xref: /netbsd-src/sys/dev/ic/gem.c (revision a536ee5124e62c9a0051a252f7833dc8f50f44c9)
1 /*	$NetBSD: gem.c,v 1.100 2012/07/22 14:32:57 matt Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.100 2012/07/22 14:32:57 matt Exp $");
41 
42 #include "opt_inet.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/mbuf.h>
48 #include <sys/syslog.h>
49 #include <sys/malloc.h>
50 #include <sys/kernel.h>
51 #include <sys/socket.h>
52 #include <sys/ioctl.h>
53 #include <sys/errno.h>
54 #include <sys/device.h>
55 
56 #include <machine/endian.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_media.h>
61 #include <net/if_ether.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/tcp.h>
69 #include <netinet/udp.h>
70 #endif
71 
72 #include <net/bpf.h>
73 
74 #include <sys/bus.h>
75 #include <sys/intr.h>
76 
77 #include <dev/mii/mii.h>
78 #include <dev/mii/miivar.h>
79 #include <dev/mii/mii_bitbang.h>
80 
81 #include <dev/ic/gemreg.h>
82 #include <dev/ic/gemvar.h>
83 
84 #define TRIES	10000
85 
86 static void	gem_inten(struct gem_softc *);
87 static void	gem_start(struct ifnet *);
88 static void	gem_stop(struct ifnet *, int);
89 int		gem_ioctl(struct ifnet *, u_long, void *);
90 void		gem_tick(void *);
91 void		gem_watchdog(struct ifnet *);
92 void		gem_rx_watchdog(void *);
93 void		gem_pcs_start(struct gem_softc *sc);
94 void		gem_pcs_stop(struct gem_softc *sc, int);
95 int		gem_init(struct ifnet *);
96 void		gem_init_regs(struct gem_softc *sc);
97 static int	gem_ringsize(int sz);
98 static int	gem_meminit(struct gem_softc *);
99 void		gem_mifinit(struct gem_softc *);
100 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
101 		    u_int32_t, u_int32_t);
102 void		gem_reset(struct gem_softc *);
103 int		gem_reset_rx(struct gem_softc *sc);
104 static void	gem_reset_rxdma(struct gem_softc *sc);
105 static void	gem_rx_common(struct gem_softc *sc);
106 int		gem_reset_tx(struct gem_softc *sc);
107 int		gem_disable_rx(struct gem_softc *sc);
108 int		gem_disable_tx(struct gem_softc *sc);
109 static void	gem_rxdrain(struct gem_softc *sc);
110 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
111 void		gem_setladrf(struct gem_softc *);
112 
113 /* MII methods & callbacks */
114 static int	gem_mii_readreg(device_t, int, int);
115 static void	gem_mii_writereg(device_t, int, int, int);
116 static void	gem_mii_statchg(struct ifnet *);
117 
118 static int	gem_ifflags_cb(struct ethercom *);
119 
120 void		gem_statuschange(struct gem_softc *);
121 
122 int		gem_ser_mediachange(struct ifnet *);
123 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
124 
125 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
126 
127 struct mbuf	*gem_get(struct gem_softc *, int, int);
128 int		gem_put(struct gem_softc *, int, struct mbuf *);
129 void		gem_read(struct gem_softc *, int, int);
130 int		gem_pint(struct gem_softc *);
131 int		gem_eint(struct gem_softc *, u_int);
132 int		gem_rint(struct gem_softc *);
133 int		gem_tint(struct gem_softc *);
134 void		gem_power(int, void *);
135 
136 #ifdef GEM_DEBUG
137 static void gem_txsoft_print(const struct gem_softc *, int, int);
138 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
139 				printf x
140 #else
141 #define	DPRINTF(sc, x)	/* nothing */
142 #endif
143 
144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
145 
146 int
147 gem_detach(struct gem_softc *sc, int flags)
148 {
149 	int i;
150 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
151 	bus_space_tag_t t = sc->sc_bustag;
152 	bus_space_handle_t h = sc->sc_h1;
153 
154 	/*
155 	 * Free any resources we've allocated during the attach.
156 	 * Do this in reverse order and fall through.
157 	 */
158 	switch (sc->sc_att_stage) {
159 	case GEM_ATT_BACKEND_2:
160 	case GEM_ATT_BACKEND_1:
161 	case GEM_ATT_FINISHED:
162 		bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
163 		gem_stop(&sc->sc_ethercom.ec_if, 1);
164 
165 #ifdef GEM_COUNTERS
166 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
167 			evcnt_detach(&sc->sc_ev_rxhist[i]);
168 		evcnt_detach(&sc->sc_ev_rxnobuf);
169 		evcnt_detach(&sc->sc_ev_rxfull);
170 		evcnt_detach(&sc->sc_ev_rxint);
171 		evcnt_detach(&sc->sc_ev_txint);
172 #endif
173 		evcnt_detach(&sc->sc_ev_intr);
174 
175 		rnd_detach_source(&sc->rnd_source);
176 		ether_ifdetach(ifp);
177 		if_detach(ifp);
178 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
179 
180 		callout_destroy(&sc->sc_tick_ch);
181 		callout_destroy(&sc->sc_rx_watchdog);
182 
183 		/*FALLTHROUGH*/
184 	case GEM_ATT_MII:
185 		sc->sc_att_stage = GEM_ATT_MII;
186 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
187 		/*FALLTHROUGH*/
188 	case GEM_ATT_7:
189 		for (i = 0; i < GEM_NRXDESC; i++) {
190 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
191 				bus_dmamap_destroy(sc->sc_dmatag,
192 				    sc->sc_rxsoft[i].rxs_dmamap);
193 		}
194 		/*FALLTHROUGH*/
195 	case GEM_ATT_6:
196 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
197 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
198 				bus_dmamap_destroy(sc->sc_dmatag,
199 				    sc->sc_txsoft[i].txs_dmamap);
200 		}
201 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
202 		/*FALLTHROUGH*/
203 	case GEM_ATT_5:
204 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
205 		/*FALLTHROUGH*/
206 	case GEM_ATT_4:
207 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
208 		/*FALLTHROUGH*/
209 	case GEM_ATT_3:
210 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
211 		/*FALLTHROUGH*/
212 	case GEM_ATT_2:
213 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
214 		    sizeof(struct gem_control_data));
215 		/*FALLTHROUGH*/
216 	case GEM_ATT_1:
217 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
218 		/*FALLTHROUGH*/
219 	case GEM_ATT_0:
220 		sc->sc_att_stage = GEM_ATT_0;
221 		/*FALLTHROUGH*/
222 	case GEM_ATT_BACKEND_0:
223 		break;
224 	}
225 	return 0;
226 }
227 
228 static void
229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
230 {
231 	cfattach_t ca = device_cfattach(sc->sc_dev);
232 
233 	sc->sc_att_stage = stage;
234 	(*ca->ca_detach)(sc->sc_dev, 0);
235 }
236 
237 /*
238  * gem_attach:
239  *
240  *	Attach a Gem interface to the system.
241  */
242 void
243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
244 {
245 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
246 	struct mii_data *mii = &sc->sc_mii;
247 	bus_space_tag_t t = sc->sc_bustag;
248 	bus_space_handle_t h = sc->sc_h1;
249 	struct ifmedia_entry *ifm;
250 	int i, error, phyaddr;
251 	u_int32_t v;
252 	char *nullbuf;
253 
254 	/* Make sure the chip is stopped. */
255 	ifp->if_softc = sc;
256 	gem_reset(sc);
257 
258 	/*
259 	 * Allocate the control data structures, and create and load the
260 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
261 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
262 	 */
263 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
264 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
265 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
266 		aprint_error_dev(sc->sc_dev,
267 		   "unable to allocate control data, error = %d\n",
268 		    error);
269 		gem_partial_detach(sc, GEM_ATT_0);
270 		return;
271 	}
272 
273 	/* XXX should map this in with correct endianness */
274 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
275 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
276 	    BUS_DMA_COHERENT)) != 0) {
277 		aprint_error_dev(sc->sc_dev,
278 		    "unable to map control data, error = %d\n", error);
279 		gem_partial_detach(sc, GEM_ATT_1);
280 		return;
281 	}
282 
283 	nullbuf =
284 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
285 
286 	if ((error = bus_dmamap_create(sc->sc_dmatag,
287 	    sizeof(struct gem_control_data), 1,
288 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
289 		aprint_error_dev(sc->sc_dev,
290 		    "unable to create control data DMA map, error = %d\n",
291 		    error);
292 		gem_partial_detach(sc, GEM_ATT_2);
293 		return;
294 	}
295 
296 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
297 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
298 	    0)) != 0) {
299 		aprint_error_dev(sc->sc_dev,
300 		    "unable to load control data DMA map, error = %d\n",
301 		    error);
302 		gem_partial_detach(sc, GEM_ATT_3);
303 		return;
304 	}
305 
306 	memset(nullbuf, 0, ETHER_MIN_TX);
307 	if ((error = bus_dmamap_create(sc->sc_dmatag,
308 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
309 		aprint_error_dev(sc->sc_dev,
310 		    "unable to create padding DMA map, error = %d\n", error);
311 		gem_partial_detach(sc, GEM_ATT_4);
312 		return;
313 	}
314 
315 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
316 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
317 		aprint_error_dev(sc->sc_dev,
318 		    "unable to load padding DMA map, error = %d\n", error);
319 		gem_partial_detach(sc, GEM_ATT_5);
320 		return;
321 	}
322 
323 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
324 	    BUS_DMASYNC_PREWRITE);
325 
326 	/*
327 	 * Initialize the transmit job descriptors.
328 	 */
329 	SIMPLEQ_INIT(&sc->sc_txfreeq);
330 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
331 
332 	/*
333 	 * Create the transmit buffer DMA maps.
334 	 */
335 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
336 		struct gem_txsoft *txs;
337 
338 		txs = &sc->sc_txsoft[i];
339 		txs->txs_mbuf = NULL;
340 		if ((error = bus_dmamap_create(sc->sc_dmatag,
341 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
342 		    ETHER_MAX_LEN_JUMBO, 0, 0,
343 		    &txs->txs_dmamap)) != 0) {
344 			aprint_error_dev(sc->sc_dev,
345 			    "unable to create tx DMA map %d, error = %d\n",
346 			    i, error);
347 			gem_partial_detach(sc, GEM_ATT_6);
348 			return;
349 		}
350 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
351 	}
352 
353 	/*
354 	 * Create the receive buffer DMA maps.
355 	 */
356 	for (i = 0; i < GEM_NRXDESC; i++) {
357 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
358 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
359 			aprint_error_dev(sc->sc_dev,
360 			    "unable to create rx DMA map %d, error = %d\n",
361 			    i, error);
362 			gem_partial_detach(sc, GEM_ATT_7);
363 			return;
364 		}
365 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
366 	}
367 
368 	/* Initialize ifmedia structures and MII info */
369 	mii->mii_ifp = ifp;
370 	mii->mii_readreg = gem_mii_readreg;
371 	mii->mii_writereg = gem_mii_writereg;
372 	mii->mii_statchg = gem_mii_statchg;
373 
374 	sc->sc_ethercom.ec_mii = mii;
375 
376 	/*
377 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
378 	 * Section 3.2.1 `Initialization Sequence'.
379 	 * However, we can't assume SERDES or Serialink if neither
380 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
381 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
382 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
383 	 * Also, for variants that report 2 PHY's, we prefer the external
384 	 * PHY over the internal PHY, so we look for that first.
385 	 */
386 	gem_mifinit(sc);
387 
388 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
389 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
390 		    ether_mediastatus);
391 		/* Look for external PHY */
392 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
393 			sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
394 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
395 			    sc->sc_mif_config);
396 			switch (sc->sc_variant) {
397 			case GEM_SUN_ERI:
398 				phyaddr = GEM_PHYAD_EXTERNAL;
399 				break;
400 			default:
401 				phyaddr = MII_PHY_ANY;
402 				break;
403 			}
404 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
405 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
406 		}
407 #ifdef GEM_DEBUG
408 		  else
409 			aprint_debug_dev(sc->sc_dev, "using external PHY\n");
410 #endif
411 		/* Look for internal PHY if no external PHY was found */
412 		if (LIST_EMPTY(&mii->mii_phys) &&
413 		    sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) {
414 			sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
415 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
416 			    sc->sc_mif_config);
417 			switch (sc->sc_variant) {
418 			case GEM_SUN_ERI:
419 			case GEM_APPLE_K2_GMAC:
420 				phyaddr = GEM_PHYAD_INTERNAL;
421 				break;
422 			case GEM_APPLE_GMAC:
423 				phyaddr = GEM_PHYAD_EXTERNAL;
424 				break;
425 			default:
426 				phyaddr = MII_PHY_ANY;
427 				break;
428 			}
429 			mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
430 			    MII_OFFSET_ANY, MIIF_FORCEANEG);
431 #ifdef GEM_DEBUG
432 			if (!LIST_EMPTY(&mii->mii_phys))
433 				aprint_debug_dev(sc->sc_dev,
434 				    "using internal PHY\n");
435 #endif
436 		}
437 		if (LIST_EMPTY(&mii->mii_phys)) {
438 				/* No PHY attached */
439 				aprint_error_dev(sc->sc_dev,
440 				    "PHY probe failed\n");
441 				gem_partial_detach(sc, GEM_ATT_MII);
442 				return;
443 		} else {
444 			struct mii_softc *child;
445 
446 			/*
447 			 * Walk along the list of attached MII devices and
448 			 * establish an `MII instance' to `PHY number'
449 			 * mapping.
450 			 */
451 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
452 				/*
453 				 * Note: we support just one PHY: the internal
454 				 * or external MII is already selected for us
455 				 * by the GEM_MIF_CONFIG  register.
456 				 */
457 				if (child->mii_phy > 1 || child->mii_inst > 0) {
458 					aprint_error_dev(sc->sc_dev,
459 					    "cannot accommodate MII device"
460 					    " %s at PHY %d, instance %d\n",
461 					       device_xname(child->mii_dev),
462 					       child->mii_phy, child->mii_inst);
463 					continue;
464 				}
465 				sc->sc_phys[child->mii_inst] = child->mii_phy;
466 			}
467 
468 			if (sc->sc_variant != GEM_SUN_ERI)
469 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
470 				    GEM_MII_DATAPATH_MII);
471 
472 			/*
473 			 * XXX - we can really do the following ONLY if the
474 			 * PHY indeed has the auto negotiation capability!!
475 			 */
476 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
477 		}
478 	} else {
479 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
480 		    gem_ser_mediastatus);
481 		/* SERDES or Serialink */
482 		if (sc->sc_flags & GEM_SERDES) {
483 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
484 			    GEM_MII_DATAPATH_SERDES);
485 		} else {
486 			sc->sc_flags |= GEM_SERIAL;
487 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
488 			    GEM_MII_DATAPATH_SERIAL);
489 		}
490 
491 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
492 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
493 
494 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
495 		/* Check for FDX and HDX capabilities */
496 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
497 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
498 			ifmedia_add(&sc->sc_mii.mii_media,
499 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
500 			aprint_normal("1000baseSX-FDX, ");
501 		}
502 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
503 			ifmedia_add(&sc->sc_mii.mii_media,
504 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
505 			aprint_normal("1000baseSX-HDX, ");
506 		}
507 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
508 		sc->sc_mii_media = IFM_AUTO;
509 		aprint_normal("auto\n");
510 
511 		gem_pcs_stop(sc, 1);
512 	}
513 
514 	/*
515 	 * From this point forward, the attachment cannot fail.  A failure
516 	 * before this point releases all resources that may have been
517 	 * allocated.
518 	 */
519 
520 	/* Announce ourselves. */
521 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
522 	    ether_sprintf(enaddr));
523 
524 	/* Get RX FIFO size */
525 	sc->sc_rxfifosize = 64 *
526 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
527 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
528 
529 	/* Get TX FIFO size */
530 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
531 	aprint_normal(", %uKB TX fifo\n", v / 16);
532 
533 	/* Initialize ifnet structure. */
534 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 	ifp->if_softc = sc;
536 	ifp->if_flags =
537 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
538 	sc->sc_if_flags = ifp->if_flags;
539 #if 0
540 	/*
541 	 * The GEM hardware supports basic TCP checksum offloading only.
542 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
543 	 * have bugs in the receive checksum, so don't enable it for now.
544 	 */
545 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
546 	    (GEM_IS_APPLE(sc) &&
547 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
548 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
549 #endif
550 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
551 	ifp->if_start = gem_start;
552 	ifp->if_ioctl = gem_ioctl;
553 	ifp->if_watchdog = gem_watchdog;
554 	ifp->if_stop = gem_stop;
555 	ifp->if_init = gem_init;
556 	IFQ_SET_READY(&ifp->if_snd);
557 
558 	/*
559 	 * If we support GigE media, we support jumbo frames too.
560 	 * Unless we are Apple.
561 	 */
562 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
563 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
564 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
565 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
566 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
567 			if (!GEM_IS_APPLE(sc))
568 				sc->sc_ethercom.ec_capabilities
569 				    |= ETHERCAP_JUMBO_MTU;
570 			sc->sc_flags |= GEM_GIGABIT;
571 			break;
572 		}
573 	}
574 
575 	/* claim 802.1q capability */
576 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
577 
578 	/* Attach the interface. */
579 	if_attach(ifp);
580 	ether_ifattach(ifp, enaddr);
581 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
582 
583 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
584 			  RND_TYPE_NET, 0);
585 
586 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
587 	    NULL, device_xname(sc->sc_dev), "interrupts");
588 #ifdef GEM_COUNTERS
589 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
590 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
591 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
592 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
593 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
594 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
595 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
596 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
597 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
598 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
599 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
600 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
601 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
602 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
603 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
604 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
605 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
606 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
607 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
608 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
609 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
610 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
611 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
612 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
613 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
614 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
615 #endif
616 
617 	callout_init(&sc->sc_tick_ch, 0);
618 	callout_init(&sc->sc_rx_watchdog, 0);
619 	callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
620 
621 	sc->sc_att_stage = GEM_ATT_FINISHED;
622 
623 	return;
624 }
625 
626 void
627 gem_tick(void *arg)
628 {
629 	struct gem_softc *sc = arg;
630 	int s;
631 
632 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
633 		/*
634 		 * We have to reset everything if we failed to get a
635 		 * PCS interrupt.  Restarting the callout is handled
636 		 * in gem_pcs_start().
637 		 */
638 		gem_init(&sc->sc_ethercom.ec_if);
639 	} else {
640 		s = splnet();
641 		mii_tick(&sc->sc_mii);
642 		splx(s);
643 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
644 	}
645 }
646 
647 static int
648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
649 {
650 	int i;
651 	u_int32_t reg;
652 
653 	for (i = TRIES; i--; DELAY(100)) {
654 		reg = bus_space_read_4(sc->sc_bustag, h, r);
655 		if ((reg & clr) == 0 && (reg & set) == set)
656 			return (1);
657 	}
658 	return (0);
659 }
660 
661 void
662 gem_reset(struct gem_softc *sc)
663 {
664 	bus_space_tag_t t = sc->sc_bustag;
665 	bus_space_handle_t h = sc->sc_h2;
666 	int s;
667 
668 	s = splnet();
669 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
670 	gem_reset_rx(sc);
671 	gem_reset_tx(sc);
672 
673 	/* Do a full reset */
674 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
675 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
676 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
677 	splx(s);
678 }
679 
680 
681 /*
682  * gem_rxdrain:
683  *
684  *	Drain the receive queue.
685  */
686 static void
687 gem_rxdrain(struct gem_softc *sc)
688 {
689 	struct gem_rxsoft *rxs;
690 	int i;
691 
692 	for (i = 0; i < GEM_NRXDESC; i++) {
693 		rxs = &sc->sc_rxsoft[i];
694 		if (rxs->rxs_mbuf != NULL) {
695 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
696 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
697 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
698 			m_freem(rxs->rxs_mbuf);
699 			rxs->rxs_mbuf = NULL;
700 		}
701 	}
702 }
703 
704 /*
705  * Reset the whole thing.
706  */
707 static void
708 gem_stop(struct ifnet *ifp, int disable)
709 {
710 	struct gem_softc *sc = ifp->if_softc;
711 	struct gem_txsoft *txs;
712 
713 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
714 
715 	callout_halt(&sc->sc_tick_ch, NULL);
716 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
717 		gem_pcs_stop(sc, disable);
718 	else
719 		mii_down(&sc->sc_mii);
720 
721 	/* XXX - Should we reset these instead? */
722 	gem_disable_tx(sc);
723 	gem_disable_rx(sc);
724 
725 	/*
726 	 * Release any queued transmit buffers.
727 	 */
728 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
729 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
730 		if (txs->txs_mbuf != NULL) {
731 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
732 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
733 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
734 			m_freem(txs->txs_mbuf);
735 			txs->txs_mbuf = NULL;
736 		}
737 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
738 	}
739 
740 	/*
741 	 * Mark the interface down and cancel the watchdog timer.
742 	 */
743 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
744 	sc->sc_if_flags = ifp->if_flags;
745 	ifp->if_timer = 0;
746 
747 	if (disable)
748 		gem_rxdrain(sc);
749 }
750 
751 
752 /*
753  * Reset the receiver
754  */
755 int
756 gem_reset_rx(struct gem_softc *sc)
757 {
758 	bus_space_tag_t t = sc->sc_bustag;
759 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
760 
761 	/*
762 	 * Resetting while DMA is in progress can cause a bus hang, so we
763 	 * disable DMA first.
764 	 */
765 	gem_disable_rx(sc);
766 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
767 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
768 	/* Wait till it finishes */
769 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
770 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
771 	/* Wait 5ms extra. */
772 	delay(5000);
773 
774 	/* Finally, reset the ERX */
775 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
776 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
777 	/* Wait till it finishes */
778 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
779 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
780 		return (1);
781 	}
782 	return (0);
783 }
784 
785 
786 /*
787  * Reset the receiver DMA engine.
788  *
789  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
790  * etc in order to reset the receiver DMA engine only and not do a full
791  * reset which amongst others also downs the link and clears the FIFOs.
792  */
793 static void
794 gem_reset_rxdma(struct gem_softc *sc)
795 {
796 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
797 	bus_space_tag_t t = sc->sc_bustag;
798 	bus_space_handle_t h = sc->sc_h1;
799 	int i;
800 
801 	if (gem_reset_rx(sc) != 0) {
802 		gem_init(ifp);
803 		return;
804 	}
805 	for (i = 0; i < GEM_NRXDESC; i++)
806 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
807 			GEM_UPDATE_RXDESC(sc, i);
808 	sc->sc_rxptr = 0;
809 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
810 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
811 
812 	/* Reprogram Descriptor Ring Base Addresses */
813 	/* NOTE: we use only 32-bit DMA addresses here. */
814 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
815 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
816 
817 	/* Redo ERX Configuration */
818 	gem_rx_common(sc);
819 
820 	/* Give the reciever a swift kick */
821 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
822 }
823 
824 /*
825  * Common RX configuration for gem_init() and gem_reset_rxdma().
826  */
827 static void
828 gem_rx_common(struct gem_softc *sc)
829 {
830 	bus_space_tag_t t = sc->sc_bustag;
831 	bus_space_handle_t h = sc->sc_h1;
832 	u_int32_t v;
833 
834 	/* Encode Receive Descriptor ring size: four possible values */
835 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
836 
837 	/* Set receive h/w checksum offset */
838 #ifdef INET
839 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
840 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
841 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
842 #endif
843 
844 	/* Enable RX DMA */
845 	bus_space_write_4(t, h, GEM_RX_CONFIG,
846 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
847 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
848 
849 	/*
850 	 * The following value is for an OFF Threshold of about 3/4 full
851 	 * and an ON Threshold of 1/4 full.
852 	 */
853 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
854 	    (3 * sc->sc_rxfifosize / 256) |
855 	    ((sc->sc_rxfifosize / 256) << 12));
856 	bus_space_write_4(t, h, GEM_RX_BLANKING,
857 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
858 }
859 
860 /*
861  * Reset the transmitter
862  */
863 int
864 gem_reset_tx(struct gem_softc *sc)
865 {
866 	bus_space_tag_t t = sc->sc_bustag;
867 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
868 
869 	/*
870 	 * Resetting while DMA is in progress can cause a bus hang, so we
871 	 * disable DMA first.
872 	 */
873 	gem_disable_tx(sc);
874 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
875 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
876 	/* Wait till it finishes */
877 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
878 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
879 	/* Wait 5ms extra. */
880 	delay(5000);
881 
882 	/* Finally, reset the ETX */
883 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
884 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
885 	/* Wait till it finishes */
886 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
887 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
888 		return (1);
889 	}
890 	return (0);
891 }
892 
893 /*
894  * disable receiver.
895  */
896 int
897 gem_disable_rx(struct gem_softc *sc)
898 {
899 	bus_space_tag_t t = sc->sc_bustag;
900 	bus_space_handle_t h = sc->sc_h1;
901 	u_int32_t cfg;
902 
903 	/* Flip the enable bit */
904 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
905 	cfg &= ~GEM_MAC_RX_ENABLE;
906 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
907 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
908 	/* Wait for it to finish */
909 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
910 }
911 
912 /*
913  * disable transmitter.
914  */
915 int
916 gem_disable_tx(struct gem_softc *sc)
917 {
918 	bus_space_tag_t t = sc->sc_bustag;
919 	bus_space_handle_t h = sc->sc_h1;
920 	u_int32_t cfg;
921 
922 	/* Flip the enable bit */
923 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
924 	cfg &= ~GEM_MAC_TX_ENABLE;
925 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
926 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
927 	/* Wait for it to finish */
928 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
929 }
930 
931 /*
932  * Initialize interface.
933  */
934 int
935 gem_meminit(struct gem_softc *sc)
936 {
937 	struct gem_rxsoft *rxs;
938 	int i, error;
939 
940 	/*
941 	 * Initialize the transmit descriptor ring.
942 	 */
943 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
944 	for (i = 0; i < GEM_NTXDESC; i++) {
945 		sc->sc_txdescs[i].gd_flags = 0;
946 		sc->sc_txdescs[i].gd_addr = 0;
947 	}
948 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
949 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
950 	sc->sc_txfree = GEM_NTXDESC-1;
951 	sc->sc_txnext = 0;
952 	sc->sc_txwin = 0;
953 
954 	/*
955 	 * Initialize the receive descriptor and receive job
956 	 * descriptor rings.
957 	 */
958 	for (i = 0; i < GEM_NRXDESC; i++) {
959 		rxs = &sc->sc_rxsoft[i];
960 		if (rxs->rxs_mbuf == NULL) {
961 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
962 				aprint_error_dev(sc->sc_dev,
963 				    "unable to allocate or map rx "
964 				    "buffer %d, error = %d\n",
965 				    i, error);
966 				/*
967 				 * XXX Should attempt to run with fewer receive
968 				 * XXX buffers instead of just failing.
969 				 */
970 				gem_rxdrain(sc);
971 				return (1);
972 			}
973 		} else
974 			GEM_INIT_RXDESC(sc, i);
975 	}
976 	sc->sc_rxptr = 0;
977 	sc->sc_meminited = 1;
978 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
979 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
980 
981 	return (0);
982 }
983 
984 static int
985 gem_ringsize(int sz)
986 {
987 	switch (sz) {
988 	case 32:
989 		return GEM_RING_SZ_32;
990 	case 64:
991 		return GEM_RING_SZ_64;
992 	case 128:
993 		return GEM_RING_SZ_128;
994 	case 256:
995 		return GEM_RING_SZ_256;
996 	case 512:
997 		return GEM_RING_SZ_512;
998 	case 1024:
999 		return GEM_RING_SZ_1024;
1000 	case 2048:
1001 		return GEM_RING_SZ_2048;
1002 	case 4096:
1003 		return GEM_RING_SZ_4096;
1004 	case 8192:
1005 		return GEM_RING_SZ_8192;
1006 	default:
1007 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
1008 		return GEM_RING_SZ_32;
1009 	}
1010 }
1011 
1012 
1013 /*
1014  * Start PCS
1015  */
1016 void
1017 gem_pcs_start(struct gem_softc *sc)
1018 {
1019 	bus_space_tag_t t = sc->sc_bustag;
1020 	bus_space_handle_t h = sc->sc_h1;
1021 	uint32_t v;
1022 
1023 #ifdef GEM_DEBUG
1024 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1025 #endif
1026 
1027 	/*
1028 	 * Set up.  We must disable the MII before modifying the
1029 	 * GEM_MII_ANAR register
1030 	 */
1031 	if (sc->sc_flags & GEM_SERDES) {
1032 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1033 		    GEM_MII_DATAPATH_SERDES);
1034 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1035 		    GEM_MII_SLINK_LOOPBACK);
1036 	} else {
1037 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1038 		    GEM_MII_DATAPATH_SERIAL);
1039 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1040 	}
1041 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1042 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1043 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1044 	if (sc->sc_mii_media == IFM_AUTO)
1045 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1046 	else if (sc->sc_mii_media == IFM_FDX) {
1047 		v |= GEM_MII_ANEG_FUL_DUPLX;
1048 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1049 	} else if (sc->sc_mii_media == IFM_HDX) {
1050 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1051 		v |= GEM_MII_ANEG_HLF_DUPLX;
1052 	}
1053 
1054 	/* Configure link. */
1055 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1056 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1057 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1058 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1059 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1060 
1061 	/* Start the 10 second timer */
1062 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1063 }
1064 
1065 /*
1066  * Stop PCS
1067  */
1068 void
1069 gem_pcs_stop(struct gem_softc *sc, int disable)
1070 {
1071 	bus_space_tag_t t = sc->sc_bustag;
1072 	bus_space_handle_t h = sc->sc_h1;
1073 
1074 #ifdef GEM_DEBUG
1075 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1076 #endif
1077 
1078 	/* Tell link partner that we're going away */
1079 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1080 
1081 	/*
1082 	 * Disable PCS MII.  The documentation suggests that setting
1083 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1084 	 * negotiation will shut down the link.  However, it appears
1085 	 * that we also need to unset the datapath mode.
1086 	 */
1087 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1088 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1089 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1090 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1091 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1092 
1093 	if (disable) {
1094 		if (sc->sc_flags & GEM_SERDES)
1095 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1096 				GEM_MII_SLINK_POWER_OFF);
1097 		else
1098 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1099 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1100 	}
1101 
1102 	sc->sc_flags &= ~GEM_LINK;
1103 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1104 	sc->sc_mii.mii_media_status = IFM_AVALID;
1105 }
1106 
1107 
1108 /*
1109  * Initialization of interface; set up initialization block
1110  * and transmit/receive descriptor rings.
1111  */
1112 int
1113 gem_init(struct ifnet *ifp)
1114 {
1115 	struct gem_softc *sc = ifp->if_softc;
1116 	bus_space_tag_t t = sc->sc_bustag;
1117 	bus_space_handle_t h = sc->sc_h1;
1118 	int rc = 0, s;
1119 	u_int max_frame_size;
1120 	u_int32_t v;
1121 
1122 	s = splnet();
1123 
1124 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1125 	/*
1126 	 * Initialization sequence. The numbered steps below correspond
1127 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1128 	 * Channel Engine manual (part of the PCIO manual).
1129 	 * See also the STP2002-STQ document from Sun Microsystems.
1130 	 */
1131 
1132 	/* step 1 & 2. Reset the Ethernet Channel */
1133 	gem_stop(ifp, 0);
1134 	gem_reset(sc);
1135 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1136 
1137 	/* Re-initialize the MIF */
1138 	gem_mifinit(sc);
1139 
1140 	/* Set up correct datapath for non-SERDES/Serialink */
1141 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1142 	    sc->sc_variant != GEM_SUN_ERI)
1143 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1144 		    GEM_MII_DATAPATH_MII);
1145 
1146 	/* Call MI reset function if any */
1147 	if (sc->sc_hwreset)
1148 		(*sc->sc_hwreset)(sc);
1149 
1150 	/* step 3. Setup data structures in host memory */
1151 	if (gem_meminit(sc) != 0)
1152 		return 1;
1153 
1154 	/* step 4. TX MAC registers & counters */
1155 	gem_init_regs(sc);
1156 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1157 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1158 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1159 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1160 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1161 	    max_frame_size|/* burst size */(0x2000<<16));
1162 
1163 	/* step 5. RX MAC registers & counters */
1164 	gem_setladrf(sc);
1165 
1166 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1167 	/* NOTE: we use only 32-bit DMA addresses here. */
1168 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1169 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1170 
1171 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1172 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1173 
1174 	/* step 8. Global Configuration & Interrupt Mask */
1175 	gem_inten(sc);
1176 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1177 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1178 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1179 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1180 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1181 
1182 	/* step 9. ETX Configuration: use mostly default values */
1183 
1184 	/* Enable TX DMA */
1185 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1186 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1187 	    v | GEM_TX_CONFIG_TXDMA_EN |
1188 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1189 	    GEM_TX_CONFIG_TXFIFO_TH));
1190 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1191 
1192 	/* step 10. ERX Configuration */
1193 	gem_rx_common(sc);
1194 
1195 	/* step 11. Configure Media */
1196 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1197 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1198 		goto out;
1199 
1200 	/* step 12. RX_MAC Configuration Register */
1201 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1202 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1203 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1204 
1205 	/* step 14. Issue Transmit Pending command */
1206 
1207 	/* Call MI initialization function if any */
1208 	if (sc->sc_hwinit)
1209 		(*sc->sc_hwinit)(sc);
1210 
1211 
1212 	/* step 15.  Give the reciever a swift kick */
1213 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1214 
1215 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1216 		/* Configure PCS */
1217 		gem_pcs_start(sc);
1218 	else
1219 		/* Start the one second timer. */
1220 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1221 
1222 	sc->sc_flags &= ~GEM_LINK;
1223 	ifp->if_flags |= IFF_RUNNING;
1224 	ifp->if_flags &= ~IFF_OACTIVE;
1225 	ifp->if_timer = 0;
1226 	sc->sc_if_flags = ifp->if_flags;
1227 out:
1228 	splx(s);
1229 
1230 	return (0);
1231 }
1232 
1233 void
1234 gem_init_regs(struct gem_softc *sc)
1235 {
1236 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1237 	bus_space_tag_t t = sc->sc_bustag;
1238 	bus_space_handle_t h = sc->sc_h1;
1239 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1240 	u_int32_t v;
1241 
1242 	/* These regs are not cleared on reset */
1243 	if (!sc->sc_inited) {
1244 
1245 		/* Load recommended values */
1246 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1247 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1248 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1249 
1250 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1251 		/* Max frame and max burst size */
1252 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1253 		    ETHER_MAX_LEN | (0x2000<<16));
1254 
1255 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1256 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1257 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1258 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1259 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1260 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1261 
1262 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1263 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1264 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1265 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1266 
1267 		/* MAC control addr set to 01:80:c2:00:00:01 */
1268 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1269 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1270 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1271 
1272 		/* MAC filter addr set to 0:0:0:0:0:0 */
1273 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1274 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1275 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1276 
1277 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1278 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1279 
1280 		sc->sc_inited = 1;
1281 	}
1282 
1283 	/* Counters need to be zeroed */
1284 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1285 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1286 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1287 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1288 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1289 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1290 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1291 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1292 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1293 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1294 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1295 
1296 	/* Set XOFF PAUSE time. */
1297 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1298 
1299 	/*
1300 	 * Set the internal arbitration to "infinite" bursts of the
1301 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1302 	 * split up in cache line size chunks. This greatly improves
1303 	 * especially RX performance.
1304 	 * Enable silicon bug workarounds for the Apple variants.
1305 	 */
1306 	bus_space_write_4(t, h, GEM_CONFIG,
1307 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1308 	    ((sc->sc_flags & GEM_PCI) ?
1309 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1310 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1311 
1312 	/*
1313 	 * Set the station address.
1314 	 */
1315 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1316 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1317 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1318 
1319 	/*
1320 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1321 	 */
1322 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1323 	v = GEM_MAC_XIF_TX_MII_ENA;
1324 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1325 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1326 			v |= GEM_MAC_XIF_FDPLX_LED;
1327 				if (sc->sc_flags & GEM_GIGABIT)
1328 					v |= GEM_MAC_XIF_GMII_MODE;
1329 		}
1330 	} else {
1331 		v |= GEM_MAC_XIF_GMII_MODE;
1332 	}
1333 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1334 }
1335 
1336 #ifdef GEM_DEBUG
1337 static void
1338 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1339 {
1340 	int i;
1341 
1342 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1343 		printf("descriptor %d:\t", i);
1344 		printf("gd_flags:   0x%016" PRIx64 "\t",
1345 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1346 		printf("gd_addr: 0x%016" PRIx64 "\n",
1347 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1348 		if (i == lastdesc)
1349 			break;
1350 	}
1351 }
1352 #endif
1353 
1354 static void
1355 gem_start(struct ifnet *ifp)
1356 {
1357 	struct gem_softc *sc = ifp->if_softc;
1358 	struct mbuf *m0, *m;
1359 	struct gem_txsoft *txs;
1360 	bus_dmamap_t dmamap;
1361 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1362 	uint64_t flags = 0;
1363 
1364 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1365 		return;
1366 
1367 	/*
1368 	 * Remember the previous number of free descriptors and
1369 	 * the first descriptor we'll use.
1370 	 */
1371 	ofree = sc->sc_txfree;
1372 	firsttx = sc->sc_txnext;
1373 
1374 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1375 	    device_xname(sc->sc_dev), ofree, firsttx));
1376 
1377 	/*
1378 	 * Loop through the send queue, setting up transmit descriptors
1379 	 * until we drain the queue, or use up all available transmit
1380 	 * descriptors.
1381 	 */
1382 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1383 	    sc->sc_txfree != 0) {
1384 		/*
1385 		 * Grab a packet off the queue.
1386 		 */
1387 		IFQ_POLL(&ifp->if_snd, m0);
1388 		if (m0 == NULL)
1389 			break;
1390 		m = NULL;
1391 
1392 		dmamap = txs->txs_dmamap;
1393 
1394 		/*
1395 		 * Load the DMA map.  If this fails, the packet either
1396 		 * didn't fit in the alloted number of segments, or we were
1397 		 * short on resources.  In this case, we'll copy and try
1398 		 * again.
1399 		 */
1400 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1401 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1402 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1403 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1404 			if (m0->m_pkthdr.len > MCLBYTES) {
1405 				aprint_error_dev(sc->sc_dev,
1406 				    "unable to allocate jumbo Tx cluster\n");
1407 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1408 				m_freem(m0);
1409 				continue;
1410 			}
1411 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1412 			if (m == NULL) {
1413 				aprint_error_dev(sc->sc_dev,
1414 				    "unable to allocate Tx mbuf\n");
1415 				break;
1416 			}
1417 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1418 			if (m0->m_pkthdr.len > MHLEN) {
1419 				MCLGET(m, M_DONTWAIT);
1420 				if ((m->m_flags & M_EXT) == 0) {
1421 					aprint_error_dev(sc->sc_dev,
1422 					    "unable to allocate Tx cluster\n");
1423 					m_freem(m);
1424 					break;
1425 				}
1426 			}
1427 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1428 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1429 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1430 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1431 			if (error) {
1432 				aprint_error_dev(sc->sc_dev,
1433 				    "unable to load Tx buffer, error = %d\n",
1434 				    error);
1435 				break;
1436 			}
1437 		}
1438 
1439 		/*
1440 		 * Ensure we have enough descriptors free to describe
1441 		 * the packet.
1442 		 */
1443 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1444 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1445 			/*
1446 			 * Not enough free descriptors to transmit this
1447 			 * packet.  We haven't committed to anything yet,
1448 			 * so just unload the DMA map, put the packet
1449 			 * back on the queue, and punt.  Notify the upper
1450 			 * layer that there are no more slots left.
1451 			 *
1452 			 * XXX We could allocate an mbuf and copy, but
1453 			 * XXX it is worth it?
1454 			 */
1455 			ifp->if_flags |= IFF_OACTIVE;
1456 			sc->sc_if_flags = ifp->if_flags;
1457 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1458 			if (m != NULL)
1459 				m_freem(m);
1460 			break;
1461 		}
1462 
1463 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1464 		if (m != NULL) {
1465 			m_freem(m0);
1466 			m0 = m;
1467 		}
1468 
1469 		/*
1470 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1471 		 */
1472 
1473 		/* Sync the DMA map. */
1474 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1475 		    BUS_DMASYNC_PREWRITE);
1476 
1477 		/*
1478 		 * Initialize the transmit descriptors.
1479 		 */
1480 		for (nexttx = sc->sc_txnext, seg = 0;
1481 		     seg < dmamap->dm_nsegs;
1482 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1483 
1484 			/*
1485 			 * If this is the first descriptor we're
1486 			 * enqueueing, set the start of packet flag,
1487 			 * and the checksum stuff if we want the hardware
1488 			 * to do it.
1489 			 */
1490 			sc->sc_txdescs[nexttx].gd_addr =
1491 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1492 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1493 			if (nexttx == firsttx) {
1494 				flags |= GEM_TD_START_OF_PACKET;
1495 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1496 					sc->sc_txwin = 0;
1497 					flags |= GEM_TD_INTERRUPT_ME;
1498 				}
1499 
1500 #ifdef INET
1501 				/* h/w checksum */
1502 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1503 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1504 					struct ether_header *eh;
1505 					uint16_t offset, start;
1506 
1507 					eh = mtod(m0, struct ether_header *);
1508 					switch (ntohs(eh->ether_type)) {
1509 					case ETHERTYPE_IP:
1510 						start = ETHER_HDR_LEN;
1511 						break;
1512 					case ETHERTYPE_VLAN:
1513 						start = ETHER_HDR_LEN +
1514 							ETHER_VLAN_ENCAP_LEN;
1515 						break;
1516 					default:
1517 						/* unsupported, drop it */
1518 						m_free(m0);
1519 						continue;
1520 					}
1521 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1522 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1523 					flags |= (start <<
1524 						  GEM_TD_CXSUM_STARTSHFT) |
1525 						 (offset <<
1526 						  GEM_TD_CXSUM_STUFFSHFT) |
1527 						 GEM_TD_CXSUM_ENABLE;
1528 				}
1529 #endif
1530 			}
1531 			if (seg == dmamap->dm_nsegs - 1) {
1532 				flags |= GEM_TD_END_OF_PACKET;
1533 			} else {
1534 				/* last flag set outside of loop */
1535 				sc->sc_txdescs[nexttx].gd_flags =
1536 					GEM_DMA_WRITE(sc, flags);
1537 			}
1538 			lasttx = nexttx;
1539 		}
1540 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1541 			/* add padding buffer at end of chain */
1542 			flags &= ~GEM_TD_END_OF_PACKET;
1543 			sc->sc_txdescs[lasttx].gd_flags =
1544 			    GEM_DMA_WRITE(sc, flags);
1545 
1546 			sc->sc_txdescs[nexttx].gd_addr =
1547 			    GEM_DMA_WRITE(sc,
1548 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1549 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1550 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1551 			lasttx = nexttx;
1552 			nexttx = GEM_NEXTTX(nexttx);
1553 			seg++;
1554 		}
1555 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1556 
1557 		KASSERT(lasttx != -1);
1558 
1559 		/*
1560 		 * Store a pointer to the packet so we can free it later,
1561 		 * and remember what txdirty will be once the packet is
1562 		 * done.
1563 		 */
1564 		txs->txs_mbuf = m0;
1565 		txs->txs_firstdesc = sc->sc_txnext;
1566 		txs->txs_lastdesc = lasttx;
1567 		txs->txs_ndescs = seg;
1568 
1569 #ifdef GEM_DEBUG
1570 		if (ifp->if_flags & IFF_DEBUG) {
1571 			printf("     gem_start %p transmit chain:\n", txs);
1572 			gem_txsoft_print(sc, txs->txs_firstdesc,
1573 			    txs->txs_lastdesc);
1574 		}
1575 #endif
1576 
1577 		/* Sync the descriptors we're using. */
1578 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1579 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1580 
1581 		/* Advance the tx pointer. */
1582 		sc->sc_txfree -= txs->txs_ndescs;
1583 		sc->sc_txnext = nexttx;
1584 
1585 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1586 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1587 
1588 		/*
1589 		 * Pass the packet to any BPF listeners.
1590 		 */
1591 		bpf_mtap(ifp, m0);
1592 	}
1593 
1594 	if (txs == NULL || sc->sc_txfree == 0) {
1595 		/* No more slots left; notify upper layer. */
1596 		ifp->if_flags |= IFF_OACTIVE;
1597 		sc->sc_if_flags = ifp->if_flags;
1598 	}
1599 
1600 	if (sc->sc_txfree != ofree) {
1601 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1602 		    device_xname(sc->sc_dev), lasttx, firsttx));
1603 		/*
1604 		 * The entire packet chain is set up.
1605 		 * Kick the transmitter.
1606 		 */
1607 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1608 			device_xname(sc->sc_dev), nexttx));
1609 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1610 			sc->sc_txnext);
1611 
1612 		/* Set a watchdog timer in case the chip flakes out. */
1613 		ifp->if_timer = 5;
1614 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1615 			device_xname(sc->sc_dev), ifp->if_timer));
1616 	}
1617 }
1618 
1619 /*
1620  * Transmit interrupt.
1621  */
1622 int
1623 gem_tint(struct gem_softc *sc)
1624 {
1625 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1626 	bus_space_tag_t t = sc->sc_bustag;
1627 	bus_space_handle_t mac = sc->sc_h1;
1628 	struct gem_txsoft *txs;
1629 	int txlast;
1630 	int progress = 0;
1631 	u_int32_t v;
1632 
1633 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1634 
1635 	/* Unload collision counters ... */
1636 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1637 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1638 	ifp->if_collisions += v +
1639 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1640 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1641 	ifp->if_oerrors += v;
1642 
1643 	/* ... then clear the hardware counters. */
1644 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1645 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1646 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1647 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1648 
1649 	/*
1650 	 * Go through our Tx list and free mbufs for those
1651 	 * frames that have been transmitted.
1652 	 */
1653 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1654 		/*
1655 		 * In theory, we could harvest some descriptors before
1656 		 * the ring is empty, but that's a bit complicated.
1657 		 *
1658 		 * GEM_TX_COMPLETION points to the last descriptor
1659 		 * processed +1.
1660 		 *
1661 		 * Let's assume that the NIC writes back to the Tx
1662 		 * descriptors before it updates the completion
1663 		 * register.  If the NIC has posted writes to the
1664 		 * Tx descriptors, PCI ordering requires that the
1665 		 * posted writes flush to RAM before the register-read
1666 		 * finishes.  So let's read the completion register,
1667 		 * before syncing the descriptors, so that we
1668 		 * examine Tx descriptors that are at least as
1669 		 * current as the completion register.
1670 		 */
1671 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1672 		DPRINTF(sc,
1673 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1674 				txs->txs_lastdesc, txlast));
1675 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1676 			if (txlast >= txs->txs_firstdesc &&
1677 			    txlast <= txs->txs_lastdesc)
1678 				break;
1679 		} else if (txlast >= txs->txs_firstdesc ||
1680 			   txlast <= txs->txs_lastdesc)
1681 			break;
1682 
1683 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1684 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1685 
1686 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1687 		if (ifp->if_flags & IFF_DEBUG) {
1688 			printf("    txsoft %p transmit chain:\n", txs);
1689 			gem_txsoft_print(sc, txs->txs_firstdesc,
1690 			    txs->txs_lastdesc);
1691 		}
1692 #endif
1693 
1694 
1695 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1696 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1697 
1698 		sc->sc_txfree += txs->txs_ndescs;
1699 
1700 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1701 		    0, txs->txs_dmamap->dm_mapsize,
1702 		    BUS_DMASYNC_POSTWRITE);
1703 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1704 		if (txs->txs_mbuf != NULL) {
1705 			m_freem(txs->txs_mbuf);
1706 			txs->txs_mbuf = NULL;
1707 		}
1708 
1709 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1710 
1711 		ifp->if_opackets++;
1712 		progress = 1;
1713 	}
1714 
1715 #if 0
1716 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1717 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1718 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1719 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1720 			GEM_TX_DATA_PTR_HI) << 32) |
1721 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1722 			GEM_TX_DATA_PTR_LO),
1723 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1724 #endif
1725 
1726 	if (progress) {
1727 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1728 			sc->sc_txwin = 0;
1729 
1730 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1731 		ifp->if_flags &= ~IFF_OACTIVE;
1732 		sc->sc_if_flags = ifp->if_flags;
1733 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1734 		gem_start(ifp);
1735 	}
1736 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1737 		device_xname(sc->sc_dev), ifp->if_timer));
1738 
1739 	return (1);
1740 }
1741 
1742 /*
1743  * Receive interrupt.
1744  */
1745 int
1746 gem_rint(struct gem_softc *sc)
1747 {
1748 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1749 	bus_space_tag_t t = sc->sc_bustag;
1750 	bus_space_handle_t h = sc->sc_h1;
1751 	struct gem_rxsoft *rxs;
1752 	struct mbuf *m;
1753 	u_int64_t rxstat;
1754 	u_int32_t rxcomp;
1755 	int i, len, progress = 0;
1756 
1757 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1758 
1759 	/*
1760 	 * Ignore spurious interrupt that sometimes occurs before
1761 	 * we are set up when we network boot.
1762 	 */
1763 	if (!sc->sc_meminited)
1764 		return 1;
1765 
1766 	/*
1767 	 * Read the completion register once.  This limits
1768 	 * how long the following loop can execute.
1769 	 */
1770 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1771 
1772 	/*
1773 	 * XXX Read the lastrx only once at the top for speed.
1774 	 */
1775 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1776 		sc->sc_rxptr, rxcomp));
1777 
1778 	/*
1779 	 * Go into the loop at least once.
1780 	 */
1781 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1782 	     i = GEM_NEXTRX(i)) {
1783 		rxs = &sc->sc_rxsoft[i];
1784 
1785 		GEM_CDRXSYNC(sc, i,
1786 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1787 
1788 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1789 
1790 		if (rxstat & GEM_RD_OWN) {
1791 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1792 			/*
1793 			 * We have processed all of the receive buffers.
1794 			 */
1795 			break;
1796 		}
1797 
1798 		progress++;
1799 		ifp->if_ipackets++;
1800 
1801 		if (rxstat & GEM_RD_BAD_CRC) {
1802 			ifp->if_ierrors++;
1803 			aprint_error_dev(sc->sc_dev,
1804 			    "receive error: CRC error\n");
1805 			GEM_INIT_RXDESC(sc, i);
1806 			continue;
1807 		}
1808 
1809 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1810 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1811 #ifdef GEM_DEBUG
1812 		if (ifp->if_flags & IFF_DEBUG) {
1813 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1814 			printf("gd_flags: 0x%016llx\t", (long long)
1815 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1816 			printf("gd_addr: 0x%016llx\n", (long long)
1817 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1818 		}
1819 #endif
1820 
1821 		/* No errors; receive the packet. */
1822 		len = GEM_RD_BUFLEN(rxstat);
1823 
1824 		/*
1825 		 * Allocate a new mbuf cluster.  If that fails, we are
1826 		 * out of memory, and must drop the packet and recycle
1827 		 * the buffer that's already attached to this descriptor.
1828 		 */
1829 		m = rxs->rxs_mbuf;
1830 		if (gem_add_rxbuf(sc, i) != 0) {
1831 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1832 			ifp->if_ierrors++;
1833 			aprint_error_dev(sc->sc_dev,
1834 			    "receive error: RX no buffer space\n");
1835 			GEM_INIT_RXDESC(sc, i);
1836 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1837 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1838 			continue;
1839 		}
1840 		m->m_data += 2; /* We're already off by two */
1841 
1842 		m->m_pkthdr.rcvif = ifp;
1843 		m->m_pkthdr.len = m->m_len = len;
1844 
1845 		/*
1846 		 * Pass this up to any BPF listeners, but only
1847 		 * pass it up the stack if it's for us.
1848 		 */
1849 		bpf_mtap(ifp, m);
1850 
1851 #ifdef INET
1852 		/* hardware checksum */
1853 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1854 			struct ether_header *eh;
1855 			struct ip *ip;
1856 			int32_t hlen, pktlen;
1857 
1858 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1859 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1860 					 ETHER_VLAN_ENCAP_LEN;
1861 				eh = (struct ether_header *) (mtod(m, char *) +
1862 					ETHER_VLAN_ENCAP_LEN);
1863 			} else {
1864 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1865 				eh = mtod(m, struct ether_header *);
1866 			}
1867 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1868 				goto swcsum;
1869 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1870 
1871 			/* IPv4 only */
1872 			if (ip->ip_v != IPVERSION)
1873 				goto swcsum;
1874 
1875 			hlen = ip->ip_hl << 2;
1876 			if (hlen < sizeof(struct ip))
1877 				goto swcsum;
1878 
1879 			/*
1880 			 * bail if too short, has random trailing garbage,
1881 			 * truncated, fragment, or has ethernet pad.
1882 			 */
1883 			if ((ntohs(ip->ip_len) < hlen) ||
1884 			    (ntohs(ip->ip_len) != pktlen) ||
1885 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1886 				goto swcsum;
1887 
1888 			switch (ip->ip_p) {
1889 			case IPPROTO_TCP:
1890 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1891 					goto swcsum;
1892 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1893 					goto swcsum;
1894 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1895 				break;
1896 			case IPPROTO_UDP:
1897 				/* FALLTHROUGH */
1898 			default:
1899 				goto swcsum;
1900 			}
1901 
1902 			/* the uncomplemented sum is expected */
1903 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1904 
1905 			/* if the pkt had ip options, we have to deduct them */
1906 			if (hlen > sizeof(struct ip)) {
1907 				uint16_t *opts;
1908 				uint32_t optsum, temp;
1909 
1910 				optsum = 0;
1911 				temp = hlen - sizeof(struct ip);
1912 				opts = (uint16_t *) ((char *) ip +
1913 					sizeof(struct ip));
1914 
1915 				while (temp > 1) {
1916 					optsum += ntohs(*opts++);
1917 					temp -= 2;
1918 				}
1919 				while (optsum >> 16)
1920 					optsum = (optsum >> 16) +
1921 						 (optsum & 0xffff);
1922 
1923 				/* Deduct ip opts sum from hwsum. */
1924 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1925 
1926 				while (m->m_pkthdr.csum_data >> 16)
1927 					m->m_pkthdr.csum_data =
1928 						(m->m_pkthdr.csum_data >> 16) +
1929 						(m->m_pkthdr.csum_data &
1930 						 0xffff);
1931 			}
1932 
1933 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1934 						  M_CSUM_NO_PSEUDOHDR;
1935 		} else
1936 swcsum:
1937 			m->m_pkthdr.csum_flags = 0;
1938 #endif
1939 		/* Pass it on. */
1940 		(*ifp->if_input)(ifp, m);
1941 	}
1942 
1943 	if (progress) {
1944 		/* Update the receive pointer. */
1945 		if (i == sc->sc_rxptr) {
1946 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1947 #ifdef GEM_DEBUG
1948 			if (ifp->if_flags & IFF_DEBUG)
1949 				printf("%s: rint: ring wrap\n",
1950 				    device_xname(sc->sc_dev));
1951 #endif
1952 		}
1953 		sc->sc_rxptr = i;
1954 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1955 	}
1956 #ifdef GEM_COUNTERS
1957 	if (progress <= 4) {
1958 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1959 	} else if (progress < 32) {
1960 		if (progress < 16)
1961 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1962 		else
1963 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1964 
1965 	} else {
1966 		if (progress < 64)
1967 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1968 		else
1969 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1970 	}
1971 #endif
1972 
1973 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1974 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1975 
1976 	/* Read error counters ... */
1977 	ifp->if_ierrors +=
1978 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1979 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1980 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1981 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1982 
1983 	/* ... then clear the hardware counters. */
1984 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1985 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1986 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1987 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1988 
1989 	return (1);
1990 }
1991 
1992 
1993 /*
1994  * gem_add_rxbuf:
1995  *
1996  *	Add a receive buffer to the indicated descriptor.
1997  */
1998 int
1999 gem_add_rxbuf(struct gem_softc *sc, int idx)
2000 {
2001 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
2002 	struct mbuf *m;
2003 	int error;
2004 
2005 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2006 	if (m == NULL)
2007 		return (ENOBUFS);
2008 
2009 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
2010 	MCLGET(m, M_DONTWAIT);
2011 	if ((m->m_flags & M_EXT) == 0) {
2012 		m_freem(m);
2013 		return (ENOBUFS);
2014 	}
2015 
2016 #ifdef GEM_DEBUG
2017 /* bzero the packet to check DMA */
2018 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2019 #endif
2020 
2021 	if (rxs->rxs_mbuf != NULL)
2022 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2023 
2024 	rxs->rxs_mbuf = m;
2025 
2026 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2027 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2028 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2029 	if (error) {
2030 		aprint_error_dev(sc->sc_dev,
2031 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2032 		panic("gem_add_rxbuf");	/* XXX */
2033 	}
2034 
2035 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2036 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2037 
2038 	GEM_INIT_RXDESC(sc, idx);
2039 
2040 	return (0);
2041 }
2042 
2043 
2044 int
2045 gem_eint(struct gem_softc *sc, u_int status)
2046 {
2047 	char bits[128];
2048 	u_int32_t r, v;
2049 
2050 	if ((status & GEM_INTR_MIF) != 0) {
2051 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2052 		return (1);
2053 	}
2054 
2055 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2056 		gem_reset_rxdma(sc);
2057 		return (1);
2058 	}
2059 
2060 	if (status & GEM_INTR_BERR) {
2061 		if (sc->sc_flags & GEM_PCI)
2062 			r = GEM_ERROR_STATUS;
2063 		else
2064 			r = GEM_SBUS_ERROR_STATUS;
2065 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2066 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2067 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2068 		    v);
2069 		return (1);
2070 	}
2071 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2072 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2073 
2074 	return (1);
2075 }
2076 
2077 
2078 /*
2079  * PCS interrupts.
2080  * We should receive these when the link status changes, but sometimes
2081  * we don't receive them for link up.  We compensate for this in the
2082  * gem_tick() callout.
2083  */
2084 int
2085 gem_pint(struct gem_softc *sc)
2086 {
2087 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2088 	bus_space_tag_t t = sc->sc_bustag;
2089 	bus_space_handle_t h = sc->sc_h1;
2090 	u_int32_t v, v2;
2091 
2092 	/*
2093 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2094 	 * latched, so we have to read it twice.  There is only one bit in
2095 	 * use, so the value is meaningless.
2096 	 */
2097 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2098 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2099 
2100 	if ((ifp->if_flags & IFF_UP) == 0)
2101 		return 1;
2102 
2103 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2104 		return 1;
2105 
2106 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2107 	/* If we see remote fault, our link partner is probably going away */
2108 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2109 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2110 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2111 	/* Otherwise, we may need to wait after auto-negotiation completes */
2112 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2113 	    GEM_MII_STATUS_ANEG_CPT) {
2114 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2115 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2116 	}
2117 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2118 		if (sc->sc_flags & GEM_LINK) {
2119 			return 1;
2120 		}
2121 		callout_stop(&sc->sc_tick_ch);
2122 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2123 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2124 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2125 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2126 		v &= v2;
2127 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2128 			sc->sc_mii.mii_media_active |= IFM_FDX;
2129 #ifdef GEM_DEBUG
2130 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2131 #endif
2132 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2133 			sc->sc_mii.mii_media_active |= IFM_HDX;
2134 #ifdef GEM_DEBUG
2135 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2136 #endif
2137 		} else {
2138 #ifdef GEM_DEBUG
2139 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2140 #endif
2141 		}
2142 		gem_statuschange(sc);
2143 	} else {
2144 		if ((sc->sc_flags & GEM_LINK) == 0) {
2145 			return 1;
2146 		}
2147 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2148 		sc->sc_mii.mii_media_status = IFM_AVALID;
2149 #ifdef GEM_DEBUG
2150 			aprint_debug_dev(sc->sc_dev, "link down\n");
2151 #endif
2152 		gem_statuschange(sc);
2153 
2154 		/* Start the 10 second timer */
2155 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2156 	}
2157 	return 1;
2158 }
2159 
2160 
2161 
2162 int
2163 gem_intr(void *v)
2164 {
2165 	struct gem_softc *sc = v;
2166 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2167 	bus_space_tag_t t = sc->sc_bustag;
2168 	bus_space_handle_t h = sc->sc_h1;
2169 	u_int32_t status;
2170 	int r = 0;
2171 #ifdef GEM_DEBUG
2172 	char bits[128];
2173 #endif
2174 
2175 	/* XXX We should probably mask out interrupts until we're done */
2176 
2177 	sc->sc_ev_intr.ev_count++;
2178 
2179 	status = bus_space_read_4(t, h, GEM_STATUS);
2180 #ifdef GEM_DEBUG
2181 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2182 #endif
2183 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2184 		device_xname(sc->sc_dev), (status >> 19), bits));
2185 
2186 
2187 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2188 		r |= gem_eint(sc, status);
2189 
2190 	/* We don't bother with GEM_INTR_TX_DONE */
2191 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2192 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2193 		r |= gem_tint(sc);
2194 	}
2195 
2196 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2197 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2198 		r |= gem_rint(sc);
2199 	}
2200 
2201 	/* We should eventually do more than just print out error stats. */
2202 	if (status & GEM_INTR_TX_MAC) {
2203 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2204 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2205 			printf("%s: MAC tx fault, status %x\n",
2206 			    device_xname(sc->sc_dev), txstat);
2207 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2208 			gem_init(ifp);
2209 	}
2210 	if (status & GEM_INTR_RX_MAC) {
2211 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2212 		/*
2213 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2214 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2215 		 * silicon bug so handle them silently.  So if we detect
2216 		 * an RX FIFO overflow, we fire off a timer, and check
2217 		 * whether we're still making progress by looking at the
2218 		 * RX FIFO write and read pointers.
2219 		 */
2220 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2221 			ifp->if_ierrors++;
2222 			aprint_error_dev(sc->sc_dev,
2223 			    "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
2224 			sc->sc_rx_fifo_wr_ptr =
2225 				bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2226 			sc->sc_rx_fifo_rd_ptr =
2227 				bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2228 			callout_schedule(&sc->sc_rx_watchdog, 400);
2229 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2230 			printf("%s: MAC rx fault, status 0x%02x\n",
2231 			    device_xname(sc->sc_dev), rxstat);
2232 	}
2233 	if (status & GEM_INTR_PCS) {
2234 		r |= gem_pint(sc);
2235 	}
2236 
2237 /* Do we need to do anything with these?
2238 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2239 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2240 		if ((status2 & GEM_MAC_PAUSED) != 0)
2241 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2242 			    GEM_MAC_PAUSE_TIME(status2));
2243 		if ((status2 & GEM_MAC_PAUSE) != 0)
2244 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2245 		if ((status2 & GEM_MAC_RESUME) != 0)
2246 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2247 	}
2248 	if ((status & GEM_INTR_MIF) != 0)
2249 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2250 */
2251 	rnd_add_uint32(&sc->rnd_source, status);
2252 	return (r);
2253 }
2254 
2255 void
2256 gem_rx_watchdog(void *arg)
2257 {
2258 	struct gem_softc *sc = arg;
2259 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2260 	bus_space_tag_t t = sc->sc_bustag;
2261 	bus_space_handle_t h = sc->sc_h1;
2262 	u_int32_t rx_fifo_wr_ptr;
2263 	u_int32_t rx_fifo_rd_ptr;
2264 	u_int32_t state;
2265 
2266 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
2267 		aprint_error_dev(sc->sc_dev, "receiver not running\n");
2268 		return;
2269 	}
2270 
2271 	rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
2272 	rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
2273 	state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
2274 	if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
2275 	    ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
2276 	     ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
2277 	      (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
2278 	{
2279 		/*
2280 		 * The RX state machine is still in overflow state and
2281 		 * the RX FIFO write and read pointers seem to be
2282 		 * stuck.  Whack the chip over the head to get things
2283 		 * going again.
2284 		 */
2285 		aprint_error_dev(sc->sc_dev,
2286 		    "receiver stuck in overflow, resetting\n");
2287 		gem_init(ifp);
2288 	} else {
2289 		if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
2290 			aprint_error_dev(sc->sc_dev,
2291 				"rx_watchdog: not in overflow state: 0x%x\n",
2292 				state);
2293 		}
2294 		if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
2295 			aprint_error_dev(sc->sc_dev,
2296 				"rx_watchdog: wr & rd ptr different\n");
2297 		}
2298 		if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
2299 			aprint_error_dev(sc->sc_dev,
2300 				"rx_watchdog: wr pointer != saved\n");
2301 		}
2302 		if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
2303 			aprint_error_dev(sc->sc_dev,
2304 				"rx_watchdog: rd pointer != saved\n");
2305 		}
2306 		aprint_error_dev(sc->sc_dev, "resetting anyway\n");
2307 		gem_init(ifp);
2308 	}
2309 }
2310 
2311 void
2312 gem_watchdog(struct ifnet *ifp)
2313 {
2314 	struct gem_softc *sc = ifp->if_softc;
2315 
2316 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2317 		"GEM_MAC_RX_CONFIG %x\n",
2318 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2319 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2320 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2321 
2322 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2323 	++ifp->if_oerrors;
2324 
2325 	/* Try to get more packets going. */
2326 	gem_init(ifp);
2327 	gem_start(ifp);
2328 }
2329 
2330 /*
2331  * Initialize the MII Management Interface
2332  */
2333 void
2334 gem_mifinit(struct gem_softc *sc)
2335 {
2336 	bus_space_tag_t t = sc->sc_bustag;
2337 	bus_space_handle_t mif = sc->sc_h1;
2338 
2339 	/* Configure the MIF in frame mode */
2340 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2341 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2342 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2343 }
2344 
2345 /*
2346  * MII interface
2347  *
2348  * The GEM MII interface supports at least three different operating modes:
2349  *
2350  * Bitbang mode is implemented using data, clock and output enable registers.
2351  *
2352  * Frame mode is implemented by loading a complete frame into the frame
2353  * register and polling the valid bit for completion.
2354  *
2355  * Polling mode uses the frame register but completion is indicated by
2356  * an interrupt.
2357  *
2358  */
2359 static int
2360 gem_mii_readreg(device_t self, int phy, int reg)
2361 {
2362 	struct gem_softc *sc = device_private(self);
2363 	bus_space_tag_t t = sc->sc_bustag;
2364 	bus_space_handle_t mif = sc->sc_h1;
2365 	int n;
2366 	u_int32_t v;
2367 
2368 #ifdef GEM_DEBUG1
2369 	if (sc->sc_debug)
2370 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2371 #endif
2372 
2373 	/* Construct the frame command */
2374 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2375 		GEM_MIF_FRAME_READ;
2376 
2377 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2378 	for (n = 0; n < 100; n++) {
2379 		DELAY(1);
2380 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2381 		if (v & GEM_MIF_FRAME_TA0)
2382 			return (v & GEM_MIF_FRAME_DATA);
2383 	}
2384 
2385 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2386 	return (0);
2387 }
2388 
2389 static void
2390 gem_mii_writereg(device_t self, int phy, int reg, int val)
2391 {
2392 	struct gem_softc *sc = device_private(self);
2393 	bus_space_tag_t t = sc->sc_bustag;
2394 	bus_space_handle_t mif = sc->sc_h1;
2395 	int n;
2396 	u_int32_t v;
2397 
2398 #ifdef GEM_DEBUG1
2399 	if (sc->sc_debug)
2400 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2401 			phy, reg, val);
2402 #endif
2403 
2404 	/* Construct the frame command */
2405 	v = GEM_MIF_FRAME_WRITE			|
2406 	    (phy << GEM_MIF_PHY_SHIFT)		|
2407 	    (reg << GEM_MIF_REG_SHIFT)		|
2408 	    (val & GEM_MIF_FRAME_DATA);
2409 
2410 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2411 	for (n = 0; n < 100; n++) {
2412 		DELAY(1);
2413 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2414 		if (v & GEM_MIF_FRAME_TA0)
2415 			return;
2416 	}
2417 
2418 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2419 }
2420 
2421 static void
2422 gem_mii_statchg(struct ifnet *ifp)
2423 {
2424 	struct gem_softc *sc = ifp->if_softc;
2425 #ifdef GEM_DEBUG
2426 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2427 #endif
2428 
2429 #ifdef GEM_DEBUG
2430 	if (sc->sc_debug)
2431 		printf("gem_mii_statchg: status change: phy = %d\n",
2432 			sc->sc_phys[instance]);
2433 #endif
2434 	gem_statuschange(sc);
2435 }
2436 
2437 /*
2438  * Common status change for gem_mii_statchg() and gem_pint()
2439  */
2440 void
2441 gem_statuschange(struct gem_softc* sc)
2442 {
2443 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2444 	bus_space_tag_t t = sc->sc_bustag;
2445 	bus_space_handle_t mac = sc->sc_h1;
2446 	int gigabit;
2447 	u_int32_t rxcfg, txcfg, v;
2448 
2449 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2450 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2451 		sc->sc_flags |= GEM_LINK;
2452 	else
2453 		sc->sc_flags &= ~GEM_LINK;
2454 
2455 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2456 		gigabit = 1;
2457 	else
2458 		gigabit = 0;
2459 
2460 	/*
2461 	 * The configuration done here corresponds to the steps F) and
2462 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2463 	 * of the initialization sequence outlined in section 3.2.1 of
2464 	 * the GEM Gigabit Ethernet ASIC Specification.
2465 	 */
2466 
2467 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2468 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2469 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2470 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2471 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2472 	else if (gigabit) {
2473 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2474 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2475 	}
2476 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2477 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2478 	    BUS_SPACE_BARRIER_WRITE);
2479 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2480 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2481 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2482 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2483 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2484 	    BUS_SPACE_BARRIER_WRITE);
2485 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2486 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2487 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2488 
2489 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2490 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2491 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2492 
2493 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2494 	    gigabit != 0)
2495 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2496 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2497 	else
2498 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2499 		    GEM_MAC_SLOT_TIME_NORMAL);
2500 
2501 	/* XIF Configuration */
2502 	if (sc->sc_flags & GEM_LINK)
2503 		v = GEM_MAC_XIF_LINK_LED;
2504 	else
2505 		v = 0;
2506 	v |= GEM_MAC_XIF_TX_MII_ENA;
2507 
2508 	/* If an external transceiver is connected, enable its MII drivers */
2509 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2510 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2511 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2512 			if (gigabit)
2513 				v |= GEM_MAC_XIF_GMII_MODE;
2514 			else
2515 				v &= ~GEM_MAC_XIF_GMII_MODE;
2516 		} else
2517 			/* Internal MII needs buf enable */
2518 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2519 		/* MII needs echo disable if half duplex. */
2520 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2521 			/* turn on full duplex LED */
2522 			v |= GEM_MAC_XIF_FDPLX_LED;
2523 		else
2524 			/* half duplex -- disable echo */
2525 			v |= GEM_MAC_XIF_ECHO_DISABL;
2526 	} else {
2527 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2528 			v |= GEM_MAC_XIF_FDPLX_LED;
2529 		v |= GEM_MAC_XIF_GMII_MODE;
2530 	}
2531 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2532 
2533 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2534 	    (sc->sc_flags & GEM_LINK) != 0) {
2535 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2536 		    txcfg | GEM_MAC_TX_ENABLE);
2537 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2538 		    rxcfg | GEM_MAC_RX_ENABLE);
2539 	}
2540 }
2541 
2542 int
2543 gem_ser_mediachange(struct ifnet *ifp)
2544 {
2545 	struct gem_softc *sc = ifp->if_softc;
2546 	u_int s, t;
2547 
2548 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2549 		return EINVAL;
2550 
2551 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2552 	if (s == IFM_AUTO) {
2553 		if (sc->sc_mii_media != s) {
2554 #ifdef GEM_DEBUG
2555 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2556 #endif
2557 			sc->sc_mii_media = s;
2558 			if (ifp->if_flags & IFF_UP) {
2559 				gem_pcs_stop(sc, 0);
2560 				gem_pcs_start(sc);
2561 			}
2562 		}
2563 		return 0;
2564 	}
2565 	if (s == IFM_1000_SX) {
2566 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2567 		if (t == IFM_FDX || t == IFM_HDX) {
2568 			if (sc->sc_mii_media != t) {
2569 				sc->sc_mii_media = t;
2570 #ifdef GEM_DEBUG
2571 				aprint_debug_dev(sc->sc_dev,
2572 				    "setting media to 1000baseSX-%s\n",
2573 				    t == IFM_FDX ? "FDX" : "HDX");
2574 #endif
2575 				if (ifp->if_flags & IFF_UP) {
2576 					gem_pcs_stop(sc, 0);
2577 					gem_pcs_start(sc);
2578 				}
2579 			}
2580 			return 0;
2581 		}
2582 	}
2583 	return EINVAL;
2584 }
2585 
2586 void
2587 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2588 {
2589 	struct gem_softc *sc = ifp->if_softc;
2590 
2591 	if ((ifp->if_flags & IFF_UP) == 0)
2592 		return;
2593 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2594 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2595 }
2596 
2597 static int
2598 gem_ifflags_cb(struct ethercom *ec)
2599 {
2600 	struct ifnet *ifp = &ec->ec_if;
2601 	struct gem_softc *sc = ifp->if_softc;
2602 	int change = ifp->if_flags ^ sc->sc_if_flags;
2603 
2604 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2605 		return ENETRESET;
2606 	else if ((change & IFF_PROMISC) != 0)
2607 		gem_setladrf(sc);
2608 	return 0;
2609 }
2610 
2611 /*
2612  * Process an ioctl request.
2613  */
2614 int
2615 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2616 {
2617 	struct gem_softc *sc = ifp->if_softc;
2618 	int s, error = 0;
2619 
2620 	s = splnet();
2621 
2622 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2623 		error = 0;
2624 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2625 			;
2626 		else if (ifp->if_flags & IFF_RUNNING) {
2627 			/*
2628 			 * Multicast list has changed; set the hardware filter
2629 			 * accordingly.
2630 			 */
2631 			gem_setladrf(sc);
2632 		}
2633 	}
2634 
2635 	/* Try to get things going again */
2636 	if (ifp->if_flags & IFF_UP)
2637 		gem_start(ifp);
2638 	splx(s);
2639 	return (error);
2640 }
2641 
2642 static void
2643 gem_inten(struct gem_softc *sc)
2644 {
2645 	bus_space_tag_t t = sc->sc_bustag;
2646 	bus_space_handle_t h = sc->sc_h1;
2647 	uint32_t v;
2648 
2649 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2650 		v = GEM_INTR_PCS;
2651 	else
2652 		v = GEM_INTR_MIF;
2653 	bus_space_write_4(t, h, GEM_INTMASK,
2654 		      ~(GEM_INTR_TX_INTME |
2655 			GEM_INTR_TX_EMPTY |
2656 			GEM_INTR_TX_MAC |
2657 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2658 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2659 			GEM_INTR_BERR | v));
2660 }
2661 
2662 bool
2663 gem_resume(device_t self, const pmf_qual_t *qual)
2664 {
2665 	struct gem_softc *sc = device_private(self);
2666 
2667 	gem_inten(sc);
2668 
2669 	return true;
2670 }
2671 
2672 bool
2673 gem_suspend(device_t self, const pmf_qual_t *qual)
2674 {
2675 	struct gem_softc *sc = device_private(self);
2676 	bus_space_tag_t t = sc->sc_bustag;
2677 	bus_space_handle_t h = sc->sc_h1;
2678 
2679 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2680 
2681 	return true;
2682 }
2683 
2684 bool
2685 gem_shutdown(device_t self, int howto)
2686 {
2687 	struct gem_softc *sc = device_private(self);
2688 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2689 
2690 	gem_stop(ifp, 1);
2691 
2692 	return true;
2693 }
2694 
2695 /*
2696  * Set up the logical address filter.
2697  */
2698 void
2699 gem_setladrf(struct gem_softc *sc)
2700 {
2701 	struct ethercom *ec = &sc->sc_ethercom;
2702 	struct ifnet *ifp = &ec->ec_if;
2703 	struct ether_multi *enm;
2704 	struct ether_multistep step;
2705 	bus_space_tag_t t = sc->sc_bustag;
2706 	bus_space_handle_t h = sc->sc_h1;
2707 	u_int32_t crc;
2708 	u_int32_t hash[16];
2709 	u_int32_t v;
2710 	int i;
2711 
2712 	/* Get current RX configuration */
2713 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2714 
2715 	/*
2716 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2717 	 * and hash filter.  Depending on the case, the right bit will be
2718 	 * enabled.
2719 	 */
2720 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2721 	    GEM_MAC_RX_PROMISC_GRP);
2722 
2723 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2724 		/* Turn on promiscuous mode */
2725 		v |= GEM_MAC_RX_PROMISCUOUS;
2726 		ifp->if_flags |= IFF_ALLMULTI;
2727 		goto chipit;
2728 	}
2729 
2730 	/*
2731 	 * Set up multicast address filter by passing all multicast addresses
2732 	 * through a crc generator, and then using the high order 8 bits as an
2733 	 * index into the 256 bit logical address filter.  The high order 4
2734 	 * bits selects the word, while the other 4 bits select the bit within
2735 	 * the word (where bit 0 is the MSB).
2736 	 */
2737 
2738 	/* Clear hash table */
2739 	memset(hash, 0, sizeof(hash));
2740 
2741 	ETHER_FIRST_MULTI(step, ec, enm);
2742 	while (enm != NULL) {
2743 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2744 			/*
2745 			 * We must listen to a range of multicast addresses.
2746 			 * For now, just accept all multicasts, rather than
2747 			 * trying to set only those filter bits needed to match
2748 			 * the range.  (At this time, the only use of address
2749 			 * ranges is for IP multicast routing, for which the
2750 			 * range is big enough to require all bits set.)
2751 			 * XXX should use the address filters for this
2752 			 */
2753 			ifp->if_flags |= IFF_ALLMULTI;
2754 			v |= GEM_MAC_RX_PROMISC_GRP;
2755 			goto chipit;
2756 		}
2757 
2758 		/* Get the LE CRC32 of the address */
2759 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2760 
2761 		/* Just want the 8 most significant bits. */
2762 		crc >>= 24;
2763 
2764 		/* Set the corresponding bit in the filter. */
2765 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2766 
2767 		ETHER_NEXT_MULTI(step, enm);
2768 	}
2769 
2770 	v |= GEM_MAC_RX_HASH_FILTER;
2771 	ifp->if_flags &= ~IFF_ALLMULTI;
2772 
2773 	/* Now load the hash table into the chip (if we are using it) */
2774 	for (i = 0; i < 16; i++) {
2775 		bus_space_write_4(t, h,
2776 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2777 		    hash[i]);
2778 	}
2779 
2780 chipit:
2781 	sc->sc_if_flags = ifp->if_flags;
2782 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2783 }
2784