xref: /netbsd-src/sys/dev/ic/gem.c (revision 3d3166c313ecca1acd1041185da79f04ec4b547f)
1 /*	$NetBSD: gem.c,v 1.88 2009/12/04 22:13:26 martin Exp $ */
2 
3 /*
4  *
5  * Copyright (C) 2001 Eduardo Horvath.
6  * Copyright (c) 2001-2003 Thomas Moestl
7  * All rights reserved.
8  *
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  */
32 
33 /*
34  * Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
35  * See `GEM Gigabit Ethernet ASIC Specification'
36  *   http://www.sun.com/processors/manuals/ge.pdf
37  */
38 
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.88 2009/12/04 22:13:26 martin Exp $");
41 
42 #include "opt_inet.h"
43 #include "bpfilter.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/callout.h>
48 #include <sys/mbuf.h>
49 #include <sys/syslog.h>
50 #include <sys/malloc.h>
51 #include <sys/kernel.h>
52 #include <sys/socket.h>
53 #include <sys/ioctl.h>
54 #include <sys/errno.h>
55 #include <sys/device.h>
56 
57 #include <machine/endian.h>
58 
59 #include <uvm/uvm_extern.h>
60 
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_media.h>
64 #include <net/if_ether.h>
65 
66 #ifdef INET
67 #include <netinet/in.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/in_var.h>
70 #include <netinet/ip.h>
71 #include <netinet/tcp.h>
72 #include <netinet/udp.h>
73 #endif
74 
75 #if NBPFILTER > 0
76 #include <net/bpf.h>
77 #endif
78 
79 #include <sys/bus.h>
80 #include <sys/intr.h>
81 
82 #include <dev/mii/mii.h>
83 #include <dev/mii/miivar.h>
84 #include <dev/mii/mii_bitbang.h>
85 
86 #include <dev/ic/gemreg.h>
87 #include <dev/ic/gemvar.h>
88 
89 #define TRIES	10000
90 
91 static void	gem_inten(struct gem_softc *);
92 static void	gem_start(struct ifnet *);
93 static void	gem_stop(struct ifnet *, int);
94 int		gem_ioctl(struct ifnet *, u_long, void *);
95 void		gem_tick(void *);
96 void		gem_watchdog(struct ifnet *);
97 void		gem_pcs_start(struct gem_softc *sc);
98 void		gem_pcs_stop(struct gem_softc *sc, int);
99 int		gem_init(struct ifnet *);
100 void		gem_init_regs(struct gem_softc *sc);
101 static int	gem_ringsize(int sz);
102 static int	gem_meminit(struct gem_softc *);
103 void		gem_mifinit(struct gem_softc *);
104 static int	gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
105 		    u_int32_t, u_int32_t);
106 void		gem_reset(struct gem_softc *);
107 int		gem_reset_rx(struct gem_softc *sc);
108 static void	gem_reset_rxdma(struct gem_softc *sc);
109 static void	gem_rx_common(struct gem_softc *sc);
110 int		gem_reset_tx(struct gem_softc *sc);
111 int		gem_disable_rx(struct gem_softc *sc);
112 int		gem_disable_tx(struct gem_softc *sc);
113 static void	gem_rxdrain(struct gem_softc *sc);
114 int		gem_add_rxbuf(struct gem_softc *sc, int idx);
115 void		gem_setladrf(struct gem_softc *);
116 
117 /* MII methods & callbacks */
118 static int	gem_mii_readreg(device_t, int, int);
119 static void	gem_mii_writereg(device_t, int, int, int);
120 static void	gem_mii_statchg(device_t);
121 
122 static int	gem_ifflags_cb(struct ethercom *);
123 
124 void		gem_statuschange(struct gem_softc *);
125 
126 int		gem_ser_mediachange(struct ifnet *);
127 void		gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
128 
129 static void	gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
130 
131 struct mbuf	*gem_get(struct gem_softc *, int, int);
132 int		gem_put(struct gem_softc *, int, struct mbuf *);
133 void		gem_read(struct gem_softc *, int, int);
134 int		gem_pint(struct gem_softc *);
135 int		gem_eint(struct gem_softc *, u_int);
136 int		gem_rint(struct gem_softc *);
137 int		gem_tint(struct gem_softc *);
138 void		gem_power(int, void *);
139 
140 #ifdef GEM_DEBUG
141 static void gem_txsoft_print(const struct gem_softc *, int, int);
142 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
143 				printf x
144 #else
145 #define	DPRINTF(sc, x)	/* nothing */
146 #endif
147 
148 #define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
149 
150 int
151 gem_detach(struct gem_softc *sc, int flags)
152 {
153 	int i;
154 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
155 
156 	/*
157 	 * Free any resources we've allocated during the attach.
158 	 * Do this in reverse order and fall through.
159 	 */
160 	switch (sc->sc_att_stage) {
161 	case GEM_ATT_BACKEND_2:
162 	case GEM_ATT_BACKEND_1:
163 	case GEM_ATT_FINISHED:
164 		gem_stop(&sc->sc_ethercom.ec_if, 1);
165 
166 #ifdef GEM_COUNTERS
167 		for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
168 			evcnt_detach(&sc->sc_ev_rxhist[i]);
169 		evcnt_detach(&sc->sc_ev_rxnobuf);
170 		evcnt_detach(&sc->sc_ev_rxfull);
171 		evcnt_detach(&sc->sc_ev_rxint);
172 		evcnt_detach(&sc->sc_ev_txint);
173 #endif
174 		evcnt_detach(&sc->sc_ev_intr);
175 
176 #if NRND > 0
177 		rnd_detach_source(&sc->rnd_source);
178 #endif
179 		ether_ifdetach(ifp);
180 		if_detach(ifp);
181 		ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
182 
183 		callout_destroy(&sc->sc_tick_ch);
184 
185 		/*FALLTHROUGH*/
186 	case GEM_ATT_MII:
187 		sc->sc_att_stage = GEM_ATT_MII;
188 		mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
189 		/*FALLTHROUGH*/
190 	case GEM_ATT_7:
191 		for (i = 0; i < GEM_NRXDESC; i++) {
192 			if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
193 				bus_dmamap_destroy(sc->sc_dmatag,
194 				    sc->sc_rxsoft[i].rxs_dmamap);
195 		}
196 		/*FALLTHROUGH*/
197 	case GEM_ATT_6:
198 		for (i = 0; i < GEM_TXQUEUELEN; i++) {
199 			if (sc->sc_txsoft[i].txs_dmamap != NULL)
200 				bus_dmamap_destroy(sc->sc_dmatag,
201 				    sc->sc_txsoft[i].txs_dmamap);
202 		}
203 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
204 		/*FALLTHROUGH*/
205 	case GEM_ATT_5:
206 		bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
207 		/*FALLTHROUGH*/
208 	case GEM_ATT_4:
209 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
210 		/*FALLTHROUGH*/
211 	case GEM_ATT_3:
212 		bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
213 		/*FALLTHROUGH*/
214 	case GEM_ATT_2:
215 		bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
216 		    sizeof(struct gem_control_data));
217 		/*FALLTHROUGH*/
218 	case GEM_ATT_1:
219 		bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
220 		/*FALLTHROUGH*/
221 	case GEM_ATT_0:
222 		sc->sc_att_stage = GEM_ATT_0;
223 		/*FALLTHROUGH*/
224 	case GEM_ATT_BACKEND_0:
225 		break;
226 	}
227 	return 0;
228 }
229 
230 static void
231 gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
232 {
233 	cfattach_t ca = device_cfattach(sc->sc_dev);
234 
235 	sc->sc_att_stage = stage;
236 	(*ca->ca_detach)(sc->sc_dev, 0);
237 }
238 
239 /*
240  * gem_attach:
241  *
242  *	Attach a Gem interface to the system.
243  */
244 void
245 gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
246 {
247 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
248 	struct mii_data *mii = &sc->sc_mii;
249 	bus_space_tag_t t = sc->sc_bustag;
250 	bus_space_handle_t h = sc->sc_h1;
251 	struct ifmedia_entry *ifm;
252 	int i, error;
253 	u_int32_t v;
254 	char *nullbuf;
255 
256 	/* Make sure the chip is stopped. */
257 	ifp->if_softc = sc;
258 	gem_reset(sc);
259 
260 	/*
261 	 * Allocate the control data structures, and create and load the
262 	 * DMA map for it. gem_control_data is 9216 bytes, we have space for
263 	 * the padding buffer in the bus_dmamem_alloc()'d memory.
264 	 */
265 	if ((error = bus_dmamem_alloc(sc->sc_dmatag,
266 	    sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
267 	    0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
268 		aprint_error_dev(sc->sc_dev,
269 		   "unable to allocate control data, error = %d\n",
270 		    error);
271 		gem_partial_detach(sc, GEM_ATT_0);
272 		return;
273 	}
274 
275 	/* XXX should map this in with correct endianness */
276 	if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
277 	    sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
278 	    BUS_DMA_COHERENT)) != 0) {
279 		aprint_error_dev(sc->sc_dev,
280 		    "unable to map control data, error = %d\n", error);
281 		gem_partial_detach(sc, GEM_ATT_1);
282 		return;
283 	}
284 
285 	nullbuf =
286 	    (char *)sc->sc_control_data + sizeof(struct gem_control_data);
287 
288 	if ((error = bus_dmamap_create(sc->sc_dmatag,
289 	    sizeof(struct gem_control_data), 1,
290 	    sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
291 		aprint_error_dev(sc->sc_dev,
292 		    "unable to create control data DMA map, error = %d\n",
293 		    error);
294 		gem_partial_detach(sc, GEM_ATT_2);
295 		return;
296 	}
297 
298 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
299 	    sc->sc_control_data, sizeof(struct gem_control_data), NULL,
300 	    0)) != 0) {
301 		aprint_error_dev(sc->sc_dev,
302 		    "unable to load control data DMA map, error = %d\n",
303 		    error);
304 		gem_partial_detach(sc, GEM_ATT_3);
305 		return;
306 	}
307 
308 	memset(nullbuf, 0, ETHER_MIN_TX);
309 	if ((error = bus_dmamap_create(sc->sc_dmatag,
310 	    ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
311 		aprint_error_dev(sc->sc_dev,
312 		    "unable to create padding DMA map, error = %d\n", error);
313 		gem_partial_detach(sc, GEM_ATT_4);
314 		return;
315 	}
316 
317 	if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
318 	    nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
319 		aprint_error_dev(sc->sc_dev,
320 		    "unable to load padding DMA map, error = %d\n", error);
321 		gem_partial_detach(sc, GEM_ATT_5);
322 		return;
323 	}
324 
325 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
326 	    BUS_DMASYNC_PREWRITE);
327 
328 	/*
329 	 * Initialize the transmit job descriptors.
330 	 */
331 	SIMPLEQ_INIT(&sc->sc_txfreeq);
332 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
333 
334 	/*
335 	 * Create the transmit buffer DMA maps.
336 	 */
337 	for (i = 0; i < GEM_TXQUEUELEN; i++) {
338 		struct gem_txsoft *txs;
339 
340 		txs = &sc->sc_txsoft[i];
341 		txs->txs_mbuf = NULL;
342 		if ((error = bus_dmamap_create(sc->sc_dmatag,
343 		    ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
344 		    ETHER_MAX_LEN_JUMBO, 0, 0,
345 		    &txs->txs_dmamap)) != 0) {
346 			aprint_error_dev(sc->sc_dev,
347 			    "unable to create tx DMA map %d, error = %d\n",
348 			    i, error);
349 			gem_partial_detach(sc, GEM_ATT_6);
350 			return;
351 		}
352 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
353 	}
354 
355 	/*
356 	 * Create the receive buffer DMA maps.
357 	 */
358 	for (i = 0; i < GEM_NRXDESC; i++) {
359 		if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
360 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
361 			aprint_error_dev(sc->sc_dev,
362 			    "unable to create rx DMA map %d, error = %d\n",
363 			    i, error);
364 			gem_partial_detach(sc, GEM_ATT_7);
365 			return;
366 		}
367 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
368 	}
369 
370 	/* Initialize ifmedia structures and MII info */
371 	mii->mii_ifp = ifp;
372 	mii->mii_readreg = gem_mii_readreg;
373 	mii->mii_writereg = gem_mii_writereg;
374 	mii->mii_statchg = gem_mii_statchg;
375 
376 	sc->sc_ethercom.ec_mii = mii;
377 
378 	/*
379 	 * Initialization based  on `GEM Gigabit Ethernet ASIC Specification'
380 	 * Section 3.2.1 `Initialization Sequence'.
381 	 * However, we can't assume SERDES or Serialink if neither
382 	 * GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
383 	 * being set, as both are set on Sun X1141A (with SERDES).  So,
384 	 * we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
385 	 * Also, for Apple variants with 2 PHY's, we prefer the external
386 	 * PHY over the internal PHY.
387 	 */
388 	gem_mifinit(sc);
389 
390 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
391 		ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
392 		    ether_mediastatus);
393 		mii_attach(sc->sc_dev, mii, 0xffffffff,
394 		    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
395 		if (LIST_EMPTY(&mii->mii_phys)) {
396 				/* No PHY attached */
397 				aprint_error_dev(sc->sc_dev,
398 				    "PHY probe failed\n");
399 				gem_partial_detach(sc, GEM_ATT_MII);
400 				return;
401 		} else {
402 			struct mii_softc *child;
403 
404 			/*
405 			 * Walk along the list of attached MII devices and
406 			 * establish an `MII instance' to `PHY number'
407 			 * mapping.
408 			 */
409 			LIST_FOREACH(child, &mii->mii_phys, mii_list) {
410 				/*
411 				 * Note: we support just one PHY: the internal
412 				 * or external MII is already selected for us
413 				 * by the GEM_MIF_CONFIG  register.
414 				 */
415 				if (child->mii_phy > 1 || child->mii_inst > 0) {
416 					aprint_error_dev(sc->sc_dev,
417 					    "cannot accommodate MII device"
418 					    " %s at PHY %d, instance %d\n",
419 					       device_xname(child->mii_dev),
420 					       child->mii_phy, child->mii_inst);
421 					continue;
422 				}
423 				sc->sc_phys[child->mii_inst] = child->mii_phy;
424 			}
425 
426 			/*
427 			 * Now select and activate the PHY we will use.
428 			 *
429 			 * The order of preference is External (MDI1),
430 			 * then Internal (MDI0),
431 			 */
432 			if (sc->sc_phys[1]) {
433 #ifdef GEM_DEBUG
434 				aprint_debug_dev(sc->sc_dev,
435 				    "using external PHY\n");
436 #endif
437 				sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
438 			} else {
439 #ifdef GEM_DEBUG
440 				aprint_debug_dev(sc->sc_dev,
441 				    "using internal PHY\n");
442 				sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
443 #endif
444 			}
445 			bus_space_write_4(t, h, GEM_MIF_CONFIG,
446 			    sc->sc_mif_config);
447 			if (sc->sc_variant != GEM_SUN_ERI)
448 				bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
449 				    GEM_MII_DATAPATH_MII);
450 
451 			/*
452 			 * XXX - we can really do the following ONLY if the
453 			 * PHY indeed has the auto negotiation capability!!
454 			 */
455 			ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
456 		}
457 	} else {
458 		ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
459 		    gem_ser_mediastatus);
460 		/* SERDES or Serialink */
461 		if (sc->sc_flags & GEM_SERDES) {
462 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
463 			    GEM_MII_DATAPATH_SERDES);
464 		} else {
465 			sc->sc_flags |= GEM_SERIAL;
466 			bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
467 			    GEM_MII_DATAPATH_SERIAL);
468 		}
469 
470 		aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
471 		    sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
472 
473 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO, 0, NULL);
474 		/* Check for FDX and HDX capabilities */
475 		sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
476 		if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
477 			ifmedia_add(&sc->sc_mii.mii_media,
478 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_FDX, 0, NULL);
479 			aprint_normal("1000baseSX-FDX, ");
480 		}
481 		if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
482 			ifmedia_add(&sc->sc_mii.mii_media,
483 			    IFM_ETHER|IFM_1000_SX|IFM_MANUAL|IFM_HDX, 0, NULL);
484 			aprint_normal("1000baseSX-HDX, ");
485 		}
486 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
487 		sc->sc_mii_media = IFM_AUTO;
488 		aprint_normal("auto\n");
489 
490 		gem_pcs_stop(sc, 1);
491 	}
492 
493 	/*
494 	 * From this point forward, the attachment cannot fail.  A failure
495 	 * before this point releases all resources that may have been
496 	 * allocated.
497 	 */
498 
499 	/* Announce ourselves. */
500 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
501 	    ether_sprintf(enaddr));
502 
503 	/* Get RX FIFO size */
504 	sc->sc_rxfifosize = 64 *
505 	    bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
506 	aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
507 
508 	/* Get TX FIFO size */
509 	v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
510 	aprint_normal(", %uKB TX fifo\n", v / 16);
511 
512 	/* Initialize ifnet structure. */
513 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
514 	ifp->if_softc = sc;
515 	ifp->if_flags =
516 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
517 	sc->sc_if_flags = ifp->if_flags;
518 #if 0
519 	/*
520 	 * The GEM hardware supports basic TCP checksum offloading only.
521 	 * Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
522 	 * have bugs in the receive checksum, so don't enable it for now.
523 	 */
524 	if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
525 	    (GEM_IS_APPLE(sc) &&
526 	    (sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
527 		ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
528 #endif
529 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
530 	ifp->if_start = gem_start;
531 	ifp->if_ioctl = gem_ioctl;
532 	ifp->if_watchdog = gem_watchdog;
533 	ifp->if_stop = gem_stop;
534 	ifp->if_init = gem_init;
535 	IFQ_SET_READY(&ifp->if_snd);
536 
537 	/*
538 	 * If we support GigE media, we support jumbo frames too.
539 	 * Unless we are Apple.
540 	 */
541 	TAILQ_FOREACH(ifm, &sc->sc_mii.mii_media.ifm_list, ifm_list) {
542 		if (IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_T ||
543 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_SX ||
544 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_LX ||
545 		    IFM_SUBTYPE(ifm->ifm_media) == IFM_1000_CX) {
546 			if (!GEM_IS_APPLE(sc))
547 				sc->sc_ethercom.ec_capabilities
548 				    |= ETHERCAP_JUMBO_MTU;
549 			sc->sc_flags |= GEM_GIGABIT;
550 			break;
551 		}
552 	}
553 
554 	/* claim 802.1q capability */
555 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
556 
557 	/* Attach the interface. */
558 	if_attach(ifp);
559 	ether_ifattach(ifp, enaddr);
560 	ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
561 
562 #if NRND > 0
563 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
564 			  RND_TYPE_NET, 0);
565 #endif
566 
567 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
568 	    NULL, device_xname(sc->sc_dev), "interrupts");
569 #ifdef GEM_COUNTERS
570 	evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
571 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
572 	evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
573 	    &sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
574 	evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
575 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
576 	evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
577 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
578 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
579 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
580 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
581 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
582 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
583 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
584 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
585 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
586 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
587 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
588 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
589 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
590 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
591 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
592 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
593 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
594 	evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
595 	    &sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
596 #endif
597 
598 	callout_init(&sc->sc_tick_ch, 0);
599 
600 	sc->sc_att_stage = GEM_ATT_FINISHED;
601 
602 	return;
603 }
604 
605 void
606 gem_tick(void *arg)
607 {
608 	struct gem_softc *sc = arg;
609 	int s;
610 
611 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
612 		/*
613 		 * We have to reset everything if we failed to get a
614 		 * PCS interrupt.  Restarting the callout is handled
615 		 * in gem_pcs_start().
616 		 */
617 		gem_init(&sc->sc_ethercom.ec_if);
618 	} else {
619 		s = splnet();
620 		mii_tick(&sc->sc_mii);
621 		splx(s);
622 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
623 	}
624 }
625 
626 static int
627 gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set)
628 {
629 	int i;
630 	u_int32_t reg;
631 
632 	for (i = TRIES; i--; DELAY(100)) {
633 		reg = bus_space_read_4(sc->sc_bustag, h, r);
634 		if ((reg & clr) == 0 && (reg & set) == set)
635 			return (1);
636 	}
637 	return (0);
638 }
639 
640 void
641 gem_reset(struct gem_softc *sc)
642 {
643 	bus_space_tag_t t = sc->sc_bustag;
644 	bus_space_handle_t h = sc->sc_h2;
645 	int s;
646 
647 	s = splnet();
648 	DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
649 	gem_reset_rx(sc);
650 	gem_reset_tx(sc);
651 
652 	/* Do a full reset */
653 	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX|GEM_RESET_TX);
654 	if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
655 		aprint_error_dev(sc->sc_dev, "cannot reset device\n");
656 	splx(s);
657 }
658 
659 
660 /*
661  * gem_rxdrain:
662  *
663  *	Drain the receive queue.
664  */
665 static void
666 gem_rxdrain(struct gem_softc *sc)
667 {
668 	struct gem_rxsoft *rxs;
669 	int i;
670 
671 	for (i = 0; i < GEM_NRXDESC; i++) {
672 		rxs = &sc->sc_rxsoft[i];
673 		if (rxs->rxs_mbuf != NULL) {
674 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
675 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
676 			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
677 			m_freem(rxs->rxs_mbuf);
678 			rxs->rxs_mbuf = NULL;
679 		}
680 	}
681 }
682 
683 /*
684  * Reset the whole thing.
685  */
686 static void
687 gem_stop(struct ifnet *ifp, int disable)
688 {
689 	struct gem_softc *sc = ifp->if_softc;
690 	struct gem_txsoft *txs;
691 
692 	DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
693 
694 	callout_stop(&sc->sc_tick_ch);
695 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
696 		gem_pcs_stop(sc, disable);
697 	else
698 		mii_down(&sc->sc_mii);
699 
700 	/* XXX - Should we reset these instead? */
701 	gem_disable_tx(sc);
702 	gem_disable_rx(sc);
703 
704 	/*
705 	 * Release any queued transmit buffers.
706 	 */
707 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
708 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
709 		if (txs->txs_mbuf != NULL) {
710 			bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
711 			    txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
712 			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
713 			m_freem(txs->txs_mbuf);
714 			txs->txs_mbuf = NULL;
715 		}
716 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
717 	}
718 
719 	/*
720 	 * Mark the interface down and cancel the watchdog timer.
721 	 */
722 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
723 	sc->sc_if_flags = ifp->if_flags;
724 	ifp->if_timer = 0;
725 
726 	if (disable)
727 		gem_rxdrain(sc);
728 }
729 
730 
731 /*
732  * Reset the receiver
733  */
734 int
735 gem_reset_rx(struct gem_softc *sc)
736 {
737 	bus_space_tag_t t = sc->sc_bustag;
738 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
739 
740 	/*
741 	 * Resetting while DMA is in progress can cause a bus hang, so we
742 	 * disable DMA first.
743 	 */
744 	gem_disable_rx(sc);
745 	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
746 	bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
747 	/* Wait till it finishes */
748 	if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
749 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
750 
751 	/* Finally, reset the ERX */
752 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
753 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
754 	/* Wait till it finishes */
755 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
756 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
757 		return (1);
758 	}
759 	return (0);
760 }
761 
762 
763 /*
764  * Reset the receiver DMA engine.
765  *
766  * Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
767  * etc in order to reset the receiver DMA engine only and not do a full
768  * reset which amongst others also downs the link and clears the FIFOs.
769  */
770 static void
771 gem_reset_rxdma(struct gem_softc *sc)
772 {
773 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
774 	bus_space_tag_t t = sc->sc_bustag;
775 	bus_space_handle_t h = sc->sc_h1;
776 	int i;
777 
778 	if (gem_reset_rx(sc) != 0) {
779 		gem_init(ifp);
780 		return;
781 	}
782 	for (i = 0; i < GEM_NRXDESC; i++)
783 		if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
784 			GEM_UPDATE_RXDESC(sc, i);
785 	sc->sc_rxptr = 0;
786 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
787 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
788 
789 	/* Reprogram Descriptor Ring Base Addresses */
790 	/* NOTE: we use only 32-bit DMA addresses here. */
791 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
792 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
793 
794 	/* Redo ERX Configuration */
795 	gem_rx_common(sc);
796 
797 	/* Give the reciever a swift kick */
798 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
799 }
800 
801 /*
802  * Common RX configuration for gem_init() and gem_reset_rxdma().
803  */
804 static void
805 gem_rx_common(struct gem_softc *sc)
806 {
807 	bus_space_tag_t t = sc->sc_bustag;
808 	bus_space_handle_t h = sc->sc_h1;
809 	u_int32_t v;
810 
811 	/* Encode Receive Descriptor ring size: four possible values */
812 	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
813 
814 	/* Set receive h/w checksum offset */
815 #ifdef INET
816 	v |= (ETHER_HDR_LEN + sizeof(struct ip) +
817 	    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
818 	    ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
819 #endif
820 
821 	/* Enable RX DMA */
822 	bus_space_write_4(t, h, GEM_RX_CONFIG,
823 	    v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
824 	    (2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
825 
826 	/*
827 	 * The following value is for an OFF Threshold of about 3/4 full
828 	 * and an ON Threshold of 1/4 full.
829 	 */
830 	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
831 	    (3 * sc->sc_rxfifosize / 256) |
832 	    ((sc->sc_rxfifosize / 256) << 12));
833 	bus_space_write_4(t, h, GEM_RX_BLANKING,
834 	    (6 << GEM_RX_BLANKING_TIME_SHIFT) | 6);
835 }
836 
837 /*
838  * Reset the transmitter
839  */
840 int
841 gem_reset_tx(struct gem_softc *sc)
842 {
843 	bus_space_tag_t t = sc->sc_bustag;
844 	bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
845 
846 	/*
847 	 * Resetting while DMA is in progress can cause a bus hang, so we
848 	 * disable DMA first.
849 	 */
850 	gem_disable_tx(sc);
851 	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
852 	bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
853 	/* Wait till it finishes */
854 	if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
855 		aprint_error_dev(sc->sc_dev, "cannot disable read dma\n");
856 	/* Wait 5ms extra. */
857 	delay(5000);
858 
859 	/* Finally, reset the ETX */
860 	bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
861 	bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
862 	/* Wait till it finishes */
863 	if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
864 		aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
865 		return (1);
866 	}
867 	return (0);
868 }
869 
870 /*
871  * disable receiver.
872  */
873 int
874 gem_disable_rx(struct gem_softc *sc)
875 {
876 	bus_space_tag_t t = sc->sc_bustag;
877 	bus_space_handle_t h = sc->sc_h1;
878 	u_int32_t cfg;
879 
880 	/* Flip the enable bit */
881 	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
882 	cfg &= ~GEM_MAC_RX_ENABLE;
883 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
884 	bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
885 	/* Wait for it to finish */
886 	return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
887 }
888 
889 /*
890  * disable transmitter.
891  */
892 int
893 gem_disable_tx(struct gem_softc *sc)
894 {
895 	bus_space_tag_t t = sc->sc_bustag;
896 	bus_space_handle_t h = sc->sc_h1;
897 	u_int32_t cfg;
898 
899 	/* Flip the enable bit */
900 	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
901 	cfg &= ~GEM_MAC_TX_ENABLE;
902 	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
903 	bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
904 	/* Wait for it to finish */
905 	return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
906 }
907 
908 /*
909  * Initialize interface.
910  */
911 int
912 gem_meminit(struct gem_softc *sc)
913 {
914 	struct gem_rxsoft *rxs;
915 	int i, error;
916 
917 	/*
918 	 * Initialize the transmit descriptor ring.
919 	 */
920 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
921 	for (i = 0; i < GEM_NTXDESC; i++) {
922 		sc->sc_txdescs[i].gd_flags = 0;
923 		sc->sc_txdescs[i].gd_addr = 0;
924 	}
925 	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
926 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
927 	sc->sc_txfree = GEM_NTXDESC-1;
928 	sc->sc_txnext = 0;
929 	sc->sc_txwin = 0;
930 
931 	/*
932 	 * Initialize the receive descriptor and receive job
933 	 * descriptor rings.
934 	 */
935 	for (i = 0; i < GEM_NRXDESC; i++) {
936 		rxs = &sc->sc_rxsoft[i];
937 		if (rxs->rxs_mbuf == NULL) {
938 			if ((error = gem_add_rxbuf(sc, i)) != 0) {
939 				aprint_error_dev(sc->sc_dev,
940 				    "unable to allocate or map rx "
941 				    "buffer %d, error = %d\n",
942 				    i, error);
943 				/*
944 				 * XXX Should attempt to run with fewer receive
945 				 * XXX buffers instead of just failing.
946 				 */
947 				gem_rxdrain(sc);
948 				return (1);
949 			}
950 		} else
951 			GEM_INIT_RXDESC(sc, i);
952 	}
953 	sc->sc_rxptr = 0;
954 	sc->sc_meminited = 1;
955 	GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
956 	GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
957 
958 	return (0);
959 }
960 
961 static int
962 gem_ringsize(int sz)
963 {
964 	switch (sz) {
965 	case 32:
966 		return GEM_RING_SZ_32;
967 	case 64:
968 		return GEM_RING_SZ_64;
969 	case 128:
970 		return GEM_RING_SZ_128;
971 	case 256:
972 		return GEM_RING_SZ_256;
973 	case 512:
974 		return GEM_RING_SZ_512;
975 	case 1024:
976 		return GEM_RING_SZ_1024;
977 	case 2048:
978 		return GEM_RING_SZ_2048;
979 	case 4096:
980 		return GEM_RING_SZ_4096;
981 	case 8192:
982 		return GEM_RING_SZ_8192;
983 	default:
984 		printf("gem: invalid Receive Descriptor ring size %d\n", sz);
985 		return GEM_RING_SZ_32;
986 	}
987 }
988 
989 
990 /*
991  * Start PCS
992  */
993 void
994 gem_pcs_start(struct gem_softc *sc)
995 {
996 	bus_space_tag_t t = sc->sc_bustag;
997 	bus_space_handle_t h = sc->sc_h1;
998 	uint32_t v;
999 
1000 #ifdef GEM_DEBUG
1001 	aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
1002 #endif
1003 
1004 	/*
1005 	 * Set up.  We must disable the MII before modifying the
1006 	 * GEM_MII_ANAR register
1007 	 */
1008 	if (sc->sc_flags & GEM_SERDES) {
1009 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1010 		    GEM_MII_DATAPATH_SERDES);
1011 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1012 		    GEM_MII_SLINK_LOOPBACK);
1013 	} else {
1014 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1015 		    GEM_MII_DATAPATH_SERIAL);
1016 		bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
1017 	}
1018 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1019 	v = bus_space_read_4(t, h, GEM_MII_ANAR);
1020 	v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
1021 	if (sc->sc_mii_media == IFM_AUTO)
1022 		v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
1023 	else if (sc->sc_mii_media == IFM_FDX) {
1024 		v |= GEM_MII_ANEG_FUL_DUPLX;
1025 		v &= ~GEM_MII_ANEG_HLF_DUPLX;
1026 	} else if (sc->sc_mii_media == IFM_HDX) {
1027 		v &= ~GEM_MII_ANEG_FUL_DUPLX;
1028 		v |= GEM_MII_ANEG_HLF_DUPLX;
1029 	}
1030 
1031 	/* Configure link. */
1032 	bus_space_write_4(t, h, GEM_MII_ANAR, v);
1033 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1034 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1035 	bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
1036 	gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
1037 
1038 	/* Start the 10 second timer */
1039 	callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
1040 }
1041 
1042 /*
1043  * Stop PCS
1044  */
1045 void
1046 gem_pcs_stop(struct gem_softc *sc, int disable)
1047 {
1048 	bus_space_tag_t t = sc->sc_bustag;
1049 	bus_space_handle_t h = sc->sc_h1;
1050 
1051 #ifdef GEM_DEBUG
1052 	aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
1053 #endif
1054 
1055 	/* Tell link partner that we're going away */
1056 	bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
1057 
1058 	/*
1059 	 * Disable PCS MII.  The documentation suggests that setting
1060 	 * GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
1061 	 * negotiation will shut down the link.  However, it appears
1062 	 * that we also need to unset the datapath mode.
1063 	 */
1064 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1065 	bus_space_write_4(t, h, GEM_MII_CONTROL,
1066 	    GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
1067 	bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
1068 	bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
1069 
1070 	if (disable) {
1071 		if (sc->sc_flags & GEM_SERDES)
1072 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1073 				GEM_MII_SLINK_POWER_OFF);
1074 		else
1075 			bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
1076 			    GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
1077 	}
1078 
1079 	sc->sc_flags &= ~GEM_LINK;
1080 	sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
1081 	sc->sc_mii.mii_media_status = IFM_AVALID;
1082 }
1083 
1084 
1085 /*
1086  * Initialization of interface; set up initialization block
1087  * and transmit/receive descriptor rings.
1088  */
1089 int
1090 gem_init(struct ifnet *ifp)
1091 {
1092 	struct gem_softc *sc = ifp->if_softc;
1093 	bus_space_tag_t t = sc->sc_bustag;
1094 	bus_space_handle_t h = sc->sc_h1;
1095 	int rc = 0, s;
1096 	u_int max_frame_size;
1097 	u_int32_t v;
1098 
1099 	s = splnet();
1100 
1101 	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
1102 	/*
1103 	 * Initialization sequence. The numbered steps below correspond
1104 	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1105 	 * Channel Engine manual (part of the PCIO manual).
1106 	 * See also the STP2002-STQ document from Sun Microsystems.
1107 	 */
1108 
1109 	/* step 1 & 2. Reset the Ethernet Channel */
1110 	gem_stop(ifp, 0);
1111 	gem_reset(sc);
1112 	DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
1113 
1114 	/* Re-initialize the MIF */
1115 	gem_mifinit(sc);
1116 
1117 	/* Set up correct datapath for non-SERDES/Serialink */
1118 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1119 	    sc->sc_variant != GEM_SUN_ERI)
1120 		bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
1121 		    GEM_MII_DATAPATH_MII);
1122 
1123 	/* Call MI reset function if any */
1124 	if (sc->sc_hwreset)
1125 		(*sc->sc_hwreset)(sc);
1126 
1127 	/* step 3. Setup data structures in host memory */
1128 	if (gem_meminit(sc) != 0)
1129 		return 1;
1130 
1131 	/* step 4. TX MAC registers & counters */
1132 	gem_init_regs(sc);
1133 	max_frame_size = max(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
1134 	max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
1135 	if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
1136 		max_frame_size += ETHER_VLAN_ENCAP_LEN;
1137 	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1138 	    max_frame_size|/* burst size */(0x2000<<16));
1139 
1140 	/* step 5. RX MAC registers & counters */
1141 	gem_setladrf(sc);
1142 
1143 	/* step 6 & 7. Program Descriptor Ring Base Addresses */
1144 	/* NOTE: we use only 32-bit DMA addresses here. */
1145 	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
1146 	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
1147 
1148 	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
1149 	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
1150 
1151 	/* step 8. Global Configuration & Interrupt Mask */
1152 	gem_inten(sc);
1153 	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
1154 			GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
1155 	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
1156 	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
1157 	    GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
1158 
1159 	/* step 9. ETX Configuration: use mostly default values */
1160 
1161 	/* Enable TX DMA */
1162 	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
1163 	bus_space_write_4(t, h, GEM_TX_CONFIG,
1164 	    v | GEM_TX_CONFIG_TXDMA_EN |
1165 	    (((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
1166 	    GEM_TX_CONFIG_TXFIFO_TH));
1167 	bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
1168 
1169 	/* step 10. ERX Configuration */
1170 	gem_rx_common(sc);
1171 
1172 	/* step 11. Configure Media */
1173 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
1174 	    (rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
1175 		goto out;
1176 
1177 	/* step 12. RX_MAC Configuration Register */
1178 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1179 	v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
1180 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
1181 
1182 	/* step 14. Issue Transmit Pending command */
1183 
1184 	/* Call MI initialization function if any */
1185 	if (sc->sc_hwinit)
1186 		(*sc->sc_hwinit)(sc);
1187 
1188 
1189 	/* step 15.  Give the reciever a swift kick */
1190 	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
1191 
1192 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
1193 		/* Configure PCS */
1194 		gem_pcs_start(sc);
1195 	else
1196 		/* Start the one second timer. */
1197 		callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
1198 
1199 	sc->sc_flags &= ~GEM_LINK;
1200 	ifp->if_flags |= IFF_RUNNING;
1201 	ifp->if_flags &= ~IFF_OACTIVE;
1202 	ifp->if_timer = 0;
1203 	sc->sc_if_flags = ifp->if_flags;
1204 out:
1205 	splx(s);
1206 
1207 	return (0);
1208 }
1209 
1210 void
1211 gem_init_regs(struct gem_softc *sc)
1212 {
1213 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1214 	bus_space_tag_t t = sc->sc_bustag;
1215 	bus_space_handle_t h = sc->sc_h1;
1216 	const u_char *laddr = CLLADDR(ifp->if_sadl);
1217 	u_int32_t v;
1218 
1219 	/* These regs are not cleared on reset */
1220 	if (!sc->sc_inited) {
1221 
1222 		/* Load recommended values */
1223 		bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
1224 		bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
1225 		bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
1226 
1227 		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1228 		/* Max frame and max burst size */
1229 		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1230 		    ETHER_MAX_LEN | (0x2000<<16));
1231 
1232 		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
1233 		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
1234 		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1235 		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1236 		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1237 		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1238 
1239 		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1240 		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1241 		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1242 		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1243 
1244 		/* MAC control addr set to 01:80:c2:00:00:01 */
1245 		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1246 		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1247 		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1248 
1249 		/* MAC filter addr set to 0:0:0:0:0:0 */
1250 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1251 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1252 		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1253 
1254 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1255 		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1256 
1257 		sc->sc_inited = 1;
1258 	}
1259 
1260 	/* Counters need to be zeroed */
1261 	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1262 	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1263 	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1264 	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1265 	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1266 	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1267 	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1268 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1269 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1270 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1271 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1272 
1273 	/* Set XOFF PAUSE time. */
1274 	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1275 
1276 	/*
1277 	 * Set the internal arbitration to "infinite" bursts of the
1278 	 * maximum length of 31 * 64 bytes so DMA transfers aren't
1279 	 * split up in cache line size chunks. This greatly improves
1280 	 * especially RX performance.
1281 	 * Enable silicon bug workarounds for the Apple variants.
1282 	 */
1283 	bus_space_write_4(t, h, GEM_CONFIG,
1284 	    GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
1285 	    ((sc->sc_flags & GEM_PCI) ?
1286 	    GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
1287 	    GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
1288 
1289 	/*
1290 	 * Set the station address.
1291 	 */
1292 	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1293 	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1294 	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1295 
1296 	/*
1297 	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1298 	 */
1299 	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1300 	v = GEM_MAC_XIF_TX_MII_ENA;
1301 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)  {
1302 		if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1303 			v |= GEM_MAC_XIF_FDPLX_LED;
1304 				if (sc->sc_flags & GEM_GIGABIT)
1305 					v |= GEM_MAC_XIF_GMII_MODE;
1306 		}
1307 	} else {
1308 		v |= GEM_MAC_XIF_GMII_MODE;
1309 	}
1310 	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1311 }
1312 
1313 #ifdef GEM_DEBUG
1314 static void
1315 gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
1316 {
1317 	int i;
1318 
1319 	for (i = firstdesc;; i = GEM_NEXTTX(i)) {
1320 		printf("descriptor %d:\t", i);
1321 		printf("gd_flags:   0x%016" PRIx64 "\t",
1322 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1323 		printf("gd_addr: 0x%016" PRIx64 "\n",
1324 			GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1325 		if (i == lastdesc)
1326 			break;
1327 	}
1328 }
1329 #endif
1330 
1331 static void
1332 gem_start(struct ifnet *ifp)
1333 {
1334 	struct gem_softc *sc = ifp->if_softc;
1335 	struct mbuf *m0, *m;
1336 	struct gem_txsoft *txs;
1337 	bus_dmamap_t dmamap;
1338 	int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
1339 	uint64_t flags = 0;
1340 
1341 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1342 		return;
1343 
1344 	/*
1345 	 * Remember the previous number of free descriptors and
1346 	 * the first descriptor we'll use.
1347 	 */
1348 	ofree = sc->sc_txfree;
1349 	firsttx = sc->sc_txnext;
1350 
1351 	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1352 	    device_xname(sc->sc_dev), ofree, firsttx));
1353 
1354 	/*
1355 	 * Loop through the send queue, setting up transmit descriptors
1356 	 * until we drain the queue, or use up all available transmit
1357 	 * descriptors.
1358 	 */
1359 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
1360 	    sc->sc_txfree != 0) {
1361 		/*
1362 		 * Grab a packet off the queue.
1363 		 */
1364 		IFQ_POLL(&ifp->if_snd, m0);
1365 		if (m0 == NULL)
1366 			break;
1367 		m = NULL;
1368 
1369 		dmamap = txs->txs_dmamap;
1370 
1371 		/*
1372 		 * Load the DMA map.  If this fails, the packet either
1373 		 * didn't fit in the alloted number of segments, or we were
1374 		 * short on resources.  In this case, we'll copy and try
1375 		 * again.
1376 		 */
1377 		if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
1378 		      BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0 ||
1379 		      (m0->m_pkthdr.len < ETHER_MIN_TX &&
1380 		       dmamap->dm_nsegs == GEM_NTXSEGS)) {
1381 			if (m0->m_pkthdr.len > MCLBYTES) {
1382 				aprint_error_dev(sc->sc_dev,
1383 				    "unable to allocate jumbo Tx cluster\n");
1384 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1385 				m_freem(m0);
1386 				continue;
1387 			}
1388 			MGETHDR(m, M_DONTWAIT, MT_DATA);
1389 			if (m == NULL) {
1390 				aprint_error_dev(sc->sc_dev,
1391 				    "unable to allocate Tx mbuf\n");
1392 				break;
1393 			}
1394 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
1395 			if (m0->m_pkthdr.len > MHLEN) {
1396 				MCLGET(m, M_DONTWAIT);
1397 				if ((m->m_flags & M_EXT) == 0) {
1398 					aprint_error_dev(sc->sc_dev,
1399 					    "unable to allocate Tx cluster\n");
1400 					m_freem(m);
1401 					break;
1402 				}
1403 			}
1404 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
1405 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1406 			error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
1407 			    m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1408 			if (error) {
1409 				aprint_error_dev(sc->sc_dev,
1410 				    "unable to load Tx buffer, error = %d\n",
1411 				    error);
1412 				break;
1413 			}
1414 		}
1415 
1416 		/*
1417 		 * Ensure we have enough descriptors free to describe
1418 		 * the packet.
1419 		 */
1420 		if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
1421 		     (sc->sc_txfree - 1) : sc->sc_txfree)) {
1422 			/*
1423 			 * Not enough free descriptors to transmit this
1424 			 * packet.  We haven't committed to anything yet,
1425 			 * so just unload the DMA map, put the packet
1426 			 * back on the queue, and punt.  Notify the upper
1427 			 * layer that there are no more slots left.
1428 			 *
1429 			 * XXX We could allocate an mbuf and copy, but
1430 			 * XXX it is worth it?
1431 			 */
1432 			ifp->if_flags |= IFF_OACTIVE;
1433 			sc->sc_if_flags = ifp->if_flags;
1434 			bus_dmamap_unload(sc->sc_dmatag, dmamap);
1435 			if (m != NULL)
1436 				m_freem(m);
1437 			break;
1438 		}
1439 
1440 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1441 		if (m != NULL) {
1442 			m_freem(m0);
1443 			m0 = m;
1444 		}
1445 
1446 		/*
1447 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1448 		 */
1449 
1450 		/* Sync the DMA map. */
1451 		bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
1452 		    BUS_DMASYNC_PREWRITE);
1453 
1454 		/*
1455 		 * Initialize the transmit descriptors.
1456 		 */
1457 		for (nexttx = sc->sc_txnext, seg = 0;
1458 		     seg < dmamap->dm_nsegs;
1459 		     seg++, nexttx = GEM_NEXTTX(nexttx)) {
1460 
1461 			/*
1462 			 * If this is the first descriptor we're
1463 			 * enqueueing, set the start of packet flag,
1464 			 * and the checksum stuff if we want the hardware
1465 			 * to do it.
1466 			 */
1467 			sc->sc_txdescs[nexttx].gd_addr =
1468 			    GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
1469 			flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
1470 			if (nexttx == firsttx) {
1471 				flags |= GEM_TD_START_OF_PACKET;
1472 				if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
1473 					sc->sc_txwin = 0;
1474 					flags |= GEM_TD_INTERRUPT_ME;
1475 				}
1476 
1477 #ifdef INET
1478 				/* h/w checksum */
1479 				if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
1480 				    m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
1481 					struct ether_header *eh;
1482 					uint16_t offset, start;
1483 
1484 					eh = mtod(m0, struct ether_header *);
1485 					switch (ntohs(eh->ether_type)) {
1486 					case ETHERTYPE_IP:
1487 						start = ETHER_HDR_LEN;
1488 						break;
1489 					case ETHERTYPE_VLAN:
1490 						start = ETHER_HDR_LEN +
1491 							ETHER_VLAN_ENCAP_LEN;
1492 						break;
1493 					default:
1494 						/* unsupported, drop it */
1495 						m_free(m0);
1496 						continue;
1497 					}
1498 					start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1499 					offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
1500 					flags |= (start <<
1501 						  GEM_TD_CXSUM_STARTSHFT) |
1502 						 (offset <<
1503 						  GEM_TD_CXSUM_STUFFSHFT) |
1504 						 GEM_TD_CXSUM_ENABLE;
1505 				}
1506 #endif
1507 			}
1508 			if (seg == dmamap->dm_nsegs - 1) {
1509 				flags |= GEM_TD_END_OF_PACKET;
1510 			} else {
1511 				/* last flag set outside of loop */
1512 				sc->sc_txdescs[nexttx].gd_flags =
1513 					GEM_DMA_WRITE(sc, flags);
1514 			}
1515 			lasttx = nexttx;
1516 		}
1517 		if (m0->m_pkthdr.len < ETHER_MIN_TX) {
1518 			/* add padding buffer at end of chain */
1519 			flags &= ~GEM_TD_END_OF_PACKET;
1520 			sc->sc_txdescs[lasttx].gd_flags =
1521 			    GEM_DMA_WRITE(sc, flags);
1522 
1523 			sc->sc_txdescs[nexttx].gd_addr =
1524 			    GEM_DMA_WRITE(sc,
1525 			    sc->sc_nulldmamap->dm_segs[0].ds_addr);
1526 			flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
1527 			    GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
1528 			lasttx = nexttx;
1529 			nexttx = GEM_NEXTTX(nexttx);
1530 			seg++;
1531 		}
1532 		sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
1533 
1534 		KASSERT(lasttx != -1);
1535 
1536 		/*
1537 		 * Store a pointer to the packet so we can free it later,
1538 		 * and remember what txdirty will be once the packet is
1539 		 * done.
1540 		 */
1541 		txs->txs_mbuf = m0;
1542 		txs->txs_firstdesc = sc->sc_txnext;
1543 		txs->txs_lastdesc = lasttx;
1544 		txs->txs_ndescs = seg;
1545 
1546 #ifdef GEM_DEBUG
1547 		if (ifp->if_flags & IFF_DEBUG) {
1548 			printf("     gem_start %p transmit chain:\n", txs);
1549 			gem_txsoft_print(sc, txs->txs_firstdesc,
1550 			    txs->txs_lastdesc);
1551 		}
1552 #endif
1553 
1554 		/* Sync the descriptors we're using. */
1555 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1556 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1557 
1558 		/* Advance the tx pointer. */
1559 		sc->sc_txfree -= txs->txs_ndescs;
1560 		sc->sc_txnext = nexttx;
1561 
1562 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1563 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1564 
1565 #if NBPFILTER > 0
1566 		/*
1567 		 * Pass the packet to any BPF listeners.
1568 		 */
1569 		if (ifp->if_bpf)
1570 			bpf_mtap(ifp->if_bpf, m0);
1571 #endif /* NBPFILTER > 0 */
1572 	}
1573 
1574 	if (txs == NULL || sc->sc_txfree == 0) {
1575 		/* No more slots left; notify upper layer. */
1576 		ifp->if_flags |= IFF_OACTIVE;
1577 		sc->sc_if_flags = ifp->if_flags;
1578 	}
1579 
1580 	if (sc->sc_txfree != ofree) {
1581 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1582 		    device_xname(sc->sc_dev), lasttx, firsttx));
1583 		/*
1584 		 * The entire packet chain is set up.
1585 		 * Kick the transmitter.
1586 		 */
1587 		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1588 			device_xname(sc->sc_dev), nexttx));
1589 		bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
1590 			sc->sc_txnext);
1591 
1592 		/* Set a watchdog timer in case the chip flakes out. */
1593 		ifp->if_timer = 5;
1594 		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1595 			device_xname(sc->sc_dev), ifp->if_timer));
1596 	}
1597 }
1598 
1599 /*
1600  * Transmit interrupt.
1601  */
1602 int
1603 gem_tint(struct gem_softc *sc)
1604 {
1605 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1606 	bus_space_tag_t t = sc->sc_bustag;
1607 	bus_space_handle_t mac = sc->sc_h1;
1608 	struct gem_txsoft *txs;
1609 	int txlast;
1610 	int progress = 0;
1611 	u_int32_t v;
1612 
1613 	DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
1614 
1615 	/* Unload collision counters ... */
1616 	v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1617 	    bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1618 	ifp->if_collisions += v +
1619 	    bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1620 	    bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT);
1621 	ifp->if_oerrors += v;
1622 
1623 	/* ... then clear the hardware counters. */
1624 	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1625 	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1626 	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1627 	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1628 
1629 	/*
1630 	 * Go through our Tx list and free mbufs for those
1631 	 * frames that have been transmitted.
1632 	 */
1633 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1634 		/*
1635 		 * In theory, we could harvest some descriptors before
1636 		 * the ring is empty, but that's a bit complicated.
1637 		 *
1638 		 * GEM_TX_COMPLETION points to the last descriptor
1639 		 * processed +1.
1640 		 *
1641 		 * Let's assume that the NIC writes back to the Tx
1642 		 * descriptors before it updates the completion
1643 		 * register.  If the NIC has posted writes to the
1644 		 * Tx descriptors, PCI ordering requires that the
1645 		 * posted writes flush to RAM before the register-read
1646 		 * finishes.  So let's read the completion register,
1647 		 * before syncing the descriptors, so that we
1648 		 * examine Tx descriptors that are at least as
1649 		 * current as the completion register.
1650 		 */
1651 		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1652 		DPRINTF(sc,
1653 			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1654 				txs->txs_lastdesc, txlast));
1655 		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1656 			if (txlast >= txs->txs_firstdesc &&
1657 			    txlast <= txs->txs_lastdesc)
1658 				break;
1659 		} else if (txlast >= txs->txs_firstdesc ||
1660 			   txlast <= txs->txs_lastdesc)
1661 			break;
1662 
1663 		GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
1664 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1665 
1666 #ifdef GEM_DEBUG	/* XXX DMA synchronization? */
1667 		if (ifp->if_flags & IFF_DEBUG) {
1668 			printf("    txsoft %p transmit chain:\n", txs);
1669 			gem_txsoft_print(sc, txs->txs_firstdesc,
1670 			    txs->txs_lastdesc);
1671 		}
1672 #endif
1673 
1674 
1675 		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1676 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1677 
1678 		sc->sc_txfree += txs->txs_ndescs;
1679 
1680 		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1681 		    0, txs->txs_dmamap->dm_mapsize,
1682 		    BUS_DMASYNC_POSTWRITE);
1683 		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1684 		if (txs->txs_mbuf != NULL) {
1685 			m_freem(txs->txs_mbuf);
1686 			txs->txs_mbuf = NULL;
1687 		}
1688 
1689 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1690 
1691 		ifp->if_opackets++;
1692 		progress = 1;
1693 	}
1694 
1695 #if 0
1696 	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1697 		"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
1698 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
1699 		((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1700 			GEM_TX_DATA_PTR_HI) << 32) |
1701 			     bus_space_read_4(sc->sc_bustag, sc->sc_h1,
1702 			GEM_TX_DATA_PTR_LO),
1703 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
1704 #endif
1705 
1706 	if (progress) {
1707 		if (sc->sc_txfree == GEM_NTXDESC - 1)
1708 			sc->sc_txwin = 0;
1709 
1710 		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1711 		ifp->if_flags &= ~IFF_OACTIVE;
1712 		sc->sc_if_flags = ifp->if_flags;
1713 		ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
1714 		gem_start(ifp);
1715 	}
1716 	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1717 		device_xname(sc->sc_dev), ifp->if_timer));
1718 
1719 	return (1);
1720 }
1721 
1722 /*
1723  * Receive interrupt.
1724  */
1725 int
1726 gem_rint(struct gem_softc *sc)
1727 {
1728 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1729 	bus_space_tag_t t = sc->sc_bustag;
1730 	bus_space_handle_t h = sc->sc_h1;
1731 	struct gem_rxsoft *rxs;
1732 	struct mbuf *m;
1733 	u_int64_t rxstat;
1734 	u_int32_t rxcomp;
1735 	int i, len, progress = 0;
1736 
1737 	DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
1738 
1739 	/*
1740 	 * Ignore spurious interrupt that sometimes occurs before
1741 	 * we are set up when we network boot.
1742 	 */
1743 	if (!sc->sc_meminited)
1744 		return 1;
1745 
1746 	/*
1747 	 * Read the completion register once.  This limits
1748 	 * how long the following loop can execute.
1749 	 */
1750 	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1751 
1752 	/*
1753 	 * XXX Read the lastrx only once at the top for speed.
1754 	 */
1755 	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1756 		sc->sc_rxptr, rxcomp));
1757 
1758 	/*
1759 	 * Go into the loop at least once.
1760 	 */
1761 	for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
1762 	     i = GEM_NEXTRX(i)) {
1763 		rxs = &sc->sc_rxsoft[i];
1764 
1765 		GEM_CDRXSYNC(sc, i,
1766 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1767 
1768 		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1769 
1770 		if (rxstat & GEM_RD_OWN) {
1771 			GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1772 			/*
1773 			 * We have processed all of the receive buffers.
1774 			 */
1775 			break;
1776 		}
1777 
1778 		progress++;
1779 		ifp->if_ipackets++;
1780 
1781 		if (rxstat & GEM_RD_BAD_CRC) {
1782 			ifp->if_ierrors++;
1783 			aprint_error_dev(sc->sc_dev,
1784 			    "receive error: CRC error\n");
1785 			GEM_INIT_RXDESC(sc, i);
1786 			continue;
1787 		}
1788 
1789 		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1790 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1791 #ifdef GEM_DEBUG
1792 		if (ifp->if_flags & IFF_DEBUG) {
1793 			printf("    rxsoft %p descriptor %d: ", rxs, i);
1794 			printf("gd_flags: 0x%016llx\t", (long long)
1795 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1796 			printf("gd_addr: 0x%016llx\n", (long long)
1797 				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1798 		}
1799 #endif
1800 
1801 		/* No errors; receive the packet. */
1802 		len = GEM_RD_BUFLEN(rxstat);
1803 
1804 		/*
1805 		 * Allocate a new mbuf cluster.  If that fails, we are
1806 		 * out of memory, and must drop the packet and recycle
1807 		 * the buffer that's already attached to this descriptor.
1808 		 */
1809 		m = rxs->rxs_mbuf;
1810 		if (gem_add_rxbuf(sc, i) != 0) {
1811 			GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
1812 			ifp->if_ierrors++;
1813 			GEM_INIT_RXDESC(sc, i);
1814 			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1815 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1816 			continue;
1817 		}
1818 		m->m_data += 2; /* We're already off by two */
1819 
1820 		m->m_pkthdr.rcvif = ifp;
1821 		m->m_pkthdr.len = m->m_len = len;
1822 
1823 #if NBPFILTER > 0
1824 		/*
1825 		 * Pass this up to any BPF listeners, but only
1826 		 * pass it up the stack if it's for us.
1827 		 */
1828 		if (ifp->if_bpf)
1829 			bpf_mtap(ifp->if_bpf, m);
1830 #endif /* NBPFILTER > 0 */
1831 
1832 #ifdef INET
1833 		/* hardware checksum */
1834 		if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
1835 			struct ether_header *eh;
1836 			struct ip *ip;
1837 			int32_t hlen, pktlen;
1838 
1839 			if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
1840 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
1841 					 ETHER_VLAN_ENCAP_LEN;
1842 				eh = (struct ether_header *) (mtod(m, char *) +
1843 					ETHER_VLAN_ENCAP_LEN);
1844 			} else {
1845 				pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
1846 				eh = mtod(m, struct ether_header *);
1847 			}
1848 			if (ntohs(eh->ether_type) != ETHERTYPE_IP)
1849 				goto swcsum;
1850 			ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
1851 
1852 			/* IPv4 only */
1853 			if (ip->ip_v != IPVERSION)
1854 				goto swcsum;
1855 
1856 			hlen = ip->ip_hl << 2;
1857 			if (hlen < sizeof(struct ip))
1858 				goto swcsum;
1859 
1860 			/*
1861 			 * bail if too short, has random trailing garbage,
1862 			 * truncated, fragment, or has ethernet pad.
1863 			 */
1864 			if ((ntohs(ip->ip_len) < hlen) ||
1865 			    (ntohs(ip->ip_len) != pktlen) ||
1866 			    (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
1867 				goto swcsum;
1868 
1869 			switch (ip->ip_p) {
1870 			case IPPROTO_TCP:
1871 				if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
1872 					goto swcsum;
1873 				if (pktlen < (hlen + sizeof(struct tcphdr)))
1874 					goto swcsum;
1875 				m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
1876 				break;
1877 			case IPPROTO_UDP:
1878 				/* FALLTHROUGH */
1879 			default:
1880 				goto swcsum;
1881 			}
1882 
1883 			/* the uncomplemented sum is expected */
1884 			m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
1885 
1886 			/* if the pkt had ip options, we have to deduct them */
1887 			if (hlen > sizeof(struct ip)) {
1888 				uint16_t *opts;
1889 				uint32_t optsum, temp;
1890 
1891 				optsum = 0;
1892 				temp = hlen - sizeof(struct ip);
1893 				opts = (uint16_t *) ((char *) ip +
1894 					sizeof(struct ip));
1895 
1896 				while (temp > 1) {
1897 					optsum += ntohs(*opts++);
1898 					temp -= 2;
1899 				}
1900 				while (optsum >> 16)
1901 					optsum = (optsum >> 16) +
1902 						 (optsum & 0xffff);
1903 
1904 				/* Deduct ip opts sum from hwsum. */
1905 				m->m_pkthdr.csum_data += (uint16_t)~optsum;
1906 
1907 				while (m->m_pkthdr.csum_data >> 16)
1908 					m->m_pkthdr.csum_data =
1909 						(m->m_pkthdr.csum_data >> 16) +
1910 						(m->m_pkthdr.csum_data &
1911 						 0xffff);
1912 			}
1913 
1914 			m->m_pkthdr.csum_flags |= M_CSUM_DATA |
1915 						  M_CSUM_NO_PSEUDOHDR;
1916 		} else
1917 swcsum:
1918 			m->m_pkthdr.csum_flags = 0;
1919 #endif
1920 		/* Pass it on. */
1921 		(*ifp->if_input)(ifp, m);
1922 	}
1923 
1924 	if (progress) {
1925 		/* Update the receive pointer. */
1926 		if (i == sc->sc_rxptr) {
1927 			GEM_COUNTER_INCR(sc, sc_ev_rxfull);
1928 #ifdef GEM_DEBUG
1929 			if (ifp->if_flags & IFF_DEBUG)
1930 				printf("%s: rint: ring wrap\n",
1931 				    device_xname(sc->sc_dev));
1932 #endif
1933 		}
1934 		sc->sc_rxptr = i;
1935 		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1936 	}
1937 #ifdef GEM_COUNTERS
1938 	if (progress <= 4) {
1939 		GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
1940 	} else if (progress < 32) {
1941 		if (progress < 16)
1942 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
1943 		else
1944 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
1945 
1946 	} else {
1947 		if (progress < 64)
1948 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
1949 		else
1950 			GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
1951 	}
1952 #endif
1953 
1954 	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1955 		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1956 
1957 	/* Read error counters ... */
1958 	ifp->if_ierrors +=
1959 	    bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
1960 	    bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
1961 	    bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
1962 	    bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL);
1963 
1964 	/* ... then clear the hardware counters. */
1965 	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1966 	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1967 	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1968 	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1969 
1970 	return (1);
1971 }
1972 
1973 
1974 /*
1975  * gem_add_rxbuf:
1976  *
1977  *	Add a receive buffer to the indicated descriptor.
1978  */
1979 int
1980 gem_add_rxbuf(struct gem_softc *sc, int idx)
1981 {
1982 	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1983 	struct mbuf *m;
1984 	int error;
1985 
1986 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1987 	if (m == NULL)
1988 		return (ENOBUFS);
1989 
1990 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
1991 	MCLGET(m, M_DONTWAIT);
1992 	if ((m->m_flags & M_EXT) == 0) {
1993 		m_freem(m);
1994 		return (ENOBUFS);
1995 	}
1996 
1997 #ifdef GEM_DEBUG
1998 /* bzero the packet to check DMA */
1999 	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
2000 #endif
2001 
2002 	if (rxs->rxs_mbuf != NULL)
2003 		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
2004 
2005 	rxs->rxs_mbuf = m;
2006 
2007 	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
2008 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
2009 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
2010 	if (error) {
2011 		aprint_error_dev(sc->sc_dev,
2012 		    "can't load rx DMA map %d, error = %d\n", idx, error);
2013 		panic("gem_add_rxbuf");	/* XXX */
2014 	}
2015 
2016 	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
2017 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2018 
2019 	GEM_INIT_RXDESC(sc, idx);
2020 
2021 	return (0);
2022 }
2023 
2024 
2025 int
2026 gem_eint(struct gem_softc *sc, u_int status)
2027 {
2028 	char bits[128];
2029 	u_int32_t r, v;
2030 
2031 	if ((status & GEM_INTR_MIF) != 0) {
2032 		printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
2033 		return (1);
2034 	}
2035 
2036 	if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
2037 		gem_reset_rxdma(sc);
2038 		return (1);
2039 	}
2040 
2041 	if (status & GEM_INTR_BERR) {
2042 		if (sc->sc_flags & GEM_PCI)
2043 			r = GEM_ERROR_STATUS;
2044 		else
2045 			r = GEM_SBUS_ERROR_STATUS;
2046 		bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2047 		v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
2048 		aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
2049 		    v);
2050 		return (1);
2051 	}
2052 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2053 	printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
2054 
2055 	return (1);
2056 }
2057 
2058 
2059 /*
2060  * PCS interrupts.
2061  * We should receive these when the link status changes, but sometimes
2062  * we don't receive them for link up.  We compensate for this in the
2063  * gem_tick() callout.
2064  */
2065 int
2066 gem_pint(struct gem_softc *sc)
2067 {
2068 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2069 	bus_space_tag_t t = sc->sc_bustag;
2070 	bus_space_handle_t h = sc->sc_h1;
2071 	u_int32_t v, v2;
2072 
2073 	/*
2074 	 * Clear the PCS interrupt from GEM_STATUS.  The PCS register is
2075 	 * latched, so we have to read it twice.  There is only one bit in
2076 	 * use, so the value is meaningless.
2077 	 */
2078 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2079 	bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
2080 
2081 	if ((ifp->if_flags & IFF_UP) == 0)
2082 		return 1;
2083 
2084 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
2085 		return 1;
2086 
2087 	v = bus_space_read_4(t, h, GEM_MII_STATUS);
2088 	/* If we see remote fault, our link partner is probably going away */
2089 	if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
2090 		gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
2091 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2092 	/* Otherwise, we may need to wait after auto-negotiation completes */
2093 	} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
2094 	    GEM_MII_STATUS_ANEG_CPT) {
2095 		gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
2096 		v = bus_space_read_4(t, h, GEM_MII_STATUS);
2097 	}
2098 	if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
2099 		if (sc->sc_flags & GEM_LINK) {
2100 			return 1;
2101 		}
2102 		callout_stop(&sc->sc_tick_ch);
2103 		v = bus_space_read_4(t, h, GEM_MII_ANAR);
2104 		v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
2105 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
2106 		sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
2107 		v &= v2;
2108 		if (v & GEM_MII_ANEG_FUL_DUPLX) {
2109 			sc->sc_mii.mii_media_active |= IFM_FDX;
2110 #ifdef GEM_DEBUG
2111 			aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
2112 #endif
2113 		} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
2114 			sc->sc_mii.mii_media_active |= IFM_HDX;
2115 #ifdef GEM_DEBUG
2116 			aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
2117 #endif
2118 		} else {
2119 #ifdef GEM_DEBUG
2120 			aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
2121 #endif
2122 		}
2123 		gem_statuschange(sc);
2124 	} else {
2125 		if ((sc->sc_flags & GEM_LINK) == 0) {
2126 			return 1;
2127 		}
2128 		sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
2129 		sc->sc_mii.mii_media_status = IFM_AVALID;
2130 #ifdef GEM_DEBUG
2131 			aprint_debug_dev(sc->sc_dev, "link down\n");
2132 #endif
2133 		gem_statuschange(sc);
2134 
2135 		/* Start the 10 second timer */
2136 		callout_reset(&sc->sc_tick_ch, hz * 10, gem_tick, sc);
2137 	}
2138 	return 1;
2139 }
2140 
2141 
2142 
2143 int
2144 gem_intr(void *v)
2145 {
2146 	struct gem_softc *sc = v;
2147 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2148 	bus_space_tag_t t = sc->sc_bustag;
2149 	bus_space_handle_t h = sc->sc_h1;
2150 	u_int32_t status;
2151 	int r = 0;
2152 #ifdef GEM_DEBUG
2153 	char bits[128];
2154 #endif
2155 
2156 	/* XXX We should probably mask out interrupts until we're done */
2157 
2158 	sc->sc_ev_intr.ev_count++;
2159 
2160 	status = bus_space_read_4(t, h, GEM_STATUS);
2161 #ifdef GEM_DEBUG
2162 	snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
2163 #endif
2164 	DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
2165 		device_xname(sc->sc_dev), (status >> 19), bits));
2166 
2167 
2168 	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
2169 		r |= gem_eint(sc, status);
2170 
2171 	/* We don't bother with GEM_INTR_TX_DONE */
2172 	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
2173 		GEM_COUNTER_INCR(sc, sc_ev_txint);
2174 		r |= gem_tint(sc);
2175 	}
2176 
2177 	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
2178 		GEM_COUNTER_INCR(sc, sc_ev_rxint);
2179 		r |= gem_rint(sc);
2180 	}
2181 
2182 	/* We should eventually do more than just print out error stats. */
2183 	if (status & GEM_INTR_TX_MAC) {
2184 		int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
2185 		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
2186 			printf("%s: MAC tx fault, status %x\n",
2187 			    device_xname(sc->sc_dev), txstat);
2188 		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
2189 			gem_init(ifp);
2190 	}
2191 	if (status & GEM_INTR_RX_MAC) {
2192 		int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
2193 		/*
2194 		 * At least with GEM_SUN_GEM and some GEM_SUN_ERI
2195 		 * revisions GEM_MAC_RX_OVERFLOW happen often due to a
2196 		 * silicon bug so handle them silently. Moreover, it's
2197 		 * likely that the receiver has hung so we reset it.
2198 		 */
2199 		if (rxstat & GEM_MAC_RX_OVERFLOW) {
2200 			ifp->if_ierrors++;
2201 			gem_reset_rxdma(sc);
2202 		} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
2203 			printf("%s: MAC rx fault, status 0x%02x\n",
2204 			    device_xname(sc->sc_dev), rxstat);
2205 	}
2206 	if (status & GEM_INTR_PCS) {
2207 		r |= gem_pint(sc);
2208 	}
2209 
2210 /* Do we need to do anything with these?
2211 	if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
2212 		status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
2213 		if ((status2 & GEM_MAC_PAUSED) != 0)
2214 			aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
2215 			    GEM_MAC_PAUSE_TIME(status2));
2216 		if ((status2 & GEM_MAC_PAUSE) != 0)
2217 			aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
2218 		if ((status2 & GEM_MAC_RESUME) != 0)
2219 			aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
2220 	}
2221 	if ((status & GEM_INTR_MIF) != 0)
2222 		aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
2223 */
2224 #if NRND > 0
2225 	rnd_add_uint32(&sc->rnd_source, status);
2226 #endif
2227 	return (r);
2228 }
2229 
2230 
2231 void
2232 gem_watchdog(struct ifnet *ifp)
2233 {
2234 	struct gem_softc *sc = ifp->if_softc;
2235 
2236 	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
2237 		"GEM_MAC_RX_CONFIG %x\n",
2238 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
2239 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
2240 		bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
2241 
2242 	log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
2243 	++ifp->if_oerrors;
2244 
2245 	/* Try to get more packets going. */
2246 	gem_start(ifp);
2247 }
2248 
2249 /*
2250  * Initialize the MII Management Interface
2251  */
2252 void
2253 gem_mifinit(struct gem_softc *sc)
2254 {
2255 	bus_space_tag_t t = sc->sc_bustag;
2256 	bus_space_handle_t mif = sc->sc_h1;
2257 
2258 	/* Configure the MIF in frame mode */
2259 	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
2260 	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
2261 	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
2262 }
2263 
2264 /*
2265  * MII interface
2266  *
2267  * The GEM MII interface supports at least three different operating modes:
2268  *
2269  * Bitbang mode is implemented using data, clock and output enable registers.
2270  *
2271  * Frame mode is implemented by loading a complete frame into the frame
2272  * register and polling the valid bit for completion.
2273  *
2274  * Polling mode uses the frame register but completion is indicated by
2275  * an interrupt.
2276  *
2277  */
2278 static int
2279 gem_mii_readreg(device_t self, int phy, int reg)
2280 {
2281 	struct gem_softc *sc = device_private(self);
2282 	bus_space_tag_t t = sc->sc_bustag;
2283 	bus_space_handle_t mif = sc->sc_h1;
2284 	int n;
2285 	u_int32_t v;
2286 
2287 #ifdef GEM_DEBUG1
2288 	if (sc->sc_debug)
2289 		printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
2290 #endif
2291 
2292 	/* Construct the frame command */
2293 	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
2294 		GEM_MIF_FRAME_READ;
2295 
2296 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2297 	for (n = 0; n < 100; n++) {
2298 		DELAY(1);
2299 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2300 		if (v & GEM_MIF_FRAME_TA0)
2301 			return (v & GEM_MIF_FRAME_DATA);
2302 	}
2303 
2304 	printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
2305 	return (0);
2306 }
2307 
2308 static void
2309 gem_mii_writereg(device_t self, int phy, int reg, int val)
2310 {
2311 	struct gem_softc *sc = device_private(self);
2312 	bus_space_tag_t t = sc->sc_bustag;
2313 	bus_space_handle_t mif = sc->sc_h1;
2314 	int n;
2315 	u_int32_t v;
2316 
2317 #ifdef GEM_DEBUG1
2318 	if (sc->sc_debug)
2319 		printf("gem_mii_writereg: PHY %d reg %d val %x\n",
2320 			phy, reg, val);
2321 #endif
2322 
2323 	/* Construct the frame command */
2324 	v = GEM_MIF_FRAME_WRITE			|
2325 	    (phy << GEM_MIF_PHY_SHIFT)		|
2326 	    (reg << GEM_MIF_REG_SHIFT)		|
2327 	    (val & GEM_MIF_FRAME_DATA);
2328 
2329 	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
2330 	for (n = 0; n < 100; n++) {
2331 		DELAY(1);
2332 		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
2333 		if (v & GEM_MIF_FRAME_TA0)
2334 			return;
2335 	}
2336 
2337 	printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
2338 }
2339 
2340 static void
2341 gem_mii_statchg(device_t self)
2342 {
2343 	struct gem_softc *sc = device_private(self);
2344 #ifdef GEM_DEBUG
2345 	int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
2346 #endif
2347 
2348 #ifdef GEM_DEBUG
2349 	if (sc->sc_debug)
2350 		printf("gem_mii_statchg: status change: phy = %d\n",
2351 			sc->sc_phys[instance]);
2352 #endif
2353 	gem_statuschange(sc);
2354 }
2355 
2356 /*
2357  * Common status change for gem_mii_statchg() and gem_pint()
2358  */
2359 void
2360 gem_statuschange(struct gem_softc* sc)
2361 {
2362 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2363 	bus_space_tag_t t = sc->sc_bustag;
2364 	bus_space_handle_t mac = sc->sc_h1;
2365 	int gigabit;
2366 	u_int32_t rxcfg, txcfg, v;
2367 
2368 	if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
2369 	    IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
2370 		sc->sc_flags |= GEM_LINK;
2371 	else
2372 		sc->sc_flags &= ~GEM_LINK;
2373 
2374 	if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
2375 		gigabit = 1;
2376 	else
2377 		gigabit = 0;
2378 
2379 	/*
2380 	 * The configuration done here corresponds to the steps F) and
2381 	 * G) and as far as enabling of RX and TX MAC goes also step H)
2382 	 * of the initialization sequence outlined in section 3.2.1 of
2383 	 * the GEM Gigabit Ethernet ASIC Specification.
2384 	 */
2385 
2386 	rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
2387 	rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
2388 	txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
2389 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2390 		txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
2391 	else if (gigabit) {
2392 		rxcfg |= GEM_MAC_RX_CARR_EXTEND;
2393 		txcfg |= GEM_MAC_RX_CARR_EXTEND;
2394 	}
2395 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
2396 	bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
2397 	    BUS_SPACE_BARRIER_WRITE);
2398 	if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
2399 		aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
2400 	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
2401 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
2402 	bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
2403 	    BUS_SPACE_BARRIER_WRITE);
2404 	if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
2405 		aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
2406 	bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
2407 
2408 	v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
2409 	    ~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
2410 	bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
2411 
2412 	if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
2413 	    gigabit != 0)
2414 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2415 		    GEM_MAC_SLOT_TIME_CARR_EXTEND);
2416 	else
2417 		bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
2418 		    GEM_MAC_SLOT_TIME_NORMAL);
2419 
2420 	/* XIF Configuration */
2421 	if (sc->sc_flags & GEM_LINK)
2422 		v = GEM_MAC_XIF_LINK_LED;
2423 	else
2424 		v = 0;
2425 	v |= GEM_MAC_XIF_TX_MII_ENA;
2426 
2427 	/* If an external transceiver is connected, enable its MII drivers */
2428 	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
2429 	if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
2430 		if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
2431 			/* External MII needs echo disable if half duplex. */
2432 			if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) &
2433 			    IFM_FDX) != 0)
2434 				/* turn on full duplex LED */
2435 				v |= GEM_MAC_XIF_FDPLX_LED;
2436 			else
2437 				/* half duplex -- disable echo */
2438 				v |= GEM_MAC_XIF_ECHO_DISABL;
2439 			if (gigabit)
2440 				v |= GEM_MAC_XIF_GMII_MODE;
2441 			else
2442 				v &= ~GEM_MAC_XIF_GMII_MODE;
2443 		} else
2444 			/* Internal MII needs buf enable */
2445 			v |= GEM_MAC_XIF_MII_BUF_ENA;
2446 	} else {
2447 		if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
2448 			v |= GEM_MAC_XIF_FDPLX_LED;
2449 		v |= GEM_MAC_XIF_GMII_MODE;
2450 	}
2451 	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
2452 
2453 	if ((ifp->if_flags & IFF_RUNNING) != 0 &&
2454 	    (sc->sc_flags & GEM_LINK) != 0) {
2455 		bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
2456 		    txcfg | GEM_MAC_TX_ENABLE);
2457 		bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
2458 		    rxcfg | GEM_MAC_RX_ENABLE);
2459 	}
2460 }
2461 
2462 int
2463 gem_ser_mediachange(struct ifnet *ifp)
2464 {
2465 	struct gem_softc *sc = ifp->if_softc;
2466 	u_int s, t;
2467 
2468 	if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
2469 		return EINVAL;
2470 
2471 	s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
2472 	if (s == IFM_AUTO) {
2473 		if (sc->sc_mii_media != s) {
2474 #ifdef GEM_DEBUG
2475 			aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
2476 #endif
2477 			sc->sc_mii_media = s;
2478 			if (ifp->if_flags & IFF_UP) {
2479 				gem_pcs_stop(sc, 0);
2480 				gem_pcs_start(sc);
2481 			}
2482 		}
2483 		return 0;
2484 	}
2485 	if (s == IFM_1000_SX) {
2486 		t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media);
2487 		if (t == IFM_FDX || t == IFM_HDX) {
2488 			if (sc->sc_mii_media != t) {
2489 				sc->sc_mii_media = t;
2490 #ifdef GEM_DEBUG
2491 				aprint_debug_dev(sc->sc_dev,
2492 				    "setting media to 1000baseSX-%s\n",
2493 				    t == IFM_FDX ? "FDX" : "HDX");
2494 #endif
2495 				if (ifp->if_flags & IFF_UP) {
2496 					gem_pcs_stop(sc, 0);
2497 					gem_pcs_start(sc);
2498 				}
2499 			}
2500 			return 0;
2501 		}
2502 	}
2503 	return EINVAL;
2504 }
2505 
2506 void
2507 gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2508 {
2509 	struct gem_softc *sc = ifp->if_softc;
2510 
2511 	if ((ifp->if_flags & IFF_UP) == 0)
2512 		return;
2513 	ifmr->ifm_active = sc->sc_mii.mii_media_active;
2514 	ifmr->ifm_status = sc->sc_mii.mii_media_status;
2515 }
2516 
2517 static int
2518 gem_ifflags_cb(struct ethercom *ec)
2519 {
2520 	struct ifnet *ifp = &ec->ec_if;
2521 	struct gem_softc *sc = ifp->if_softc;
2522 	int change = ifp->if_flags ^ sc->sc_if_flags;
2523 
2524 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
2525 		return ENETRESET;
2526 	else if ((change & IFF_PROMISC) != 0)
2527 		gem_setladrf(sc);
2528 	return 0;
2529 }
2530 
2531 /*
2532  * Process an ioctl request.
2533  */
2534 int
2535 gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
2536 {
2537 	struct gem_softc *sc = ifp->if_softc;
2538 	int s, error = 0;
2539 
2540 	s = splnet();
2541 
2542 	if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
2543 		error = 0;
2544 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
2545 			;
2546 		else if (ifp->if_flags & IFF_RUNNING) {
2547 			/*
2548 			 * Multicast list has changed; set the hardware filter
2549 			 * accordingly.
2550 			 */
2551 			gem_setladrf(sc);
2552 		}
2553 	}
2554 
2555 	/* Try to get things going again */
2556 	if (ifp->if_flags & IFF_UP)
2557 		gem_start(ifp);
2558 	splx(s);
2559 	return (error);
2560 }
2561 
2562 static void
2563 gem_inten(struct gem_softc *sc)
2564 {
2565 	bus_space_tag_t t = sc->sc_bustag;
2566 	bus_space_handle_t h = sc->sc_h1;
2567 	uint32_t v;
2568 
2569 	if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
2570 		v = GEM_INTR_PCS;
2571 	else
2572 		v = GEM_INTR_MIF;
2573 	bus_space_write_4(t, h, GEM_INTMASK,
2574 		      ~(GEM_INTR_TX_INTME |
2575 			GEM_INTR_TX_EMPTY |
2576 			GEM_INTR_TX_MAC |
2577 			GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF|
2578 			GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL|
2579 			GEM_INTR_BERR | v));
2580 }
2581 
2582 bool
2583 gem_resume(device_t self PMF_FN_ARGS)
2584 {
2585 	struct gem_softc *sc = device_private(self);
2586 
2587 	gem_inten(sc);
2588 
2589 	return true;
2590 }
2591 
2592 bool
2593 gem_suspend(device_t self PMF_FN_ARGS)
2594 {
2595 	struct gem_softc *sc = device_private(self);
2596 	bus_space_tag_t t = sc->sc_bustag;
2597 	bus_space_handle_t h = sc->sc_h1;
2598 
2599 	bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
2600 
2601 	return true;
2602 }
2603 
2604 bool
2605 gem_shutdown(device_t self, int howto)
2606 {
2607 	struct gem_softc *sc = device_private(self);
2608 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2609 
2610 	gem_stop(ifp, 1);
2611 
2612 	return true;
2613 }
2614 
2615 /*
2616  * Set up the logical address filter.
2617  */
2618 void
2619 gem_setladrf(struct gem_softc *sc)
2620 {
2621 	struct ethercom *ec = &sc->sc_ethercom;
2622 	struct ifnet *ifp = &ec->ec_if;
2623 	struct ether_multi *enm;
2624 	struct ether_multistep step;
2625 	bus_space_tag_t t = sc->sc_bustag;
2626 	bus_space_handle_t h = sc->sc_h1;
2627 	u_int32_t crc;
2628 	u_int32_t hash[16];
2629 	u_int32_t v;
2630 	int i;
2631 
2632 	/* Get current RX configuration */
2633 	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
2634 
2635 	/*
2636 	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
2637 	 * and hash filter.  Depending on the case, the right bit will be
2638 	 * enabled.
2639 	 */
2640 	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
2641 	    GEM_MAC_RX_PROMISC_GRP);
2642 
2643 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2644 		/* Turn on promiscuous mode */
2645 		v |= GEM_MAC_RX_PROMISCUOUS;
2646 		ifp->if_flags |= IFF_ALLMULTI;
2647 		goto chipit;
2648 	}
2649 
2650 	/*
2651 	 * Set up multicast address filter by passing all multicast addresses
2652 	 * through a crc generator, and then using the high order 8 bits as an
2653 	 * index into the 256 bit logical address filter.  The high order 4
2654 	 * bits selects the word, while the other 4 bits select the bit within
2655 	 * the word (where bit 0 is the MSB).
2656 	 */
2657 
2658 	/* Clear hash table */
2659 	memset(hash, 0, sizeof(hash));
2660 
2661 	ETHER_FIRST_MULTI(step, ec, enm);
2662 	while (enm != NULL) {
2663 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2664 			/*
2665 			 * We must listen to a range of multicast addresses.
2666 			 * For now, just accept all multicasts, rather than
2667 			 * trying to set only those filter bits needed to match
2668 			 * the range.  (At this time, the only use of address
2669 			 * ranges is for IP multicast routing, for which the
2670 			 * range is big enough to require all bits set.)
2671 			 * XXX should use the address filters for this
2672 			 */
2673 			ifp->if_flags |= IFF_ALLMULTI;
2674 			v |= GEM_MAC_RX_PROMISC_GRP;
2675 			goto chipit;
2676 		}
2677 
2678 		/* Get the LE CRC32 of the address */
2679 		crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
2680 
2681 		/* Just want the 8 most significant bits. */
2682 		crc >>= 24;
2683 
2684 		/* Set the corresponding bit in the filter. */
2685 		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2686 
2687 		ETHER_NEXT_MULTI(step, enm);
2688 	}
2689 
2690 	v |= GEM_MAC_RX_HASH_FILTER;
2691 	ifp->if_flags &= ~IFF_ALLMULTI;
2692 
2693 	/* Now load the hash table into the chip (if we are using it) */
2694 	for (i = 0; i < 16; i++) {
2695 		bus_space_write_4(t, h,
2696 		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2697 		    hash[i]);
2698 	}
2699 
2700 chipit:
2701 	sc->sc_if_flags = ifp->if_flags;
2702 	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2703 }
2704