xref: /netbsd-src/sys/dev/ic/gem.c (revision 481d3881954fd794ca5f2d880b68c53a5db8620e)
1 /*	$NetBSD: gem.c,v 1.138 2024/07/05 04:31:51 rin Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.138 2024/07/05 04:31:51 rin Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/kernel.h>
50 #include <sys/socket.h>
51 #include <sys/ioctl.h>
52 #include <sys/errno.h>
53 #include <sys/device.h>
54 
55 #include <machine/endian.h>
56 
57 #include <net/if.h>
58 #include <net/if_dl.h>
59 #include <net/if_media.h>
60 #include <net/if_ether.h>
61 
62 #ifdef INET
63 #include <netinet/in.h>
64 #include <netinet/in_systm.h>
65 #include <netinet/in_var.h>
66 #include <netinet/ip.h>
67 #include <netinet/tcp.h>
68 #include <netinet/udp.h>
69 #endif
70 
71 #include <net/bpf.h>
72 
73 #include <sys/bus.h>
74 #include <sys/intr.h>
75 
76 #include <dev/mii/mii.h>
77 #include <dev/mii/miivar.h>
78 #include <dev/mii/mii_bitbang.h>
79 
80 #include <dev/ic/gemreg.h>
81 #include <dev/ic/gemvar.h>
82 
83 #define TRIES	10000
84 
85 static void	gem_inten(struct gem_softc *);
86 static void	gem_start(struct ifnet *);
87 static void	gem_stop(struct ifnet *, int);
88 int		gem_ioctl(struct ifnet *, u_long, void *);
89 void		gem_tick(void *);
90 void		gem_watchdog(struct ifnet *);
91 void		gem_rx_watchdog(void *);
92 void		gem_pcs_start(struct gem_softc *sc);
93 void		gem_pcs_stop(struct gem_softc *sc, int);
94 int		gem_init(struct ifnet *);
95 void		gem_init_regs(struct gem_softc *sc);
96 static int	gem_ringsize(int sz);
97 static int	gem_meminit(struct gem_softc *);
98 void		gem_mifinit(struct gem_softc *);
99 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
100 		    uint32_t, uint32_t);
101 void		gem_reset(struct gem_softc *);
102 int		gem_reset_rx(struct gem_softc *sc);
103 static void	gem_reset_rxdma(struct gem_softc *sc);
104 static void	gem_rx_common(struct gem_softc *sc);
105 int		gem_reset_tx(struct gem_softc *sc);
106 int		gem_disable_rx(struct gem_softc *sc);
107 int		gem_disable_tx(struct gem_softc *sc);
108 static void	gem_rxdrain(struct gem_softc *sc);
109 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
110 void		gem_setladrf(struct gem_softc *);
111 
112 /* MII methods & callbacks */
113 static int	gem_mii_readreg(device_t, int, int, uint16_t *);
114 static int	gem_mii_writereg(device_t, int, int, uint16_t);
115 static void	gem_mii_statchg(struct ifnet *);
116 
117 static int	gem_ifflags_cb(struct ethercom *);
118 
119 void		gem_statuschange(struct gem_softc *);
120 
121 int		gem_ser_mediachange(struct ifnet *);
122 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
123 
124 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
125 
126 struct mbuf	*gem_get(struct gem_softc *, int, int);
127 int		gem_put(struct gem_softc *, int, struct mbuf *);
128 void		gem_read(struct gem_softc *, int, int);
129 int		gem_pint(struct gem_softc *);
130 int		gem_eint(struct gem_softc *, u_int);
131 int		gem_rint(struct gem_softc *);
132 int		gem_tint(struct gem_softc *);
133 void		gem_power(int, void *);
134 
135 #ifdef GEM_DEBUG
136 static void gem_txsoft_print(const struct gem_softc *, int, int);
137 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
138 				printf x
139 #else
140 #define	DPRINTF(sc, x)	/* nothing */
141 #endif
142 
143 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
144 
145 int
gem_detach(struct gem_softc * sc,int flags)146 gem_detach(struct gem_softc *sc, int flags)
147 {
148 	int i;
149 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
150 	bus_space_tag_t t = sc->sc_bustag;
151 	bus_space_handle_t h = sc->sc_h1;
152 
153 	/*
154 	 * Free any resources we've allocated during the attach.
155 	 * Do this in reverse order and fall through.
156 	 */
157 	switch (sc->sc_att_stage) {
158 	case GEM_ATT_BACKEND_2:
159 	case GEM_ATT_BACKEND_1:
160 	case GEM_ATT_FINISHED:
161 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
162 		gem_stop(&sc->sc_ethercom.ec_if, 1);
163 
164 #ifdef GEM_COUNTERS
165 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
166 			evcnt_detach(&sc->sc_ev_rxhist[i]);
167 		evcnt_detach(&sc->sc_ev_rxnobuf);
168 		evcnt_detach(&sc->sc_ev_rxfull);
169 		evcnt_detach(&sc->sc_ev_rxint);
170 		evcnt_detach(&sc->sc_ev_txint);
171 		evcnt_detach(&sc->sc_ev_rxoverflow);
172 #endif
173 		evcnt_detach(&sc->sc_ev_intr);
174 
175 		rnd_detach_source(&sc->rnd_source);
176 		ether_ifdetach(ifp);
177 		if_detach(ifp);
178 
179 		callout_destroy(&sc->sc_tick_ch);
180 		callout_destroy(&sc->sc_rx_watchdog);
181 
182 		/*FALLTHROUGH*/
183 	case GEM_ATT_MII:
184 		sc->sc_att_stage = GEM_ATT_MII;
185 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
186 		ifmedia_fini(&sc->sc_mii.mii_media);
187 
188 		/*FALLTHROUGH*/
189 	case GEM_ATT_7:
190 		for (i = 0; i < GEM_NRXDESC; i++) {
191 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
192 				bus_dmamap_destroy(sc->sc_dmatag,
193 				    sc->sc_rxsoft[i].rxs_dmamap);
194 		}
195 		/*FALLTHROUGH*/
196 	case GEM_ATT_6:
197 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
198 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
199 				bus_dmamap_destroy(sc->sc_dmatag,
200 				    sc->sc_txsoft[i].txs_dmamap);
201 		}
202 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
203 		/*FALLTHROUGH*/
204 	case GEM_ATT_5:
205 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
206 		/*FALLTHROUGH*/
207 	case GEM_ATT_4:
208 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
209 		/*FALLTHROUGH*/
210 	case GEM_ATT_3:
211 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
212 		/*FALLTHROUGH*/
213 	case GEM_ATT_2:
214 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
215 		    sizeof(struct gem_control_data));
216 		/*FALLTHROUGH*/
217 	case GEM_ATT_1:
218 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
219 		/*FALLTHROUGH*/
220 	case GEM_ATT_0:
221 		sc->sc_att_stage = GEM_ATT_0;
222 		/*FALLTHROUGH*/
223 	case GEM_ATT_BACKEND_0:
224 		break;
225 	}
226 	return 0;
227 }
228 
229 static void
gem_partial_detach(struct gem_softc * sc,enum gem_attach_stage stage)230 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
231 {
232 	cfattach_t ca = device_cfattach(sc->sc_dev);
233 
234 	sc->sc_att_stage = stage;
235 	(*ca->ca_detach)(sc->sc_dev, 0);
236 }
237 
238 /*
239  * gem_attach:
240  *
241  *	Attach a Gem interface to the system.
242  */
243 void
gem_attach(struct gem_softc * sc,const uint8_t * enaddr)244 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
245 {
246 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
247 	struct mii_data *mii = &sc->sc_mii;
248 	bus_space_tag_t t = sc->sc_bustag;
249 	bus_space_handle_t h = sc->sc_h1;
250 	struct ifmedia_entry *ife;
251 	int i, error, phyaddr;
252 	uint32_t v;
253 	char *nullbuf;
254 
255 	/* Make sure the chip is stopped. */
256 	ifp->if_softc = sc;
257 	gem_reset(sc);
258 
259 	/*
260 	 * Allocate the control data structures, and create and load the
261 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
262 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
263 	 */
264 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
265 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
266 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
267 		aprint_error_dev(sc->sc_dev,
268 		   "unable to allocate control data, error = %d\n",
269 		    error);
270 		gem_partial_detach(sc, GEM_ATT_0);
271 		return;
272 	}
273 
274 	/* XXX should map this in with correct endianness */
275 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
276 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
277 	    BUS_DMA_COHERENT)) != 0) {
278 		aprint_error_dev(sc->sc_dev,
279 		    "unable to map control data, error = %d\n", error);
280 		gem_partial_detach(sc, GEM_ATT_1);
281 		return;
282 	}
283 
284 	nullbuf =
285 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
286 
287 	if ((error = bus_dmamap_create(sc->sc_dmatag,
288 	    sizeof(struct gem_control_data), 1,
289 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
290 		aprint_error_dev(sc->sc_dev,
291 		    "unable to create control data DMA map, error = %d\n",
292 		    error);
293 		gem_partial_detach(sc, GEM_ATT_2);
294 		return;
295 	}
296 
297 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
298 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
299 	    0)) != 0) {
300 		aprint_error_dev(sc->sc_dev,
301 		    "unable to load control data DMA map, error = %d\n",
302 		    error);
303 		gem_partial_detach(sc, GEM_ATT_3);
304 		return;
305 	}
306 
307 	memset(nullbuf, 0, ETHER_MIN_TX);
308 	if ((error = bus_dmamap_create(sc->sc_dmatag,
309 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
310 		aprint_error_dev(sc->sc_dev,
311 		    "unable to create padding DMA map, error = %d\n", error);
312 		gem_partial_detach(sc, GEM_ATT_4);
313 		return;
314 	}
315 
316 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
317 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
318 		aprint_error_dev(sc->sc_dev,
319 		    "unable to load padding DMA map, error = %d\n", error);
320 		gem_partial_detach(sc, GEM_ATT_5);
321 		return;
322 	}
323 
324 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
325 	    BUS_DMASYNC_PREWRITE);
326 
327 	/*
328 	 * Initialize the transmit job descriptors.
329 	 */
330 	SIMPLEQ_INIT(&sc->sc_txfreeq);
331 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
332 
333 	/*
334 	 * Create the transmit buffer DMA maps.
335 	 */
336 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
337 		struct gem_txsoft *txs;
338 
339 		txs = &sc->sc_txsoft[i];
340 		txs->txs_mbuf = NULL;
341 		if ((error = bus_dmamap_create(sc->sc_dmatag,
342 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
343 		    ETHER_MAX_LEN_JUMBO, 0, 0,
344 		    &txs->txs_dmamap)) != 0) {
345 			aprint_error_dev(sc->sc_dev,
346 			    "unable to create tx DMA map %d, error = %d\n",
347 			    i, error);
348 			gem_partial_detach(sc, GEM_ATT_6);
349 			return;
350 		}
351 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
352 	}
353 
354 	/*
355 	 * Create the receive buffer DMA maps.
356 	 */
357 	for (i = 0; i < GEM_NRXDESC; i++) {
358 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
359 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
360 			aprint_error_dev(sc->sc_dev,
361 			    "unable to create rx DMA map %d, error = %d\n",
362 			    i, error);
363 			gem_partial_detach(sc, GEM_ATT_7);
364 			return;
365 		}
366 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
367 	}
368 
369 	/* Initialize ifmedia structures and MII info */
370 	mii->mii_ifp = ifp;
371 	mii->mii_readreg = gem_mii_readreg;
372 	mii->mii_writereg = gem_mii_writereg;
373 	mii->mii_statchg = gem_mii_statchg;
374 
375 	sc->sc_ethercom.ec_mii = mii;
376 
377 	/*
378 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
379 	 * Section 3.2.1 `Initialization Sequence'.
380 	 * However, we can't assume SERDES or Serialink if neither
381 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
382 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
383 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
384 	 * Also, for variants that report 2 PHY's, we prefer the external
385 	 * PHY over the internal PHY, so we look for that first.
386 	 */
387 	gem_mifinit(sc);
388 
389 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
390 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
391 		    ether_mediastatus);
392 		/* Look for external PHY */
393 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
394 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
395 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
396 			    sc->sc_mif_config);
397 			switch (sc->sc_variant) {
398 			case GEM_SUN_ERI:
399 				phyaddr = GEM_PHYAD_EXTERNAL;
400 				break;
401 			default:
402 				phyaddr = MII_PHY_ANY;
403 				break;
404 			}
405 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
406 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
407 		}
408 #ifdef GEM_DEBUG
409 		  else
410 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
411 #endif
412 		/* Look for internal PHY if no external PHY was found */
413 		if (LIST_EMPTY(&mii->mii_phys) &&
414 		    ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
415 		     (sc->sc_variant == GEM_APPLE_K2_GMAC))) {
416 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
417 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
418 			    sc->sc_mif_config);
419 			switch (sc->sc_variant) {
420 			case GEM_SUN_ERI:
421 			case GEM_APPLE_K2_GMAC:
422 				phyaddr = GEM_PHYAD_INTERNAL;
423 				break;
424 			case GEM_APPLE_GMAC:
425 				phyaddr = GEM_PHYAD_EXTERNAL;
426 				break;
427 			default:
428 				phyaddr = MII_PHY_ANY;
429 				break;
430 			}
431 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
432 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
433 #ifdef GEM_DEBUG
434 			if (!LIST_EMPTY(&mii->mii_phys))
435 				aprint_debug_dev(sc->sc_dev,
436 				    "using internal PHY\n");
437 #endif
438 		}
439 		if (LIST_EMPTY(&mii->mii_phys)) {
440 				/* No PHY attached */
441 				aprint_error_dev(sc->sc_dev,
442 				    "PHY probe failed\n");
443 				gem_partial_detach(sc, GEM_ATT_MII);
444 				return;
445 		} else {
446 			struct mii_softc *child;
447 
448 			/*
449 			 * Walk along the list of attached MII devices and
450 			 * establish an `MII instance' to `PHY number'
451 			 * mapping.
452 			 */
453 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
454 				/*
455 				 * Note: we support just one PHY: the internal
456 				 * or external MII is already selected for us
457 				 * by the GEM_MIF_CONFIG  register.
458 				 */
459 				if (child->mii_phy > 1 || child->mii_inst > 0) {
460 					aprint_error_dev(sc->sc_dev,
461 					    "cannot accommodate MII device"
462 					    " %s at PHY %d, instance %d\n",
463 					       device_xname(child->mii_dev),
464 					       child->mii_phy, child->mii_inst);
465 					continue;
466 				}
467 				sc->sc_phys[child->mii_inst] = child->mii_phy;
468 			}
469 
470 			if (sc->sc_variant != GEM_SUN_ERI)
471 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
472 				    GEM_MII_DATAPATH_MII);
473 
474 			/*
475 			 * XXX - we can really do the following ONLY if the
476 			 * PHY indeed has the auto negotiation capability!!
477 			 */
478 			ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
479 		}
480 	} else {
481 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
482 		    gem_ser_mediastatus);
483 		/* SERDES or Serialink */
484 		if (sc->sc_flags & GEM_SERDES) {
485 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
486 			    GEM_MII_DATAPATH_SERDES);
487 		} else {
488 			sc->sc_flags |= GEM_SERIAL;
489 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
490 			    GEM_MII_DATAPATH_SERIAL);
491 		}
492 
493 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
494 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
495 
496 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
497 		/* Check for FDX and HDX capabilities */
498 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
499 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
500 			ifmedia_add(&mii->mii_media, IFM_ETHER |
501 			    IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
502 			aprint_normal("1000baseSX-FDX, ");
503 		}
504 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
505 			ifmedia_add(&mii->mii_media, IFM_ETHER |
506 			    IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
507 			aprint_normal("1000baseSX-HDX, ");
508 		}
509 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
510 		sc->sc_mii_media = IFM_AUTO;
511 		aprint_normal("auto\n");
512 
513 		gem_pcs_stop(sc, 1);
514 	}
515 
516 	/*
517 	 * From this point forward, the attachment cannot fail.  A failure
518 	 * before this point releases all resources that may have been
519 	 * allocated.
520 	 */
521 
522 	/* Announce ourselves. */
523 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
524 	    ether_sprintf(enaddr));
525 
526 	/* Get RX FIFO size */
527 	sc->sc_rxfifosize = 64 *
528 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
529 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
530 
531 	/* Get TX FIFO size */
532 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
533 	aprint_normal(", %uKB TX fifo\n", v / 16);
534 
535 	/* Initialize ifnet structure. */
536 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
537 	ifp->if_softc = sc;
538 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
539 	sc->sc_if_flags = ifp->if_flags;
540 #if 0
541 	/*
542 	 * The GEM hardware supports basic TCP checksum offloading only.
543 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
544 	 * have bugs in the receive checksum, so don't enable it for now.
545 	 */
546 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
547 	    (GEM_IS_APPLE(sc) &&
548 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
549 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
550 #endif
551 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
552 	ifp->if_start = gem_start;
553 	ifp->if_ioctl = gem_ioctl;
554 	ifp->if_watchdog = gem_watchdog;
555 	ifp->if_stop = gem_stop;
556 	ifp->if_init = gem_init;
557 	IFQ_SET_READY(&ifp->if_snd);
558 
559 	/*
560 	 * If we support GigE media, we support jumbo frames too.
561 	 * Unless we are Apple.
562 	 */
563 	TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
564 		if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
565 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
566 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
567 		    IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
568 			if (!GEM_IS_APPLE(sc))
569 				sc->sc_ethercom.ec_capabilities
570 				    |= ETHERCAP_JUMBO_MTU;
571 			sc->sc_flags |= GEM_GIGABIT;
572 			break;
573 		}
574 	}
575 
576 	/* claim 802.1q capability */
577 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
578 
579 	/* Attach the interface. */
580 	if_attach(ifp);
581 	if_deferred_start_init(ifp, NULL);
582 	ether_ifattach(ifp, enaddr);
583 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
584 
585 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
586 			  RND_TYPE_NET, RND_FLAG_DEFAULT);
587 
588 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
589 	    NULL, device_xname(sc->sc_dev), "interrupts");
590 #ifdef GEM_COUNTERS
591 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxoverflow, EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx overflow");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
615 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
616 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
617 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
618 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
619 #endif
620 
621 	callout_init(&sc->sc_tick_ch, 0);
622 	callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
623 
624 	callout_init(&sc->sc_rx_watchdog, 0);
625 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
626 
627 	sc->sc_att_stage = GEM_ATT_FINISHED;
628 
629 	return;
630 }
631 
632 void
gem_tick(void * arg)633 gem_tick(void *arg)
634 {
635 	struct gem_softc *sc = arg;
636 	int s;
637 
638 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
639 		/*
640 		 * We have to reset everything if we failed to get a
641 		 * PCS interrupt.  Restarting the callout is handled
642 		 * in gem_pcs_start().
643 		 */
644 		gem_init(&sc->sc_ethercom.ec_if);
645 	} else {
646 		s = splnet();
647 		mii_tick(&sc->sc_mii);
648 		splx(s);
649 		callout_schedule(&sc->sc_tick_ch, hz);
650 	}
651 }
652 
653 static int
gem_bitwait(struct gem_softc * sc,bus_space_handle_t h,int r,uint32_t clr,uint32_t set)654 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
655     uint32_t set)
656 {
657 	int i;
658 	uint32_t reg;
659 
660 	for (i = TRIES; i--; DELAY(100)) {
661 		reg = bus_space_read_4(sc->sc_bustag, h, r);
662 		if ((reg & clr) == 0 && (reg & set) == set)
663 			return (1);
664 	}
665 	return (0);
666 }
667 
668 void
gem_reset(struct gem_softc * sc)669 gem_reset(struct gem_softc *sc)
670 {
671 	bus_space_tag_t t = sc->sc_bustag;
672 	bus_space_handle_t h = sc->sc_h2;
673 	int s;
674 
675 	s = splnet();
676 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
677 	gem_reset_rx(sc);
678 	gem_reset_tx(sc);
679 
680 	/* Do a full reset */
681 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
682 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
683 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
684 	splx(s);
685 }
686 
687 
688 /*
689  * gem_rxdrain:
690  *
691  *	Drain the receive queue.
692  */
693 static void
gem_rxdrain(struct gem_softc * sc)694 gem_rxdrain(struct gem_softc *sc)
695 {
696 	struct gem_rxsoft *rxs;
697 	int i;
698 
699 	for (i = 0; i < GEM_NRXDESC; i++) {
700 		rxs = &sc->sc_rxsoft[i];
701 		if (rxs->rxs_mbuf != NULL) {
702 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
703 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
704 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
705 			m_freem(rxs->rxs_mbuf);
706 			rxs->rxs_mbuf = NULL;
707 		}
708 	}
709 }
710 
711 /*
712  * Reset the whole thing.
713  */
714 static void
gem_stop(struct ifnet * ifp,int disable)715 gem_stop(struct ifnet *ifp, int disable)
716 {
717 	struct gem_softc *sc = ifp->if_softc;
718 	struct gem_txsoft *txs;
719 
720 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
721 
722 	callout_halt(&sc->sc_tick_ch, NULL);
723 	callout_halt(&sc->sc_rx_watchdog, NULL);
724 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
725 		gem_pcs_stop(sc, disable);
726 	else
727 		mii_down(&sc->sc_mii);
728 
729 	/* XXX - Should we reset these instead? */
730 	gem_disable_tx(sc);
731 	gem_disable_rx(sc);
732 
733 	/*
734 	 * Release any queued transmit buffers.
735 	 */
736 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
737 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
738 		if (txs->txs_mbuf != NULL) {
739 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
740 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
741 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
742 			m_freem(txs->txs_mbuf);
743 			txs->txs_mbuf = NULL;
744 		}
745 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
746 	}
747 
748 	/*
749 	 * Mark the interface down and cancel the watchdog timer.
750 	 */
751 	ifp->if_flags &= ~IFF_RUNNING;
752 	sc->sc_if_flags = ifp->if_flags;
753 	ifp->if_timer = 0;
754 
755 	if (disable)
756 		gem_rxdrain(sc);
757 }
758 
759 
760 /*
761  * Reset the receiver
762  */
763 int
gem_reset_rx(struct gem_softc * sc)764 gem_reset_rx(struct gem_softc *sc)
765 {
766 	bus_space_tag_t t = sc->sc_bustag;
767 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
768 
769 	/*
770 	 * Resetting while DMA is in progress can cause a bus hang, so we
771 	 * disable DMA first.
772 	 */
773 	gem_disable_rx(sc);
774 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
775 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
776 	/* Wait till it finishes */
777 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
778 		aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
779 	/* Wait 5ms extra. */
780 	delay(5000);
781 
782 	/* Finally, reset the ERX */
783 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
784 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
785 	/* Wait till it finishes */
786 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
787 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
788 		return (1);
789 	}
790 	return (0);
791 }
792 
793 
794 /*
795  * Reset the receiver DMA engine.
796  *
797  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
798  * etc in order to reset the receiver DMA engine only and not do a full
799  * reset which amongst others also downs the link and clears the FIFOs.
800  */
801 static void
gem_reset_rxdma(struct gem_softc * sc)802 gem_reset_rxdma(struct gem_softc *sc)
803 {
804 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
805 	bus_space_tag_t t = sc->sc_bustag;
806 	bus_space_handle_t h = sc->sc_h1;
807 	int i;
808 
809 	if (gem_reset_rx(sc) != 0) {
810 		gem_init(ifp);
811 		return;
812 	}
813 	for (i = 0; i < GEM_NRXDESC; i++)
814 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
815 			GEM_UPDATE_RXDESC(sc, i);
816 	sc->sc_rxptr = 0;
817 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
818 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
819 
820 	/* Reprogram Descriptor Ring Base Addresses */
821 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
822 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
823 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
824 
825 	/* Redo ERX Configuration */
826 	gem_rx_common(sc);
827 
828 	/* Give the receiver a swift kick */
829 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
830 }
831 
832 /*
833  * Common RX configuration for gem_init() and gem_reset_rxdma().
834  */
835 static void
gem_rx_common(struct gem_softc * sc)836 gem_rx_common(struct gem_softc *sc)
837 {
838 	bus_space_tag_t t = sc->sc_bustag;
839 	bus_space_handle_t h = sc->sc_h1;
840 	uint32_t v;
841 
842 	/* Encode Receive Descriptor ring size: four possible values */
843 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
844 
845 	/* Set receive h/w checksum offset */
846 #ifdef INET
847 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
848 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
849 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
850 #endif
851 
852 	/* Enable RX DMA */
853 	bus_space_write_4(t, h, GEM_RX_CONFIG,
854 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
855 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
856 
857 	/*
858 	 * The following value is for an OFF Threshold of about 3/4 full
859 	 * and an ON Threshold of 1/4 full.
860 	 */
861 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
862 	    (3 * sc->sc_rxfifosize / 256) |
863 	    ((sc->sc_rxfifosize / 256) << 12));
864 	bus_space_write_4(t, h, GEM_RX_BLANKING,
865 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
866 }
867 
868 /*
869  * Reset the transmitter
870  */
871 int
gem_reset_tx(struct gem_softc * sc)872 gem_reset_tx(struct gem_softc *sc)
873 {
874 	bus_space_tag_t t = sc->sc_bustag;
875 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
876 
877 	/*
878 	 * Resetting while DMA is in progress can cause a bus hang, so we
879 	 * disable DMA first.
880 	 */
881 	gem_disable_tx(sc);
882 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
883 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
884 	/* Wait till it finishes */
885 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
886 		aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
887 	/* Wait 5ms extra. */
888 	delay(5000);
889 
890 	/* Finally, reset the ETX */
891 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
892 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
893 	/* Wait till it finishes */
894 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
895 		aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
896 		return (1);
897 	}
898 	return (0);
899 }
900 
901 /*
902  * disable receiver.
903  */
904 int
gem_disable_rx(struct gem_softc * sc)905 gem_disable_rx(struct gem_softc *sc)
906 {
907 	bus_space_tag_t t = sc->sc_bustag;
908 	bus_space_handle_t h = sc->sc_h1;
909 	uint32_t cfg;
910 
911 	/* Flip the enable bit */
912 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
913 	cfg &= ~GEM_MAC_RX_ENABLE;
914 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
915 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
916 	/* Wait for it to finish */
917 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
918 }
919 
920 /*
921  * disable transmitter.
922  */
923 int
gem_disable_tx(struct gem_softc * sc)924 gem_disable_tx(struct gem_softc *sc)
925 {
926 	bus_space_tag_t t = sc->sc_bustag;
927 	bus_space_handle_t h = sc->sc_h1;
928 	uint32_t cfg;
929 
930 	/* Flip the enable bit */
931 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
932 	cfg &= ~GEM_MAC_TX_ENABLE;
933 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
934 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
935 	/* Wait for it to finish */
936 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
937 }
938 
939 /*
940  * Initialize interface.
941  */
942 int
gem_meminit(struct gem_softc * sc)943 gem_meminit(struct gem_softc *sc)
944 {
945 	struct gem_rxsoft *rxs;
946 	int i, error;
947 
948 	/*
949 	 * Initialize the transmit descriptor ring.
950 	 */
951 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
952 	for (i = 0; i < GEM_NTXDESC; i++) {
953 		sc->sc_txdescs[i].gd_flags = 0;
954 		sc->sc_txdescs[i].gd_addr = 0;
955 	}
956 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
957 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
958 	sc->sc_txfree = GEM_NTXDESC-1;
959 	sc->sc_txnext = 0;
960 	sc->sc_txwin = 0;
961 
962 	/*
963 	 * Initialize the receive descriptor and receive job
964 	 * descriptor rings.
965 	 */
966 	for (i = 0; i < GEM_NRXDESC; i++) {
967 		rxs = &sc->sc_rxsoft[i];
968 		if (rxs->rxs_mbuf == NULL) {
969 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
970 				aprint_error_dev(sc->sc_dev,
971 				    "unable to allocate or map rx "
972 				    "buffer %d, error = %d\n",
973 				    i, error);
974 				/*
975 				 * XXX Should attempt to run with fewer receive
976 				 * XXX buffers instead of just failing.
977 				 */
978 				gem_rxdrain(sc);
979 				return (1);
980 			}
981 		} else
982 			GEM_INIT_RXDESC(sc, i);
983 	}
984 	sc->sc_rxptr = 0;
985 	sc->sc_meminited = 1;
986 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
987 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
988 
989 	return (0);
990 }
991 
992 static int
gem_ringsize(int sz)993 gem_ringsize(int sz)
994 {
995 	switch (sz) {
996 	case 32:
997 		return GEM_RING_SZ_32;
998 	case 64:
999 		return GEM_RING_SZ_64;
1000 	case 128:
1001 		return GEM_RING_SZ_128;
1002 	case 256:
1003 		return GEM_RING_SZ_256;
1004 	case 512:
1005 		return GEM_RING_SZ_512;
1006 	case 1024:
1007 		return GEM_RING_SZ_1024;
1008 	case 2048:
1009 		return GEM_RING_SZ_2048;
1010 	case 4096:
1011 		return GEM_RING_SZ_4096;
1012 	case 8192:
1013 		return GEM_RING_SZ_8192;
1014 	default:
1015 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1016 		return GEM_RING_SZ_32;
1017 	}
1018 }
1019 
1020 
1021 /*
1022  * Start PCS
1023  */
1024 void
gem_pcs_start(struct gem_softc * sc)1025 gem_pcs_start(struct gem_softc *sc)
1026 {
1027 	bus_space_tag_t t = sc->sc_bustag;
1028 	bus_space_handle_t h = sc->sc_h1;
1029 	uint32_t v;
1030 
1031 #ifdef GEM_DEBUG
1032 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1033 #endif
1034 
1035 	/*
1036 	 * Set up.  We must disable the MII before modifying the
1037 	 * GEM_MII_ANAR register
1038 	 */
1039 	if (sc->sc_flags & GEM_SERDES) {
1040 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1041 		    GEM_MII_DATAPATH_SERDES);
1042 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1043 		    GEM_MII_SLINK_LOOPBACK);
1044 	} else {
1045 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1046 		    GEM_MII_DATAPATH_SERIAL);
1047 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1048 	}
1049 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1050 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1051 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1052 	if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
1053 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1054 	else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
1055 		v |= GEM_MII_ANEG_FUL_DUPLX;
1056 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1057 	} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
1058 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1059 		v |= GEM_MII_ANEG_HLF_DUPLX;
1060 	}
1061 
1062 	/* Configure link. */
1063 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1064 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1065 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1066 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1067 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1068 
1069 	/* Start the 10 second timer */
1070 	callout_schedule(&sc->sc_tick_ch, hz * 10);
1071 }
1072 
1073 /*
1074  * Stop PCS
1075  */
1076 void
gem_pcs_stop(struct gem_softc * sc,int disable)1077 gem_pcs_stop(struct gem_softc *sc, int disable)
1078 {
1079 	bus_space_tag_t t = sc->sc_bustag;
1080 	bus_space_handle_t h = sc->sc_h1;
1081 
1082 #ifdef GEM_DEBUG
1083 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1084 #endif
1085 
1086 	/* Tell link partner that we're going away */
1087 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1088 
1089 	/*
1090 	 * Disable PCS MII.  The documentation suggests that setting
1091 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1092 	 * negotiation will shut down the link.  However, it appears
1093 	 * that we also need to unset the datapath mode.
1094 	 */
1095 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1096 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1097 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1098 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1099 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1100 
1101 	if (disable) {
1102 		if (sc->sc_flags & GEM_SERDES)
1103 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1104 				GEM_MII_SLINK_POWER_OFF);
1105 		else
1106 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1107 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1108 	}
1109 
1110 	sc->sc_flags &= ~GEM_LINK;
1111 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1112 	sc->sc_mii.mii_media_status = IFM_AVALID;
1113 }
1114 
1115 
1116 /*
1117  * Initialization of interface; set up initialization block
1118  * and transmit/receive descriptor rings.
1119  */
1120 int
gem_init(struct ifnet * ifp)1121 gem_init(struct ifnet *ifp)
1122 {
1123 	struct gem_softc *sc = ifp->if_softc;
1124 	bus_space_tag_t t = sc->sc_bustag;
1125 	bus_space_handle_t h = sc->sc_h1;
1126 	int rc = 0, s;
1127 	u_int max_frame_size;
1128 	uint32_t v;
1129 
1130 	s = splnet();
1131 
1132 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1133 	/*
1134 	 * Initialization sequence. The numbered steps below correspond
1135 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1136 	 * Channel Engine manual (part of the PCIO manual).
1137 	 * See also the STP2002-STQ document from Sun Microsystems.
1138 	 */
1139 
1140 	/* step 1 & 2. Reset the Ethernet Channel */
1141 	gem_stop(ifp, 0);
1142 	gem_reset(sc);
1143 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1144 
1145 	/* Re-initialize the MIF */
1146 	gem_mifinit(sc);
1147 
1148 	/* Set up correct datapath for non-SERDES/Serialink */
1149 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1150 	    sc->sc_variant != GEM_SUN_ERI)
1151 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1152 		    GEM_MII_DATAPATH_MII);
1153 
1154 	/* Call MI reset function if any */
1155 	if (sc->sc_hwreset)
1156 		(*sc->sc_hwreset)(sc);
1157 
1158 	/* step 3. Setup data structures in host memory */
1159 	if (gem_meminit(sc) != 0) {
1160 		splx(s);
1161 		return 1;
1162 	}
1163 
1164 	/* step 4. TX MAC registers & counters */
1165 	gem_init_regs(sc);
1166 	max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1167 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1168 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1169 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1170 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1171 	    max_frame_size|/* burst size */(0x2000<<16));
1172 
1173 	/* step 5. RX MAC registers & counters */
1174 	gem_setladrf(sc);
1175 
1176 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1177 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI,
1178 	    ((uint64_t)GEM_CDTXADDR(sc, 0)) >> 32);
1179 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1180 
1181 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI,
1182 	    ((uint64_t)GEM_CDRXADDR(sc, 0)) >> 32);
1183 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1184 
1185 	/* step 8. Global Configuration & Interrupt Mask */
1186 	gem_inten(sc);
1187 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1188 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1189 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1190 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1191 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1192 
1193 	/* step 9. ETX Configuration: use mostly default values */
1194 
1195 	/* Enable TX DMA */
1196 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1197 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1198 	    v | GEM_TX_CONFIG_TXDMA_EN |
1199 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1200 	    GEM_TX_CONFIG_TXFIFO_TH));
1201 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1202 
1203 	/* step 10. ERX Configuration */
1204 	gem_rx_common(sc);
1205 
1206 	/* step 11. Configure Media */
1207 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1208 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1209 		goto out;
1210 
1211 	/* step 12. RX_MAC Configuration Register */
1212 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1213 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1214 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1215 
1216 	/* step 14. Issue Transmit Pending command */
1217 
1218 	/* Call MI initialization function if any */
1219 	if (sc->sc_hwinit)
1220 		(*sc->sc_hwinit)(sc);
1221 
1222 	/* step 15.  Give the receiver a swift kick */
1223 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1224 
1225 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1226 		/* Configure PCS */
1227 		gem_pcs_start(sc);
1228 	else
1229 		/* Start the one second timer. */
1230 		callout_schedule(&sc->sc_tick_ch, hz);
1231 
1232 	sc->sc_flags &= ~GEM_LINK;
1233 	ifp->if_flags |= IFF_RUNNING;
1234 	ifp->if_timer = 0;
1235 	sc->sc_if_flags = ifp->if_flags;
1236 out:
1237 	splx(s);
1238 
1239 	return (0);
1240 }
1241 
1242 void
gem_init_regs(struct gem_softc * sc)1243 gem_init_regs(struct gem_softc *sc)
1244 {
1245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1246 	bus_space_tag_t t = sc->sc_bustag;
1247 	bus_space_handle_t h = sc->sc_h1;
1248 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1249 	uint32_t v;
1250 
1251 	/* These regs are not cleared on reset */
1252 	if (!sc->sc_inited) {
1253 
1254 		/* Load recommended values */
1255 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1256 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1257 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1258 
1259 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1260 		/* Max frame and max burst size */
1261 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1262 		    ETHER_MAX_LEN | (0x2000<<16));
1263 
1264 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1265 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1266 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1267 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1268 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1269 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1270 
1271 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1272 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1274 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1275 
1276 		/* MAC control addr set to 01:80:c2:00:00:01 */
1277 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1278 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1279 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1280 
1281 		/* MAC filter addr set to 0:0:0:0:0:0 */
1282 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1283 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1284 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1285 
1286 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1287 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1288 
1289 		sc->sc_inited = 1;
1290 	}
1291 
1292 	/* Counters need to be zeroed */
1293 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1295 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1296 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1297 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1298 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1299 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1300 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1301 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1302 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1303 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1304 
1305 	/* Set XOFF PAUSE time. */
1306 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1307 
1308 	/*
1309 	 * Set the internal arbitration to "infinite" bursts of the
1310 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1311 	 * split up in cache line size chunks. This greatly improves
1312 	 * especially RX performance.
1313 	 * Enable silicon bug workarounds for the Apple variants.
1314 	 */
1315 	bus_space_write_4(t, h, GEM_CONFIG,
1316 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1317 	    ((sc->sc_flags & GEM_PCI) ?
1318 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1319 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1320 
1321 	/*
1322 	 * Set the station address.
1323 	 */
1324 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1325 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1326 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1327 
1328 	/*
1329 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1330 	 */
1331 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1332 	v = GEM_MAC_XIF_TX_MII_ENA;
1333 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
1334 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1335 			v |= GEM_MAC_XIF_FDPLX_LED;
1336 				if (sc->sc_flags & GEM_GIGABIT)
1337 					v |= GEM_MAC_XIF_GMII_MODE;
1338 		}
1339 	} else {
1340 		v |= GEM_MAC_XIF_GMII_MODE;
1341 	}
1342 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1343 }
1344 
1345 #ifdef GEM_DEBUG
1346 static void
gem_txsoft_print(const struct gem_softc * sc,int firstdesc,int lastdesc)1347 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1348 {
1349 	int i;
1350 
1351 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1352 		printf("descriptor %d:\t", i);
1353 		printf("gd_flags:   0x%016" PRIx64 "\t",
1354 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1355 		printf("gd_addr: 0x%016" PRIx64 "\n",
1356 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1357 		if (i == lastdesc)
1358 			break;
1359 	}
1360 }
1361 #endif
1362 
1363 static void
gem_start(struct ifnet * ifp)1364 gem_start(struct ifnet *ifp)
1365 {
1366 	struct gem_softc *sc = ifp->if_softc;
1367 	struct mbuf *m0, *m;
1368 	struct gem_txsoft *txs;
1369 	bus_dmamap_t dmamap;
1370 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1371 #ifdef GEM_DEBUG
1372 	int otxnext;
1373 #endif
1374 	uint64_t flags = 0;
1375 
1376 	if ((ifp->if_flags & IFF_RUNNING) != IFF_RUNNING)
1377 		return;
1378 
1379 	/*
1380 	 * Remember the previous number of free descriptors and
1381 	 * the first descriptor we'll use.
1382 	 */
1383 	ofree = sc->sc_txfree;
1384 #ifdef GEM_DEBUG
1385 	otxnext = sc->sc_txnext;
1386 #endif
1387 
1388 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1389 	    device_xname(sc->sc_dev), ofree, otxnext));
1390 
1391 	/*
1392 	 * Loop through the send queue, setting up transmit descriptors
1393 	 * until we drain the queue, or use up all available transmit
1394 	 * descriptors.
1395 	 */
1396 #ifdef INET
1397 next:
1398 #endif
1399 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1400 	    sc->sc_txfree != 0) {
1401 		/*
1402 		 * Grab a packet off the queue.
1403 		 */
1404 		IFQ_POLL(&ifp->if_snd, m0);
1405 		if (m0 == NULL)
1406 			break;
1407 		m = NULL;
1408 
1409 		dmamap = txs->txs_dmamap;
1410 
1411 		/*
1412 		 * Load the DMA map.  If this fails, the packet either
1413 		 * didn't fit in the allotted number of segments, or we were
1414 		 * short on resources.  In this case, we'll copy and try
1415 		 * again.
1416 		 */
1417 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1418 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
1419 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1420 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1421 			if (m0->m_pkthdr.len > MCLBYTES) {
1422 				aprint_error_dev(sc->sc_dev,
1423 				    "unable to allocate jumbo Tx cluster\n");
1424 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1425 				m_freem(m0);
1426 				continue;
1427 			}
1428 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1429 			if (m == NULL) {
1430 				aprint_error_dev(sc->sc_dev,
1431 				    "unable to allocate Tx mbuf\n");
1432 				break;
1433 			}
1434 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1435 			if (m0->m_pkthdr.len > MHLEN) {
1436 				MCLGET(m, M_DONTWAIT);
1437 				if ((m->m_flags & M_EXT) == 0) {
1438 					aprint_error_dev(sc->sc_dev,
1439 					    "unable to allocate Tx cluster\n");
1440 					m_freem(m);
1441 					break;
1442 				}
1443 			}
1444 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1445 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1446 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1447 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1448 			if (error) {
1449 				aprint_error_dev(sc->sc_dev,
1450 				    "unable to load Tx buffer, error = %d\n",
1451 				    error);
1452 				break;
1453 			}
1454 		}
1455 
1456 		/*
1457 		 * Ensure we have enough descriptors free to describe
1458 		 * the packet.
1459 		 */
1460 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1461 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1462 			/*
1463 			 * Not enough free descriptors to transmit this
1464 			 * packet.
1465 			 */
1466 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1467 			m_freem(m);
1468 			break;
1469 		}
1470 
1471 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1472 		if (m != NULL) {
1473 			m_freem(m0);
1474 			m0 = m;
1475 		}
1476 
1477 		/*
1478 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1479 		 */
1480 
1481 		/* Sync the DMA map. */
1482 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1483 		    BUS_DMASYNC_PREWRITE);
1484 
1485 		/*
1486 		 * Initialize the transmit descriptors.
1487 		 */
1488 		firsttx = sc->sc_txnext;
1489 		for (nexttx = firsttx, seg = 0;
1490 		     seg < dmamap->dm_nsegs;
1491 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1492 
1493 			/*
1494 			 * If this is the first descriptor we're
1495 			 * enqueueing, set the start of packet flag,
1496 			 * and the checksum stuff if we want the hardware
1497 			 * to do it.
1498 			 */
1499 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1500 			if (nexttx == firsttx) {
1501 				flags |= GEM_TD_START_OF_PACKET;
1502 #ifdef INET
1503 				/* h/w checksum */
1504 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1505 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1506 					struct ether_header *eh;
1507 					uint16_t offset, start;
1508 
1509 					eh = mtod(m0, struct ether_header *);
1510 					switch (ntohs(eh->ether_type)) {
1511 					case ETHERTYPE_IP:
1512 						start = ETHER_HDR_LEN;
1513 						break;
1514 					case ETHERTYPE_VLAN:
1515 						start = ETHER_HDR_LEN +
1516 							ETHER_VLAN_ENCAP_LEN;
1517 						break;
1518 					default:
1519 						/* unsupported, drop it */
1520 						bus_dmamap_unload(sc->sc_dmatag,
1521 							dmamap);
1522 						m_freem(m0);
1523 						goto next;
1524 					}
1525 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1526 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1527 					flags |= (start <<
1528 						  GEM_TD_CXSUM_STARTSHFT) |
1529 						 (offset <<
1530 						  GEM_TD_CXSUM_STUFFSHFT) |
1531 						 GEM_TD_CXSUM_ENABLE;
1532 				}
1533 #endif
1534 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1535 					sc->sc_txwin = 0;
1536 					flags |= GEM_TD_INTERRUPT_ME;
1537 				}
1538 			}
1539 			sc->sc_txdescs[nexttx].gd_addr =
1540 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1541 			if (seg == dmamap->dm_nsegs - 1) {
1542 				flags |= GEM_TD_END_OF_PACKET;
1543 			} else {
1544 				/* last flag set outside of loop */
1545 				sc->sc_txdescs[nexttx].gd_flags =
1546 					GEM_DMA_WRITE(sc, flags);
1547 			}
1548 			lasttx = nexttx;
1549 		}
1550 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1551 			/* add padding buffer at end of chain */
1552 			flags &= ~GEM_TD_END_OF_PACKET;
1553 			sc->sc_txdescs[lasttx].gd_flags =
1554 			    GEM_DMA_WRITE(sc, flags);
1555 
1556 			sc->sc_txdescs[nexttx].gd_addr =
1557 			    GEM_DMA_WRITE(sc,
1558 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1559 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1560 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1561 			lasttx = nexttx;
1562 			nexttx = GEM_NEXTTX(nexttx);
1563 			seg++;
1564 		}
1565 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1566 
1567 		KASSERT(lasttx != -1);
1568 
1569 		/*
1570 		 * Store a pointer to the packet so we can free it later,
1571 		 * and remember what txdirty will be once the packet is
1572 		 * done.
1573 		 */
1574 		txs->txs_mbuf = m0;
1575 		txs->txs_firstdesc = sc->sc_txnext;
1576 		txs->txs_lastdesc = lasttx;
1577 		txs->txs_ndescs = seg;
1578 
1579 #ifdef GEM_DEBUG
1580 		if (ifp->if_flags & IFF_DEBUG) {
1581 			printf("     gem_start %p transmit chain:\n", txs);
1582 			gem_txsoft_print(sc, txs->txs_firstdesc,
1583 			    txs->txs_lastdesc);
1584 		}
1585 #endif
1586 
1587 		/* Sync the descriptors we're using. */
1588 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1589 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1590 
1591 		/* Advance the tx pointer. */
1592 		sc->sc_txfree -= txs->txs_ndescs;
1593 		sc->sc_txnext = nexttx;
1594 
1595 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1596 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1597 
1598 		/*
1599 		 * Pass the packet to any BPF listeners.
1600 		 */
1601 		bpf_mtap(ifp, m0, BPF_D_OUT);
1602 	}
1603 
1604 	if (sc->sc_txfree != ofree) {
1605 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1606 		    device_xname(sc->sc_dev), lasttx, otxnext));
1607 		/*
1608 		 * The entire packet chain is set up.
1609 		 * Kick the transmitter.
1610 		 */
1611 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1612 			device_xname(sc->sc_dev), nexttx));
1613 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1614 			sc->sc_txnext);
1615 
1616 		/* Set a watchdog timer in case the chip flakes out. */
1617 		ifp->if_timer = 5;
1618 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1619 			device_xname(sc->sc_dev), ifp->if_timer));
1620 	}
1621 }
1622 
1623 /*
1624  * Transmit interrupt.
1625  */
1626 int
gem_tint(struct gem_softc * sc)1627 gem_tint(struct gem_softc *sc)
1628 {
1629 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1630 	bus_space_tag_t t = sc->sc_bustag;
1631 	bus_space_handle_t mac = sc->sc_h1;
1632 	struct gem_txsoft *txs;
1633 	int txlast;
1634 	int progress = 0;
1635 	uint32_t v;
1636 
1637 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
1638 
1639 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1640 
1641 	/* Unload collision counters ... */
1642 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1643 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1644 	if_statadd_ref(ifp, nsr, if_collisions, v +
1645 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1646 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
1647 	if_statadd_ref(ifp, nsr, if_oerrors, v);
1648 
1649 	/* ... then clear the hardware counters. */
1650 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1651 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1652 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1653 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1654 
1655 	/*
1656 	 * Go through our Tx list and free mbufs for those
1657 	 * frames that have been transmitted.
1658 	 */
1659 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1660 		/*
1661 		 * In theory, we could harvest some descriptors before
1662 		 * the ring is empty, but that's a bit complicated.
1663 		 *
1664 		 * GEM_TX_COMPLETION points to the last descriptor
1665 		 * processed +1.
1666 		 *
1667 		 * Let's assume that the NIC writes back to the Tx
1668 		 * descriptors before it updates the completion
1669 		 * register.  If the NIC has posted writes to the
1670 		 * Tx descriptors, PCI ordering requires that the
1671 		 * posted writes flush to RAM before the register-read
1672 		 * finishes.  So let's read the completion register,
1673 		 * before syncing the descriptors, so that we
1674 		 * examine Tx descriptors that are at least as
1675 		 * current as the completion register.
1676 		 */
1677 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1678 		DPRINTF(sc,
1679 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1680 				txs->txs_lastdesc, txlast));
1681 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1682 			if (txlast >= txs->txs_firstdesc &&
1683 			    txlast <= txs->txs_lastdesc)
1684 				break;
1685 		} else if (txlast >= txs->txs_firstdesc ||
1686 			   txlast <= txs->txs_lastdesc)
1687 			break;
1688 
1689 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1690 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1691 
1692 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1693 		if (ifp->if_flags & IFF_DEBUG) {
1694 			printf("    txsoft %p transmit chain:\n", txs);
1695 			gem_txsoft_print(sc, txs->txs_firstdesc,
1696 			    txs->txs_lastdesc);
1697 		}
1698 #endif
1699 
1700 
1701 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1702 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1703 
1704 		sc->sc_txfree += txs->txs_ndescs;
1705 
1706 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1707 		    0, txs->txs_dmamap->dm_mapsize,
1708 		    BUS_DMASYNC_POSTWRITE);
1709 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1710 		m_freem(txs->txs_mbuf);
1711 		txs->txs_mbuf = NULL;
1712 
1713 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1714 
1715 		if_statinc_ref(ifp, nsr, if_opackets);
1716 		progress = 1;
1717 	}
1718 
1719 	IF_STAT_PUTREF(ifp);
1720 
1721 #if 0
1722 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1723 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1724 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1725 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1726 			GEM_TX_DATA_PTR_HI) << 32) |
1727 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1728 			GEM_TX_DATA_PTR_LO),
1729 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1730 #endif
1731 
1732 	if (progress) {
1733 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1734 			sc->sc_txwin = 0;
1735 
1736 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1737 		if_schedule_deferred_start(ifp);
1738 	}
1739 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1740 		device_xname(sc->sc_dev), ifp->if_timer));
1741 
1742 	return (1);
1743 }
1744 
1745 /*
1746  * Receive interrupt.
1747  */
1748 int
gem_rint(struct gem_softc * sc)1749 gem_rint(struct gem_softc *sc)
1750 {
1751 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1752 	bus_space_tag_t t = sc->sc_bustag;
1753 	bus_space_handle_t h = sc->sc_h1;
1754 	struct gem_rxsoft *rxs;
1755 	struct mbuf *m;
1756 	uint64_t rxstat;
1757 	uint32_t rxcomp;
1758 	int i, len, progress = 0;
1759 
1760 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1761 
1762 	/*
1763 	 * Ignore spurious interrupt that sometimes occurs before
1764 	 * we are set up when we network boot.
1765 	 */
1766 	if (!sc->sc_meminited)
1767 		return 1;
1768 
1769 	/*
1770 	 * Read the completion register once.  This limits
1771 	 * how long the following loop can execute.
1772 	 */
1773 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1774 
1775 	/*
1776 	 * XXX Read the lastrx only once at the top for speed.
1777 	 */
1778 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1779 		sc->sc_rxptr, rxcomp));
1780 
1781 	/*
1782 	 * Go into the loop at least once.
1783 	 */
1784 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1785 	     i = GEM_NEXTRX(i)) {
1786 		rxs = &sc->sc_rxsoft[i];
1787 
1788 		GEM_CDRXSYNC(sc, i,
1789 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1790 
1791 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1792 
1793 		if (rxstat & GEM_RD_OWN) {
1794 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1795 			/*
1796 			 * We have processed all of the receive buffers.
1797 			 */
1798 			break;
1799 		}
1800 
1801 		progress++;
1802 
1803 		if (rxstat & GEM_RD_BAD_CRC) {
1804 			if_statinc(ifp, if_ierrors);
1805 			DPRINTF(sc, ("%s: receive error: CRC error\n",
1806 			    device_xname(sc->sc_dev)));
1807 			GEM_INIT_RXDESC(sc, i);
1808 			continue;
1809 		}
1810 
1811 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1812 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1813 #ifdef GEM_DEBUG
1814 		if (ifp->if_flags & IFF_DEBUG) {
1815 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1816 			printf("gd_flags: 0x%016llx\t", (long long)
1817 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1818 			printf("gd_addr: 0x%016llx\n", (long long)
1819 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1820 		}
1821 #endif
1822 
1823 		/* No errors; receive the packet. */
1824 		len = GEM_RD_BUFLEN(rxstat);
1825 
1826 		/*
1827 		 * Allocate a new mbuf cluster.  If that fails, we are
1828 		 * out of memory, and must drop the packet and recycle
1829 		 * the buffer that's already attached to this descriptor.
1830 		 */
1831 		m = rxs->rxs_mbuf;
1832 		if (gem_add_rxbuf(sc, i) != 0) {
1833 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1834 			if_statinc(ifp, if_ierrors);
1835 			aprint_error_dev(sc->sc_dev,
1836 			    "receive error: RX no buffer space\n");
1837 			GEM_INIT_RXDESC(sc, i);
1838 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1839 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1840 			continue;
1841 		}
1842 		m->m_data += 2; /* We're already off by two */
1843 
1844 		m_set_rcvif(m, ifp);
1845 		m->m_pkthdr.len = m->m_len = len;
1846 
1847 #ifdef INET
1848 		/* hardware checksum */
1849 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1850 			struct ether_header *eh;
1851 			struct ip *ip;
1852 			int32_t hlen, pktlen;
1853 
1854 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1855 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1856 					 ETHER_VLAN_ENCAP_LEN;
1857 				eh = (struct ether_header *) (mtod(m, char *) +
1858 					ETHER_VLAN_ENCAP_LEN);
1859 			} else {
1860 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1861 				eh = mtod(m, struct ether_header *);
1862 			}
1863 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1864 				goto swcsum;
1865 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1866 
1867 			/* IPv4 only */
1868 			if (ip->ip_v != IPVERSION)
1869 				goto swcsum;
1870 
1871 			hlen = ip->ip_hl << 2;
1872 			if (hlen < sizeof(struct ip))
1873 				goto swcsum;
1874 
1875 			/*
1876 			 * bail if too short, has random trailing garbage,
1877 			 * truncated, fragment, or has ethernet pad.
1878 			 */
1879 			if ((ntohs(ip->ip_len) < hlen) ||
1880 			    (ntohs(ip->ip_len) != pktlen) ||
1881 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1882 				goto swcsum;
1883 
1884 			switch (ip->ip_p) {
1885 			case IPPROTO_TCP:
1886 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1887 					goto swcsum;
1888 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1889 					goto swcsum;
1890 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1891 				break;
1892 			case IPPROTO_UDP:
1893 				/* FALLTHROUGH */
1894 			default:
1895 				goto swcsum;
1896 			}
1897 
1898 			/* the uncomplemented sum is expected */
1899 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1900 
1901 			/* if the pkt had ip options, we have to deduct them */
1902 			if (hlen > sizeof(struct ip)) {
1903 				uint16_t *opts;
1904 				uint32_t optsum, temp;
1905 
1906 				optsum = 0;
1907 				temp = hlen - sizeof(struct ip);
1908 				opts = (uint16_t *) ((char *) ip +
1909 					sizeof(struct ip));
1910 
1911 				while (temp > 1) {
1912 					optsum += ntohs(*opts++);
1913 					temp -= 2;
1914 				}
1915 				while (optsum >> 16)
1916 					optsum = (optsum >> 16) +
1917 						 (optsum & 0xffff);
1918 
1919 				/* Deduct ip opts sum from hwsum. */
1920 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1921 
1922 				while (m->m_pkthdr.csum_data >> 16)
1923 					m->m_pkthdr.csum_data =
1924 						(m->m_pkthdr.csum_data >> 16) +
1925 						(m->m_pkthdr.csum_data &
1926 						 0xffff);
1927 			}
1928 
1929 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1930 						  M_CSUM_NO_PSEUDOHDR;
1931 		} else
1932 swcsum:
1933 			m->m_pkthdr.csum_flags = 0;
1934 #endif
1935 		/* Pass it on. */
1936 		if_percpuq_enqueue(ifp->if_percpuq, m);
1937 	}
1938 
1939 	if (progress) {
1940 		/* Update the receive pointer. */
1941 		if (i == sc->sc_rxptr) {
1942 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1943 #ifdef GEM_DEBUG
1944 			if (ifp->if_flags & IFF_DEBUG)
1945 				printf("%s: rint: ring wrap\n",
1946 				    device_xname(sc->sc_dev));
1947 #endif
1948 		}
1949 		sc->sc_rxptr = i;
1950 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1951 	}
1952 #ifdef GEM_COUNTERS
1953 	if (progress <= 4) {
1954 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1955 	} else if (progress < 32) {
1956 		if (progress < 16)
1957 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1958 		else
1959 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1960 
1961 	} else {
1962 		if (progress < 64)
1963 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1964 		else
1965 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1966 	}
1967 #endif
1968 
1969 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1970 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1971 
1972 	/* Read error counters ... */
1973 	if_statadd(ifp, if_ierrors,
1974 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1975 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1976 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1977 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
1978 
1979 	/* ... then clear the hardware counters. */
1980 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1981 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1982 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1983 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1984 
1985 	return (1);
1986 }
1987 
1988 
1989 /*
1990  * gem_add_rxbuf:
1991  *
1992  *	Add a receive buffer to the indicated descriptor.
1993  */
1994 int
gem_add_rxbuf(struct gem_softc * sc,int idx)1995 gem_add_rxbuf(struct gem_softc *sc, int idx)
1996 {
1997 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1998 	struct mbuf *m;
1999 	int error;
2000 
2001 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2002 	if (m == NULL)
2003 		return (ENOBUFS);
2004 
2005 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2006 	MCLGET(m, M_DONTWAIT);
2007 	if ((m->m_flags & M_EXT) == 0) {
2008 		m_freem(m);
2009 		return (ENOBUFS);
2010 	}
2011 
2012 #ifdef GEM_DEBUG
2013 /* bzero the packet to check DMA */
2014 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2015 #endif
2016 
2017 	if (rxs->rxs_mbuf != NULL)
2018 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2019 
2020 	rxs->rxs_mbuf = m;
2021 
2022 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2023 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2024 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
2025 	if (error) {
2026 		aprint_error_dev(sc->sc_dev,
2027 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2028 		panic("gem_add_rxbuf");	/* XXX */
2029 	}
2030 
2031 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2032 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2033 
2034 	GEM_INIT_RXDESC(sc, idx);
2035 
2036 	return (0);
2037 }
2038 
2039 
2040 int
gem_eint(struct gem_softc * sc,u_int status)2041 gem_eint(struct gem_softc *sc, u_int status)
2042 {
2043 	char bits[128];
2044 	uint32_t r, v;
2045 
2046 	if ((status & GEM_INTR_MIF) != 0) {
2047 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2048 		return (1);
2049 	}
2050 
2051 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2052 		gem_reset_rxdma(sc);
2053 		return (1);
2054 	}
2055 
2056 	if (status & GEM_INTR_BERR) {
2057 		if (sc->sc_flags & GEM_PCI)
2058 			r = GEM_ERROR_STATUS;
2059 		else
2060 			r = GEM_SBUS_ERROR_STATUS;
2061 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2062 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2063 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2064 		    v);
2065 		return (1);
2066 	}
2067 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2068 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2069 
2070 	return (1);
2071 }
2072 
2073 
2074 /*
2075  * PCS interrupts.
2076  * We should receive these when the link status changes, but sometimes
2077  * we don't receive them for link up.  We compensate for this in the
2078  * gem_tick() callout.
2079  */
2080 int
gem_pint(struct gem_softc * sc)2081 gem_pint(struct gem_softc *sc)
2082 {
2083 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2084 	bus_space_tag_t t = sc->sc_bustag;
2085 	bus_space_handle_t h = sc->sc_h1;
2086 	uint32_t v, v2;
2087 
2088 	/*
2089 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2090 	 * latched, so we have to read it twice.  There is only one bit in
2091 	 * use, so the value is meaningless.
2092 	 */
2093 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2094 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2095 
2096 	if ((ifp->if_flags & IFF_UP) == 0)
2097 		return 1;
2098 
2099 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2100 		return 1;
2101 
2102 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2103 	/* If we see remote fault, our link partner is probably going away */
2104 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2105 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2106 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 	/* Otherwise, we may need to wait after auto-negotiation completes */
2108 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2109 	    GEM_MII_STATUS_ANEG_CPT) {
2110 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2111 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2112 	}
2113 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2114 		if (sc->sc_flags & GEM_LINK) {
2115 			return 1;
2116 		}
2117 		callout_stop(&sc->sc_tick_ch);
2118 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2119 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2120 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2121 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2122 		v &= v2;
2123 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2124 			sc->sc_mii.mii_media_active |= IFM_FDX;
2125 #ifdef GEM_DEBUG
2126 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2127 #endif
2128 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2129 			sc->sc_mii.mii_media_active |= IFM_HDX;
2130 #ifdef GEM_DEBUG
2131 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2132 #endif
2133 		} else {
2134 #ifdef GEM_DEBUG
2135 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2136 #endif
2137 		}
2138 		gem_statuschange(sc);
2139 	} else {
2140 		if ((sc->sc_flags & GEM_LINK) == 0) {
2141 			return 1;
2142 		}
2143 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2144 		sc->sc_mii.mii_media_status = IFM_AVALID;
2145 #ifdef GEM_DEBUG
2146 			aprint_debug_dev(sc->sc_dev, "link down\n");
2147 #endif
2148 		gem_statuschange(sc);
2149 
2150 		/* Start the 10 second timer */
2151 		callout_schedule(&sc->sc_tick_ch, hz * 10);
2152 	}
2153 	return 1;
2154 }
2155 
2156 
2157 
2158 int
gem_intr(void * v)2159 gem_intr(void *v)
2160 {
2161 	struct gem_softc *sc = v;
2162 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2163 	bus_space_tag_t t = sc->sc_bustag;
2164 	bus_space_handle_t h = sc->sc_h1;
2165 	uint32_t status;
2166 	int r = 0;
2167 #ifdef GEM_DEBUG
2168 	char bits[128];
2169 #endif
2170 
2171 	/* XXX We should probably mask out interrupts until we're done */
2172 
2173 	sc->sc_ev_intr.ev_count++;
2174 
2175 	status = bus_space_read_4(t, h, GEM_STATUS);
2176 #ifdef GEM_DEBUG
2177 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2178 #endif
2179 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2180 		device_xname(sc->sc_dev), (status >> 19), bits));
2181 
2182 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2183 		r |= gem_eint(sc, status);
2184 
2185 	/* We don't bother with GEM_INTR_TX_DONE */
2186 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2187 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2188 		r |= gem_tint(sc);
2189 	}
2190 
2191 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2192 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2193 		r |= gem_rint(sc);
2194 	}
2195 
2196 	/* We should eventually do more than just print out error stats. */
2197 	if (status & GEM_INTR_TX_MAC) {
2198 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2199 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2200 			printf("%s: MAC tx fault, status %x\n",
2201 			    device_xname(sc->sc_dev), txstat);
2202 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2203 			gem_init(ifp);
2204 	}
2205 	if (status & GEM_INTR_RX_MAC) {
2206 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2207 		/*
2208 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2209 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2210 		 * silicon bug so handle them silently.  So if we detect
2211 		 * an RX FIFO overflow, we fire off a timer, and check
2212 		 * whether we're still making progress by looking at the
2213 		 * RX FIFO write and read pointers.
2214 		 */
2215 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2216 			if_statinc(ifp, if_ierrors);
2217 			GEM_COUNTER_INCR(sc, sc_ev_rxoverflow);
2218 #ifdef GEM_DEBUG
2219 			aprint_error_dev(sc->sc_dev,
2220 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2221 #endif
2222 			sc->sc_rx_fifo_wr_ptr =
2223 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2224 			sc->sc_rx_fifo_rd_ptr =
2225 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2226 			callout_schedule(&sc->sc_rx_watchdog, 400);
2227 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2228 			printf("%s: MAC rx fault, status 0x%02x\n",
2229 			    device_xname(sc->sc_dev), rxstat);
2230 	}
2231 	if (status & GEM_INTR_PCS) {
2232 		r |= gem_pint(sc);
2233 	}
2234 
2235 /* Do we need to do anything with these?
2236 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2237 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2238 		if ((status2 & GEM_MAC_PAUSED) != 0)
2239 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2240 			    GEM_MAC_PAUSE_TIME(status2));
2241 		if ((status2 & GEM_MAC_PAUSE) != 0)
2242 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2243 		if ((status2 & GEM_MAC_RESUME) != 0)
2244 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2245 	}
2246 	if ((status & GEM_INTR_MIF) != 0)
2247 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2248 */
2249 	rnd_add_uint32(&sc->rnd_source, status);
2250 	return (r);
2251 }
2252 
2253 void
gem_rx_watchdog(void * arg)2254 gem_rx_watchdog(void *arg)
2255 {
2256 	struct gem_softc *sc = arg;
2257 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2258 	bus_space_tag_t t = sc->sc_bustag;
2259 	bus_space_handle_t h = sc->sc_h1;
2260 	uint32_t rx_fifo_wr_ptr;
2261 	uint32_t rx_fifo_rd_ptr;
2262 	uint32_t state;
2263 
2264 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2265 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2266 		return;
2267 	}
2268 
2269 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2270 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2271 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2272 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2273 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2274 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2275 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2276 	{
2277 		/*
2278 		 * The RX state machine is still in overflow state and
2279 		 * the RX FIFO write and read pointers seem to be
2280 		 * stuck.  Whack the chip over the head to get things
2281 		 * going again.
2282 		 */
2283 		aprint_error_dev(sc->sc_dev,
2284 		    "receiver stuck in overflow, resetting\n");
2285 		gem_init(ifp);
2286 	} else {
2287 		int needreset = 1;
2288 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2289 			DPRINTF(sc,
2290 			    ("%s: rx_watchdog: not in overflow state: 0x%x\n",
2291 			    device_xname(sc->sc_dev), state));
2292 		}
2293 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2294 			DPRINTF(sc,
2295 			    ("%s: rx_watchdog: wr & rd ptr different\n",
2296 			    device_xname(sc->sc_dev)));
2297 			needreset = 0;
2298 		}
2299 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2300 			DPRINTF(sc, ("%s: rx_watchdog: wr pointer != saved\n",
2301 			    device_xname(sc->sc_dev)));
2302 			needreset = 0;
2303 		}
2304 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2305 			DPRINTF(sc, ("%s: rx_watchdog: rd pointer != saved\n",
2306 			    device_xname(sc->sc_dev)));
2307 			needreset = 0;
2308 		}
2309 		if (needreset) {
2310 			aprint_error_dev(sc->sc_dev,
2311 			    "rx_watchdog: resetting anyway\n");
2312 			gem_init(ifp);
2313 		}
2314 	}
2315 }
2316 
2317 void
gem_watchdog(struct ifnet * ifp)2318 gem_watchdog(struct ifnet *ifp)
2319 {
2320 	struct gem_softc *sc = ifp->if_softc;
2321 
2322 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2323 		"GEM_MAC_RX_CONFIG %x\n",
2324 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2325 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2326 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2327 
2328 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2329 	if_statinc(ifp, if_oerrors);
2330 
2331 	/* Try to get more packets going. */
2332 	gem_init(ifp);
2333 	gem_start(ifp);
2334 }
2335 
2336 /*
2337  * Initialize the MII Management Interface
2338  */
2339 void
gem_mifinit(struct gem_softc * sc)2340 gem_mifinit(struct gem_softc *sc)
2341 {
2342 	bus_space_tag_t t = sc->sc_bustag;
2343 	bus_space_handle_t mif = sc->sc_h1;
2344 
2345 	/* Configure the MIF in frame mode */
2346 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2347 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2348 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2349 }
2350 
2351 /*
2352  * MII interface
2353  *
2354  * The GEM MII interface supports at least three different operating modes:
2355  *
2356  * Bitbang mode is implemented using data, clock and output enable registers.
2357  *
2358  * Frame mode is implemented by loading a complete frame into the frame
2359  * register and polling the valid bit for completion.
2360  *
2361  * Polling mode uses the frame register but completion is indicated by
2362  * an interrupt.
2363  *
2364  */
2365 static int
gem_mii_readreg(device_t self,int phy,int reg,uint16_t * val)2366 gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
2367 {
2368 	struct gem_softc *sc = device_private(self);
2369 	bus_space_tag_t t = sc->sc_bustag;
2370 	bus_space_handle_t mif = sc->sc_h1;
2371 	int n;
2372 	uint32_t v;
2373 
2374 #ifdef GEM_DEBUG1
2375 	if (sc->sc_debug)
2376 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2377 #endif
2378 
2379 	/* Construct the frame command */
2380 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2381 		GEM_MIF_FRAME_READ;
2382 
2383 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2384 	for (n = 0; n < 100; n++) {
2385 		DELAY(1);
2386 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2387 		if (v & GEM_MIF_FRAME_TA0) {
2388 			*val = v & GEM_MIF_FRAME_DATA;
2389 			return 0;
2390 		}
2391 	}
2392 
2393 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2394 	return ETIMEDOUT;
2395 }
2396 
2397 static int
gem_mii_writereg(device_t self,int phy,int reg,uint16_t val)2398 gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
2399 {
2400 	struct gem_softc *sc = device_private(self);
2401 	bus_space_tag_t t = sc->sc_bustag;
2402 	bus_space_handle_t mif = sc->sc_h1;
2403 	int n;
2404 	uint32_t v;
2405 
2406 #ifdef GEM_DEBUG1
2407 	if (sc->sc_debug)
2408 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2409 			phy, reg, val);
2410 #endif
2411 
2412 	/* Construct the frame command */
2413 	v = GEM_MIF_FRAME_WRITE			|
2414 	    (phy << GEM_MIF_PHY_SHIFT)		|
2415 	    (reg << GEM_MIF_REG_SHIFT)		|
2416 	    (val & GEM_MIF_FRAME_DATA);
2417 
2418 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2419 	for (n = 0; n < 100; n++) {
2420 		DELAY(1);
2421 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2422 		if (v & GEM_MIF_FRAME_TA0)
2423 			return 0;
2424 	}
2425 
2426 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2427 	return ETIMEDOUT;
2428 }
2429 
2430 static void
gem_mii_statchg(struct ifnet * ifp)2431 gem_mii_statchg(struct ifnet *ifp)
2432 {
2433 	struct gem_softc *sc = ifp->if_softc;
2434 #ifdef GEM_DEBUG
2435 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2436 #endif
2437 
2438 #ifdef GEM_DEBUG
2439 	if (sc->sc_debug)
2440 		printf("gem_mii_statchg: status change: phy = %d\n",
2441 			sc->sc_phys[instance]);
2442 #endif
2443 	gem_statuschange(sc);
2444 }
2445 
2446 /*
2447  * Common status change for gem_mii_statchg() and gem_pint()
2448  */
2449 void
gem_statuschange(struct gem_softc * sc)2450 gem_statuschange(struct gem_softc* sc)
2451 {
2452 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2453 	bus_space_tag_t t = sc->sc_bustag;
2454 	bus_space_handle_t mac = sc->sc_h1;
2455 	int gigabit;
2456 	uint32_t rxcfg, txcfg, v;
2457 
2458 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2459 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2460 		sc->sc_flags |= GEM_LINK;
2461 	else
2462 		sc->sc_flags &= ~GEM_LINK;
2463 
2464 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2465 		gigabit = 1;
2466 	else
2467 		gigabit = 0;
2468 
2469 	/*
2470 	 * The configuration done here corresponds to the steps F) and
2471 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2472 	 * of the initialization sequence outlined in section 3.2.1 of
2473 	 * the GEM Gigabit Ethernet ASIC Specification.
2474 	 */
2475 
2476 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2477 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2478 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2479 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2480 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2481 	else if (gigabit) {
2482 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2483 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2484 	}
2485 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2486 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2487 	    BUS_SPACE_BARRIER_WRITE);
2488 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2489 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2490 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2491 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2492 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2493 	    BUS_SPACE_BARRIER_WRITE);
2494 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2495 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2496 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2497 
2498 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2499 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2500 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2501 
2502 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2503 	    gigabit != 0)
2504 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2505 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2506 	else
2507 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2508 		    GEM_MAC_SLOT_TIME_NORMAL);
2509 
2510 	/* XIF Configuration */
2511 	if (sc->sc_flags & GEM_LINK)
2512 		v = GEM_MAC_XIF_LINK_LED;
2513 	else
2514 		v = 0;
2515 	v |= GEM_MAC_XIF_TX_MII_ENA;
2516 
2517 	/* If an external transceiver is connected, enable its MII drivers */
2518 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2519 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2520 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2521 			if (gigabit)
2522 				v |= GEM_MAC_XIF_GMII_MODE;
2523 			else
2524 				v &= ~GEM_MAC_XIF_GMII_MODE;
2525 		} else
2526 			/* Internal MII needs buf enable */
2527 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2528 		/* MII needs echo disable if half duplex. */
2529 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2530 			/* turn on full duplex LED */
2531 			v |= GEM_MAC_XIF_FDPLX_LED;
2532 		else
2533 			/* half duplex -- disable echo */
2534 			v |= GEM_MAC_XIF_ECHO_DISABL;
2535 	} else {
2536 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2537 			v |= GEM_MAC_XIF_FDPLX_LED;
2538 		v |= GEM_MAC_XIF_GMII_MODE;
2539 	}
2540 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2541 
2542 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2543 	    (sc->sc_flags & GEM_LINK) != 0) {
2544 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2545 		    txcfg | GEM_MAC_TX_ENABLE);
2546 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2547 		    rxcfg | GEM_MAC_RX_ENABLE);
2548 	}
2549 }
2550 
2551 int
gem_ser_mediachange(struct ifnet * ifp)2552 gem_ser_mediachange(struct ifnet *ifp)
2553 {
2554 	struct gem_softc *sc = ifp->if_softc;
2555 	u_int s, t;
2556 
2557 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2558 		return EINVAL;
2559 
2560 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2561 	if (s == IFM_AUTO) {
2562 		if (sc->sc_mii_media != s) {
2563 #ifdef GEM_DEBUG
2564 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2565 #endif
2566 			sc->sc_mii_media = s;
2567 			if (ifp->if_flags & IFF_UP) {
2568 				gem_pcs_stop(sc, 0);
2569 				gem_pcs_start(sc);
2570 			}
2571 		}
2572 		return 0;
2573 	}
2574 	if (s == IFM_1000_SX) {
2575 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
2576 		    & (IFM_FDX | IFM_HDX);
2577 		if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
2578 			sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
2579 			sc->sc_mii_media |= t;
2580 #ifdef GEM_DEBUG
2581 			aprint_debug_dev(sc->sc_dev,
2582 			    "setting media to 1000baseSX-%s\n",
2583 			    t == IFM_FDX ? "FDX" : "HDX");
2584 #endif
2585 			if (ifp->if_flags & IFF_UP) {
2586 				gem_pcs_stop(sc, 0);
2587 				gem_pcs_start(sc);
2588 			}
2589 		}
2590 		return 0;
2591 	}
2592 	return EINVAL;
2593 }
2594 
2595 void
gem_ser_mediastatus(struct ifnet * ifp,struct ifmediareq * ifmr)2596 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2597 {
2598 	struct gem_softc *sc = ifp->if_softc;
2599 
2600 	if ((ifp->if_flags & IFF_UP) == 0)
2601 		return;
2602 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2603 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2604 }
2605 
2606 static int
gem_ifflags_cb(struct ethercom * ec)2607 gem_ifflags_cb(struct ethercom *ec)
2608 {
2609 	struct ifnet *ifp = &ec->ec_if;
2610 	struct gem_softc *sc = ifp->if_softc;
2611 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
2612 
2613 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
2614 		return ENETRESET;
2615 	else if ((change & IFF_PROMISC) != 0)
2616 		gem_setladrf(sc);
2617 	return 0;
2618 }
2619 
2620 /*
2621  * Process an ioctl request.
2622  */
2623 int
gem_ioctl(struct ifnet * ifp,unsigned long cmd,void * data)2624 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2625 {
2626 	struct gem_softc *sc = ifp->if_softc;
2627 	int s, error = 0;
2628 
2629 	s = splnet();
2630 
2631 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2632 		error = 0;
2633 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2634 			;
2635 		else if (ifp->if_flags & IFF_RUNNING) {
2636 			/*
2637 			 * Multicast list has changed; set the hardware filter
2638 			 * accordingly.
2639 			 */
2640 			gem_setladrf(sc);
2641 		}
2642 	}
2643 
2644 	/* Try to get things going again */
2645 	if (ifp->if_flags & IFF_UP)
2646 		gem_start(ifp);
2647 	splx(s);
2648 	return (error);
2649 }
2650 
2651 static void
gem_inten(struct gem_softc * sc)2652 gem_inten(struct gem_softc *sc)
2653 {
2654 	bus_space_tag_t t = sc->sc_bustag;
2655 	bus_space_handle_t h = sc->sc_h1;
2656 	uint32_t v;
2657 
2658 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2659 		v = GEM_INTR_PCS;
2660 	else
2661 		v = GEM_INTR_MIF;
2662 	bus_space_write_4(t, h, GEM_INTMASK,
2663 		      ~(GEM_INTR_TX_INTME |
2664 			GEM_INTR_TX_EMPTY |
2665 			GEM_INTR_TX_MAC |
2666 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
2667 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
2668 			GEM_INTR_BERR | v));
2669 }
2670 
2671 bool
gem_resume(device_t self,const pmf_qual_t * qual)2672 gem_resume(device_t self, const pmf_qual_t *qual)
2673 {
2674 	struct gem_softc *sc = device_private(self);
2675 
2676 	gem_inten(sc);
2677 
2678 	return true;
2679 }
2680 
2681 bool
gem_suspend(device_t self,const pmf_qual_t * qual)2682 gem_suspend(device_t self, const pmf_qual_t *qual)
2683 {
2684 	struct gem_softc *sc = device_private(self);
2685 	bus_space_tag_t t = sc->sc_bustag;
2686 	bus_space_handle_t h = sc->sc_h1;
2687 
2688 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2689 
2690 	return true;
2691 }
2692 
2693 bool
gem_shutdown(device_t self,int howto)2694 gem_shutdown(device_t self, int howto)
2695 {
2696 	struct gem_softc *sc = device_private(self);
2697 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2698 
2699 	gem_stop(ifp, 1);
2700 
2701 	return true;
2702 }
2703 
2704 /*
2705  * Set up the logical address filter.
2706  */
2707 void
gem_setladrf(struct gem_softc * sc)2708 gem_setladrf(struct gem_softc *sc)
2709 {
2710 	struct ethercom *ec = &sc->sc_ethercom;
2711 	struct ifnet *ifp = &ec->ec_if;
2712 	struct ether_multi *enm;
2713 	struct ether_multistep step;
2714 	bus_space_tag_t t = sc->sc_bustag;
2715 	bus_space_handle_t h = sc->sc_h1;
2716 	uint32_t crc;
2717 	uint32_t hash[16];
2718 	uint32_t v;
2719 	int i;
2720 
2721 	/* Get current RX configuration */
2722 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2723 
2724 	/*
2725 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2726 	 * and hash filter.  Depending on the case, the right bit will be
2727 	 * enabled.
2728 	 */
2729 	v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
2730 	    GEM_MAC_RX_PROMISC_GRP);
2731 
2732 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2733 		/* Turn on promiscuous mode */
2734 		v |= GEM_MAC_RX_PROMISCUOUS;
2735 		ifp->if_flags |= IFF_ALLMULTI;
2736 		goto chipit;
2737 	}
2738 
2739 	/*
2740 	 * Set up multicast address filter by passing all multicast addresses
2741 	 * through a crc generator, and then using the high order 8 bits as an
2742 	 * index into the 256 bit logical address filter.  The high order 4
2743 	 * bits selects the word, while the other 4 bits select the bit within
2744 	 * the word (where bit 0 is the MSB).
2745 	 */
2746 
2747 	/* Clear hash table */
2748 	memset(hash, 0, sizeof(hash));
2749 
2750 	ETHER_LOCK(ec);
2751 	ETHER_FIRST_MULTI(step, ec, enm);
2752 	while (enm != NULL) {
2753 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2754 			/*
2755 			 * We must listen to a range of multicast addresses.
2756 			 * For now, just accept all multicasts, rather than
2757 			 * trying to set only those filter bits needed to match
2758 			 * the range.  (At this time, the only use of address
2759 			 * ranges is for IP multicast routing, for which the
2760 			 * range is big enough to require all bits set.)
2761 			 * XXX should use the address filters for this
2762 			 */
2763 			ifp->if_flags |= IFF_ALLMULTI;
2764 			v |= GEM_MAC_RX_PROMISC_GRP;
2765 			ETHER_UNLOCK(ec);
2766 			goto chipit;
2767 		}
2768 
2769 		/* Get the LE CRC32 of the address */
2770 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2771 
2772 		/* Just want the 8 most significant bits. */
2773 		crc >>= 24;
2774 
2775 		/* Set the corresponding bit in the filter. */
2776 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2777 
2778 		ETHER_NEXT_MULTI(step, enm);
2779 	}
2780 	ETHER_UNLOCK(ec);
2781 
2782 	v |= GEM_MAC_RX_HASH_FILTER;
2783 	ifp->if_flags &= ~IFF_ALLMULTI;
2784 
2785 	/* Now load the hash table into the chip (if we are using it) */
2786 	for (i = 0; i < 16; i++) {
2787 		bus_space_write_4(t, h,
2788 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2789 		    hash[i]);
2790 	}
2791 
2792 chipit:
2793 	sc->sc_if_flags = ifp->if_flags;
2794 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2795 }
2796