1 /* $NetBSD: gem.c,v 1.100 2012/07/22 14:32:57 matt Exp $ */ 2 3 /* 4 * 5 * Copyright (C) 2001 Eduardo Horvath. 6 * Copyright (c) 2001-2003 Thomas Moestl 7 * All rights reserved. 8 * 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 */ 32 33 /* 34 * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers 35 * See `GEM Gigabit Ethernet ASIC Specification' 36 * http://www.sun.com/processors/manuals/ge.pdf 37 */ 38 39 #include <sys/cdefs.h> 40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.100 2012/07/22 14:32:57 matt Exp $"); 41 42 #include "opt_inet.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/callout.h> 47 #include <sys/mbuf.h> 48 #include <sys/syslog.h> 49 #include <sys/malloc.h> 50 #include <sys/kernel.h> 51 #include <sys/socket.h> 52 #include <sys/ioctl.h> 53 #include <sys/errno.h> 54 #include <sys/device.h> 55 56 #include <machine/endian.h> 57 58 #include <net/if.h> 59 #include <net/if_dl.h> 60 #include <net/if_media.h> 61 #include <net/if_ether.h> 62 63 #ifdef INET 64 #include <netinet/in.h> 65 #include <netinet/in_systm.h> 66 #include <netinet/in_var.h> 67 #include <netinet/ip.h> 68 #include <netinet/tcp.h> 69 #include <netinet/udp.h> 70 #endif 71 72 #include <net/bpf.h> 73 74 #include <sys/bus.h> 75 #include <sys/intr.h> 76 77 #include <dev/mii/mii.h> 78 #include <dev/mii/miivar.h> 79 #include <dev/mii/mii_bitbang.h> 80 81 #include <dev/ic/gemreg.h> 82 #include <dev/ic/gemvar.h> 83 84 #define TRIES 10000 85 86 static void gem_inten(struct gem_softc *); 87 static void gem_start(struct ifnet *); 88 static void gem_stop(struct ifnet *, int); 89 int gem_ioctl(struct ifnet *, u_long, void *); 90 void gem_tick(void *); 91 void gem_watchdog(struct ifnet *); 92 void gem_rx_watchdog(void *); 93 void gem_pcs_start(struct gem_softc *sc); 94 void gem_pcs_stop(struct gem_softc *sc, int); 95 int gem_init(struct ifnet *); 96 void gem_init_regs(struct gem_softc *sc); 97 static int gem_ringsize(int sz); 98 static int gem_meminit(struct gem_softc *); 99 void gem_mifinit(struct gem_softc *); 100 static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int, 101 u_int32_t, u_int32_t); 102 void gem_reset(struct gem_softc *); 103 int gem_reset_rx(struct gem_softc *sc); 104 static void gem_reset_rxdma(struct gem_softc *sc); 105 static void gem_rx_common(struct gem_softc *sc); 106 int gem_reset_tx(struct gem_softc *sc); 107 int gem_disable_rx(struct gem_softc *sc); 108 int gem_disable_tx(struct gem_softc *sc); 109 static void gem_rxdrain(struct gem_softc *sc); 110 int gem_add_rxbuf(struct gem_softc *sc, int idx); 111 void gem_setladrf(struct gem_softc *); 112 113 /* MII methods & callbacks */ 114 static int gem_mii_readreg(device_t, int, int); 115 static void gem_mii_writereg(device_t, int, int, int); 116 static void gem_mii_statchg(struct ifnet *); 117 118 static int gem_ifflags_cb(struct ethercom *); 119 120 void gem_statuschange(struct gem_softc *); 121 122 int gem_ser_mediachange(struct ifnet *); 123 void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *); 124 125 static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage); 126 127 struct mbuf *gem_get(struct gem_softc *, int, int); 128 int gem_put(struct gem_softc *, int, struct mbuf *); 129 void gem_read(struct gem_softc *, int, int); 130 int gem_pint(struct gem_softc *); 131 int gem_eint(struct gem_softc *, u_int); 132 int gem_rint(struct gem_softc *); 133 int gem_tint(struct gem_softc *); 134 void gem_power(int, void *); 135 136 #ifdef GEM_DEBUG 137 static void gem_txsoft_print(const struct gem_softc *, int, int); 138 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \ 139 printf x 140 #else 141 #define DPRINTF(sc, x) /* nothing */ 142 #endif 143 144 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header)) 145 146 int 147 gem_detach(struct gem_softc *sc, int flags) 148 { 149 int i; 150 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 151 bus_space_tag_t t = sc->sc_bustag; 152 bus_space_handle_t h = sc->sc_h1; 153 154 /* 155 * Free any resources we've allocated during the attach. 156 * Do this in reverse order and fall through. 157 */ 158 switch (sc->sc_att_stage) { 159 case GEM_ATT_BACKEND_2: 160 case GEM_ATT_BACKEND_1: 161 case GEM_ATT_FINISHED: 162 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0); 163 gem_stop(&sc->sc_ethercom.ec_if, 1); 164 165 #ifdef GEM_COUNTERS 166 for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; ) 167 evcnt_detach(&sc->sc_ev_rxhist[i]); 168 evcnt_detach(&sc->sc_ev_rxnobuf); 169 evcnt_detach(&sc->sc_ev_rxfull); 170 evcnt_detach(&sc->sc_ev_rxint); 171 evcnt_detach(&sc->sc_ev_txint); 172 #endif 173 evcnt_detach(&sc->sc_ev_intr); 174 175 rnd_detach_source(&sc->rnd_source); 176 ether_ifdetach(ifp); 177 if_detach(ifp); 178 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY); 179 180 callout_destroy(&sc->sc_tick_ch); 181 callout_destroy(&sc->sc_rx_watchdog); 182 183 /*FALLTHROUGH*/ 184 case GEM_ATT_MII: 185 sc->sc_att_stage = GEM_ATT_MII; 186 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY); 187 /*FALLTHROUGH*/ 188 case GEM_ATT_7: 189 for (i = 0; i < GEM_NRXDESC; i++) { 190 if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 191 bus_dmamap_destroy(sc->sc_dmatag, 192 sc->sc_rxsoft[i].rxs_dmamap); 193 } 194 /*FALLTHROUGH*/ 195 case GEM_ATT_6: 196 for (i = 0; i < GEM_TXQUEUELEN; i++) { 197 if (sc->sc_txsoft[i].txs_dmamap != NULL) 198 bus_dmamap_destroy(sc->sc_dmatag, 199 sc->sc_txsoft[i].txs_dmamap); 200 } 201 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); 202 /*FALLTHROUGH*/ 203 case GEM_ATT_5: 204 bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap); 205 /*FALLTHROUGH*/ 206 case GEM_ATT_4: 207 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap); 208 /*FALLTHROUGH*/ 209 case GEM_ATT_3: 210 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); 211 /*FALLTHROUGH*/ 212 case GEM_ATT_2: 213 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data, 214 sizeof(struct gem_control_data)); 215 /*FALLTHROUGH*/ 216 case GEM_ATT_1: 217 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); 218 /*FALLTHROUGH*/ 219 case GEM_ATT_0: 220 sc->sc_att_stage = GEM_ATT_0; 221 /*FALLTHROUGH*/ 222 case GEM_ATT_BACKEND_0: 223 break; 224 } 225 return 0; 226 } 227 228 static void 229 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage) 230 { 231 cfattach_t ca = device_cfattach(sc->sc_dev); 232 233 sc->sc_att_stage = stage; 234 (*ca->ca_detach)(sc->sc_dev, 0); 235 } 236 237 /* 238 * gem_attach: 239 * 240 * Attach a Gem interface to the system. 241 */ 242 void 243 gem_attach(struct gem_softc *sc, const uint8_t *enaddr) 244 { 245 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 246 struct mii_data *mii = &sc->sc_mii; 247 bus_space_tag_t t = sc->sc_bustag; 248 bus_space_handle_t h = sc->sc_h1; 249 struct ifmedia_entry *ifm; 250 int i, error, phyaddr; 251 u_int32_t v; 252 char *nullbuf; 253 254 /* Make sure the chip is stopped. */ 255 ifp->if_softc = sc; 256 gem_reset(sc); 257 258 /* 259 * Allocate the control data structures, and create and load the 260 * DMA map for it. gem_control_data is 9216 bytes, we have space for 261 * the padding buffer in the bus_dmamem_alloc()'d memory. 262 */ 263 if ((error = bus_dmamem_alloc(sc->sc_dmatag, 264 sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE, 265 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { 266 aprint_error_dev(sc->sc_dev, 267 "unable to allocate control data, error = %d\n", 268 error); 269 gem_partial_detach(sc, GEM_ATT_0); 270 return; 271 } 272 273 /* XXX should map this in with correct endianness */ 274 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg, 275 sizeof(struct gem_control_data), (void **)&sc->sc_control_data, 276 BUS_DMA_COHERENT)) != 0) { 277 aprint_error_dev(sc->sc_dev, 278 "unable to map control data, error = %d\n", error); 279 gem_partial_detach(sc, GEM_ATT_1); 280 return; 281 } 282 283 nullbuf = 284 (char *)sc->sc_control_data + sizeof(struct gem_control_data); 285 286 if ((error = bus_dmamap_create(sc->sc_dmatag, 287 sizeof(struct gem_control_data), 1, 288 sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 289 aprint_error_dev(sc->sc_dev, 290 "unable to create control data DMA map, error = %d\n", 291 error); 292 gem_partial_detach(sc, GEM_ATT_2); 293 return; 294 } 295 296 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, 297 sc->sc_control_data, sizeof(struct gem_control_data), NULL, 298 0)) != 0) { 299 aprint_error_dev(sc->sc_dev, 300 "unable to load control data DMA map, error = %d\n", 301 error); 302 gem_partial_detach(sc, GEM_ATT_3); 303 return; 304 } 305 306 memset(nullbuf, 0, ETHER_MIN_TX); 307 if ((error = bus_dmamap_create(sc->sc_dmatag, 308 ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) { 309 aprint_error_dev(sc->sc_dev, 310 "unable to create padding DMA map, error = %d\n", error); 311 gem_partial_detach(sc, GEM_ATT_4); 312 return; 313 } 314 315 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap, 316 nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) { 317 aprint_error_dev(sc->sc_dev, 318 "unable to load padding DMA map, error = %d\n", error); 319 gem_partial_detach(sc, GEM_ATT_5); 320 return; 321 } 322 323 bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX, 324 BUS_DMASYNC_PREWRITE); 325 326 /* 327 * Initialize the transmit job descriptors. 328 */ 329 SIMPLEQ_INIT(&sc->sc_txfreeq); 330 SIMPLEQ_INIT(&sc->sc_txdirtyq); 331 332 /* 333 * Create the transmit buffer DMA maps. 334 */ 335 for (i = 0; i < GEM_TXQUEUELEN; i++) { 336 struct gem_txsoft *txs; 337 338 txs = &sc->sc_txsoft[i]; 339 txs->txs_mbuf = NULL; 340 if ((error = bus_dmamap_create(sc->sc_dmatag, 341 ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS, 342 ETHER_MAX_LEN_JUMBO, 0, 0, 343 &txs->txs_dmamap)) != 0) { 344 aprint_error_dev(sc->sc_dev, 345 "unable to create tx DMA map %d, error = %d\n", 346 i, error); 347 gem_partial_detach(sc, GEM_ATT_6); 348 return; 349 } 350 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 351 } 352 353 /* 354 * Create the receive buffer DMA maps. 355 */ 356 for (i = 0; i < GEM_NRXDESC; i++) { 357 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, 358 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 359 aprint_error_dev(sc->sc_dev, 360 "unable to create rx DMA map %d, error = %d\n", 361 i, error); 362 gem_partial_detach(sc, GEM_ATT_7); 363 return; 364 } 365 sc->sc_rxsoft[i].rxs_mbuf = NULL; 366 } 367 368 /* Initialize ifmedia structures and MII info */ 369 mii->mii_ifp = ifp; 370 mii->mii_readreg = gem_mii_readreg; 371 mii->mii_writereg = gem_mii_writereg; 372 mii->mii_statchg = gem_mii_statchg; 373 374 sc->sc_ethercom.ec_mii = mii; 375 376 /* 377 * Initialization based on `GEM Gigabit Ethernet ASIC Specification' 378 * Section 3.2.1 `Initialization Sequence'. 379 * However, we can't assume SERDES or Serialink if neither 380 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set 381 * being set, as both are set on Sun X1141A (with SERDES). So, 382 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL. 383 * Also, for variants that report 2 PHY's, we prefer the external 384 * PHY over the internal PHY, so we look for that first. 385 */ 386 gem_mifinit(sc); 387 388 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { 389 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange, 390 ether_mediastatus); 391 /* Look for external PHY */ 392 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { 393 sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL; 394 bus_space_write_4(t, h, GEM_MIF_CONFIG, 395 sc->sc_mif_config); 396 switch (sc->sc_variant) { 397 case GEM_SUN_ERI: 398 phyaddr = GEM_PHYAD_EXTERNAL; 399 break; 400 default: 401 phyaddr = MII_PHY_ANY; 402 break; 403 } 404 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr, 405 MII_OFFSET_ANY, MIIF_FORCEANEG); 406 } 407 #ifdef GEM_DEBUG 408 else 409 aprint_debug_dev(sc->sc_dev, "using external PHY\n"); 410 #endif 411 /* Look for internal PHY if no external PHY was found */ 412 if (LIST_EMPTY(&mii->mii_phys) && 413 sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) { 414 sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL; 415 bus_space_write_4(t, h, GEM_MIF_CONFIG, 416 sc->sc_mif_config); 417 switch (sc->sc_variant) { 418 case GEM_SUN_ERI: 419 case GEM_APPLE_K2_GMAC: 420 phyaddr = GEM_PHYAD_INTERNAL; 421 break; 422 case GEM_APPLE_GMAC: 423 phyaddr = GEM_PHYAD_EXTERNAL; 424 break; 425 default: 426 phyaddr = MII_PHY_ANY; 427 break; 428 } 429 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr, 430 MII_OFFSET_ANY, MIIF_FORCEANEG); 431 #ifdef GEM_DEBUG 432 if (!LIST_EMPTY(&mii->mii_phys)) 433 aprint_debug_dev(sc->sc_dev, 434 "using internal PHY\n"); 435 #endif 436 } 437 if (LIST_EMPTY(&mii->mii_phys)) { 438 /* No PHY attached */ 439 aprint_error_dev(sc->sc_dev, 440 "PHY probe failed\n"); 441 gem_partial_detach(sc, GEM_ATT_MII); 442 return; 443 } else { 444 struct mii_softc *child; 445 446 /* 447 * Walk along the list of attached MII devices and 448 * establish an `MII instance' to `PHY number' 449 * mapping. 450 */ 451 LIST_FOREACH(child, &mii->mii_phys, mii_list) { 452 /* 453 * Note: we support just one PHY: the internal 454 * or external MII is already selected for us 455 * by the GEM_MIF_CONFIG register. 456 */ 457 if (child->mii_phy > 1 || child->mii_inst > 0) { 458 aprint_error_dev(sc->sc_dev, 459 "cannot accommodate MII device" 460 " %s at PHY %d, instance %d\n", 461 device_xname(child->mii_dev), 462 child->mii_phy, child->mii_inst); 463 continue; 464 } 465 sc->sc_phys[child->mii_inst] = child->mii_phy; 466 } 467 468 if (sc->sc_variant != GEM_SUN_ERI) 469 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 470 GEM_MII_DATAPATH_MII); 471 472 /* 473 * XXX - we can really do the following ONLY if the 474 * PHY indeed has the auto negotiation capability!! 475 */ 476 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 477 } 478 } else { 479 ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange, 480 gem_ser_mediastatus); 481 /* SERDES or Serialink */ 482 if (sc->sc_flags & GEM_SERDES) { 483 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 484 GEM_MII_DATAPATH_SERDES); 485 } else { 486 sc->sc_flags |= GEM_SERIAL; 487 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 488 GEM_MII_DATAPATH_SERIAL); 489 } 490 491 aprint_normal_dev(sc->sc_dev, "using external PCS %s: ", 492 sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink"); 493 494 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL); 495 /* Check for FDX and HDX capabilities */ 496 sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR); 497 if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) { 498 ifmedia_add(&sc->sc_mii.mii_media, 499 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL); 500 aprint_normal("1000baseSX-FDX, "); 501 } 502 if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) { 503 ifmedia_add(&sc->sc_mii.mii_media, 504 IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL); 505 aprint_normal("1000baseSX-HDX, "); 506 } 507 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); 508 sc->sc_mii_media = IFM_AUTO; 509 aprint_normal("auto\n"); 510 511 gem_pcs_stop(sc, 1); 512 } 513 514 /* 515 * From this point forward, the attachment cannot fail. A failure 516 * before this point releases all resources that may have been 517 * allocated. 518 */ 519 520 /* Announce ourselves. */ 521 aprint_normal_dev(sc->sc_dev, "Ethernet address %s", 522 ether_sprintf(enaddr)); 523 524 /* Get RX FIFO size */ 525 sc->sc_rxfifosize = 64 * 526 bus_space_read_4(t, h, GEM_RX_FIFO_SIZE); 527 aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024); 528 529 /* Get TX FIFO size */ 530 v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE); 531 aprint_normal(", %uKB TX fifo\n", v / 16); 532 533 /* Initialize ifnet structure. */ 534 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 535 ifp->if_softc = sc; 536 ifp->if_flags = 537 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; 538 sc->sc_if_flags = ifp->if_flags; 539 #if 0 540 /* 541 * The GEM hardware supports basic TCP checksum offloading only. 542 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80) 543 * have bugs in the receive checksum, so don't enable it for now. 544 */ 545 if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) || 546 (GEM_IS_APPLE(sc) && 547 (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80))) 548 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx; 549 #endif 550 ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx; 551 ifp->if_start = gem_start; 552 ifp->if_ioctl = gem_ioctl; 553 ifp->if_watchdog = gem_watchdog; 554 ifp->if_stop = gem_stop; 555 ifp->if_init = gem_init; 556 IFQ_SET_READY(&ifp->if_snd); 557 558 /* 559 * If we support GigE media, we support jumbo frames too. 560 * Unless we are Apple. 561 */ 562 TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) { 563 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T || 564 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX || 565 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX || 566 IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) { 567 if (!GEM_IS_APPLE(sc)) 568 sc->sc_ethercom.ec_capabilities 569 |= ETHERCAP_JUMBO_MTU; 570 sc->sc_flags |= GEM_GIGABIT; 571 break; 572 } 573 } 574 575 /* claim 802.1q capability */ 576 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU; 577 578 /* Attach the interface. */ 579 if_attach(ifp); 580 ether_ifattach(ifp, enaddr); 581 ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb); 582 583 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 584 RND_TYPE_NET, 0); 585 586 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR, 587 NULL, device_xname(sc->sc_dev), "interrupts"); 588 #ifdef GEM_COUNTERS 589 evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR, 590 &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts"); 591 evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR, 592 &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts"); 593 evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR, 594 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full"); 595 evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR, 596 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure"); 597 evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR, 598 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc"); 599 evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR, 600 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc"); 601 evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR, 602 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc"); 603 evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR, 604 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc"); 605 evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR, 606 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc"); 607 evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR, 608 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc"); 609 evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR, 610 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc"); 611 evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR, 612 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc"); 613 evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR, 614 &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc"); 615 #endif 616 617 callout_init(&sc->sc_tick_ch, 0); 618 callout_init(&sc->sc_rx_watchdog, 0); 619 callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc); 620 621 sc->sc_att_stage = GEM_ATT_FINISHED; 622 623 return; 624 } 625 626 void 627 gem_tick(void *arg) 628 { 629 struct gem_softc *sc = arg; 630 int s; 631 632 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) { 633 /* 634 * We have to reset everything if we failed to get a 635 * PCS interrupt. Restarting the callout is handled 636 * in gem_pcs_start(). 637 */ 638 gem_init(&sc->sc_ethercom.ec_if); 639 } else { 640 s = splnet(); 641 mii_tick(&sc->sc_mii); 642 splx(s); 643 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); 644 } 645 } 646 647 static int 648 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set) 649 { 650 int i; 651 u_int32_t reg; 652 653 for (i = TRIES; i--; DELAY(100)) { 654 reg = bus_space_read_4(sc->sc_bustag, h, r); 655 if ((reg & clr) == 0 && (reg & set) == set) 656 return (1); 657 } 658 return (0); 659 } 660 661 void 662 gem_reset(struct gem_softc *sc) 663 { 664 bus_space_tag_t t = sc->sc_bustag; 665 bus_space_handle_t h = sc->sc_h2; 666 int s; 667 668 s = splnet(); 669 DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev))); 670 gem_reset_rx(sc); 671 gem_reset_tx(sc); 672 673 /* Do a full reset */ 674 bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX); 675 if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0)) 676 aprint_error_dev(sc->sc_dev, "cannot reset device\n"); 677 splx(s); 678 } 679 680 681 /* 682 * gem_rxdrain: 683 * 684 * Drain the receive queue. 685 */ 686 static void 687 gem_rxdrain(struct gem_softc *sc) 688 { 689 struct gem_rxsoft *rxs; 690 int i; 691 692 for (i = 0; i < GEM_NRXDESC; i++) { 693 rxs = &sc->sc_rxsoft[i]; 694 if (rxs->rxs_mbuf != NULL) { 695 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 696 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 697 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); 698 m_freem(rxs->rxs_mbuf); 699 rxs->rxs_mbuf = NULL; 700 } 701 } 702 } 703 704 /* 705 * Reset the whole thing. 706 */ 707 static void 708 gem_stop(struct ifnet *ifp, int disable) 709 { 710 struct gem_softc *sc = ifp->if_softc; 711 struct gem_txsoft *txs; 712 713 DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev))); 714 715 callout_halt(&sc->sc_tick_ch, NULL); 716 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 717 gem_pcs_stop(sc, disable); 718 else 719 mii_down(&sc->sc_mii); 720 721 /* XXX - Should we reset these instead? */ 722 gem_disable_tx(sc); 723 gem_disable_rx(sc); 724 725 /* 726 * Release any queued transmit buffers. 727 */ 728 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 729 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 730 if (txs->txs_mbuf != NULL) { 731 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0, 732 txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 733 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); 734 m_freem(txs->txs_mbuf); 735 txs->txs_mbuf = NULL; 736 } 737 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 738 } 739 740 /* 741 * Mark the interface down and cancel the watchdog timer. 742 */ 743 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 744 sc->sc_if_flags = ifp->if_flags; 745 ifp->if_timer = 0; 746 747 if (disable) 748 gem_rxdrain(sc); 749 } 750 751 752 /* 753 * Reset the receiver 754 */ 755 int 756 gem_reset_rx(struct gem_softc *sc) 757 { 758 bus_space_tag_t t = sc->sc_bustag; 759 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; 760 761 /* 762 * Resetting while DMA is in progress can cause a bus hang, so we 763 * disable DMA first. 764 */ 765 gem_disable_rx(sc); 766 bus_space_write_4(t, h, GEM_RX_CONFIG, 0); 767 bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 768 /* Wait till it finishes */ 769 if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0)) 770 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n"); 771 /* Wait 5ms extra. */ 772 delay(5000); 773 774 /* Finally, reset the ERX */ 775 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX); 776 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); 777 /* Wait till it finishes */ 778 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) { 779 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n"); 780 return (1); 781 } 782 return (0); 783 } 784 785 786 /* 787 * Reset the receiver DMA engine. 788 * 789 * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW 790 * etc in order to reset the receiver DMA engine only and not do a full 791 * reset which amongst others also downs the link and clears the FIFOs. 792 */ 793 static void 794 gem_reset_rxdma(struct gem_softc *sc) 795 { 796 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 797 bus_space_tag_t t = sc->sc_bustag; 798 bus_space_handle_t h = sc->sc_h1; 799 int i; 800 801 if (gem_reset_rx(sc) != 0) { 802 gem_init(ifp); 803 return; 804 } 805 for (i = 0; i < GEM_NRXDESC; i++) 806 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) 807 GEM_UPDATE_RXDESC(sc, i); 808 sc->sc_rxptr = 0; 809 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); 810 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); 811 812 /* Reprogram Descriptor Ring Base Addresses */ 813 /* NOTE: we use only 32-bit DMA addresses here. */ 814 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0); 815 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); 816 817 /* Redo ERX Configuration */ 818 gem_rx_common(sc); 819 820 /* Give the reciever a swift kick */ 821 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4); 822 } 823 824 /* 825 * Common RX configuration for gem_init() and gem_reset_rxdma(). 826 */ 827 static void 828 gem_rx_common(struct gem_softc *sc) 829 { 830 bus_space_tag_t t = sc->sc_bustag; 831 bus_space_handle_t h = sc->sc_h1; 832 u_int32_t v; 833 834 /* Encode Receive Descriptor ring size: four possible values */ 835 v = gem_ringsize(GEM_NRXDESC /*XXX*/); 836 837 /* Set receive h/w checksum offset */ 838 #ifdef INET 839 v |= (ETHER_HDR_LEN + sizeof(struct ip) + 840 ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ? 841 ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT; 842 #endif 843 844 /* Enable RX DMA */ 845 bus_space_write_4(t, h, GEM_RX_CONFIG, 846 v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) | 847 (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN); 848 849 /* 850 * The following value is for an OFF Threshold of about 3/4 full 851 * and an ON Threshold of 1/4 full. 852 */ 853 bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH, 854 (3 * sc->sc_rxfifosize / 256) | 855 ((sc->sc_rxfifosize / 256) << 12)); 856 bus_space_write_4(t, h, GEM_RX_BLANKING, 857 (6 << GEM_RX_BLANKING_TIME_SHIFT) | 8); 858 } 859 860 /* 861 * Reset the transmitter 862 */ 863 int 864 gem_reset_tx(struct gem_softc *sc) 865 { 866 bus_space_tag_t t = sc->sc_bustag; 867 bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2; 868 869 /* 870 * Resetting while DMA is in progress can cause a bus hang, so we 871 * disable DMA first. 872 */ 873 gem_disable_tx(sc); 874 bus_space_write_4(t, h, GEM_TX_CONFIG, 0); 875 bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 876 /* Wait till it finishes */ 877 if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0)) 878 aprint_error_dev(sc->sc_dev, "cannot disable read dma\n"); 879 /* Wait 5ms extra. */ 880 delay(5000); 881 882 /* Finally, reset the ETX */ 883 bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX); 884 bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE); 885 /* Wait till it finishes */ 886 if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) { 887 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n"); 888 return (1); 889 } 890 return (0); 891 } 892 893 /* 894 * disable receiver. 895 */ 896 int 897 gem_disable_rx(struct gem_softc *sc) 898 { 899 bus_space_tag_t t = sc->sc_bustag; 900 bus_space_handle_t h = sc->sc_h1; 901 u_int32_t cfg; 902 903 /* Flip the enable bit */ 904 cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 905 cfg &= ~GEM_MAC_RX_ENABLE; 906 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg); 907 bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 908 /* Wait for it to finish */ 909 return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)); 910 } 911 912 /* 913 * disable transmitter. 914 */ 915 int 916 gem_disable_tx(struct gem_softc *sc) 917 { 918 bus_space_tag_t t = sc->sc_bustag; 919 bus_space_handle_t h = sc->sc_h1; 920 u_int32_t cfg; 921 922 /* Flip the enable bit */ 923 cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG); 924 cfg &= ~GEM_MAC_TX_ENABLE; 925 bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg); 926 bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE); 927 /* Wait for it to finish */ 928 return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)); 929 } 930 931 /* 932 * Initialize interface. 933 */ 934 int 935 gem_meminit(struct gem_softc *sc) 936 { 937 struct gem_rxsoft *rxs; 938 int i, error; 939 940 /* 941 * Initialize the transmit descriptor ring. 942 */ 943 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 944 for (i = 0; i < GEM_NTXDESC; i++) { 945 sc->sc_txdescs[i].gd_flags = 0; 946 sc->sc_txdescs[i].gd_addr = 0; 947 } 948 GEM_CDTXSYNC(sc, 0, GEM_NTXDESC, 949 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 950 sc->sc_txfree = GEM_NTXDESC-1; 951 sc->sc_txnext = 0; 952 sc->sc_txwin = 0; 953 954 /* 955 * Initialize the receive descriptor and receive job 956 * descriptor rings. 957 */ 958 for (i = 0; i < GEM_NRXDESC; i++) { 959 rxs = &sc->sc_rxsoft[i]; 960 if (rxs->rxs_mbuf == NULL) { 961 if ((error = gem_add_rxbuf(sc, i)) != 0) { 962 aprint_error_dev(sc->sc_dev, 963 "unable to allocate or map rx " 964 "buffer %d, error = %d\n", 965 i, error); 966 /* 967 * XXX Should attempt to run with fewer receive 968 * XXX buffers instead of just failing. 969 */ 970 gem_rxdrain(sc); 971 return (1); 972 } 973 } else 974 GEM_INIT_RXDESC(sc, i); 975 } 976 sc->sc_rxptr = 0; 977 sc->sc_meminited = 1; 978 GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE); 979 GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD); 980 981 return (0); 982 } 983 984 static int 985 gem_ringsize(int sz) 986 { 987 switch (sz) { 988 case 32: 989 return GEM_RING_SZ_32; 990 case 64: 991 return GEM_RING_SZ_64; 992 case 128: 993 return GEM_RING_SZ_128; 994 case 256: 995 return GEM_RING_SZ_256; 996 case 512: 997 return GEM_RING_SZ_512; 998 case 1024: 999 return GEM_RING_SZ_1024; 1000 case 2048: 1001 return GEM_RING_SZ_2048; 1002 case 4096: 1003 return GEM_RING_SZ_4096; 1004 case 8192: 1005 return GEM_RING_SZ_8192; 1006 default: 1007 printf("gem: invalid Receive Descriptor ring size %d\n", sz); 1008 return GEM_RING_SZ_32; 1009 } 1010 } 1011 1012 1013 /* 1014 * Start PCS 1015 */ 1016 void 1017 gem_pcs_start(struct gem_softc *sc) 1018 { 1019 bus_space_tag_t t = sc->sc_bustag; 1020 bus_space_handle_t h = sc->sc_h1; 1021 uint32_t v; 1022 1023 #ifdef GEM_DEBUG 1024 aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n"); 1025 #endif 1026 1027 /* 1028 * Set up. We must disable the MII before modifying the 1029 * GEM_MII_ANAR register 1030 */ 1031 if (sc->sc_flags & GEM_SERDES) { 1032 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 1033 GEM_MII_DATAPATH_SERDES); 1034 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1035 GEM_MII_SLINK_LOOPBACK); 1036 } else { 1037 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 1038 GEM_MII_DATAPATH_SERIAL); 1039 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0); 1040 } 1041 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1042 v = bus_space_read_4(t, h, GEM_MII_ANAR); 1043 v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE); 1044 if (sc->sc_mii_media == IFM_AUTO) 1045 v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX); 1046 else if (sc->sc_mii_media == IFM_FDX) { 1047 v |= GEM_MII_ANEG_FUL_DUPLX; 1048 v &= ~GEM_MII_ANEG_HLF_DUPLX; 1049 } else if (sc->sc_mii_media == IFM_HDX) { 1050 v &= ~GEM_MII_ANEG_FUL_DUPLX; 1051 v |= GEM_MII_ANEG_HLF_DUPLX; 1052 } 1053 1054 /* Configure link. */ 1055 bus_space_write_4(t, h, GEM_MII_ANAR, v); 1056 bus_space_write_4(t, h, GEM_MII_CONTROL, 1057 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); 1058 bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE); 1059 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT); 1060 1061 /* Start the 10 second timer */ 1062 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc); 1063 } 1064 1065 /* 1066 * Stop PCS 1067 */ 1068 void 1069 gem_pcs_stop(struct gem_softc *sc, int disable) 1070 { 1071 bus_space_tag_t t = sc->sc_bustag; 1072 bus_space_handle_t h = sc->sc_h1; 1073 1074 #ifdef GEM_DEBUG 1075 aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n"); 1076 #endif 1077 1078 /* Tell link partner that we're going away */ 1079 bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF); 1080 1081 /* 1082 * Disable PCS MII. The documentation suggests that setting 1083 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto- 1084 * negotiation will shut down the link. However, it appears 1085 * that we also need to unset the datapath mode. 1086 */ 1087 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1088 bus_space_write_4(t, h, GEM_MII_CONTROL, 1089 GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN); 1090 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII); 1091 bus_space_write_4(t, h, GEM_MII_CONFIG, 0); 1092 1093 if (disable) { 1094 if (sc->sc_flags & GEM_SERDES) 1095 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1096 GEM_MII_SLINK_POWER_OFF); 1097 else 1098 bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 1099 GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF); 1100 } 1101 1102 sc->sc_flags &= ~GEM_LINK; 1103 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; 1104 sc->sc_mii.mii_media_status = IFM_AVALID; 1105 } 1106 1107 1108 /* 1109 * Initialization of interface; set up initialization block 1110 * and transmit/receive descriptor rings. 1111 */ 1112 int 1113 gem_init(struct ifnet *ifp) 1114 { 1115 struct gem_softc *sc = ifp->if_softc; 1116 bus_space_tag_t t = sc->sc_bustag; 1117 bus_space_handle_t h = sc->sc_h1; 1118 int rc = 0, s; 1119 u_int max_frame_size; 1120 u_int32_t v; 1121 1122 s = splnet(); 1123 1124 DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev))); 1125 /* 1126 * Initialization sequence. The numbered steps below correspond 1127 * to the sequence outlined in section 6.3.5.1 in the Ethernet 1128 * Channel Engine manual (part of the PCIO manual). 1129 * See also the STP2002-STQ document from Sun Microsystems. 1130 */ 1131 1132 /* step 1 & 2. Reset the Ethernet Channel */ 1133 gem_stop(ifp, 0); 1134 gem_reset(sc); 1135 DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev))); 1136 1137 /* Re-initialize the MIF */ 1138 gem_mifinit(sc); 1139 1140 /* Set up correct datapath for non-SERDES/Serialink */ 1141 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && 1142 sc->sc_variant != GEM_SUN_ERI) 1143 bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, 1144 GEM_MII_DATAPATH_MII); 1145 1146 /* Call MI reset function if any */ 1147 if (sc->sc_hwreset) 1148 (*sc->sc_hwreset)(sc); 1149 1150 /* step 3. Setup data structures in host memory */ 1151 if (gem_meminit(sc) != 0) 1152 return 1; 1153 1154 /* step 4. TX MAC registers & counters */ 1155 gem_init_regs(sc); 1156 max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU); 1157 max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN; 1158 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) 1159 max_frame_size += ETHER_VLAN_ENCAP_LEN; 1160 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, 1161 max_frame_size|/* burst size */(0x2000<<16)); 1162 1163 /* step 5. RX MAC registers & counters */ 1164 gem_setladrf(sc); 1165 1166 /* step 6 & 7. Program Descriptor Ring Base Addresses */ 1167 /* NOTE: we use only 32-bit DMA addresses here. */ 1168 bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0); 1169 bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0)); 1170 1171 bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0); 1172 bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0)); 1173 1174 /* step 8. Global Configuration & Interrupt Mask */ 1175 gem_inten(sc); 1176 bus_space_write_4(t, h, GEM_MAC_RX_MASK, 1177 GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT); 1178 bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */ 1179 bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 1180 GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME); 1181 1182 /* step 9. ETX Configuration: use mostly default values */ 1183 1184 /* Enable TX DMA */ 1185 v = gem_ringsize(GEM_NTXDESC /*XXX*/); 1186 bus_space_write_4(t, h, GEM_TX_CONFIG, 1187 v | GEM_TX_CONFIG_TXDMA_EN | 1188 (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) & 1189 GEM_TX_CONFIG_TXFIFO_TH)); 1190 bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext); 1191 1192 /* step 10. ERX Configuration */ 1193 gem_rx_common(sc); 1194 1195 /* step 11. Configure Media */ 1196 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 && 1197 (rc = mii_ifmedia_change(&sc->sc_mii)) != 0) 1198 goto out; 1199 1200 /* step 12. RX_MAC Configuration Register */ 1201 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 1202 v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC; 1203 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); 1204 1205 /* step 14. Issue Transmit Pending command */ 1206 1207 /* Call MI initialization function if any */ 1208 if (sc->sc_hwinit) 1209 (*sc->sc_hwinit)(sc); 1210 1211 1212 /* step 15. Give the reciever a swift kick */ 1213 bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4); 1214 1215 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 1216 /* Configure PCS */ 1217 gem_pcs_start(sc); 1218 else 1219 /* Start the one second timer. */ 1220 callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc); 1221 1222 sc->sc_flags &= ~GEM_LINK; 1223 ifp->if_flags |= IFF_RUNNING; 1224 ifp->if_flags &= ~IFF_OACTIVE; 1225 ifp->if_timer = 0; 1226 sc->sc_if_flags = ifp->if_flags; 1227 out: 1228 splx(s); 1229 1230 return (0); 1231 } 1232 1233 void 1234 gem_init_regs(struct gem_softc *sc) 1235 { 1236 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1237 bus_space_tag_t t = sc->sc_bustag; 1238 bus_space_handle_t h = sc->sc_h1; 1239 const u_char *laddr = CLLADDR(ifp->if_sadl); 1240 u_int32_t v; 1241 1242 /* These regs are not cleared on reset */ 1243 if (!sc->sc_inited) { 1244 1245 /* Load recommended values */ 1246 bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00); 1247 bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08); 1248 bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04); 1249 1250 bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); 1251 /* Max frame and max burst size */ 1252 bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME, 1253 ETHER_MAX_LEN | (0x2000<<16)); 1254 1255 bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07); 1256 bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04); 1257 bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10); 1258 bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088); 1259 bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED, 1260 ((laddr[5]<<8)|laddr[4])&0x3ff); 1261 1262 /* Secondary MAC addr set to 0:0:0:0:0:0 */ 1263 bus_space_write_4(t, h, GEM_MAC_ADDR3, 0); 1264 bus_space_write_4(t, h, GEM_MAC_ADDR4, 0); 1265 bus_space_write_4(t, h, GEM_MAC_ADDR5, 0); 1266 1267 /* MAC control addr set to 01:80:c2:00:00:01 */ 1268 bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001); 1269 bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200); 1270 bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180); 1271 1272 /* MAC filter addr set to 0:0:0:0:0:0 */ 1273 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0); 1274 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0); 1275 bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0); 1276 1277 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0); 1278 bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0); 1279 1280 sc->sc_inited = 1; 1281 } 1282 1283 /* Counters need to be zeroed */ 1284 bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0); 1285 bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0); 1286 bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0); 1287 bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0); 1288 bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0); 1289 bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0); 1290 bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0); 1291 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); 1292 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); 1293 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); 1294 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); 1295 1296 /* Set XOFF PAUSE time. */ 1297 bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0); 1298 1299 /* 1300 * Set the internal arbitration to "infinite" bursts of the 1301 * maximum length of 31 * 64 bytes so DMA transfers aren't 1302 * split up in cache line size chunks. This greatly improves 1303 * especially RX performance. 1304 * Enable silicon bug workarounds for the Apple variants. 1305 */ 1306 bus_space_write_4(t, h, GEM_CONFIG, 1307 GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT | 1308 ((sc->sc_flags & GEM_PCI) ? 1309 GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ? 1310 GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0)); 1311 1312 /* 1313 * Set the station address. 1314 */ 1315 bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]); 1316 bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]); 1317 bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]); 1318 1319 /* 1320 * Enable MII outputs. Enable GMII if there is a gigabit PHY. 1321 */ 1322 sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG); 1323 v = GEM_MAC_XIF_TX_MII_ENA; 1324 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) { 1325 if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) { 1326 v |= GEM_MAC_XIF_FDPLX_LED; 1327 if (sc->sc_flags & GEM_GIGABIT) 1328 v |= GEM_MAC_XIF_GMII_MODE; 1329 } 1330 } else { 1331 v |= GEM_MAC_XIF_GMII_MODE; 1332 } 1333 bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v); 1334 } 1335 1336 #ifdef GEM_DEBUG 1337 static void 1338 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc) 1339 { 1340 int i; 1341 1342 for (i = firstdesc;; i = GEM_NEXTTX(i)) { 1343 printf("descriptor %d:\t", i); 1344 printf("gd_flags: 0x%016" PRIx64 "\t", 1345 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags)); 1346 printf("gd_addr: 0x%016" PRIx64 "\n", 1347 GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr)); 1348 if (i == lastdesc) 1349 break; 1350 } 1351 } 1352 #endif 1353 1354 static void 1355 gem_start(struct ifnet *ifp) 1356 { 1357 struct gem_softc *sc = ifp->if_softc; 1358 struct mbuf *m0, *m; 1359 struct gem_txsoft *txs; 1360 bus_dmamap_t dmamap; 1361 int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg; 1362 uint64_t flags = 0; 1363 1364 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1365 return; 1366 1367 /* 1368 * Remember the previous number of free descriptors and 1369 * the first descriptor we'll use. 1370 */ 1371 ofree = sc->sc_txfree; 1372 firsttx = sc->sc_txnext; 1373 1374 DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n", 1375 device_xname(sc->sc_dev), ofree, firsttx)); 1376 1377 /* 1378 * Loop through the send queue, setting up transmit descriptors 1379 * until we drain the queue, or use up all available transmit 1380 * descriptors. 1381 */ 1382 while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL && 1383 sc->sc_txfree != 0) { 1384 /* 1385 * Grab a packet off the queue. 1386 */ 1387 IFQ_POLL(&ifp->if_snd, m0); 1388 if (m0 == NULL) 1389 break; 1390 m = NULL; 1391 1392 dmamap = txs->txs_dmamap; 1393 1394 /* 1395 * Load the DMA map. If this fails, the packet either 1396 * didn't fit in the alloted number of segments, or we were 1397 * short on resources. In this case, we'll copy and try 1398 * again. 1399 */ 1400 if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0, 1401 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 || 1402 (m0->m_pkthdr.len < ETHER_MIN_TX && 1403 dmamap->dm_nsegs == GEM_NTXSEGS)) { 1404 if (m0->m_pkthdr.len > MCLBYTES) { 1405 aprint_error_dev(sc->sc_dev, 1406 "unable to allocate jumbo Tx cluster\n"); 1407 IFQ_DEQUEUE(&ifp->if_snd, m0); 1408 m_freem(m0); 1409 continue; 1410 } 1411 MGETHDR(m, M_DONTWAIT, MT_DATA); 1412 if (m == NULL) { 1413 aprint_error_dev(sc->sc_dev, 1414 "unable to allocate Tx mbuf\n"); 1415 break; 1416 } 1417 MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner); 1418 if (m0->m_pkthdr.len > MHLEN) { 1419 MCLGET(m, M_DONTWAIT); 1420 if ((m->m_flags & M_EXT) == 0) { 1421 aprint_error_dev(sc->sc_dev, 1422 "unable to allocate Tx cluster\n"); 1423 m_freem(m); 1424 break; 1425 } 1426 } 1427 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *)); 1428 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len; 1429 error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, 1430 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT); 1431 if (error) { 1432 aprint_error_dev(sc->sc_dev, 1433 "unable to load Tx buffer, error = %d\n", 1434 error); 1435 break; 1436 } 1437 } 1438 1439 /* 1440 * Ensure we have enough descriptors free to describe 1441 * the packet. 1442 */ 1443 if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ? 1444 (sc->sc_txfree - 1) : sc->sc_txfree)) { 1445 /* 1446 * Not enough free descriptors to transmit this 1447 * packet. We haven't committed to anything yet, 1448 * so just unload the DMA map, put the packet 1449 * back on the queue, and punt. Notify the upper 1450 * layer that there are no more slots left. 1451 * 1452 * XXX We could allocate an mbuf and copy, but 1453 * XXX it is worth it? 1454 */ 1455 ifp->if_flags |= IFF_OACTIVE; 1456 sc->sc_if_flags = ifp->if_flags; 1457 bus_dmamap_unload(sc->sc_dmatag, dmamap); 1458 if (m != NULL) 1459 m_freem(m); 1460 break; 1461 } 1462 1463 IFQ_DEQUEUE(&ifp->if_snd, m0); 1464 if (m != NULL) { 1465 m_freem(m0); 1466 m0 = m; 1467 } 1468 1469 /* 1470 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1471 */ 1472 1473 /* Sync the DMA map. */ 1474 bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize, 1475 BUS_DMASYNC_PREWRITE); 1476 1477 /* 1478 * Initialize the transmit descriptors. 1479 */ 1480 for (nexttx = sc->sc_txnext, seg = 0; 1481 seg < dmamap->dm_nsegs; 1482 seg++, nexttx = GEM_NEXTTX(nexttx)) { 1483 1484 /* 1485 * If this is the first descriptor we're 1486 * enqueueing, set the start of packet flag, 1487 * and the checksum stuff if we want the hardware 1488 * to do it. 1489 */ 1490 sc->sc_txdescs[nexttx].gd_addr = 1491 GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr); 1492 flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE; 1493 if (nexttx == firsttx) { 1494 flags |= GEM_TD_START_OF_PACKET; 1495 if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) { 1496 sc->sc_txwin = 0; 1497 flags |= GEM_TD_INTERRUPT_ME; 1498 } 1499 1500 #ifdef INET 1501 /* h/w checksum */ 1502 if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 && 1503 m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) { 1504 struct ether_header *eh; 1505 uint16_t offset, start; 1506 1507 eh = mtod(m0, struct ether_header *); 1508 switch (ntohs(eh->ether_type)) { 1509 case ETHERTYPE_IP: 1510 start = ETHER_HDR_LEN; 1511 break; 1512 case ETHERTYPE_VLAN: 1513 start = ETHER_HDR_LEN + 1514 ETHER_VLAN_ENCAP_LEN; 1515 break; 1516 default: 1517 /* unsupported, drop it */ 1518 m_free(m0); 1519 continue; 1520 } 1521 start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 1522 offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start; 1523 flags |= (start << 1524 GEM_TD_CXSUM_STARTSHFT) | 1525 (offset << 1526 GEM_TD_CXSUM_STUFFSHFT) | 1527 GEM_TD_CXSUM_ENABLE; 1528 } 1529 #endif 1530 } 1531 if (seg == dmamap->dm_nsegs - 1) { 1532 flags |= GEM_TD_END_OF_PACKET; 1533 } else { 1534 /* last flag set outside of loop */ 1535 sc->sc_txdescs[nexttx].gd_flags = 1536 GEM_DMA_WRITE(sc, flags); 1537 } 1538 lasttx = nexttx; 1539 } 1540 if (m0->m_pkthdr.len < ETHER_MIN_TX) { 1541 /* add padding buffer at end of chain */ 1542 flags &= ~GEM_TD_END_OF_PACKET; 1543 sc->sc_txdescs[lasttx].gd_flags = 1544 GEM_DMA_WRITE(sc, flags); 1545 1546 sc->sc_txdescs[nexttx].gd_addr = 1547 GEM_DMA_WRITE(sc, 1548 sc->sc_nulldmamap->dm_segs[0].ds_addr); 1549 flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) & 1550 GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET; 1551 lasttx = nexttx; 1552 nexttx = GEM_NEXTTX(nexttx); 1553 seg++; 1554 } 1555 sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags); 1556 1557 KASSERT(lasttx != -1); 1558 1559 /* 1560 * Store a pointer to the packet so we can free it later, 1561 * and remember what txdirty will be once the packet is 1562 * done. 1563 */ 1564 txs->txs_mbuf = m0; 1565 txs->txs_firstdesc = sc->sc_txnext; 1566 txs->txs_lastdesc = lasttx; 1567 txs->txs_ndescs = seg; 1568 1569 #ifdef GEM_DEBUG 1570 if (ifp->if_flags & IFF_DEBUG) { 1571 printf(" gem_start %p transmit chain:\n", txs); 1572 gem_txsoft_print(sc, txs->txs_firstdesc, 1573 txs->txs_lastdesc); 1574 } 1575 #endif 1576 1577 /* Sync the descriptors we're using. */ 1578 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, 1579 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 1580 1581 /* Advance the tx pointer. */ 1582 sc->sc_txfree -= txs->txs_ndescs; 1583 sc->sc_txnext = nexttx; 1584 1585 SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q); 1586 SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q); 1587 1588 /* 1589 * Pass the packet to any BPF listeners. 1590 */ 1591 bpf_mtap(ifp, m0); 1592 } 1593 1594 if (txs == NULL || sc->sc_txfree == 0) { 1595 /* No more slots left; notify upper layer. */ 1596 ifp->if_flags |= IFF_OACTIVE; 1597 sc->sc_if_flags = ifp->if_flags; 1598 } 1599 1600 if (sc->sc_txfree != ofree) { 1601 DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n", 1602 device_xname(sc->sc_dev), lasttx, firsttx)); 1603 /* 1604 * The entire packet chain is set up. 1605 * Kick the transmitter. 1606 */ 1607 DPRINTF(sc, ("%s: gem_start: kicking tx %d\n", 1608 device_xname(sc->sc_dev), nexttx)); 1609 bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK, 1610 sc->sc_txnext); 1611 1612 /* Set a watchdog timer in case the chip flakes out. */ 1613 ifp->if_timer = 5; 1614 DPRINTF(sc, ("%s: gem_start: watchdog %d\n", 1615 device_xname(sc->sc_dev), ifp->if_timer)); 1616 } 1617 } 1618 1619 /* 1620 * Transmit interrupt. 1621 */ 1622 int 1623 gem_tint(struct gem_softc *sc) 1624 { 1625 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1626 bus_space_tag_t t = sc->sc_bustag; 1627 bus_space_handle_t mac = sc->sc_h1; 1628 struct gem_txsoft *txs; 1629 int txlast; 1630 int progress = 0; 1631 u_int32_t v; 1632 1633 DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev))); 1634 1635 /* Unload collision counters ... */ 1636 v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) + 1637 bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT); 1638 ifp->if_collisions += v + 1639 bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) + 1640 bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT); 1641 ifp->if_oerrors += v; 1642 1643 /* ... then clear the hardware counters. */ 1644 bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0); 1645 bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0); 1646 bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0); 1647 bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0); 1648 1649 /* 1650 * Go through our Tx list and free mbufs for those 1651 * frames that have been transmitted. 1652 */ 1653 while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) { 1654 /* 1655 * In theory, we could harvest some descriptors before 1656 * the ring is empty, but that's a bit complicated. 1657 * 1658 * GEM_TX_COMPLETION points to the last descriptor 1659 * processed +1. 1660 * 1661 * Let's assume that the NIC writes back to the Tx 1662 * descriptors before it updates the completion 1663 * register. If the NIC has posted writes to the 1664 * Tx descriptors, PCI ordering requires that the 1665 * posted writes flush to RAM before the register-read 1666 * finishes. So let's read the completion register, 1667 * before syncing the descriptors, so that we 1668 * examine Tx descriptors that are at least as 1669 * current as the completion register. 1670 */ 1671 txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION); 1672 DPRINTF(sc, 1673 ("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n", 1674 txs->txs_lastdesc, txlast)); 1675 if (txs->txs_firstdesc <= txs->txs_lastdesc) { 1676 if (txlast >= txs->txs_firstdesc && 1677 txlast <= txs->txs_lastdesc) 1678 break; 1679 } else if (txlast >= txs->txs_firstdesc || 1680 txlast <= txs->txs_lastdesc) 1681 break; 1682 1683 GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs, 1684 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1685 1686 #ifdef GEM_DEBUG /* XXX DMA synchronization? */ 1687 if (ifp->if_flags & IFF_DEBUG) { 1688 printf(" txsoft %p transmit chain:\n", txs); 1689 gem_txsoft_print(sc, txs->txs_firstdesc, 1690 txs->txs_lastdesc); 1691 } 1692 #endif 1693 1694 1695 DPRINTF(sc, ("gem_tint: releasing a desc\n")); 1696 SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q); 1697 1698 sc->sc_txfree += txs->txs_ndescs; 1699 1700 bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 1701 0, txs->txs_dmamap->dm_mapsize, 1702 BUS_DMASYNC_POSTWRITE); 1703 bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap); 1704 if (txs->txs_mbuf != NULL) { 1705 m_freem(txs->txs_mbuf); 1706 txs->txs_mbuf = NULL; 1707 } 1708 1709 SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q); 1710 1711 ifp->if_opackets++; 1712 progress = 1; 1713 } 1714 1715 #if 0 1716 DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x " 1717 "GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n", 1718 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE), 1719 ((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1, 1720 GEM_TX_DATA_PTR_HI) << 32) | 1721 bus_space_read_4(sc->sc_bustag, sc->sc_h1, 1722 GEM_TX_DATA_PTR_LO), 1723 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION))); 1724 #endif 1725 1726 if (progress) { 1727 if (sc->sc_txfree == GEM_NTXDESC - 1) 1728 sc->sc_txwin = 0; 1729 1730 /* Freed some descriptors, so reset IFF_OACTIVE and restart. */ 1731 ifp->if_flags &= ~IFF_OACTIVE; 1732 sc->sc_if_flags = ifp->if_flags; 1733 ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5; 1734 gem_start(ifp); 1735 } 1736 DPRINTF(sc, ("%s: gem_tint: watchdog %d\n", 1737 device_xname(sc->sc_dev), ifp->if_timer)); 1738 1739 return (1); 1740 } 1741 1742 /* 1743 * Receive interrupt. 1744 */ 1745 int 1746 gem_rint(struct gem_softc *sc) 1747 { 1748 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1749 bus_space_tag_t t = sc->sc_bustag; 1750 bus_space_handle_t h = sc->sc_h1; 1751 struct gem_rxsoft *rxs; 1752 struct mbuf *m; 1753 u_int64_t rxstat; 1754 u_int32_t rxcomp; 1755 int i, len, progress = 0; 1756 1757 DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev))); 1758 1759 /* 1760 * Ignore spurious interrupt that sometimes occurs before 1761 * we are set up when we network boot. 1762 */ 1763 if (!sc->sc_meminited) 1764 return 1; 1765 1766 /* 1767 * Read the completion register once. This limits 1768 * how long the following loop can execute. 1769 */ 1770 rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION); 1771 1772 /* 1773 * XXX Read the lastrx only once at the top for speed. 1774 */ 1775 DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n", 1776 sc->sc_rxptr, rxcomp)); 1777 1778 /* 1779 * Go into the loop at least once. 1780 */ 1781 for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp; 1782 i = GEM_NEXTRX(i)) { 1783 rxs = &sc->sc_rxsoft[i]; 1784 1785 GEM_CDRXSYNC(sc, i, 1786 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 1787 1788 rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags); 1789 1790 if (rxstat & GEM_RD_OWN) { 1791 GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); 1792 /* 1793 * We have processed all of the receive buffers. 1794 */ 1795 break; 1796 } 1797 1798 progress++; 1799 ifp->if_ipackets++; 1800 1801 if (rxstat & GEM_RD_BAD_CRC) { 1802 ifp->if_ierrors++; 1803 aprint_error_dev(sc->sc_dev, 1804 "receive error: CRC error\n"); 1805 GEM_INIT_RXDESC(sc, i); 1806 continue; 1807 } 1808 1809 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1810 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1811 #ifdef GEM_DEBUG 1812 if (ifp->if_flags & IFF_DEBUG) { 1813 printf(" rxsoft %p descriptor %d: ", rxs, i); 1814 printf("gd_flags: 0x%016llx\t", (long long) 1815 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags)); 1816 printf("gd_addr: 0x%016llx\n", (long long) 1817 GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr)); 1818 } 1819 #endif 1820 1821 /* No errors; receive the packet. */ 1822 len = GEM_RD_BUFLEN(rxstat); 1823 1824 /* 1825 * Allocate a new mbuf cluster. If that fails, we are 1826 * out of memory, and must drop the packet and recycle 1827 * the buffer that's already attached to this descriptor. 1828 */ 1829 m = rxs->rxs_mbuf; 1830 if (gem_add_rxbuf(sc, i) != 0) { 1831 GEM_COUNTER_INCR(sc, sc_ev_rxnobuf); 1832 ifp->if_ierrors++; 1833 aprint_error_dev(sc->sc_dev, 1834 "receive error: RX no buffer space\n"); 1835 GEM_INIT_RXDESC(sc, i); 1836 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 1837 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1838 continue; 1839 } 1840 m->m_data += 2; /* We're already off by two */ 1841 1842 m->m_pkthdr.rcvif = ifp; 1843 m->m_pkthdr.len = m->m_len = len; 1844 1845 /* 1846 * Pass this up to any BPF listeners, but only 1847 * pass it up the stack if it's for us. 1848 */ 1849 bpf_mtap(ifp, m); 1850 1851 #ifdef INET 1852 /* hardware checksum */ 1853 if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) { 1854 struct ether_header *eh; 1855 struct ip *ip; 1856 int32_t hlen, pktlen; 1857 1858 if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) { 1859 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN - 1860 ETHER_VLAN_ENCAP_LEN; 1861 eh = (struct ether_header *) (mtod(m, char *) + 1862 ETHER_VLAN_ENCAP_LEN); 1863 } else { 1864 pktlen = m->m_pkthdr.len - ETHER_HDR_LEN; 1865 eh = mtod(m, struct ether_header *); 1866 } 1867 if (ntohs(eh->ether_type) != ETHERTYPE_IP) 1868 goto swcsum; 1869 ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN); 1870 1871 /* IPv4 only */ 1872 if (ip->ip_v != IPVERSION) 1873 goto swcsum; 1874 1875 hlen = ip->ip_hl << 2; 1876 if (hlen < sizeof(struct ip)) 1877 goto swcsum; 1878 1879 /* 1880 * bail if too short, has random trailing garbage, 1881 * truncated, fragment, or has ethernet pad. 1882 */ 1883 if ((ntohs(ip->ip_len) < hlen) || 1884 (ntohs(ip->ip_len) != pktlen) || 1885 (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK))) 1886 goto swcsum; 1887 1888 switch (ip->ip_p) { 1889 case IPPROTO_TCP: 1890 if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4)) 1891 goto swcsum; 1892 if (pktlen < (hlen + sizeof(struct tcphdr))) 1893 goto swcsum; 1894 m->m_pkthdr.csum_flags = M_CSUM_TCPv4; 1895 break; 1896 case IPPROTO_UDP: 1897 /* FALLTHROUGH */ 1898 default: 1899 goto swcsum; 1900 } 1901 1902 /* the uncomplemented sum is expected */ 1903 m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM; 1904 1905 /* if the pkt had ip options, we have to deduct them */ 1906 if (hlen > sizeof(struct ip)) { 1907 uint16_t *opts; 1908 uint32_t optsum, temp; 1909 1910 optsum = 0; 1911 temp = hlen - sizeof(struct ip); 1912 opts = (uint16_t *) ((char *) ip + 1913 sizeof(struct ip)); 1914 1915 while (temp > 1) { 1916 optsum += ntohs(*opts++); 1917 temp -= 2; 1918 } 1919 while (optsum >> 16) 1920 optsum = (optsum >> 16) + 1921 (optsum & 0xffff); 1922 1923 /* Deduct ip opts sum from hwsum. */ 1924 m->m_pkthdr.csum_data += (uint16_t)~optsum; 1925 1926 while (m->m_pkthdr.csum_data >> 16) 1927 m->m_pkthdr.csum_data = 1928 (m->m_pkthdr.csum_data >> 16) + 1929 (m->m_pkthdr.csum_data & 1930 0xffff); 1931 } 1932 1933 m->m_pkthdr.csum_flags |= M_CSUM_DATA | 1934 M_CSUM_NO_PSEUDOHDR; 1935 } else 1936 swcsum: 1937 m->m_pkthdr.csum_flags = 0; 1938 #endif 1939 /* Pass it on. */ 1940 (*ifp->if_input)(ifp, m); 1941 } 1942 1943 if (progress) { 1944 /* Update the receive pointer. */ 1945 if (i == sc->sc_rxptr) { 1946 GEM_COUNTER_INCR(sc, sc_ev_rxfull); 1947 #ifdef GEM_DEBUG 1948 if (ifp->if_flags & IFF_DEBUG) 1949 printf("%s: rint: ring wrap\n", 1950 device_xname(sc->sc_dev)); 1951 #endif 1952 } 1953 sc->sc_rxptr = i; 1954 bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i)); 1955 } 1956 #ifdef GEM_COUNTERS 1957 if (progress <= 4) { 1958 GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]); 1959 } else if (progress < 32) { 1960 if (progress < 16) 1961 GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]); 1962 else 1963 GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]); 1964 1965 } else { 1966 if (progress < 64) 1967 GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]); 1968 else 1969 GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]); 1970 } 1971 #endif 1972 1973 DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n", 1974 sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION))); 1975 1976 /* Read error counters ... */ 1977 ifp->if_ierrors += 1978 bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) + 1979 bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) + 1980 bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) + 1981 bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL); 1982 1983 /* ... then clear the hardware counters. */ 1984 bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0); 1985 bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0); 1986 bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0); 1987 bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0); 1988 1989 return (1); 1990 } 1991 1992 1993 /* 1994 * gem_add_rxbuf: 1995 * 1996 * Add a receive buffer to the indicated descriptor. 1997 */ 1998 int 1999 gem_add_rxbuf(struct gem_softc *sc, int idx) 2000 { 2001 struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2002 struct mbuf *m; 2003 int error; 2004 2005 MGETHDR(m, M_DONTWAIT, MT_DATA); 2006 if (m == NULL) 2007 return (ENOBUFS); 2008 2009 MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner); 2010 MCLGET(m, M_DONTWAIT); 2011 if ((m->m_flags & M_EXT) == 0) { 2012 m_freem(m); 2013 return (ENOBUFS); 2014 } 2015 2016 #ifdef GEM_DEBUG 2017 /* bzero the packet to check DMA */ 2018 memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size); 2019 #endif 2020 2021 if (rxs->rxs_mbuf != NULL) 2022 bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap); 2023 2024 rxs->rxs_mbuf = m; 2025 2026 error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap, 2027 m->m_ext.ext_buf, m->m_ext.ext_size, NULL, 2028 BUS_DMA_READ|BUS_DMA_NOWAIT); 2029 if (error) { 2030 aprint_error_dev(sc->sc_dev, 2031 "can't load rx DMA map %d, error = %d\n", idx, error); 2032 panic("gem_add_rxbuf"); /* XXX */ 2033 } 2034 2035 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, 2036 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2037 2038 GEM_INIT_RXDESC(sc, idx); 2039 2040 return (0); 2041 } 2042 2043 2044 int 2045 gem_eint(struct gem_softc *sc, u_int status) 2046 { 2047 char bits[128]; 2048 u_int32_t r, v; 2049 2050 if ((status & GEM_INTR_MIF) != 0) { 2051 printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev)); 2052 return (1); 2053 } 2054 2055 if ((status & GEM_INTR_RX_TAG_ERR) != 0) { 2056 gem_reset_rxdma(sc); 2057 return (1); 2058 } 2059 2060 if (status & GEM_INTR_BERR) { 2061 if (sc->sc_flags & GEM_PCI) 2062 r = GEM_ERROR_STATUS; 2063 else 2064 r = GEM_SBUS_ERROR_STATUS; 2065 bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); 2066 v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r); 2067 aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n", 2068 v); 2069 return (1); 2070 } 2071 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); 2072 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits); 2073 2074 return (1); 2075 } 2076 2077 2078 /* 2079 * PCS interrupts. 2080 * We should receive these when the link status changes, but sometimes 2081 * we don't receive them for link up. We compensate for this in the 2082 * gem_tick() callout. 2083 */ 2084 int 2085 gem_pint(struct gem_softc *sc) 2086 { 2087 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2088 bus_space_tag_t t = sc->sc_bustag; 2089 bus_space_handle_t h = sc->sc_h1; 2090 u_int32_t v, v2; 2091 2092 /* 2093 * Clear the PCS interrupt from GEM_STATUS. The PCS register is 2094 * latched, so we have to read it twice. There is only one bit in 2095 * use, so the value is meaningless. 2096 */ 2097 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); 2098 bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS); 2099 2100 if ((ifp->if_flags & IFF_UP) == 0) 2101 return 1; 2102 2103 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) 2104 return 1; 2105 2106 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2107 /* If we see remote fault, our link partner is probably going away */ 2108 if ((v & GEM_MII_STATUS_REM_FLT) != 0) { 2109 gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0); 2110 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2111 /* Otherwise, we may need to wait after auto-negotiation completes */ 2112 } else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) == 2113 GEM_MII_STATUS_ANEG_CPT) { 2114 gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS); 2115 v = bus_space_read_4(t, h, GEM_MII_STATUS); 2116 } 2117 if ((v & GEM_MII_STATUS_LINK_STS) != 0) { 2118 if (sc->sc_flags & GEM_LINK) { 2119 return 1; 2120 } 2121 callout_stop(&sc->sc_tick_ch); 2122 v = bus_space_read_4(t, h, GEM_MII_ANAR); 2123 v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR); 2124 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX; 2125 sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE; 2126 v &= v2; 2127 if (v & GEM_MII_ANEG_FUL_DUPLX) { 2128 sc->sc_mii.mii_media_active |= IFM_FDX; 2129 #ifdef GEM_DEBUG 2130 aprint_debug_dev(sc->sc_dev, "link up: full duplex\n"); 2131 #endif 2132 } else if (v & GEM_MII_ANEG_HLF_DUPLX) { 2133 sc->sc_mii.mii_media_active |= IFM_HDX; 2134 #ifdef GEM_DEBUG 2135 aprint_debug_dev(sc->sc_dev, "link up: half duplex\n"); 2136 #endif 2137 } else { 2138 #ifdef GEM_DEBUG 2139 aprint_debug_dev(sc->sc_dev, "duplex mismatch\n"); 2140 #endif 2141 } 2142 gem_statuschange(sc); 2143 } else { 2144 if ((sc->sc_flags & GEM_LINK) == 0) { 2145 return 1; 2146 } 2147 sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE; 2148 sc->sc_mii.mii_media_status = IFM_AVALID; 2149 #ifdef GEM_DEBUG 2150 aprint_debug_dev(sc->sc_dev, "link down\n"); 2151 #endif 2152 gem_statuschange(sc); 2153 2154 /* Start the 10 second timer */ 2155 callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc); 2156 } 2157 return 1; 2158 } 2159 2160 2161 2162 int 2163 gem_intr(void *v) 2164 { 2165 struct gem_softc *sc = v; 2166 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2167 bus_space_tag_t t = sc->sc_bustag; 2168 bus_space_handle_t h = sc->sc_h1; 2169 u_int32_t status; 2170 int r = 0; 2171 #ifdef GEM_DEBUG 2172 char bits[128]; 2173 #endif 2174 2175 /* XXX We should probably mask out interrupts until we're done */ 2176 2177 sc->sc_ev_intr.ev_count++; 2178 2179 status = bus_space_read_4(t, h, GEM_STATUS); 2180 #ifdef GEM_DEBUG 2181 snprintb(bits, sizeof(bits), GEM_INTR_BITS, status); 2182 #endif 2183 DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n", 2184 device_xname(sc->sc_dev), (status >> 19), bits)); 2185 2186 2187 if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0) 2188 r |= gem_eint(sc, status); 2189 2190 /* We don't bother with GEM_INTR_TX_DONE */ 2191 if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) { 2192 GEM_COUNTER_INCR(sc, sc_ev_txint); 2193 r |= gem_tint(sc); 2194 } 2195 2196 if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) { 2197 GEM_COUNTER_INCR(sc, sc_ev_rxint); 2198 r |= gem_rint(sc); 2199 } 2200 2201 /* We should eventually do more than just print out error stats. */ 2202 if (status & GEM_INTR_TX_MAC) { 2203 int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS); 2204 if (txstat & ~GEM_MAC_TX_XMIT_DONE) 2205 printf("%s: MAC tx fault, status %x\n", 2206 device_xname(sc->sc_dev), txstat); 2207 if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG)) 2208 gem_init(ifp); 2209 } 2210 if (status & GEM_INTR_RX_MAC) { 2211 int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS); 2212 /* 2213 * At least with GEM_SUN_GEM and some GEM_SUN_ERI 2214 * revisions GEM_MAC_RX_OVERFLOW happen often due to a 2215 * silicon bug so handle them silently. So if we detect 2216 * an RX FIFO overflow, we fire off a timer, and check 2217 * whether we're still making progress by looking at the 2218 * RX FIFO write and read pointers. 2219 */ 2220 if (rxstat & GEM_MAC_RX_OVERFLOW) { 2221 ifp->if_ierrors++; 2222 aprint_error_dev(sc->sc_dev, 2223 "receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)); 2224 sc->sc_rx_fifo_wr_ptr = 2225 bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR); 2226 sc->sc_rx_fifo_rd_ptr = 2227 bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR); 2228 callout_schedule(&sc->sc_rx_watchdog, 400); 2229 } else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT)) 2230 printf("%s: MAC rx fault, status 0x%02x\n", 2231 device_xname(sc->sc_dev), rxstat); 2232 } 2233 if (status & GEM_INTR_PCS) { 2234 r |= gem_pint(sc); 2235 } 2236 2237 /* Do we need to do anything with these? 2238 if ((status & GEM_MAC_CONTROL_STATUS) != 0) { 2239 status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS); 2240 if ((status2 & GEM_MAC_PAUSED) != 0) 2241 aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n", 2242 GEM_MAC_PAUSE_TIME(status2)); 2243 if ((status2 & GEM_MAC_PAUSE) != 0) 2244 aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n"); 2245 if ((status2 & GEM_MAC_RESUME) != 0) 2246 aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n"); 2247 } 2248 if ((status & GEM_INTR_MIF) != 0) 2249 aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n"); 2250 */ 2251 rnd_add_uint32(&sc->rnd_source, status); 2252 return (r); 2253 } 2254 2255 void 2256 gem_rx_watchdog(void *arg) 2257 { 2258 struct gem_softc *sc = arg; 2259 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2260 bus_space_tag_t t = sc->sc_bustag; 2261 bus_space_handle_t h = sc->sc_h1; 2262 u_int32_t rx_fifo_wr_ptr; 2263 u_int32_t rx_fifo_rd_ptr; 2264 u_int32_t state; 2265 2266 if ((ifp->if_flags & IFF_RUNNING) == 0) { 2267 aprint_error_dev(sc->sc_dev, "receiver not running\n"); 2268 return; 2269 } 2270 2271 rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR); 2272 rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR); 2273 state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE); 2274 if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW && 2275 ((rx_fifo_wr_ptr == rx_fifo_rd_ptr) || 2276 ((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) && 2277 (sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr)))) 2278 { 2279 /* 2280 * The RX state machine is still in overflow state and 2281 * the RX FIFO write and read pointers seem to be 2282 * stuck. Whack the chip over the head to get things 2283 * going again. 2284 */ 2285 aprint_error_dev(sc->sc_dev, 2286 "receiver stuck in overflow, resetting\n"); 2287 gem_init(ifp); 2288 } else { 2289 if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) { 2290 aprint_error_dev(sc->sc_dev, 2291 "rx_watchdog: not in overflow state: 0x%x\n", 2292 state); 2293 } 2294 if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) { 2295 aprint_error_dev(sc->sc_dev, 2296 "rx_watchdog: wr & rd ptr different\n"); 2297 } 2298 if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) { 2299 aprint_error_dev(sc->sc_dev, 2300 "rx_watchdog: wr pointer != saved\n"); 2301 } 2302 if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) { 2303 aprint_error_dev(sc->sc_dev, 2304 "rx_watchdog: rd pointer != saved\n"); 2305 } 2306 aprint_error_dev(sc->sc_dev, "resetting anyway\n"); 2307 gem_init(ifp); 2308 } 2309 } 2310 2311 void 2312 gem_watchdog(struct ifnet *ifp) 2313 { 2314 struct gem_softc *sc = ifp->if_softc; 2315 2316 DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x " 2317 "GEM_MAC_RX_CONFIG %x\n", 2318 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG), 2319 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS), 2320 bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG))); 2321 2322 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); 2323 ++ifp->if_oerrors; 2324 2325 /* Try to get more packets going. */ 2326 gem_init(ifp); 2327 gem_start(ifp); 2328 } 2329 2330 /* 2331 * Initialize the MII Management Interface 2332 */ 2333 void 2334 gem_mifinit(struct gem_softc *sc) 2335 { 2336 bus_space_tag_t t = sc->sc_bustag; 2337 bus_space_handle_t mif = sc->sc_h1; 2338 2339 /* Configure the MIF in frame mode */ 2340 sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG); 2341 sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA; 2342 bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config); 2343 } 2344 2345 /* 2346 * MII interface 2347 * 2348 * The GEM MII interface supports at least three different operating modes: 2349 * 2350 * Bitbang mode is implemented using data, clock and output enable registers. 2351 * 2352 * Frame mode is implemented by loading a complete frame into the frame 2353 * register and polling the valid bit for completion. 2354 * 2355 * Polling mode uses the frame register but completion is indicated by 2356 * an interrupt. 2357 * 2358 */ 2359 static int 2360 gem_mii_readreg(device_t self, int phy, int reg) 2361 { 2362 struct gem_softc *sc = device_private(self); 2363 bus_space_tag_t t = sc->sc_bustag; 2364 bus_space_handle_t mif = sc->sc_h1; 2365 int n; 2366 u_int32_t v; 2367 2368 #ifdef GEM_DEBUG1 2369 if (sc->sc_debug) 2370 printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg); 2371 #endif 2372 2373 /* Construct the frame command */ 2374 v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) | 2375 GEM_MIF_FRAME_READ; 2376 2377 bus_space_write_4(t, mif, GEM_MIF_FRAME, v); 2378 for (n = 0; n < 100; n++) { 2379 DELAY(1); 2380 v = bus_space_read_4(t, mif, GEM_MIF_FRAME); 2381 if (v & GEM_MIF_FRAME_TA0) 2382 return (v & GEM_MIF_FRAME_DATA); 2383 } 2384 2385 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev)); 2386 return (0); 2387 } 2388 2389 static void 2390 gem_mii_writereg(device_t self, int phy, int reg, int val) 2391 { 2392 struct gem_softc *sc = device_private(self); 2393 bus_space_tag_t t = sc->sc_bustag; 2394 bus_space_handle_t mif = sc->sc_h1; 2395 int n; 2396 u_int32_t v; 2397 2398 #ifdef GEM_DEBUG1 2399 if (sc->sc_debug) 2400 printf("gem_mii_writereg: PHY %d reg %d val %x\n", 2401 phy, reg, val); 2402 #endif 2403 2404 /* Construct the frame command */ 2405 v = GEM_MIF_FRAME_WRITE | 2406 (phy << GEM_MIF_PHY_SHIFT) | 2407 (reg << GEM_MIF_REG_SHIFT) | 2408 (val & GEM_MIF_FRAME_DATA); 2409 2410 bus_space_write_4(t, mif, GEM_MIF_FRAME, v); 2411 for (n = 0; n < 100; n++) { 2412 DELAY(1); 2413 v = bus_space_read_4(t, mif, GEM_MIF_FRAME); 2414 if (v & GEM_MIF_FRAME_TA0) 2415 return; 2416 } 2417 2418 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev)); 2419 } 2420 2421 static void 2422 gem_mii_statchg(struct ifnet *ifp) 2423 { 2424 struct gem_softc *sc = ifp->if_softc; 2425 #ifdef GEM_DEBUG 2426 int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); 2427 #endif 2428 2429 #ifdef GEM_DEBUG 2430 if (sc->sc_debug) 2431 printf("gem_mii_statchg: status change: phy = %d\n", 2432 sc->sc_phys[instance]); 2433 #endif 2434 gem_statuschange(sc); 2435 } 2436 2437 /* 2438 * Common status change for gem_mii_statchg() and gem_pint() 2439 */ 2440 void 2441 gem_statuschange(struct gem_softc* sc) 2442 { 2443 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2444 bus_space_tag_t t = sc->sc_bustag; 2445 bus_space_handle_t mac = sc->sc_h1; 2446 int gigabit; 2447 u_int32_t rxcfg, txcfg, v; 2448 2449 if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 && 2450 IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE) 2451 sc->sc_flags |= GEM_LINK; 2452 else 2453 sc->sc_flags &= ~GEM_LINK; 2454 2455 if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000)) 2456 gigabit = 1; 2457 else 2458 gigabit = 0; 2459 2460 /* 2461 * The configuration done here corresponds to the steps F) and 2462 * G) and as far as enabling of RX and TX MAC goes also step H) 2463 * of the initialization sequence outlined in section 3.2.1 of 2464 * the GEM Gigabit Ethernet ASIC Specification. 2465 */ 2466 2467 rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG); 2468 rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE); 2469 txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT; 2470 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2471 txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS; 2472 else if (gigabit) { 2473 rxcfg |= GEM_MAC_RX_CARR_EXTEND; 2474 txcfg |= GEM_MAC_RX_CARR_EXTEND; 2475 } 2476 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0); 2477 bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4, 2478 BUS_SPACE_BARRIER_WRITE); 2479 if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0)) 2480 aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n"); 2481 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg); 2482 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0); 2483 bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4, 2484 BUS_SPACE_BARRIER_WRITE); 2485 if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0)) 2486 aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n"); 2487 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg); 2488 2489 v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) & 2490 ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE); 2491 bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v); 2492 2493 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 && 2494 gigabit != 0) 2495 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, 2496 GEM_MAC_SLOT_TIME_CARR_EXTEND); 2497 else 2498 bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME, 2499 GEM_MAC_SLOT_TIME_NORMAL); 2500 2501 /* XIF Configuration */ 2502 if (sc->sc_flags & GEM_LINK) 2503 v = GEM_MAC_XIF_LINK_LED; 2504 else 2505 v = 0; 2506 v |= GEM_MAC_XIF_TX_MII_ENA; 2507 2508 /* If an external transceiver is connected, enable its MII drivers */ 2509 sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG); 2510 if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) { 2511 if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) { 2512 if (gigabit) 2513 v |= GEM_MAC_XIF_GMII_MODE; 2514 else 2515 v &= ~GEM_MAC_XIF_GMII_MODE; 2516 } else 2517 /* Internal MII needs buf enable */ 2518 v |= GEM_MAC_XIF_MII_BUF_ENA; 2519 /* MII needs echo disable if half duplex. */ 2520 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2521 /* turn on full duplex LED */ 2522 v |= GEM_MAC_XIF_FDPLX_LED; 2523 else 2524 /* half duplex -- disable echo */ 2525 v |= GEM_MAC_XIF_ECHO_DISABL; 2526 } else { 2527 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) 2528 v |= GEM_MAC_XIF_FDPLX_LED; 2529 v |= GEM_MAC_XIF_GMII_MODE; 2530 } 2531 bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v); 2532 2533 if ((ifp->if_flags & IFF_RUNNING) != 0 && 2534 (sc->sc_flags & GEM_LINK) != 0) { 2535 bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 2536 txcfg | GEM_MAC_TX_ENABLE); 2537 bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 2538 rxcfg | GEM_MAC_RX_ENABLE); 2539 } 2540 } 2541 2542 int 2543 gem_ser_mediachange(struct ifnet *ifp) 2544 { 2545 struct gem_softc *sc = ifp->if_softc; 2546 u_int s, t; 2547 2548 if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER) 2549 return EINVAL; 2550 2551 s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media); 2552 if (s == IFM_AUTO) { 2553 if (sc->sc_mii_media != s) { 2554 #ifdef GEM_DEBUG 2555 aprint_debug_dev(sc->sc_dev, "setting media to auto\n"); 2556 #endif 2557 sc->sc_mii_media = s; 2558 if (ifp->if_flags & IFF_UP) { 2559 gem_pcs_stop(sc, 0); 2560 gem_pcs_start(sc); 2561 } 2562 } 2563 return 0; 2564 } 2565 if (s == IFM_1000_SX) { 2566 t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media); 2567 if (t == IFM_FDX || t == IFM_HDX) { 2568 if (sc->sc_mii_media != t) { 2569 sc->sc_mii_media = t; 2570 #ifdef GEM_DEBUG 2571 aprint_debug_dev(sc->sc_dev, 2572 "setting media to 1000baseSX-%s\n", 2573 t == IFM_FDX ? "FDX" : "HDX"); 2574 #endif 2575 if (ifp->if_flags & IFF_UP) { 2576 gem_pcs_stop(sc, 0); 2577 gem_pcs_start(sc); 2578 } 2579 } 2580 return 0; 2581 } 2582 } 2583 return EINVAL; 2584 } 2585 2586 void 2587 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2588 { 2589 struct gem_softc *sc = ifp->if_softc; 2590 2591 if ((ifp->if_flags & IFF_UP) == 0) 2592 return; 2593 ifmr->ifm_active = sc->sc_mii.mii_media_active; 2594 ifmr->ifm_status = sc->sc_mii.mii_media_status; 2595 } 2596 2597 static int 2598 gem_ifflags_cb(struct ethercom *ec) 2599 { 2600 struct ifnet *ifp = &ec->ec_if; 2601 struct gem_softc *sc = ifp->if_softc; 2602 int change = ifp->if_flags ^ sc->sc_if_flags; 2603 2604 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) 2605 return ENETRESET; 2606 else if ((change & IFF_PROMISC) != 0) 2607 gem_setladrf(sc); 2608 return 0; 2609 } 2610 2611 /* 2612 * Process an ioctl request. 2613 */ 2614 int 2615 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data) 2616 { 2617 struct gem_softc *sc = ifp->if_softc; 2618 int s, error = 0; 2619 2620 s = splnet(); 2621 2622 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 2623 error = 0; 2624 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 2625 ; 2626 else if (ifp->if_flags & IFF_RUNNING) { 2627 /* 2628 * Multicast list has changed; set the hardware filter 2629 * accordingly. 2630 */ 2631 gem_setladrf(sc); 2632 } 2633 } 2634 2635 /* Try to get things going again */ 2636 if (ifp->if_flags & IFF_UP) 2637 gem_start(ifp); 2638 splx(s); 2639 return (error); 2640 } 2641 2642 static void 2643 gem_inten(struct gem_softc *sc) 2644 { 2645 bus_space_tag_t t = sc->sc_bustag; 2646 bus_space_handle_t h = sc->sc_h1; 2647 uint32_t v; 2648 2649 if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) 2650 v = GEM_INTR_PCS; 2651 else 2652 v = GEM_INTR_MIF; 2653 bus_space_write_4(t, h, GEM_INTMASK, 2654 ~(GEM_INTR_TX_INTME | 2655 GEM_INTR_TX_EMPTY | 2656 GEM_INTR_TX_MAC | 2657 GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF| 2658 GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL| 2659 GEM_INTR_BERR | v)); 2660 } 2661 2662 bool 2663 gem_resume(device_t self, const pmf_qual_t *qual) 2664 { 2665 struct gem_softc *sc = device_private(self); 2666 2667 gem_inten(sc); 2668 2669 return true; 2670 } 2671 2672 bool 2673 gem_suspend(device_t self, const pmf_qual_t *qual) 2674 { 2675 struct gem_softc *sc = device_private(self); 2676 bus_space_tag_t t = sc->sc_bustag; 2677 bus_space_handle_t h = sc->sc_h1; 2678 2679 bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0); 2680 2681 return true; 2682 } 2683 2684 bool 2685 gem_shutdown(device_t self, int howto) 2686 { 2687 struct gem_softc *sc = device_private(self); 2688 struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2689 2690 gem_stop(ifp, 1); 2691 2692 return true; 2693 } 2694 2695 /* 2696 * Set up the logical address filter. 2697 */ 2698 void 2699 gem_setladrf(struct gem_softc *sc) 2700 { 2701 struct ethercom *ec = &sc->sc_ethercom; 2702 struct ifnet *ifp = &ec->ec_if; 2703 struct ether_multi *enm; 2704 struct ether_multistep step; 2705 bus_space_tag_t t = sc->sc_bustag; 2706 bus_space_handle_t h = sc->sc_h1; 2707 u_int32_t crc; 2708 u_int32_t hash[16]; 2709 u_int32_t v; 2710 int i; 2711 2712 /* Get current RX configuration */ 2713 v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG); 2714 2715 /* 2716 * Turn off promiscuous mode, promiscuous group mode (all multicast), 2717 * and hash filter. Depending on the case, the right bit will be 2718 * enabled. 2719 */ 2720 v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER| 2721 GEM_MAC_RX_PROMISC_GRP); 2722 2723 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2724 /* Turn on promiscuous mode */ 2725 v |= GEM_MAC_RX_PROMISCUOUS; 2726 ifp->if_flags |= IFF_ALLMULTI; 2727 goto chipit; 2728 } 2729 2730 /* 2731 * Set up multicast address filter by passing all multicast addresses 2732 * through a crc generator, and then using the high order 8 bits as an 2733 * index into the 256 bit logical address filter. The high order 4 2734 * bits selects the word, while the other 4 bits select the bit within 2735 * the word (where bit 0 is the MSB). 2736 */ 2737 2738 /* Clear hash table */ 2739 memset(hash, 0, sizeof(hash)); 2740 2741 ETHER_FIRST_MULTI(step, ec, enm); 2742 while (enm != NULL) { 2743 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2744 /* 2745 * We must listen to a range of multicast addresses. 2746 * For now, just accept all multicasts, rather than 2747 * trying to set only those filter bits needed to match 2748 * the range. (At this time, the only use of address 2749 * ranges is for IP multicast routing, for which the 2750 * range is big enough to require all bits set.) 2751 * XXX should use the address filters for this 2752 */ 2753 ifp->if_flags |= IFF_ALLMULTI; 2754 v |= GEM_MAC_RX_PROMISC_GRP; 2755 goto chipit; 2756 } 2757 2758 /* Get the LE CRC32 of the address */ 2759 crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo)); 2760 2761 /* Just want the 8 most significant bits. */ 2762 crc >>= 24; 2763 2764 /* Set the corresponding bit in the filter. */ 2765 hash[crc >> 4] |= 1 << (15 - (crc & 15)); 2766 2767 ETHER_NEXT_MULTI(step, enm); 2768 } 2769 2770 v |= GEM_MAC_RX_HASH_FILTER; 2771 ifp->if_flags &= ~IFF_ALLMULTI; 2772 2773 /* Now load the hash table into the chip (if we are using it) */ 2774 for (i = 0; i < 16; i++) { 2775 bus_space_write_4(t, h, 2776 GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0), 2777 hash[i]); 2778 } 2779 2780 chipit: 2781 sc->sc_if_flags = ifp->if_flags; 2782 bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v); 2783 } 2784