 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2556 	if (s == IFM_AUTO) {
2557 		if (sc->sc_mii_media != s) {
2558 #ifdef GEM_DEBUG
2559 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2560 #endif
2561 			sc->sc_mii_media = s;
2562 			if (ifp->if_flags & IFF_UP) {
2563 				gem_pcs_stop(sc, 0);
2564 				gem_pcs_start(sc);
2565 			}
2566 		}
2567 		return 0;
2568 	}
2569 	if (s == IFM_1000_SX) {
2570 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2571 		if (t == IFM_FDX || t == IFM_HDX) {
2572 			if (sc->sc_mii_media != t) {
2573 				sc->sc_mii_media = t;
2574 #ifdef GEM_DEBUG
2575 				aprint_debug_dev(sc->sc_dev,
2576 				    "setting media to 1000baseSX-%s\n",
2577 				    t == IFM_FDX ? "FDX" : "HDX");
2578 #endif
2579 				if (ifp->if_flags & IFF_UP) {
2580 					gem_pcs_stop(sc, 0);
2581 					gem_pcs_start(sc);
2582 				}
2583 			}
2584 			return 0;
2585 		}
2586 	}
2587 	return EINVAL;
2588 }
2589 
2590 void
2591 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2592 {
2593 	struct gem_softc *sc = ifp->if_softc;
2594 
2595 	if ((ifp->if_flags & IFF_UP) == 0)
2596 		return;
2597 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2598 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2599 }
2600 
2601 static int
2602 gem_ifflags_cb(struct ethercom *ec)
2603 {
2604 	struct ifnet *ifp = &ec->ec_if;
2605 	struct gem_softc *sc = ifp->if_softc;
2606 	int change = ifp->if_flags ^ sc->sc_if_flags;
2607 
2608 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2609 		return ENETRESET;
2610 	else if ((change & IFF_PROMISC) != 0)
2611 		gem_setladrf(sc);
2612 	return 0;
2613 }
2614 
2615 /*
2616  * Process an ioctl request.
2617  */
2618 int
2619 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2620 {
2621 	struct gem_softc *sc = ifp->if_softc;
2622 	int s, error = 0;
2623 
2624 	s = splnet();
2625 
2626 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2627 		error = 0;
2628 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2629 			;
2630 		else if (ifp->if_flags & IFF_RUNNING) {
2631 			/*
2632 			 * Multicast list has changed; set the hardware filter
2633 			 * accordingly.
2634 			 */
2635 			gem_setladrf(sc);
2636 		}
2637 	}
2638 
2639 	/* Try to get things going again */
2640 	if (ifp->if_flags & IFF_UP)
2641 		gem_start(ifp);
2642 	splx(s);
2643 	return (error);
2644 }
2645 
2646 static void
2647 gem_inten(struct gem_softc *sc)
2648 {
2649 	bus_space_tag_t t = sc->sc_bustag;
2650 	bus_space_handle_t h = sc->sc_h1;
2651 	uint32_t v;
2652 
2653 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2654 		v = GEM_INTR_PCS;
2655 	else
2656 		v = GEM_INTR_MIF;
2657 	bus_space_write_4(t, h, GEM_INTMASK,
2658 		      ~(GEM_INTR_TX_INTME |
2659 			GEM_INTR_TX_EMPTY |
2660 			GEM_INTR_TX_MAC |
2661 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2662 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2663 			GEM_INTR_BERR | v));
2664 }
2665 
2666 bool
2667 gem_resume(device_t self, const pmf_qual_t *qual)
2668 {
2669 	struct gem_softc *sc = device_private(self);
2670 
2671 	gem_inten(sc);
2672 
2673 	return true;
2674 }
2675 
2676 bool
2677 gem_suspend(device_t self, const pmf_qual_t *qual)
2678 {
2679 	struct gem_softc *sc = device_private(self);
2680 	bus_space_tag_t t = sc->sc_bustag;
2681 	bus_space_handle_t h = sc->sc_h1;
2682 
2683 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2684 
2685 	return true;
2686 }
2687 
2688 bool
2689 gem_shutdown(device_t self, int howto)
2690 {
2691 	struct gem_softc *sc = device_private(self);
2692 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2693 
2694 	gem_stop(ifp, 1);
2695 
2696 	return true;
2697 }
2698 
2699 /*
2700  * Set up the logical address filter.
2701  */
2702 void
2703 gem_setladrf(struct gem_softc *sc)
2704 {
2705 	struct ethercom *ec = &sc->sc_ethercom;
2706 	struct ifnet *ifp = &ec->ec_if;
2707 	struct ether_multi *enm;
2708 	struct ether_multistep step;
2709 	bus_space_tag_t t = sc->sc_bustag;
2710 	bus_space_handle_t h = sc->sc_h1;
2711 	u_int32_t crc;
2712 	u_int32_t hash[16];
2713 	u_int32_t v;
2714 	int i;
2715 
2716 	/* Get current RX configuration */
2717 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2718 
2719 	/*
2720 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2721 	 * and hash filter.  Depending on the case, the right bit will be
2722 	 * enabled.
2723 	 */
2724 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2725 	    GEM_MAC_RX_PROMISC_GRP);
2726 
2727 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2728 		/* Turn on promiscuous mode */
2729 		v |= GEM_MAC_RX_PROMISCUOUS;
2730 		ifp->if_flags |= IFF_ALLMULTI;
2731 		goto chipit;
2732 	}
2733 
2734 	/*
2735 	 * Set up multicast address filter by passing all multicast addresses
2736 	 * through a crc generator, and then using the high order 8 bits as an
2737 	 * index into the 256 bit logical address filter.  The high order 4
2738 	 * bits selects the word, while the other 4 bits select the bit within
2739 	 * the word (where bit 0 is the MSB).
2740 	 */
2741 
2742 	/* Clear hash table */
2743 	memset(hash, 0, sizeof(hash));
2744 
2745 	ETHER_FIRST_MULTI(step, ec, enm);
2746 	while (enm != NULL) {
2747 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2748 			/*
2749 			 * We must listen to a range of multicast addresses.
2750 			 * For now, just accept all multicasts, rather than
2751 			 * trying to set only those filter bits needed to match
2752 			 * the range.  (At this time, the only use of address
2753 			 * ranges is for IP multicast routing, for which the
2754 			 * range is big enough to require all bits set.)
2755 			 * XXX should use the address filters for this
2756 			 */
2757 			ifp->if_flags |= IFF_ALLMULTI;
2758 			v |= GEM_MAC_RX_PROMISC_GRP;
2759 			goto chipit;
2760 		}
2761 
2762 		/* Get the LE CRC32 of the address */
2763 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2764 
2765 		/* Just want the 8 most significant bits. */
2766 		crc >>= 24;
2767 
2768 		/* Set the corresponding bit in the filter. */
2769 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2770 
2771 		ETHER_NEXT_MULTI(step, enm);
2772 	}
2773 
2774 	v |= GEM_MAC_RX_HASH_FILTER;
2775 	ifp->if_flags &= ~IFF_ALLMULTI;
2776 
2777 	/* Now load the hash table into the chip (if we are using it) */
2778 	for (i = 0; i < 16; i++) {
2779 		bus_space_write_4(t, h,
2780 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2781 		    hash[i]);
2782 	}
2783 
2784 chipit:
2785 	sc->sc_if_flags = ifp->if_flags;
2786 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2787 }
2788