1 /* $NetBSD: gem.c,v 1.138 2024/07/05 04:31:51 rin Exp $ */
2
3 /*
4 *
5 * Copyright (C) 2001 Eduardo Horvath.
6 * Copyright (c) 2001-2003 Thomas Moestl
7 * All rights reserved.
8 *
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32
33 /*
34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35 * See `GEM Gigabit Ethernet ASIC Specification'
36 * http://www.sun.com/processors/manuals/ge.pdf
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.138 2024/07/05 04:31:51 rin Exp $");
41
42 #include "opt_inet.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/kernel.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/device.h>
54
55 #include <machine/endian.h>
56
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70
71 #include <net/bpf.h>
72
73 #include <sys/bus.h>
74 #include <sys/intr.h>
75
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79
80 #include <dev/ic/gemreg.h>
81 #include <dev/ic/gemvar.h>
82
83 #define TRIES 10000
84
85 static void gem_inten(struct gem_softc *);
86 static void gem_start(struct ifnet *);
87 static void gem_stop(struct ifnet *, int);
88 int gem_ioctl(struct ifnet *, u_long, void *);
89 void gem_tick(void *);
90 void gem_watchdog(struct ifnet *);
91 void gem_rx_watchdog(void *);
92 void gem_pcs_start(struct gem_softc *sc);
93 void gem_pcs_stop(struct gem_softc *sc, int);
94 int gem_init(struct ifnet *);
95 void gem_init_regs(struct gem_softc *sc);
96 static int gem_ringsize(int sz);
97 static int gem_meminit(struct gem_softc *);
98 void gem_mifinit(struct gem_softc *);
99 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
100 uint32_t, uint32_t);
101 void gem_reset(struct gem_softc *);
102 int gem_reset_rx(struct gem_softc *sc);
103 static void gem_reset_rxdma(struct gem_softc *sc);
104 static void gem_rx_common(struct gem_softc *sc);
105 int gem_reset_tx(struct gem_softc *sc);
106 int gem_disable_rx(struct gem_softc *sc);
107 int gem_disable_tx(struct gem_softc *sc);
108 static void gem_rxdrain(struct gem_softc *sc);
109 int gem_add_rxbuf(struct gem_softc *sc, int idx);
110 void gem_setladrf(struct gem_softc *);
111
112 /* MII methods & callbacks */
113 static int gem_mii_readreg(device_t, int, int, uint16_t *);
114 static int gem_mii_writereg(device_t, int, int, uint16_t);
115 static void gem_mii_statchg(struct ifnet *);
116
117 static int gem_ifflags_cb(struct ethercom *);
118
119 void gem_statuschange(struct gem_softc *);
120
121 int gem_ser_mediachange(struct ifnet *);
122 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
123
124 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
125
126 struct mbuf *gem_get(struct gem_softc *, int, int);
127 int gem_put(struct gem_softc *, int, struct mbuf *);
128 void gem_read(struct gem_softc *, int, int);
129 int gem_pint(struct gem_softc *);
130 int gem_eint(struct gem_softc *, u_int);
131 int gem_rint(struct gem_softc *);
132 int gem_tint(struct gem_softc *);
133 void gem_power(int, void *);
134
135 #ifdef GEM_DEBUG
136 static void gem_txsoft_print(const struct gem_softc *, int, int);
137 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
138 printf x
139 #else
140 #define DPRINTF(sc, x) /* nothing */
141 #endif
142
143 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
144
145 int
gem_detach(struct gem_softc * sc,int flags)146 gem_detach(struct gem_softc *sc, int flags)
147 {
148 int i;
149 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
150 bus_space_tag_t t = sc->sc_bustag;
151 bus_space_handle_t h = sc->sc_h1;
152
153 /*
154 * Free any resources we've allocated during the attach.
155 * Do this in reverse order and fall through.
156 */
157 switch (sc->sc_att_stage) {
158 case GEM_ATT_BACKEND_2:
159 case GEM_ATT_BACKEND_1:
160 case GEM_ATT_FINISHED:
161 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
162 gem_stop(&sc->sc_ethercom.ec_if, 1);
163
164 #ifdef GEM_COUNTERS
165 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
166 evcnt_detach(&sc->sc_ev_rxhist[i]);
167 evcnt_detach(&sc->sc_ev_rxnobuf);
168 evcnt_detach(&sc->sc_ev_rxfull);
169 evcnt_detach(&sc->sc_ev_rxint);
170 evcnt_detach(&sc->sc_ev_txint);
171 evcnt_detach(&sc->sc_ev_rxoverflow);
172 #endif
173 evcnt_detach(&sc->sc_ev_intr);
174
175 rnd_detach_source(&sc->rnd_source);
176 ether_ifdetach(ifp);
177 if_detach(ifp);
178
179 callout_destroy(&sc->sc_tick_ch);
180 callout_destroy(&sc->sc_rx_watchdog);
181
182 /*FALLTHROUGH*/
183 case GEM_ATT_MII:
184 sc->sc_att_stage = GEM_ATT_MII;
185 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
186 ifmedia_fini(&sc->sc_mii.mii_media);
187
188 /*FALLTHROUGH*/
189 case GEM_ATT_7:
190 for (i = 0; i < GEM_NRXDESC; i++) {
191 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
192 bus_dmamap_destroy(sc->sc_dmatag,
193 sc->sc_rxsoft[i].rxs_dmamap);
194 }
195 /*FALLTHROUGH*/
196 case GEM_ATT_6:
197 for (i = 0; i < GEM_TXQUEUELEN; i++) {
198 if (sc->sc_txsoft[i].txs_dmamap != NULL)
199 bus_dmamap_destroy(sc->sc_dmatag,
200 sc->sc_txsoft[i].txs_dmamap);
201 }
202 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
203 /*FALLTHROUGH*/
204 case GEM_ATT_5:
205 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
206 /*FALLTHROUGH*/
207 case GEM_ATT_4:
208 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
209 /*FALLTHROUGH*/
210 case GEM_ATT_3:
211 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
212 /*FALLTHROUGH*/
213 case GEM_ATT_2:
214 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
215 sizeof(struct gem_control_data));
216 /*FALLTHROUGH*/
217 case GEM_ATT_1:
218 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
219 /*FALLTHROUGH*/
220 case GEM_ATT_0:
221 sc->sc_att_stage = GEM_ATT_0;
222 /*FALLTHROUGH*/
223 case GEM_ATT_BACKEND_0:
224 break;
225 }
226 return 0;
227 }
228
229 static void
gem_partial_detach(struct gem_softc * sc,enum gem_attach_stage stage)230 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
231 {
232 cfattach_t ca = device_cfattach(sc->sc_dev);
233
234 sc->sc_att_stage = stage;
235 (*ca->ca_detach)(sc->sc_dev, 0);
236 }
237
238 /*
239 * gem_attach:
240 *
241 * Attach a Gem interface to the system.
242 */
243 void
gem_attach(struct gem_softc * sc,const uint8_t * enaddr)244 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
245 {
246 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
247 struct mii_data *mii = &sc->sc_mii;
248 bus_space_tag_t t = sc->sc_bustag;
249 bus_space_handle_t h = sc->sc_h1;
250 struct ifmedia_entry *ife;
251 int i, error, phyaddr;
252 uint32_t v;
253 char *nullbuf;
254
255 /* Make sure the chip is stopped. */
256 ifp->if_softc = sc;
257 gem_reset(sc);
258
259 /*
260 * Allocate the control data structures, and create and load the
261 * DMA map for it. gem_control_data is 9216 bytes, we have space for
262 * the padding buffer in the bus_dmamem_alloc()'d memory.
263 */
264 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
265 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
266 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
267 aprint_error_dev(sc->sc_dev,
268 "unable to allocate control data, error = %d\n",
269 error);
270 gem_partial_detach(sc, GEM_ATT_0);
271 return;
272 }
273
274 /* XXX should map this in with correct endianness */
275 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
276 sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
277 BUS_DMA_COHERENT)) != 0) {
278 aprint_error_dev(sc->sc_dev,
279 "unable to map control data, error = %d\n", error);
280 gem_partial_detach(sc, GEM_ATT_1);
281 return;
282 }
283
284 nullbuf =
285 (char *)sc->sc_control_data + sizeof(struct gem_control_data);
286
287 if ((error = bus_dmamap_create(sc->sc_dmatag,
288 sizeof(struct gem_control_data), 1,
289 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
290 aprint_error_dev(sc->sc_dev,
291 "unable to create control data DMA map, error = %d\n",
292 error);
293 gem_partial_detach(sc, GEM_ATT_2);
294 return;
295 }
296
297 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
298 sc->sc_control_data, sizeof(struct gem_control_data), NULL,
299 0)) != 0) {
300 aprint_error_dev(sc->sc_dev,
301 "unable to load control data DMA map, error = %d\n",
302 error);
303 gem_partial_detach(sc, GEM_ATT_3);
304 return;
305 }
306
307 memset(nullbuf, 0, ETHER_MIN_TX);
308 if ((error = bus_dmamap_create(sc->sc_dmatag,
309 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
310 aprint_error_dev(sc->sc_dev,
311 "unable to create padding DMA map, error = %d\n", error);
312 gem_partial_detach(sc, GEM_ATT_4);
313 return;
314 }
315
316 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
317 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
318 aprint_error_dev(sc->sc_dev,
319 "unable to load padding DMA map, error = %d\n", error);
320 gem_partial_detach(sc, GEM_ATT_5);
321 return;
322 }
323
324 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
325 BUS_DMASYNC_PREWRITE);
326
327 /*
328 * Initialize the transmit job descriptors.
329 */
330 SIMPLEQ_INIT(&sc->sc_txfreeq);
331 SIMPLEQ_INIT(&sc->sc_txdirtyq);
332
333 /*
334 * Create the transmit buffer DMA maps.
335 */
336 for (i = 0; i < GEM_TXQUEUELEN; i++) {
337 struct gem_txsoft *txs;
338
339 txs = &sc->sc_txsoft[i];
340 txs->txs_mbuf = NULL;
341 if ((error = bus_dmamap_create(sc->sc_dmatag,
342 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
343 ETHER_MAX_LEN_JUMBO, 0, 0,
344 &txs->txs_dmamap)) != 0) {
345 aprint_error_dev(sc->sc_dev,
346 "unable to create tx DMA map %d, error = %d\n",
347 i, error);
348 gem_partial_detach(sc, GEM_ATT_6);
349 return;
350 }
351 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
352 }
353
354 /*
355 * Create the receive buffer DMA maps.
356 */
357 for (i = 0; i < GEM_NRXDESC; i++) {
358 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
359 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
360 aprint_error_dev(sc->sc_dev,
361 "unable to create rx DMA map %d, error = %d\n",
362 i, error);
363 gem_partial_detach(sc, GEM_ATT_7);
364 return;
365 }
366 sc->sc_rxsoft[i].rxs_mbuf = NULL;
367 }
368
369 /* Initialize ifmedia structures and MII info */
370 mii->mii_ifp = ifp;
371 mii->mii_readreg = gem_mii_readreg;
372 mii->mii_writereg = gem_mii_writereg;
373 mii->mii_statchg = gem_mii_statchg;
374
375 sc->sc_ethercom.ec_mii = mii;
376
377 /*
378 * Initialization based on `GEM Gigabit Ethernet ASIC Specification'
379 * Section 3.2.1 `Initialization Sequence'.
380 * However, we can't assume SERDES or Serialink if neither
381 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
382 * being set, as both are set on Sun X1141A (with SERDES). So,
383 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
384 * Also, for variants that report 2 PHY's, we prefer the external
385 * PHY over the internal PHY, so we look for that first.
386 */
387 gem_mifinit(sc);
388
389 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
390 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
391 ether_mediastatus);
392 /* Look for external PHY */
393 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
394 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
395 bus_space_write_4(t, h, GEM_MIF_CONFIG,
396 sc->sc_mif_config);
397 switch (sc->sc_variant) {
398 case GEM_SUN_ERI:
399 phyaddr = GEM_PHYAD_EXTERNAL;
400 break;
401 default:
402 phyaddr = MII_PHY_ANY;
403 break;
404 }
405 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
406 MII_OFFSET_ANY, MIIF_FORCEANEG);
407 }
408 #ifdef GEM_DEBUG
409 else
410 aprint_debug_dev(sc->sc_dev, "using external PHY\n");
411 #endif
412 /* Look for internal PHY if no external PHY was found */
413 if (LIST_EMPTY(&mii->mii_phys) &&
414 ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
415 (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
416 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417 bus_space_write_4(t, h, GEM_MIF_CONFIG,
418 sc->sc_mif_config);
419 switch (sc->sc_variant) {
420 case GEM_SUN_ERI:
421 case GEM_APPLE_K2_GMAC:
422 phyaddr = GEM_PHYAD_INTERNAL;
423 break;
424 case GEM_APPLE_GMAC:
425 phyaddr = GEM_PHYAD_EXTERNAL;
426 break;
427 default:
428 phyaddr = MII_PHY_ANY;
429 break;
430 }
431 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432 MII_OFFSET_ANY, MIIF_FORCEANEG);
433 #ifdef GEM_DEBUG
434 if (!LIST_EMPTY(&mii->mii_phys))
435 aprint_debug_dev(sc->sc_dev,
436 "using internal PHY\n");
437 #endif
438 }
439 if (LIST_EMPTY(&mii->mii_phys)) {
440 /* No PHY attached */
441 aprint_error_dev(sc->sc_dev,
442 "PHY probe failed\n");
443 gem_partial_detach(sc, GEM_ATT_MII);
444 return;
445 } else {
446 struct mii_softc *child;
447
448 /*
449 * Walk along the list of attached MII devices and
450 * establish an `MII instance' to `PHY number'
451 * mapping.
452 */
453 LIST_FOREACH(child, &mii->mii_phys, mii_list) {
454 /*
455 * Note: we support just one PHY: the internal
456 * or external MII is already selected for us
457 * by the GEM_MIF_CONFIG register.
458 */
459 if (child->mii_phy > 1 || child->mii_inst > 0) {
460 aprint_error_dev(sc->sc_dev,
461 "cannot accommodate MII device"
462 " %s at PHY %d, instance %d\n",
463 device_xname(child->mii_dev),
464 child->mii_phy, child->mii_inst);
465 continue;
466 }
467 sc->sc_phys[child->mii_inst] = child->mii_phy;
468 }
469
470 if (sc->sc_variant != GEM_SUN_ERI)
471 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472 GEM_MII_DATAPATH_MII);
473
474 /*
475 * XXX - we can really do the following ONLY if the
476 * PHY indeed has the auto negotiation capability!!
477 */
478 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
479 }
480 } else {
481 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482 gem_ser_mediastatus);
483 /* SERDES or Serialink */
484 if (sc->sc_flags & GEM_SERDES) {
485 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486 GEM_MII_DATAPATH_SERDES);
487 } else {
488 sc->sc_flags |= GEM_SERIAL;
489 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490 GEM_MII_DATAPATH_SERIAL);
491 }
492
493 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
495
496 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
497 /* Check for FDX and HDX capabilities */
498 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500 ifmedia_add(&mii->mii_media, IFM_ETHER |
501 IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
502 aprint_normal("1000baseSX-FDX, ");
503 }
504 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505 ifmedia_add(&mii->mii_media, IFM_ETHER |
506 IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
507 aprint_normal("1000baseSX-HDX, ");
508 }
509 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
510 sc->sc_mii_media = IFM_AUTO;
511 aprint_normal("auto\n");
512
513 gem_pcs_stop(sc, 1);
514 }
515
516 /*
517 * From this point forward, the attachment cannot fail. A failure
518 * before this point releases all resources that may have been
519 * allocated.
520 */
521
522 /* Announce ourselves. */
523 aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524 ether_sprintf(enaddr));
525
526 /* Get RX FIFO size */
527 sc->sc_rxfifosize = 64 *
528 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
530
531 /* Get TX FIFO size */
532 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533 aprint_normal(", %uKB TX fifo\n", v / 16);
534
535 /* Initialize ifnet structure. */
536 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537 ifp->if_softc = sc;
538 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
539 sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 /*
542 * The GEM hardware supports basic TCP checksum offloading only.
543 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 * have bugs in the receive checksum, so don't enable it for now.
545 */
546 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 (GEM_IS_APPLE(sc) &&
548 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 ifp->if_start = gem_start;
553 ifp->if_ioctl = gem_ioctl;
554 ifp->if_watchdog = gem_watchdog;
555 ifp->if_stop = gem_stop;
556 ifp->if_init = gem_init;
557 IFQ_SET_READY(&ifp->if_snd);
558
559 /*
560 * If we support GigE media, we support jumbo frames too.
561 * Unless we are Apple.
562 */
563 TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
564 if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
565 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
566 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
567 IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
568 if (!GEM_IS_APPLE(sc))
569 sc->sc_ethercom.ec_capabilities
570 |= ETHERCAP_JUMBO_MTU;
571 sc->sc_flags |= GEM_GIGABIT;
572 break;
573 }
574 }
575
576 /* claim 802.1q capability */
577 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578
579 /* Attach the interface. */
580 if_attach(ifp);
581 if_deferred_start_init(ifp, NULL);
582 ether_ifattach(ifp, enaddr);
583 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584
585 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 RND_TYPE_NET, RND_FLAG_DEFAULT);
587
588 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 evcnt_attach_dynamic(&sc->sc_ev_rxoverflow, EVCNT_TYPE_INTR,
600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx overflow");
601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
615 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
616 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
617 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
618 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
619 #endif
620
621 callout_init(&sc->sc_tick_ch, 0);
622 callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
623
624 callout_init(&sc->sc_rx_watchdog, 0);
625 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
626
627 sc->sc_att_stage = GEM_ATT_FINISHED;
628
629 return;
630 }
631
632 void
gem_tick(void * arg)633 gem_tick(void *arg)
634 {
635 struct gem_softc *sc = arg;
636 int s;
637
638 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
639 /*
640 * We have to reset everything if we failed to get a
641 * PCS interrupt. Restarting the callout is handled
642 * in gem_pcs_start().
643 */
644 gem_init(&sc->sc_ethercom.ec_if);
645 } else {
646 s = splnet();
647 mii_tick(&sc->sc_mii);
648 splx(s);
649 callout_schedule(&sc->sc_tick_ch, hz);
650 }
651 }
652
653 static int
gem_bitwait(struct gem_softc * sc,bus_space_handle_t h,int r,uint32_t clr,uint32_t set)654 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
655 uint32_t set)
656 {
657 int i;
658 uint32_t reg;
659
660 for (i = TRIES; i--; DELAY(100)) {
661 reg = bus_space_read_4(sc->sc_bustag, h, r);
662 if ((reg & clr) == 0 && (reg & set) == set)
663 return (1);
664 }
665 return (0);
666 }
667
668 void
gem_reset(struct gem_softc * sc)669 gem_reset(struct gem_softc *sc)
670 {
671 bus_space_tag_t t = sc->sc_bustag;
672 bus_space_handle_t h = sc->sc_h2;
673 int s;
674
675 s = splnet();
676 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
677 gem_reset_rx(sc);
678 gem_reset_tx(sc);
679
680 /* Do a full reset */
681 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
682 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
683 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
684 splx(s);
685 }
686
687
688 /*
689 * gem_rxdrain:
690 *
691 * Drain the receive queue.
692 */
693 static void
gem_rxdrain(struct gem_softc * sc)694 gem_rxdrain(struct gem_softc *sc)
695 {
696 struct gem_rxsoft *rxs;
697 int i;
698
699 for (i = 0; i < GEM_NRXDESC; i++) {
700 rxs = &sc->sc_rxsoft[i];
701 if (rxs->rxs_mbuf != NULL) {
702 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
703 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
704 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
705 m_freem(rxs->rxs_mbuf);
706 rxs->rxs_mbuf = NULL;
707 }
708 }
709 }
710
711 /*
712 * Reset the whole thing.
713 */
714 static void
gem_stop(struct ifnet * ifp,int disable)715 gem_stop(struct ifnet *ifp, int disable)
716 {
717 struct gem_softc *sc = ifp->if_softc;
718 struct gem_txsoft *txs;
719
720 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
721
722 callout_halt(&sc->sc_tick_ch, NULL);
723 callout_halt(&sc->sc_rx_watchdog, NULL);
724 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
725 gem_pcs_stop(sc, disable);
726 else
727 mii_down(&sc->sc_mii);
728
729 /* XXX - Should we reset these instead? */
730 gem_disable_tx(sc);
731 gem_disable_rx(sc);
732
733 /*
734 * Release any queued transmit buffers.
735 */
736 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
737 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
738 if (txs->txs_mbuf != NULL) {
739 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
740 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
741 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
742 m_freem(txs->txs_mbuf);
743 txs->txs_mbuf = NULL;
744 }
745 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
746 }
747
748 /*
749 * Mark the interface down and cancel the watchdog timer.
750 */
751 ifp->if_flags &= ~IFF_RUNNING;
752 sc->sc_if_flags = ifp->if_flags;
753 ifp->if_timer = 0;
754
755 if (disable)
756 gem_rxdrain(sc);
757 }
758
759
760 /*
761 * Reset the receiver
762 */
763 int
gem_reset_rx(struct gem_softc * sc)764 gem_reset_rx(struct gem_softc *sc)
765 {
766 bus_space_tag_t t = sc->sc_bustag;
767 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
768
769 /*
770 * Resetting while DMA is in progress can cause a bus hang, so we
771 * disable DMA first.
772 */
773 gem_disable_rx(sc);
774 bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
775 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
776 /* Wait till it finishes */
777 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
778 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
779 /* Wait 5ms extra. */
780 delay(5000);
781
782 /* Finally, reset the ERX */
783 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
784 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
785 /* Wait till it finishes */
786 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
787 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
788 return (1);
789 }
790 return (0);
791 }
792
793
794 /*
795 * Reset the receiver DMA engine.
796 *
797 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
798 * etc in order to reset the receiver DMA engine only and not do a full
799 * reset which amongst others also downs the link and clears the FIFOs.
800 */
801 static void
gem_reset_rxdma(struct gem_softc * sc)802 gem_reset_rxdma(struct gem_softc *sc)
803 {
804 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
805 bus_space_tag_t t = sc->sc_bustag;
806 bus_space_handle_t h = sc->sc_h1;
807 int i;
808
809 if (gem_reset_rx(sc) != 0) {
810 gem_init(ifp);
811 return;
812 }
813 for (i = 0; i < GEM_NRXDESC; i++)
814 if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
815 GEM_UPDATE_RXDESC(sc, i);
816 sc->sc_rxptr = 0;
817 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
818 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
819
820 /* Reprogram Descriptor Ring Base Addresses */
821 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
822 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
823 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
824
825 /* Redo ERX Configuration */
826 gem_rx_common(sc);
827
828 /* Give the receiver a swift kick */
829 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
830 }
831
832 /*
833 * Common RX configuration for gem_init() and gem_reset_rxdma().
834 */
835 static void
gem_rx_common(struct gem_softc * sc)836 gem_rx_common(struct gem_softc *sc)
837 {
838 bus_space_tag_t t = sc->sc_bustag;
839 bus_space_handle_t h = sc->sc_h1;
840 uint32_t v;
841
842 /* Encode Receive Descriptor ring size: four possible values */
843 v = gem_ringsize(GEM_NRXDESC /*XXX*/);
844
845 /* Set receive h/w checksum offset */
846 #ifdef INET
847 v |= (ETHER_HDR_LEN + sizeof(struct ip) +
848 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
849 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
850 #endif
851
852 /* Enable RX DMA */
853 bus_space_write_4(t, h, GEM_RX_CONFIG,
854 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
855 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
856
857 /*
858 * The following value is for an OFF Threshold of about 3/4 full
859 * and an ON Threshold of 1/4 full.
860 */
861 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
862 (3 * sc->sc_rxfifosize / 256) |
863 ((sc->sc_rxfifosize / 256) << 12));
864 bus_space_write_4(t, h, GEM_RX_BLANKING,
865 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
866 }
867
868 /*
869 * Reset the transmitter
870 */
871 int
gem_reset_tx(struct gem_softc * sc)872 gem_reset_tx(struct gem_softc *sc)
873 {
874 bus_space_tag_t t = sc->sc_bustag;
875 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
876
877 /*
878 * Resetting while DMA is in progress can cause a bus hang, so we
879 * disable DMA first.
880 */
881 gem_disable_tx(sc);
882 bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
883 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
884 /* Wait till it finishes */
885 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
886 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
887 /* Wait 5ms extra. */
888 delay(5000);
889
890 /* Finally, reset the ETX */
891 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
892 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
893 /* Wait till it finishes */
894 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
895 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
896 return (1);
897 }
898 return (0);
899 }
900
901 /*
902 * disable receiver.
903 */
904 int
gem_disable_rx(struct gem_softc * sc)905 gem_disable_rx(struct gem_softc *sc)
906 {
907 bus_space_tag_t t = sc->sc_bustag;
908 bus_space_handle_t h = sc->sc_h1;
909 uint32_t cfg;
910
911 /* Flip the enable bit */
912 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
913 cfg &= ~GEM_MAC_RX_ENABLE;
914 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
915 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
916 /* Wait for it to finish */
917 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
918 }
919
920 /*
921 * disable transmitter.
922 */
923 int
gem_disable_tx(struct gem_softc * sc)924 gem_disable_tx(struct gem_softc *sc)
925 {
926 bus_space_tag_t t = sc->sc_bustag;
927 bus_space_handle_t h = sc->sc_h1;
928 uint32_t cfg;
929
930 /* Flip the enable bit */
931 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
932 cfg &= ~GEM_MAC_TX_ENABLE;
933 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
934 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
935 /* Wait for it to finish */
936 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
937 }
938
939 /*
940 * Initialize interface.
941 */
942 int
gem_meminit(struct gem_softc * sc)943 gem_meminit(struct gem_softc *sc)
944 {
945 struct gem_rxsoft *rxs;
946 int i, error;
947
948 /*
949 * Initialize the transmit descriptor ring.
950 */
951 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
952 for (i = 0; i < GEM_NTXDESC; i++) {
953 sc->sc_txdescs[i].gd_flags = 0;
954 sc->sc_txdescs[i].gd_addr = 0;
955 }
956 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
957 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
958 sc->sc_txfree = GEM_NTXDESC-1;
959 sc->sc_txnext = 0;
960 sc->sc_txwin = 0;
961
962 /*
963 * Initialize the receive descriptor and receive job
964 * descriptor rings.
965 */
966 for (i = 0; i < GEM_NRXDESC; i++) {
967 rxs = &sc->sc_rxsoft[i];
968 if (rxs->rxs_mbuf == NULL) {
969 if ((error = gem_add_rxbuf(sc, i)) != 0) {
970 aprint_error_dev(sc->sc_dev,
971 "unable to allocate or map rx "
972 "buffer %d, error = %d\n",
973 i, error);
974 /*
975 * XXX Should attempt to run with fewer receive
976 * XXX buffers instead of just failing.
977 */
978 gem_rxdrain(sc);
979 return (1);
980 }
981 } else
982 GEM_INIT_RXDESC(sc, i);
983 }
984 sc->sc_rxptr = 0;
985 sc->sc_meminited = 1;
986 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
987 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
988
989 return (0);
990 }
991
992 static int
gem_ringsize(int sz)993 gem_ringsize(int sz)
994 {
995 switch (sz) {
996 case 32:
997 return GEM_RING_SZ_32;
998 case 64:
999 return GEM_RING_SZ_64;
1000 case 128:
1001 return GEM_RING_SZ_128;
1002 case 256:
1003 return GEM_RING_SZ_256;
1004 case 512:
1005 return GEM_RING_SZ_512;
1006 case 1024:
1007 return GEM_RING_SZ_1024;
1008 case 2048:
1009 return GEM_RING_SZ_2048;
1010 case 4096:
1011 return GEM_RING_SZ_4096;
1012 case 8192:
1013 return GEM_RING_SZ_8192;
1014 default:
1015 printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1016 return GEM_RING_SZ_32;
1017 }
1018 }
1019
1020
1021 /*
1022 * Start PCS
1023 */
1024 void
gem_pcs_start(struct gem_softc * sc)1025 gem_pcs_start(struct gem_softc *sc)
1026 {
1027 bus_space_tag_t t = sc->sc_bustag;
1028 bus_space_handle_t h = sc->sc_h1;
1029 uint32_t v;
1030
1031 #ifdef GEM_DEBUG
1032 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1033 #endif
1034
1035 /*
1036 * Set up. We must disable the MII before modifying the
1037 * GEM_MII_ANAR register
1038 */
1039 if (sc->sc_flags & GEM_SERDES) {
1040 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1041 GEM_MII_DATAPATH_SERDES);
1042 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1043 GEM_MII_SLINK_LOOPBACK);
1044 } else {
1045 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1046 GEM_MII_DATAPATH_SERIAL);
1047 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1048 }
1049 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1050 v = bus_space_read_4(t, h, GEM_MII_ANAR);
1051 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1052 if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1053 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1054 else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1055 v |= GEM_MII_ANEG_FUL_DUPLX;
1056 v &= ~GEM_MII_ANEG_HLF_DUPLX;
1057 } else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1058 v &= ~GEM_MII_ANEG_FUL_DUPLX;
1059 v |= GEM_MII_ANEG_HLF_DUPLX;
1060 }
1061
1062 /* Configure link. */
1063 bus_space_write_4(t, h, GEM_MII_ANAR, v);
1064 bus_space_write_4(t, h, GEM_MII_CONTROL,
1065 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1066 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1067 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1068
1069 /* Start the 10 second timer */
1070 callout_schedule(&sc->sc_tick_ch, hz * 10);
1071 }
1072
1073 /*
1074 * Stop PCS
1075 */
1076 void
gem_pcs_stop(struct gem_softc * sc,int disable)1077 gem_pcs_stop(struct gem_softc *sc, int disable)
1078 {
1079 bus_space_tag_t t = sc->sc_bustag;
1080 bus_space_handle_t h = sc->sc_h1;
1081
1082 #ifdef GEM_DEBUG
1083 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1084 #endif
1085
1086 /* Tell link partner that we're going away */
1087 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1088
1089 /*
1090 * Disable PCS MII. The documentation suggests that setting
1091 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1092 * negotiation will shut down the link. However, it appears
1093 * that we also need to unset the datapath mode.
1094 */
1095 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1096 bus_space_write_4(t, h, GEM_MII_CONTROL,
1097 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1098 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1099 bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1100
1101 if (disable) {
1102 if (sc->sc_flags & GEM_SERDES)
1103 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1104 GEM_MII_SLINK_POWER_OFF);
1105 else
1106 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1107 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1108 }
1109
1110 sc->sc_flags &= ~GEM_LINK;
1111 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1112 sc->sc_mii.mii_media_status = IFM_AVALID;
1113 }
1114
1115
1116 /*
1117 * Initialization of interface; set up initialization block
1118 * and transmit/receive descriptor rings.
1119 */
1120 int
gem_init(struct ifnet * ifp)1121 gem_init(struct ifnet *ifp)
1122 {
1123 struct gem_softc *sc = ifp->if_softc;
1124 bus_space_tag_t t = sc->sc_bustag;
1125 bus_space_handle_t h = sc->sc_h1;
1126 int rc = 0, s;
1127 u_int max_frame_size;
1128 uint32_t v;
1129
1130 s = splnet();
1131
1132 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1133 /*
1134 * Initialization sequence. The numbered steps below correspond
1135 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1136 * Channel Engine manual (part of the PCIO manual).
1137 * See also the STP2002-STQ document from Sun Microsystems.
1138 */
1139
1140 /* step 1 & 2. Reset the Ethernet Channel */
1141 gem_stop(ifp, 0);
1142 gem_reset(sc);
1143 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1144
1145 /* Re-initialize the MIF */
1146 gem_mifinit(sc);
1147
1148 /* Set up correct datapath for non-SERDES/Serialink */
1149 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1150 sc->sc_variant != GEM_SUN_ERI)
1151 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1152 GEM_MII_DATAPATH_MII);
1153
1154 /* Call MI reset function if any */
1155 if (sc->sc_hwreset)
1156 (*sc->sc_hwreset)(sc);
1157
1158 /* step 3. Setup data structures in host memory */
1159 if (gem_meminit(sc) != 0) {
1160 splx(s);
1161 return 1;
1162 }
1163
1164 /* step 4. TX MAC registers & counters */
1165 gem_init_regs(sc);
1166 max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1167 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1168 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1169 max_frame_size += ETHER_VLAN_ENCAP_LEN;
1170 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1171 max_frame_size|/* burst size */(0x2000<<16));
1172
1173 /* step 5. RX MAC registers & counters */
1174 gem_setladrf(sc);
1175
1176 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1177 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1178 ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1179 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1180
1181 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1182 ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1183 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1184
1185 /* step 8. Global Configuration & Interrupt Mask */
1186 gem_inten(sc);
1187 bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1188 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1189 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1190 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1191 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1192
1193 /* step 9. ETX Configuration: use mostly default values */
1194
1195 /* Enable TX DMA */
1196 v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1197 bus_space_write_4(t, h, GEM_TX_CONFIG,
1198 v | GEM_TX_CONFIG_TXDMA_EN |
1199 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1200 GEM_TX_CONFIG_TXFIFO_TH));
1201 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1202
1203 /* step 10. ERX Configuration */
1204 gem_rx_common(sc);
1205
1206 /* step 11. Configure Media */
1207 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1208 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1209 goto out;
1210
1211 /* step 12. RX_MAC Configuration Register */
1212 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1213 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1214 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1215
1216 /* step 14. Issue Transmit Pending command */
1217
1218 /* Call MI initialization function if any */
1219 if (sc->sc_hwinit)
1220 (*sc->sc_hwinit)(sc);
1221
1222 /* step 15. Give the receiver a swift kick */
1223 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1224
1225 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1226 /* Configure PCS */
1227 gem_pcs_start(sc);
1228 else
1229 /* Start the one second timer. */
1230 callout_schedule(&sc->sc_tick_ch, hz);
1231
1232 sc->sc_flags &= ~GEM_LINK;
1233 ifp->if_flags |= IFF_RUNNING;
1234 ifp->if_timer = 0;
1235 sc->sc_if_flags = ifp->if_flags;
1236 out:
1237 splx(s);
1238
1239 return (0);
1240 }
1241
1242 void
gem_init_regs(struct gem_softc * sc)1243 gem_init_regs(struct gem_softc *sc)
1244 {
1245 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1246 bus_space_tag_t t = sc->sc_bustag;
1247 bus_space_handle_t h = sc->sc_h1;
1248 const u_char *laddr = CLLADDR(ifp->if_sadl);
1249 uint32_t v;
1250
1251 /* These regs are not cleared on reset */
1252 if (!sc->sc_inited) {
1253
1254 /* Load recommended values */
1255 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1256 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1257 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1258
1259 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1260 /* Max frame and max burst size */
1261 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1262 ETHER_MAX_LEN | (0x2000<<16));
1263
1264 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1265 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1266 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1267 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1268 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1269 ((laddr[5]<<8)|laddr[4])&0x3ff);
1270
1271 /* Secondary MAC addr set to 0:0:0:0:0:0 */
1272 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1273 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1274 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1275
1276 /* MAC control addr set to 01:80:c2:00:00:01 */
1277 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1278 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1279 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1280
1281 /* MAC filter addr set to 0:0:0:0:0:0 */
1282 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1283 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1284 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1285
1286 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1287 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1288
1289 sc->sc_inited = 1;
1290 }
1291
1292 /* Counters need to be zeroed */
1293 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1294 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1295 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1296 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1297 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1298 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1299 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1300 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1301 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1302 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1303 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1304
1305 /* Set XOFF PAUSE time. */
1306 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1307
1308 /*
1309 * Set the internal arbitration to "infinite" bursts of the
1310 * maximum length of 31 * 64 bytes so DMA transfers aren't
1311 * split up in cache line size chunks. This greatly improves
1312 * especially RX performance.
1313 * Enable silicon bug workarounds for the Apple variants.
1314 */
1315 bus_space_write_4(t, h, GEM_CONFIG,
1316 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1317 ((sc->sc_flags & GEM_PCI) ?
1318 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1319 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1320
1321 /*
1322 * Set the station address.
1323 */
1324 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1325 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1326 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1327
1328 /*
1329 * Enable MII outputs. Enable GMII if there is a gigabit PHY.
1330 */
1331 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1332 v = GEM_MAC_XIF_TX_MII_ENA;
1333 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1334 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1335 v |= GEM_MAC_XIF_FDPLX_LED;
1336 if (sc->sc_flags & GEM_GIGABIT)
1337 v |= GEM_MAC_XIF_GMII_MODE;
1338 }
1339 } else {
1340 v |= GEM_MAC_XIF_GMII_MODE;
1341 }
1342 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1343 }
1344
1345 #ifdef GEM_DEBUG
1346 static void
gem_txsoft_print(const struct gem_softc * sc,int firstdesc,int lastdesc)1347 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1348 {
1349 int i;
1350
1351 for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1352 printf("descriptor %d:\t", i);
1353 printf("gd_flags: 0x%016" PRIx64 "\t",
1354 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1355 printf("gd_addr: 0x%016" PRIx64 "\n",
1356 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1357 if (i == lastdesc)
1358 break;
1359 }
1360 }
1361 #endif
1362
1363 static void
gem_start(struct ifnet * ifp)1364 gem_start(struct ifnet *ifp)
1365 {
1366 struct gem_softc *sc = ifp->if_softc;
1367 struct mbuf *m0, *m;
1368 struct gem_txsoft *txs;
1369 bus_dmamap_t dmamap;
1370 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1371 #ifdef GEM_DEBUG
1372 int otxnext;
1373 #endif
1374 uint64_t flags = 0;
1375
1376 if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1377 return;
1378
1379 /*
1380 * Remember the previous number of free descriptors and
1381 * the first descriptor we'll use.
1382 */
1383 ofree = sc->sc_txfree;
1384 #ifdef GEM_DEBUG
1385 otxnext = sc->sc_txnext;
1386 #endif
1387
1388 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1389 device_xname(sc->sc_dev), ofree, otxnext));
1390
1391 /*
1392 * Loop through the send queue, setting up transmit descriptors
1393 * until we drain the queue, or use up all available transmit
1394 * descriptors.
1395 */
1396 #ifdef INET
1397 next:
1398 #endif
1399 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1400 sc->sc_txfree != 0) {
1401 /*
1402 * Grab a packet off the queue.
1403 */
1404 IFQ_POLL(&ifp->if_snd, m0);
1405 if (m0 == NULL)
1406 break;
1407 m = NULL;
1408
1409 dmamap = txs->txs_dmamap;
1410
1411 /*
1412 * Load the DMA map. If this fails, the packet either
1413 * didn't fit in the allotted number of segments, or we were
1414 * short on resources. In this case, we'll copy and try
1415 * again.
1416 */
1417 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1418 BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1419 (m0->m_pkthdr.len < ETHER_MIN_TX &&
1420 dmamap->dm_nsegs == GEM_NTXSEGS)) {
1421 if (m0->m_pkthdr.len > MCLBYTES) {
1422 aprint_error_dev(sc->sc_dev,
1423 "unable to allocate jumbo Tx cluster\n");
1424 IFQ_DEQUEUE(&ifp->if_snd, m0);
1425 m_freem(m0);
1426 continue;
1427 }
1428 MGETHDR(m, M_DONTWAIT, MT_DATA);
1429 if (m == NULL) {
1430 aprint_error_dev(sc->sc_dev,
1431 "unable to allocate Tx mbuf\n");
1432 break;
1433 }
1434 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1435 if (m0->m_pkthdr.len > MHLEN) {
1436 MCLGET(m, M_DONTWAIT);
1437 if ((m->m_flags & M_EXT) == 0) {
1438 aprint_error_dev(sc->sc_dev,
1439 "unable to allocate Tx cluster\n");
1440 m_freem(m);
1441 break;
1442 }
1443 }
1444 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1445 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1446 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1447 m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1448 if (error) {
1449 aprint_error_dev(sc->sc_dev,
1450 "unable to load Tx buffer, error = %d\n",
1451 error);
1452 break;
1453 }
1454 }
1455
1456 /*
1457 * Ensure we have enough descriptors free to describe
1458 * the packet.
1459 */
1460 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1461 (sc->sc_txfree - 1) : sc->sc_txfree)) {
1462 /*
1463 * Not enough free descriptors to transmit this
1464 * packet.
1465 */
1466 bus_dmamap_unload(sc->sc_dmatag, dmamap);
1467 m_freem(m);
1468 break;
1469 }
1470
1471 IFQ_DEQUEUE(&ifp->if_snd, m0);
1472 if (m != NULL) {
1473 m_freem(m0);
1474 m0 = m;
1475 }
1476
1477 /*
1478 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1479 */
1480
1481 /* Sync the DMA map. */
1482 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1483 BUS_DMASYNC_PREWRITE);
1484
1485 /*
1486 * Initialize the transmit descriptors.
1487 */
1488 firsttx = sc->sc_txnext;
1489 for (nexttx = firsttx, seg = 0;
1490 seg < dmamap->dm_nsegs;
1491 seg++, nexttx = GEM_NEXTTX(nexttx)) {
1492
1493 /*
1494 * If this is the first descriptor we're
1495 * enqueueing, set the start of packet flag,
1496 * and the checksum stuff if we want the hardware
1497 * to do it.
1498 */
1499 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1500 if (nexttx == firsttx) {
1501 flags |= GEM_TD_START_OF_PACKET;
1502 #ifdef INET
1503 /* h/w checksum */
1504 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1505 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1506 struct ether_header *eh;
1507 uint16_t offset, start;
1508
1509 eh = mtod(m0, struct ether_header *);
1510 switch (ntohs(eh->ether_type)) {
1511 case ETHERTYPE_IP:
1512 start = ETHER_HDR_LEN;
1513 break;
1514 case ETHERTYPE_VLAN:
1515 start = ETHER_HDR_LEN +
1516 ETHER_VLAN_ENCAP_LEN;
1517 break;
1518 default:
1519 /* unsupported, drop it */
1520 bus_dmamap_unload(sc->sc_dmatag,
1521 dmamap);
1522 m_freem(m0);
1523 goto next;
1524 }
1525 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1526 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1527 flags |= (start <<
1528 GEM_TD_CXSUM_STARTSHFT) |
1529 (offset <<
1530 GEM_TD_CXSUM_STUFFSHFT) |
1531 GEM_TD_CXSUM_ENABLE;
1532 }
1533 #endif
1534 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1535 sc->sc_txwin = 0;
1536 flags |= GEM_TD_INTERRUPT_ME;
1537 }
1538 }
1539 sc->sc_txdescs[nexttx].gd_addr =
1540 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1541 if (seg == dmamap->dm_nsegs - 1) {
1542 flags |= GEM_TD_END_OF_PACKET;
1543 } else {
1544 /* last flag set outside of loop */
1545 sc->sc_txdescs[nexttx].gd_flags =
1546 GEM_DMA_WRITE(sc, flags);
1547 }
1548 lasttx = nexttx;
1549 }
1550 if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1551 /* add padding buffer at end of chain */
1552 flags &= ~GEM_TD_END_OF_PACKET;
1553 sc->sc_txdescs[lasttx].gd_flags =
1554 GEM_DMA_WRITE(sc, flags);
1555
1556 sc->sc_txdescs[nexttx].gd_addr =
1557 GEM_DMA_WRITE(sc,
1558 sc->sc_nulldmamap->dm_segs[0].ds_addr);
1559 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1560 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1561 lasttx = nexttx;
1562 nexttx = GEM_NEXTTX(nexttx);
1563 seg++;
1564 }
1565 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1566
1567 KASSERT(lasttx != -1);
1568
1569 /*
1570 * Store a pointer to the packet so we can free it later,
1571 * and remember what txdirty will be once the packet is
1572 * done.
1573 */
1574 txs->txs_mbuf = m0;
1575 txs->txs_firstdesc = sc->sc_txnext;
1576 txs->txs_lastdesc = lasttx;
1577 txs->txs_ndescs = seg;
1578
1579 #ifdef GEM_DEBUG
1580 if (ifp->if_flags & IFF_DEBUG) {
1581 printf(" gem_start %p transmit chain:\n", txs);
1582 gem_txsoft_print(sc, txs->txs_firstdesc,
1583 txs->txs_lastdesc);
1584 }
1585 #endif
1586
1587 /* Sync the descriptors we're using. */
1588 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1589 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1590
1591 /* Advance the tx pointer. */
1592 sc->sc_txfree -= txs->txs_ndescs;
1593 sc->sc_txnext = nexttx;
1594
1595 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1596 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1597
1598 /*
1599 * Pass the packet to any BPF listeners.
1600 */
1601 bpf_mtap(ifp, m0, BPF_D_OUT);
1602 }
1603
1604 if (sc->sc_txfree != ofree) {
1605 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1606 device_xname(sc->sc_dev), lasttx, otxnext));
1607 /*
1608 * The entire packet chain is set up.
1609 * Kick the transmitter.
1610 */
1611 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1612 device_xname(sc->sc_dev), nexttx));
1613 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1614 sc->sc_txnext);
1615
1616 /* Set a watchdog timer in case the chip flakes out. */
1617 ifp->if_timer = 5;
1618 DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1619 device_xname(sc->sc_dev), ifp->if_timer));
1620 }
1621 }
1622
1623 /*
1624 * Transmit interrupt.
1625 */
1626 int
gem_tint(struct gem_softc * sc)1627 gem_tint(struct gem_softc *sc)
1628 {
1629 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1630 bus_space_tag_t t = sc->sc_bustag;
1631 bus_space_handle_t mac = sc->sc_h1;
1632 struct gem_txsoft *txs;
1633 int txlast;
1634 int progress = 0;
1635 uint32_t v;
1636
1637 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1638
1639 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1640
1641 /* Unload collision counters ... */
1642 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1643 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1644 if_statadd_ref(ifp, nsr, if_collisions, v +
1645 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1646 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1647 if_statadd_ref(ifp, nsr, if_oerrors, v);
1648
1649 /* ... then clear the hardware counters. */
1650 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1651 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1652 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1653 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1654
1655 /*
1656 * Go through our Tx list and free mbufs for those
1657 * frames that have been transmitted.
1658 */
1659 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1660 /*
1661 * In theory, we could harvest some descriptors before
1662 * the ring is empty, but that's a bit complicated.
1663 *
1664 * GEM_TX_COMPLETION points to the last descriptor
1665 * processed +1.
1666 *
1667 * Let's assume that the NIC writes back to the Tx
1668 * descriptors before it updates the completion
1669 * register. If the NIC has posted writes to the
1670 * Tx descriptors, PCI ordering requires that the
1671 * posted writes flush to RAM before the register-read
1672 * finishes. So let's read the completion register,
1673 * before syncing the descriptors, so that we
1674 * examine Tx descriptors that are at least as
1675 * current as the completion register.
1676 */
1677 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1678 DPRINTF(sc,
1679 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1680 txs->txs_lastdesc, txlast));
1681 if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1682 if (txlast >= txs->txs_firstdesc &&
1683 txlast <= txs->txs_lastdesc)
1684 break;
1685 } else if (txlast >= txs->txs_firstdesc ||
1686 txlast <= txs->txs_lastdesc)
1687 break;
1688
1689 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1690 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1691
1692 #ifdef GEM_DEBUG /* XXX DMA synchronization? */
1693 if (ifp->if_flags & IFF_DEBUG) {
1694 printf(" txsoft %p transmit chain:\n", txs);
1695 gem_txsoft_print(sc, txs->txs_firstdesc,
1696 txs->txs_lastdesc);
1697 }
1698 #endif
1699
1700
1701 DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1702 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1703
1704 sc->sc_txfree += txs->txs_ndescs;
1705
1706 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1707 0, txs->txs_dmamap->dm_mapsize,
1708 BUS_DMASYNC_POSTWRITE);
1709 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1710 m_freem(txs->txs_mbuf);
1711 txs->txs_mbuf = NULL;
1712
1713 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1714
1715 if_statinc_ref(ifp, nsr, if_opackets);
1716 progress = 1;
1717 }
1718
1719 IF_STAT_PUTREF(ifp);
1720
1721 #if 0
1722 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1723 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1724 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1725 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1726 GEM_TX_DATA_PTR_HI) << 32) |
1727 bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1728 GEM_TX_DATA_PTR_LO),
1729 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1730 #endif
1731
1732 if (progress) {
1733 if (sc->sc_txfree == GEM_NTXDESC - 1)
1734 sc->sc_txwin = 0;
1735
1736 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 if_schedule_deferred_start(ifp);
1738 }
1739 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 device_xname(sc->sc_dev), ifp->if_timer));
1741
1742 return (1);
1743 }
1744
1745 /*
1746 * Receive interrupt.
1747 */
1748 int
gem_rint(struct gem_softc * sc)1749 gem_rint(struct gem_softc *sc)
1750 {
1751 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 bus_space_tag_t t = sc->sc_bustag;
1753 bus_space_handle_t h = sc->sc_h1;
1754 struct gem_rxsoft *rxs;
1755 struct mbuf *m;
1756 uint64_t rxstat;
1757 uint32_t rxcomp;
1758 int i, len, progress = 0;
1759
1760 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1761
1762 /*
1763 * Ignore spurious interrupt that sometimes occurs before
1764 * we are set up when we network boot.
1765 */
1766 if (!sc->sc_meminited)
1767 return 1;
1768
1769 /*
1770 * Read the completion register once. This limits
1771 * how long the following loop can execute.
1772 */
1773 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1774
1775 /*
1776 * XXX Read the lastrx only once at the top for speed.
1777 */
1778 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 sc->sc_rxptr, rxcomp));
1780
1781 /*
1782 * Go into the loop at least once.
1783 */
1784 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 i = GEM_NEXTRX(i)) {
1786 rxs = &sc->sc_rxsoft[i];
1787
1788 GEM_CDRXSYNC(sc, i,
1789 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1790
1791 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1792
1793 if (rxstat & GEM_RD_OWN) {
1794 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1795 /*
1796 * We have processed all of the receive buffers.
1797 */
1798 break;
1799 }
1800
1801 progress++;
1802
1803 if (rxstat & GEM_RD_BAD_CRC) {
1804 if_statinc(ifp, if_ierrors);
1805 DPRINTF(sc, ("%s: receive error: CRC error\n",
1806 device_xname(sc->sc_dev)));
1807 GEM_INIT_RXDESC(sc, i);
1808 continue;
1809 }
1810
1811 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1812 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1813 #ifdef GEM_DEBUG
1814 if (ifp->if_flags & IFF_DEBUG) {
1815 printf(" rxsoft %p descriptor %d: ", rxs, i);
1816 printf("gd_flags: 0x%016llx\t", (long long)
1817 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1818 printf("gd_addr: 0x%016llx\n", (long long)
1819 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1820 }
1821 #endif
1822
1823 /* No errors; receive the packet. */
1824 len = GEM_RD_BUFLEN(rxstat);
1825
1826 /*
1827 * Allocate a new mbuf cluster. If that fails, we are
1828 * out of memory, and must drop the packet and recycle
1829 * the buffer that's already attached to this descriptor.
1830 */
1831 m = rxs->rxs_mbuf;
1832 if (gem_add_rxbuf(sc, i) != 0) {
1833 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1834 if_statinc(ifp, if_ierrors);
1835 aprint_error_dev(sc->sc_dev,
1836 "receive error: RX no buffer space\n");
1837 GEM_INIT_RXDESC(sc, i);
1838 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1839 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1840 continue;
1841 }
1842 m->m_data += 2; /* We're already off by two */
1843
1844 m_set_rcvif(m, ifp);
1845 m->m_pkthdr.len = m->m_len = len;
1846
1847 #ifdef INET
1848 /* hardware checksum */
1849 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1850 struct ether_header *eh;
1851 struct ip *ip;
1852 int32_t hlen, pktlen;
1853
1854 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1855 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1856 ETHER_VLAN_ENCAP_LEN;
1857 eh = (struct ether_header *) (mtod(m, char *) +
1858 ETHER_VLAN_ENCAP_LEN);
1859 } else {
1860 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1861 eh = mtod(m, struct ether_header *);
1862 }
1863 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1864 goto swcsum;
1865 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1866
1867 /* IPv4 only */
1868 if (ip->ip_v != IPVERSION)
1869 goto swcsum;
1870
1871 hlen = ip->ip_hl << 2;
1872 if (hlen < sizeof(struct ip))
1873 goto swcsum;
1874
1875 /*
1876 * bail if too short, has random trailing garbage,
1877 * truncated, fragment, or has ethernet pad.
1878 */
1879 if ((ntohs(ip->ip_len) < hlen) ||
1880 (ntohs(ip->ip_len) != pktlen) ||
1881 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1882 goto swcsum;
1883
1884 switch (ip->ip_p) {
1885 case IPPROTO_TCP:
1886 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1887 goto swcsum;
1888 if (pktlen < (hlen + sizeof(struct tcphdr)))
1889 goto swcsum;
1890 m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1891 break;
1892 case IPPROTO_UDP:
1893 /* FALLTHROUGH */
1894 default:
1895 goto swcsum;
1896 }
1897
1898 /* the uncomplemented sum is expected */
1899 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1900
1901 /* if the pkt had ip options, we have to deduct them */
1902 if (hlen > sizeof(struct ip)) {
1903 uint16_t *opts;
1904 uint32_t optsum, temp;
1905
1906 optsum = 0;
1907 temp = hlen - sizeof(struct ip);
1908 opts = (uint16_t *) ((char *) ip +
1909 sizeof(struct ip));
1910
1911 while (temp > 1) {
1912 optsum += ntohs(*opts++);
1913 temp -= 2;
1914 }
1915 while (optsum >> 16)
1916 optsum = (optsum >> 16) +
1917 (optsum & 0xffff);
1918
1919 /* Deduct ip opts sum from hwsum. */
1920 m->m_pkthdr.csum_data += (uint16_t)~optsum;
1921
1922 while (m->m_pkthdr.csum_data >> 16)
1923 m->m_pkthdr.csum_data =
1924 (m->m_pkthdr.csum_data >> 16) +
1925 (m->m_pkthdr.csum_data &
1926 0xffff);
1927 }
1928
1929 m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1930 M_CSUM_NO_PSEUDOHDR;
1931 } else
1932 swcsum:
1933 m->m_pkthdr.csum_flags = 0;
1934 #endif
1935 /* Pass it on. */
1936 if_percpuq_enqueue(ifp->if_percpuq, m);
1937 }
1938
1939 if (progress) {
1940 /* Update the receive pointer. */
1941 if (i == sc->sc_rxptr) {
1942 GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1943 #ifdef GEM_DEBUG
1944 if (ifp->if_flags & IFF_DEBUG)
1945 printf("%s: rint: ring wrap\n",
1946 device_xname(sc->sc_dev));
1947 #endif
1948 }
1949 sc->sc_rxptr = i;
1950 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1951 }
1952 #ifdef GEM_COUNTERS
1953 if (progress <= 4) {
1954 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1955 } else if (progress < 32) {
1956 if (progress < 16)
1957 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1958 else
1959 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1960
1961 } else {
1962 if (progress < 64)
1963 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1964 else
1965 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1966 }
1967 #endif
1968
1969 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1970 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1971
1972 /* Read error counters ... */
1973 if_statadd(ifp, if_ierrors,
1974 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1975 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1976 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1977 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1978
1979 /* ... then clear the hardware counters. */
1980 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1981 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1982 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1983 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1984
1985 return (1);
1986 }
1987
1988
1989 /*
1990 * gem_add_rxbuf:
1991 *
1992 * Add a receive buffer to the indicated descriptor.
1993 */
1994 int
gem_add_rxbuf(struct gem_softc * sc,int idx)1995 gem_add_rxbuf(struct gem_softc *sc, int idx)
1996 {
1997 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1998 struct mbuf *m;
1999 int error;
2000
2001 MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 if (m == NULL)
2003 return (ENOBUFS);
2004
2005 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006 MCLGET(m, M_DONTWAIT);
2007 if ((m->m_flags & M_EXT) == 0) {
2008 m_freem(m);
2009 return (ENOBUFS);
2010 }
2011
2012 #ifdef GEM_DEBUG
2013 /* bzero the packet to check DMA */
2014 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2015 #endif
2016
2017 if (rxs->rxs_mbuf != NULL)
2018 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2019
2020 rxs->rxs_mbuf = m;
2021
2022 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2023 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2024 BUS_DMA_READ | BUS_DMA_NOWAIT);
2025 if (error) {
2026 aprint_error_dev(sc->sc_dev,
2027 "can't load rx DMA map %d, error = %d\n", idx, error);
2028 panic("gem_add_rxbuf"); /* XXX */
2029 }
2030
2031 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2032 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2033
2034 GEM_INIT_RXDESC(sc, idx);
2035
2036 return (0);
2037 }
2038
2039
2040 int
gem_eint(struct gem_softc * sc,u_int status)2041 gem_eint(struct gem_softc *sc, u_int status)
2042 {
2043 char bits[128];
2044 uint32_t r, v;
2045
2046 if ((status & GEM_INTR_MIF) != 0) {
2047 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2048 return (1);
2049 }
2050
2051 if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2052 gem_reset_rxdma(sc);
2053 return (1);
2054 }
2055
2056 if (status & GEM_INTR_BERR) {
2057 if (sc->sc_flags & GEM_PCI)
2058 r = GEM_ERROR_STATUS;
2059 else
2060 r = GEM_SBUS_ERROR_STATUS;
2061 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2062 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2064 v);
2065 return (1);
2066 }
2067 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2068 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2069
2070 return (1);
2071 }
2072
2073
2074 /*
2075 * PCS interrupts.
2076 * We should receive these when the link status changes, but sometimes
2077 * we don't receive them for link up. We compensate for this in the
2078 * gem_tick() callout.
2079 */
2080 int
gem_pint(struct gem_softc * sc)2081 gem_pint(struct gem_softc *sc)
2082 {
2083 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2084 bus_space_tag_t t = sc->sc_bustag;
2085 bus_space_handle_t h = sc->sc_h1;
2086 uint32_t v, v2;
2087
2088 /*
2089 * Clear the PCS interrupt from GEM_STATUS. The PCS register is
2090 * latched, so we have to read it twice. There is only one bit in
2091 * use, so the value is meaningless.
2092 */
2093 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2094 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095
2096 if ((ifp->if_flags & IFF_UP) == 0)
2097 return 1;
2098
2099 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2100 return 1;
2101
2102 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2103 /* If we see remote fault, our link partner is probably going away */
2104 if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2105 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2106 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 /* Otherwise, we may need to wait after auto-negotiation completes */
2108 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2109 GEM_MII_STATUS_ANEG_CPT) {
2110 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2111 v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 }
2113 if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2114 if (sc->sc_flags & GEM_LINK) {
2115 return 1;
2116 }
2117 callout_stop(&sc->sc_tick_ch);
2118 v = bus_space_read_4(t, h, GEM_MII_ANAR);
2119 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2120 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2121 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2122 v &= v2;
2123 if (v & GEM_MII_ANEG_FUL_DUPLX) {
2124 sc->sc_mii.mii_media_active |= IFM_FDX;
2125 #ifdef GEM_DEBUG
2126 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2127 #endif
2128 } else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2129 sc->sc_mii.mii_media_active |= IFM_HDX;
2130 #ifdef GEM_DEBUG
2131 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2132 #endif
2133 } else {
2134 #ifdef GEM_DEBUG
2135 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2136 #endif
2137 }
2138 gem_statuschange(sc);
2139 } else {
2140 if ((sc->sc_flags & GEM_LINK) == 0) {
2141 return 1;
2142 }
2143 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2144 sc->sc_mii.mii_media_status = IFM_AVALID;
2145 #ifdef GEM_DEBUG
2146 aprint_debug_dev(sc->sc_dev, "link down\n");
2147 #endif
2148 gem_statuschange(sc);
2149
2150 /* Start the 10 second timer */
2151 callout_schedule(&sc->sc_tick_ch, hz * 10);
2152 }
2153 return 1;
2154 }
2155
2156
2157
2158 int
gem_intr(void * v)2159 gem_intr(void *v)
2160 {
2161 struct gem_softc *sc = v;
2162 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2163 bus_space_tag_t t = sc->sc_bustag;
2164 bus_space_handle_t h = sc->sc_h1;
2165 uint32_t status;
2166 int r = 0;
2167 #ifdef GEM_DEBUG
2168 char bits[128];
2169 #endif
2170
2171 /* XXX We should probably mask out interrupts until we're done */
2172
2173 sc->sc_ev_intr.ev_count++;
2174
2175 status = bus_space_read_4(t, h, GEM_STATUS);
2176 #ifdef GEM_DEBUG
2177 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2178 #endif
2179 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2180 device_xname(sc->sc_dev), (status >> 19), bits));
2181
2182 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2183 r |= gem_eint(sc, status);
2184
2185 /* We don't bother with GEM_INTR_TX_DONE */
2186 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2187 GEM_COUNTER_INCR(sc, sc_ev_txint);
2188 r |= gem_tint(sc);
2189 }
2190
2191 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2192 GEM_COUNTER_INCR(sc, sc_ev_rxint);
2193 r |= gem_rint(sc);
2194 }
2195
2196 /* We should eventually do more than just print out error stats. */
2197 if (status & GEM_INTR_TX_MAC) {
2198 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2199 if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2200 printf("%s: MAC tx fault, status %x\n",
2201 device_xname(sc->sc_dev), txstat);
2202 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2203 gem_init(ifp);
2204 }
2205 if (status & GEM_INTR_RX_MAC) {
2206 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2207 /*
2208 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2209 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2210 * silicon bug so handle them silently. So if we detect
2211 * an RX FIFO overflow, we fire off a timer, and check
2212 * whether we're still making progress by looking at the
2213 * RX FIFO write and read pointers.
2214 */
2215 if (rxstat & GEM_MAC_RX_OVERFLOW) {
2216 if_statinc(ifp, if_ierrors);
2217 GEM_COUNTER_INCR(sc, sc_ev_rxoverflow);
2218 #ifdef GEM_DEBUG
2219 aprint_error_dev(sc->sc_dev,
2220 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2221 #endif
2222 sc->sc_rx_fifo_wr_ptr =
2223 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2224 sc->sc_rx_fifo_rd_ptr =
2225 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2226 callout_schedule(&sc->sc_rx_watchdog, 400);
2227 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2228 printf("%s: MAC rx fault, status 0x%02x\n",
2229 device_xname(sc->sc_dev), rxstat);
2230 }
2231 if (status & GEM_INTR_PCS) {
2232 r |= gem_pint(sc);
2233 }
2234
2235 /* Do we need to do anything with these?
2236 if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2237 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2238 if ((status2 & GEM_MAC_PAUSED) != 0)
2239 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2240 GEM_MAC_PAUSE_TIME(status2));
2241 if ((status2 & GEM_MAC_PAUSE) != 0)
2242 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2243 if ((status2 & GEM_MAC_RESUME) != 0)
2244 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2245 }
2246 if ((status & GEM_INTR_MIF) != 0)
2247 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2248 */
2249 rnd_add_uint32(&sc->rnd_source, status);
2250 return (r);
2251 }
2252
2253 void
gem_rx_watchdog(void * arg)2254 gem_rx_watchdog(void *arg)
2255 {
2256 struct gem_softc *sc = arg;
2257 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2258 bus_space_tag_t t = sc->sc_bustag;
2259 bus_space_handle_t h = sc->sc_h1;
2260 uint32_t rx_fifo_wr_ptr;
2261 uint32_t rx_fifo_rd_ptr;
2262 uint32_t state;
2263
2264 if ((ifp->if_flags & IFF_RUNNING) == 0) {
2265 aprint_error_dev(sc->sc_dev, "receiver not running\n");
2266 return;
2267 }
2268
2269 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2270 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2271 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2272 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2273 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2274 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2275 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2276 {
2277 /*
2278 * The RX state machine is still in overflow state and
2279 * the RX FIFO write and read pointers seem to be
2280 * stuck. Whack the chip over the head to get things
2281 * going again.
2282 */
2283 aprint_error_dev(sc->sc_dev,
2284 "receiver stuck in overflow, resetting\n");
2285 gem_init(ifp);
2286 } else {
2287 int needreset = 1;
2288 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2289 DPRINTF(sc,
2290 ("%s: rx_watchdog: not in overflow state: 0x%x\n",
2291 device_xname(sc->sc_dev), state));
2292 }
2293 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2294 DPRINTF(sc,
2295 ("%s: rx_watchdog: wr & rd ptr different\n",
2296 device_xname(sc->sc_dev)));
2297 needreset = 0;
2298 }
2299 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2300 DPRINTF(sc, ("%s: rx_watchdog: wr pointer != saved\n",
2301 device_xname(sc->sc_dev)));
2302 needreset = 0;
2303 }
2304 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2305 DPRINTF(sc, ("%s: rx_watchdog: rd pointer != saved\n",
2306 device_xname(sc->sc_dev)));
2307 needreset = 0;
2308 }
2309 if (needreset) {
2310 aprint_error_dev(sc->sc_dev,
2311 "rx_watchdog: resetting anyway\n");
2312 gem_init(ifp);
2313 }
2314 }
2315 }
2316
2317 void
gem_watchdog(struct ifnet * ifp)2318 gem_watchdog(struct ifnet *ifp)
2319 {
2320 struct gem_softc *sc = ifp->if_softc;
2321
2322 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2323 "GEM_MAC_RX_CONFIG %x\n",
2324 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2325 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2326 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2327
2328 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2329 if_statinc(ifp, if_oerrors);
2330
2331 /* Try to get more packets going. */
2332 gem_init(ifp);
2333 gem_start(ifp);
2334 }
2335
2336 /*
2337 * Initialize the MII Management Interface
2338 */
2339 void
gem_mifinit(struct gem_softc * sc)2340 gem_mifinit(struct gem_softc *sc)
2341 {
2342 bus_space_tag_t t = sc->sc_bustag;
2343 bus_space_handle_t mif = sc->sc_h1;
2344
2345 /* Configure the MIF in frame mode */
2346 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2347 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2348 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2349 }
2350
2351 /*
2352 * MII interface
2353 *
2354 * The GEM MII interface supports at least three different operating modes:
2355 *
2356 * Bitbang mode is implemented using data, clock and output enable registers.
2357 *
2358 * Frame mode is implemented by loading a complete frame into the frame
2359 * register and polling the valid bit for completion.
2360 *
2361 * Polling mode uses the frame register but completion is indicated by
2362 * an interrupt.
2363 *
2364 */
2365 static int
gem_mii_readreg(device_t self,int phy,int reg,uint16_t * val)2366 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2367 {
2368 struct gem_softc *sc = device_private(self);
2369 bus_space_tag_t t = sc->sc_bustag;
2370 bus_space_handle_t mif = sc->sc_h1;
2371 int n;
2372 uint32_t v;
2373
2374 #ifdef GEM_DEBUG1
2375 if (sc->sc_debug)
2376 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2377 #endif
2378
2379 /* Construct the frame command */
2380 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
2381 GEM_MIF_FRAME_READ;
2382
2383 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2384 for (n = 0; n < 100; n++) {
2385 DELAY(1);
2386 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2387 if (v & GEM_MIF_FRAME_TA0) {
2388 *val = v & GEM_MIF_FRAME_DATA;
2389 return 0;
2390 }
2391 }
2392
2393 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2394 return ETIMEDOUT;
2395 }
2396
2397 static int
gem_mii_writereg(device_t self,int phy,int reg,uint16_t val)2398 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2399 {
2400 struct gem_softc *sc = device_private(self);
2401 bus_space_tag_t t = sc->sc_bustag;
2402 bus_space_handle_t mif = sc->sc_h1;
2403 int n;
2404 uint32_t v;
2405
2406 #ifdef GEM_DEBUG1
2407 if (sc->sc_debug)
2408 printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2409 phy, reg, val);
2410 #endif
2411
2412 /* Construct the frame command */
2413 v = GEM_MIF_FRAME_WRITE |
2414 (phy << GEM_MIF_PHY_SHIFT) |
2415 (reg << GEM_MIF_REG_SHIFT) |
2416 (val & GEM_MIF_FRAME_DATA);
2417
2418 bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2419 for (n = 0; n < 100; n++) {
2420 DELAY(1);
2421 v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2422 if (v & GEM_MIF_FRAME_TA0)
2423 return 0;
2424 }
2425
2426 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2427 return ETIMEDOUT;
2428 }
2429
2430 static void
gem_mii_statchg(struct ifnet * ifp)2431 gem_mii_statchg(struct ifnet *ifp)
2432 {
2433 struct gem_softc *sc = ifp->if_softc;
2434 #ifdef GEM_DEBUG
2435 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2436 #endif
2437
2438 #ifdef GEM_DEBUG
2439 if (sc->sc_debug)
2440 printf("gem_mii_statchg: status change: phy = %d\n",
2441 sc->sc_phys[instance]);
2442 #endif
2443 gem_statuschange(sc);
2444 }
2445
2446 /*
2447 * Common status change for gem_mii_statchg() and gem_pint()
2448 */
2449 void
gem_statuschange(struct gem_softc * sc)2450 gem_statuschange(struct gem_softc* sc)
2451 {
2452 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2453 bus_space_tag_t t = sc->sc_bustag;
2454 bus_space_handle_t mac = sc->sc_h1;
2455 int gigabit;
2456 uint32_t rxcfg, txcfg, v;
2457
2458 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2459 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2460 sc->sc_flags |= GEM_LINK;
2461 else
2462 sc->sc_flags &= ~GEM_LINK;
2463
2464 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2465 gigabit = 1;
2466 else
2467 gigabit = 0;
2468
2469 /*
2470 * The configuration done here corresponds to the steps F) and
2471 * G) and as far as enabling of RX and TX MAC goes also step H)
2472 * of the initialization sequence outlined in section 3.2.1 of
2473 * the GEM Gigabit Ethernet ASIC Specification.
2474 */
2475
2476 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2477 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2478 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2479 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2480 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2481 else if (gigabit) {
2482 rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2483 txcfg |= GEM_MAC_RX_CARR_EXTEND;
2484 }
2485 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2486 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2487 BUS_SPACE_BARRIER_WRITE);
2488 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2489 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2490 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2491 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2492 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2493 BUS_SPACE_BARRIER_WRITE);
2494 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2495 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2496 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2497
2498 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2499 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2500 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2501
2502 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2503 gigabit != 0)
2504 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2505 GEM_MAC_SLOT_TIME_CARR_EXTEND);
2506 else
2507 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2508 GEM_MAC_SLOT_TIME_NORMAL);
2509
2510 /* XIF Configuration */
2511 if (sc->sc_flags & GEM_LINK)
2512 v = GEM_MAC_XIF_LINK_LED;
2513 else
2514 v = 0;
2515 v |= GEM_MAC_XIF_TX_MII_ENA;
2516
2517 /* If an external transceiver is connected, enable its MII drivers */
2518 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2519 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2520 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2521 if (gigabit)
2522 v |= GEM_MAC_XIF_GMII_MODE;
2523 else
2524 v &= ~GEM_MAC_XIF_GMII_MODE;
2525 } else
2526 /* Internal MII needs buf enable */
2527 v |= GEM_MAC_XIF_MII_BUF_ENA;
2528 /* MII needs echo disable if half duplex. */
2529 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2530 /* turn on full duplex LED */
2531 v |= GEM_MAC_XIF_FDPLX_LED;
2532 else
2533 /* half duplex -- disable echo */
2534 v |= GEM_MAC_XIF_ECHO_DISABL;
2535 } else {
2536 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2537 v |= GEM_MAC_XIF_FDPLX_LED;
2538 v |= GEM_MAC_XIF_GMII_MODE;
2539 }
2540 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2541
2542 if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2543 (sc->sc_flags & GEM_LINK) != 0) {
2544 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2545 txcfg | GEM_MAC_TX_ENABLE);
2546 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2547 rxcfg | GEM_MAC_RX_ENABLE);
2548 }
2549 }
2550
2551 int
gem_ser_mediachange(struct ifnet * ifp)2552 gem_ser_mediachange(struct ifnet *ifp)
2553 {
2554 struct gem_softc *sc = ifp->if_softc;
2555 u_int s, t;
2556
2557 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2558 return EINVAL;
2559
2560 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2561 if (s == IFM_AUTO) {
2562 if (sc->sc_mii_media != s) {
2563 #ifdef GEM_DEBUG
2564 aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2565 #endif
2566 sc->sc_mii_media = s;
2567 if (ifp->if_flags & IFF_UP) {
2568 gem_pcs_stop(sc, 0);
2569 gem_pcs_start(sc);
2570 }
2571 }
2572 return 0;
2573 }
2574 if (s == IFM_1000_SX) {
2575 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2576 & (IFM_FDX | IFM_HDX);
2577 if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2578 sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2579 sc->sc_mii_media |= t;
2580 #ifdef GEM_DEBUG
2581 aprint_debug_dev(sc->sc_dev,
2582 "setting media to 1000baseSX-%s\n",
2583 t == IFM_FDX ? "FDX" : "HDX");
2584 #endif
2585 if (ifp->if_flags & IFF_UP) {
2586 gem_pcs_stop(sc, 0);
2587 gem_pcs_start(sc);
2588 }
2589 }
2590 return 0;
2591 }
2592 return EINVAL;
2593 }
2594
2595 void
gem_ser_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)2596 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2597 {
2598 struct gem_softc *sc = ifp->if_softc;
2599
2600 if ((ifp->if_flags & IFF_UP) == 0)
2601 return;
2602 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2603 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2604 }
2605
2606 static int
gem_ifflags_cb(struct ethercom * ec)2607 gem_ifflags_cb(struct ethercom *ec)
2608 {
2609 struct ifnet *ifp = &ec->ec_if;
2610 struct gem_softc *sc = ifp->if_softc;
2611 u_short change = ifp->if_flags ^ sc->sc_if_flags;
2612
2613 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2614 return ENETRESET;
2615 else if ((change & IFF_PROMISC) != 0)
2616 gem_setladrf(sc);
2617 return 0;
2618 }
2619
2620 /*
2621 * Process an ioctl request.
2622 */
2623 int
gem_ioctl(struct ifnet * ifp,unsigned long cmd,void * data)2624 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2625 {
2626 struct gem_softc *sc = ifp->if_softc;
2627 int s, error = 0;
2628
2629 s = splnet();
2630
2631 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2632 error = 0;
2633 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2634 ;
2635 else if (ifp->if_flags & IFF_RUNNING) {
2636 /*
2637 * Multicast list has changed; set the hardware filter
2638 * accordingly.
2639 */
2640 gem_setladrf(sc);
2641 }
2642 }
2643
2644 /* Try to get things going again */
2645 if (ifp->if_flags & IFF_UP)
2646 gem_start(ifp);
2647 splx(s);
2648 return (error);
2649 }
2650
2651 static void
gem_inten(struct gem_softc * sc)2652 gem_inten(struct gem_softc *sc)
2653 {
2654 bus_space_tag_t t = sc->sc_bustag;
2655 bus_space_handle_t h = sc->sc_h1;
2656 uint32_t v;
2657
2658 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2659 v = GEM_INTR_PCS;
2660 else
2661 v = GEM_INTR_MIF;
2662 bus_space_write_4(t, h, GEM_INTMASK,
2663 ~(GEM_INTR_TX_INTME |
2664 GEM_INTR_TX_EMPTY |
2665 GEM_INTR_TX_MAC |
2666 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2667 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2668 GEM_INTR_BERR | v));
2669 }
2670
2671 bool
gem_resume(device_t self,const pmf_qual_t * qual)2672 gem_resume(device_t self, const pmf_qual_t *qual)
2673 {
2674 struct gem_softc *sc = device_private(self);
2675
2676 gem_inten(sc);
2677
2678 return true;
2679 }
2680
2681 bool
gem_suspend(device_t self,const pmf_qual_t * qual)2682 gem_suspend(device_t self, const pmf_qual_t *qual)
2683 {
2684 struct gem_softc *sc = device_private(self);
2685 bus_space_tag_t t = sc->sc_bustag;
2686 bus_space_handle_t h = sc->sc_h1;
2687
2688 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2689
2690 return true;
2691 }
2692
2693 bool
gem_shutdown(device_t self,int howto)2694 gem_shutdown(device_t self, int howto)
2695 {
2696 struct gem_softc *sc = device_private(self);
2697 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2698
2699 gem_stop(ifp, 1);
2700
2701 return true;
2702 }
2703
2704 /*
2705 * Set up the logical address filter.
2706 */
2707 void
gem_setladrf(struct gem_softc * sc)2708 gem_setladrf(struct gem_softc *sc)
2709 {
2710 struct ethercom *ec = &sc->sc_ethercom;
2711 struct ifnet *ifp = &ec->ec_if;
2712 struct ether_multi *enm;
2713 struct ether_multistep step;
2714 bus_space_tag_t t = sc->sc_bustag;
2715 bus_space_handle_t h = sc->sc_h1;
2716 uint32_t crc;
2717 uint32_t hash[16];
2718 uint32_t v;
2719 int i;
2720
2721 /* Get current RX configuration */
2722 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2723
2724 /*
2725 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2726 * and hash filter. Depending on the case, the right bit will be
2727 * enabled.
2728 */
2729 v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2730 GEM_MAC_RX_PROMISC_GRP);
2731
2732 if ((ifp->if_flags & IFF_PROMISC) != 0) {
2733 /* Turn on promiscuous mode */
2734 v |= GEM_MAC_RX_PROMISCUOUS;
2735 ifp->if_flags |= IFF_ALLMULTI;
2736 goto chipit;
2737 }
2738
2739 /*
2740 * Set up multicast address filter by passing all multicast addresses
2741 * through a crc generator, and then using the high order 8 bits as an
2742 * index into the 256 bit logical address filter. The high order 4
2743 * bits selects the word, while the other 4 bits select the bit within
2744 * the word (where bit 0 is the MSB).
2745 */
2746
2747 /* Clear hash table */
2748 memset(hash, 0, sizeof(hash));
2749
2750 ETHER_LOCK(ec);
2751 ETHER_FIRST_MULTI(step, ec, enm);
2752 while (enm != NULL) {
2753 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2754 /*
2755 * We must listen to a range of multicast addresses.
2756 * For now, just accept all multicasts, rather than
2757 * trying to set only those filter bits needed to match
2758 * the range. (At this time, the only use of address
2759 * ranges is for IP multicast routing, for which the
2760 * range is big enough to require all bits set.)
2761 * XXX should use the address filters for this
2762 */
2763 ifp->if_flags |= IFF_ALLMULTI;
2764 v |= GEM_MAC_RX_PROMISC_GRP;
2765 ETHER_UNLOCK(ec);
2766 goto chipit;
2767 }
2768
2769 /* Get the LE CRC32 of the address */
2770 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2771
2772 /* Just want the 8 most significant bits. */
2773 crc >>= 24;
2774
2775 /* Set the corresponding bit in the filter. */
2776 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2777
2778 ETHER_NEXT_MULTI(step, enm);
2779 }
2780 ETHER_UNLOCK(ec);
2781
2782 v |= GEM_MAC_RX_HASH_FILTER;
2783 ifp->if_flags &= ~IFF_ALLMULTI;
2784
2785 /* Now load the hash table into the chip (if we are using it) */
2786 for (i = 0; i < 16; i++) {
2787 bus_space_write_4(t, h,
2788 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2789 hash[i]);
2790 }
2791
2792 chipit:
2793 sc->sc_if_flags = ifp->if_flags;
2794 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2795 }
2796