xref: /netbsd-src/sys/arch/xen/x86/cpu.c (revision 62e02cca18aa3ea8bc1df83f5ca7250e7871aa3d)
1 /*	$NetBSD: cpu.c,v 1.145 2023/02/25 00:35:01 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by RedBack Networks Inc.
10  *
11  * Author: Bill Sommerfeld
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*
36  * Copyright (c) 1999 Stefan Grefen
37  *
38  * Redistribution and use in source and binary forms, with or without
39  * modification, are permitted provided that the following conditions
40  * are met:
41  * 1. Redistributions of source code must retain the above copyright
42  *    notice, this list of conditions and the following disclaimer.
43  * 2. Redistributions in binary form must reproduce the above copyright
44  *    notice, this list of conditions and the following disclaimer in the
45  *    documentation and/or other materials provided with the distribution.
46  * 3. All advertising materials mentioning features or use of this software
47  *    must display the following acknowledgement:
48  *      This product includes software developed by the NetBSD
49  *      Foundation, Inc. and its contributors.
50  * 4. Neither the name of The NetBSD Foundation nor the names of its
51  *    contributors may be used to endorse or promote products derived
52  *    from this software without specific prior written permission.
53  *
54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64  * SUCH DAMAGE.
65  */
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.145 2023/02/25 00:35:01 riastradh Exp $");
69 
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h"		/* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75 
76 #include "lapic.h"
77 #include "ioapic.h"
78 
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89 
90 #include <uvm/uvm.h>
91 
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/pmap_private.h>
97 #include <machine/vmparam.h>
98 #include <machine/mpbiosvar.h>
99 #include <machine/pcb.h>
100 #include <machine/specialreg.h>
101 #include <machine/segments.h>
102 #include <machine/gdt.h>
103 #include <machine/mtrr.h>
104 #include <machine/pio.h>
105 
106 #include <x86/fpu.h>
107 
108 #include <xen/xen.h>
109 #include <xen/include/public/vcpu.h>
110 #include <xen/vcpuvar.h>
111 
112 #if NLAPIC > 0
113 #include <machine/apicvar.h>
114 #include <machine/i82489reg.h>
115 #include <machine/i82489var.h>
116 #endif
117 
118 #include <dev/ic/mc146818reg.h>
119 #include <dev/isa/isareg.h>
120 
121 static int	cpu_match(device_t, cfdata_t, void *);
122 static void	cpu_attach(device_t, device_t, void *);
123 static void	cpu_defer(device_t);
124 static int	cpu_rescan(device_t, const char *, const int *);
125 static void	cpu_childdetached(device_t, device_t);
126 static int	vcpu_match(device_t, cfdata_t, void *);
127 static void	vcpu_attach(device_t, device_t, void *);
128 static void	cpu_attach_common(device_t, device_t, void *);
129 void		cpu_offline_md(void);
130 
131 struct cpu_softc {
132 	device_t sc_dev;		/* device tree glue */
133 	struct cpu_info *sc_info;	/* pointer to CPU info */
134 	bool sc_wasonline;
135 };
136 
137 int mp_cpu_start(struct cpu_info *, vaddr_t);
138 void mp_cpu_start_cleanup(struct cpu_info *);
139 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
140 				      mp_cpu_start_cleanup };
141 
142 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
143     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
144 
145 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
146     vcpu_match, vcpu_attach, NULL, NULL);
147 
148 /*
149  * Statically-allocated CPU info for the primary CPU (or the only
150  * CPU, on uniprocessors).  The CPU info list is initialized to
151  * point at it.
152  */
153 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
154 	.ci_dev = 0,
155 	.ci_self = &cpu_info_primary,
156 	.ci_idepth = -1,
157 	.ci_curlwp = &lwp0,
158 	.ci_curldt = -1,
159 };
160 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
161 	.ci_dev = 0,
162 	.ci_self = &phycpu_info_primary,
163 };
164 
165 struct cpu_info *cpu_info_list = &cpu_info_primary;
166 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
167 
168 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
169 			  *	[0] basic features %edx
170 			  *	[1] basic features %ecx
171 			  *	[2] extended features %edx
172 			  *	[3] extended features %ecx
173 			  *	[4] VIA padlock features
174 			  *	[5] structured extended features cpuid.7:%ebx
175 			  *	[6] structured extended features cpuid.7:%ecx
176 			  */
177 
178 bool x86_mp_online;
179 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
180 
181 #if defined(MULTIPROCESSOR)
182 void    	cpu_hatch(void *);
183 static void    	cpu_boot_secondary(struct cpu_info *ci);
184 static void    	cpu_start_secondary(struct cpu_info *ci);
185 #endif	/* MULTIPROCESSOR */
186 
187 static int
cpu_match(device_t parent,cfdata_t match,void * aux)188 cpu_match(device_t parent, cfdata_t match, void *aux)
189 {
190 
191 	return 1;
192 }
193 
194 static void
cpu_attach(device_t parent,device_t self,void * aux)195 cpu_attach(device_t parent, device_t self, void *aux)
196 {
197 	struct cpu_softc *sc = device_private(self);
198 	struct cpu_attach_args *caa = aux;
199 	struct cpu_info *ci;
200 	uintptr_t ptr;
201 	static int nphycpu = 0;
202 
203 	sc->sc_dev = self;
204 
205 	/*
206 	 * If we're an Application Processor, allocate a cpu_info
207 	 * If we're the first attached CPU use the primary cpu_info,
208 	 * otherwise allocate a new one
209 	 */
210 	aprint_naive("\n");
211 	aprint_normal("\n");
212 	if (nphycpu > 0) {
213 		struct cpu_info *tmp;
214 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
215 		    KM_SLEEP);
216 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
217 		ci->ci_curldt = -1;
218 
219 		tmp = phycpu_info_list;
220 		while (tmp->ci_next)
221 			tmp = tmp->ci_next;
222 
223 		tmp->ci_next = ci;
224 	} else {
225 		ci = &phycpu_info_primary;
226 	}
227 
228 	ci->ci_self = ci;
229 	sc->sc_info = ci;
230 
231 	ci->ci_dev = self;
232 	ci->ci_acpiid = caa->cpu_id;
233 	ci->ci_cpuid = caa->cpu_number;
234 	ci->ci_vcpu = NULL;
235 	ci->ci_index = nphycpu++;
236 	ci->ci_kfpu_spl = -1;
237 
238 	if (!pmf_device_register(self, NULL, NULL))
239 		aprint_error_dev(self, "couldn't establish power handler\n");
240 
241 	(void)config_defer(self, cpu_defer);
242 }
243 
244 static void
cpu_defer(device_t self)245 cpu_defer(device_t self)
246 {
247 	cpu_rescan(self, NULL, NULL);
248 }
249 
250 static int
cpu_rescan(device_t self,const char * ifattr,const int * locators)251 cpu_rescan(device_t self, const char *ifattr, const int *locators)
252 {
253 	struct cpu_softc *sc = device_private(self);
254 	struct cpufeature_attach_args cfaa;
255 	struct cpu_info *ci = sc->sc_info;
256 
257 	memset(&cfaa, 0, sizeof(cfaa));
258 	cfaa.ci = ci;
259 
260 	if (ifattr_match(ifattr, "cpufeaturebus")) {
261 
262 		if (ci->ci_frequency == NULL) {
263 			cfaa.name = "frequency";
264 			ci->ci_frequency =
265 			    config_found(self, &cfaa, NULL,
266 					 CFARGS(.iattr = "cpufeaturebus"));
267 		}
268 	}
269 
270 	return 0;
271 }
272 
273 static void
cpu_childdetached(device_t self,device_t child)274 cpu_childdetached(device_t self, device_t child)
275 {
276 	struct cpu_softc *sc = device_private(self);
277 	struct cpu_info *ci = sc->sc_info;
278 
279 	if (ci->ci_frequency == child)
280 		ci->ci_frequency = NULL;
281 }
282 
283 static int
vcpu_match(device_t parent,cfdata_t match,void * aux)284 vcpu_match(device_t parent, cfdata_t match, void *aux)
285 {
286 	struct vcpu_attach_args *vcaa = aux;
287 	struct vcpu_runstate_info vcr;
288 	int error;
289 
290 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
291 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
292 		    vcaa->vcaa_caa.cpu_number, &vcr);
293 		switch (error) {
294 		case 0:
295 			return 1;
296 		case -ENOENT:
297 			return 0;
298 		default:
299 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
300 		}
301 	}
302 
303 	return 0;
304 }
305 
306 static void
vcpu_attach(device_t parent,device_t self,void * aux)307 vcpu_attach(device_t parent, device_t self, void *aux)
308 {
309 	struct vcpu_attach_args *vcaa = aux;
310 
311 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
312 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
313 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
314 
315 	if (!pmf_device_register(self, NULL, NULL))
316 		aprint_error_dev(self, "couldn't establish power handler\n");
317 }
318 
319 static int
vcpu_is_up(struct cpu_info * ci)320 vcpu_is_up(struct cpu_info *ci)
321 {
322 	KASSERT(ci != NULL);
323 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_vcpuid, NULL);
324 }
325 
326 static void
cpu_vm_init(struct cpu_info * ci)327 cpu_vm_init(struct cpu_info *ci)
328 {
329 	int ncolors = 2, i;
330 
331 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
332 		struct x86_cache_info *cai;
333 		int tcolors;
334 
335 		cai = &ci->ci_cinfo[i];
336 
337 		tcolors = atop(cai->cai_totalsize);
338 		switch (cai->cai_associativity) {
339 		case 0xff:
340 			tcolors = 1; /* fully associative */
341 			break;
342 		case 0:
343 		case 1:
344 			break;
345 		default:
346 			tcolors /= cai->cai_associativity;
347 		}
348 		ncolors = uimax(ncolors, tcolors);
349 	}
350 
351 	/*
352 	 * Knowing the size of the largest cache on this CPU, potentially
353 	 * re-color our pages.
354 	 */
355 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
356 	uvm_page_recolor(ncolors);
357 	pmap_tlb_cpu_init(ci);
358 #ifndef __HAVE_DIRECT_MAP
359 	pmap_vpage_cpu_init(ci);
360 #endif
361 }
362 
363 static void
cpu_attach_common(device_t parent,device_t self,void * aux)364 cpu_attach_common(device_t parent, device_t self, void *aux)
365 {
366 	struct cpu_softc *sc = device_private(self);
367 	struct cpu_attach_args *caa = aux;
368 	struct cpu_info *ci;
369 	uintptr_t ptr;
370 	int cpunum = caa->cpu_number;
371 	static bool again = false;
372 
373 	sc->sc_dev = self;
374 
375 	/*
376 	 * If we're an Application Processor, allocate a cpu_info
377 	 * structure, otherwise use the primary's.
378 	 */
379 	if (caa->cpu_role == CPU_ROLE_AP) {
380 		aprint_naive(": Application Processor\n");
381 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
382 		    KM_SLEEP);
383 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
384 		memset(ci, 0, sizeof(*ci));
385 		cpu_init_tss(ci);
386 	} else {
387 		aprint_naive(": %s Processor\n",
388 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
389 		ci = &cpu_info_primary;
390 	}
391 
392 	ci->ci_self = ci;
393 	sc->sc_info = ci;
394 	ci->ci_dev = self;
395 	ci->ci_cpuid = cpunum;
396 	ci->ci_vcpuid = cpunum;
397 	ci->ci_kfpu_spl = -1;
398 
399 	KASSERT(HYPERVISOR_shared_info != NULL);
400 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
401 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
402 
403 	KASSERT(ci->ci_func == 0);
404 	ci->ci_func = caa->cpu_func;
405 	aprint_normal("\n");
406 
407 	/* Must be called before mi_cpu_attach(). */
408 	cpu_vm_init(ci);
409 
410 	if (caa->cpu_role == CPU_ROLE_AP) {
411 		int error;
412 
413 		error = mi_cpu_attach(ci);
414 
415 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
416 		if (error != 0) {
417 			aprint_error_dev(self,
418 			    "mi_cpu_attach failed with %d\n", error);
419 			return;
420 		}
421 
422 	} else {
423 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
424 	}
425 
426 	KASSERT(ci->ci_cpuid == ci->ci_index);
427 #ifdef __x86_64__
428 	/* No user PGD mapped for this CPU yet */
429 	ci->ci_xen_current_user_pgd = 0;
430 #endif
431 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
432 	pmap_reference(pmap_kernel());
433 	ci->ci_pmap = pmap_kernel();
434 	ci->ci_tlbstate = TLBSTATE_STALE;
435 
436 	/*
437 	 * Boot processor may not be attached first, but the below
438 	 * must be done to allow booting other processors.
439 	 */
440 	if (!again) {
441 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
442 		/* Basic init. */
443 		cpu_intr_init(ci);
444 		cpu_get_tsc_freq(ci);
445 		cpu_init(ci);
446 		pmap_cpu_init_late(ci);
447 
448 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
449 		xen_ipi_init();
450 
451 		/* Make sure DELAY() is initialized. */
452 		DELAY(1);
453 		again = true;
454 	}
455 
456 	/* further PCB init done later. */
457 
458 	switch (caa->cpu_role) {
459 	case CPU_ROLE_SP:
460 		atomic_or_32(&ci->ci_flags, CPUF_SP);
461 		cpu_identify(ci);
462 		x86_cpu_idle_init();
463 		break;
464 
465 	case CPU_ROLE_BP:
466 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
467 		cpu_identify(ci);
468 		x86_cpu_idle_init();
469 		break;
470 
471 	case CPU_ROLE_AP:
472 		atomic_or_32(&ci->ci_flags, CPUF_AP);
473 
474 		/*
475 		 * report on an AP
476 		 */
477 
478 #if defined(MULTIPROCESSOR)
479 		/* interrupt handler stack */
480 		cpu_intr_init(ci);
481 
482 		/* Setup per-cpu memory for idt */
483 		idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
484 
485 		/* Setup per-cpu memory for gdt */
486 		gdt_alloc_cpu(ci);
487 
488 		pmap_cpu_init_late(ci);
489 		cpu_start_secondary(ci);
490 
491 		if (ci->ci_flags & CPUF_PRESENT) {
492 			struct cpu_info *tmp;
493 
494 			cpu_identify(ci);
495 			tmp = cpu_info_list;
496 			while (tmp->ci_next)
497 				tmp = tmp->ci_next;
498 
499 			tmp->ci_next = ci;
500 		}
501 #else
502 		aprint_error_dev(ci->ci_dev, "not started\n");
503 #endif
504 		break;
505 
506 	default:
507 		panic("unknown processor type??\n");
508 	}
509 
510 #ifdef MPVERBOSE
511 	if (mp_verbose) {
512 		struct lwp *l = ci->ci_data.cpu_idlelwp;
513 		struct pcb *pcb = lwp_getpcb(l);
514 
515 		aprint_verbose_dev(self,
516 		    "idle lwp at %p, idle sp at %p\n",
517 		    l,
518 #ifdef i386
519 		    (void *)pcb->pcb_esp
520 #else
521 		    (void *)pcb->pcb_rsp
522 #endif
523 		);
524 
525 	}
526 #endif /* MPVERBOSE */
527 }
528 
529 /*
530  * Initialize the processor appropriately.
531  */
532 
533 void
cpu_init(struct cpu_info * ci)534 cpu_init(struct cpu_info *ci)
535 {
536 	uint32_t cr4 = 0;
537 
538 	/*
539 	 * If we have FXSAVE/FXRESTOR, use them.
540 	 */
541 	if (cpu_feature[0] & CPUID_FXSR) {
542 		cr4 |= CR4_OSFXSR;
543 
544 		/*
545 		 * If we have SSE/SSE2, enable XMM exceptions.
546 		 */
547 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
548 			cr4 |= CR4_OSXMMEXCPT;
549 	}
550 
551 	/* If xsave is supported, enable it */
552 	if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
553 		cr4 |= CR4_OSXSAVE;
554 
555 	if (cr4) {
556 		cr4 |= rcr4();
557 		lcr4(cr4);
558 	}
559 
560 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
561 		fpuinit_mxcsr_mask();
562 	}
563 
564 	/*
565 	 * Changing CR4 register may change cpuid values. For example, setting
566 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
567 	 * ci_feat_val[1], so update it.
568 	 * XXX Other than ci_feat_val[1] might be changed.
569 	 */
570 	if (cpuid_level >= 1) {
571 		u_int descs[4];
572 
573 		x86_cpuid(1, descs);
574 		ci->ci_feat_val[1] = descs[2];
575 	}
576 
577 	/* If xsave is enabled, enable all fpu features */
578 	if (cr4 & CR4_OSXSAVE) {
579 		wrxcr(0, x86_xsave_features & XCR0_FPU);
580 	}
581 
582 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
583 }
584 
585 
586 #ifdef MULTIPROCESSOR
587 
588 void
cpu_boot_secondary_processors(void)589 cpu_boot_secondary_processors(void)
590 {
591 	struct cpu_info *ci;
592 	kcpuset_t *cpus;
593 	u_long i;
594 
595 	kcpuset_create(&cpus, true);
596 	kcpuset_set(cpus, cpu_index(curcpu()));
597 	for (i = 0; i < maxcpus; i++) {
598 		ci = cpu_lookup(i);
599 		if (ci == NULL)
600 			continue;
601 		if (ci->ci_data.cpu_idlelwp == NULL)
602 			continue;
603 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
604 			continue;
605 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
606 			continue;
607 		cpu_boot_secondary(ci);
608 		kcpuset_set(cpus, cpu_index(ci));
609 	}
610 	while (!kcpuset_match(cpus, kcpuset_running))
611 		;
612 	kcpuset_destroy(cpus);
613 
614 	x86_mp_online = true;
615 }
616 
617 static void
cpu_init_idle_lwp(struct cpu_info * ci)618 cpu_init_idle_lwp(struct cpu_info *ci)
619 {
620 	struct lwp *l = ci->ci_data.cpu_idlelwp;
621 	struct pcb *pcb = lwp_getpcb(l);
622 
623 	pcb->pcb_cr0 = rcr0();
624 }
625 
626 void
cpu_init_idle_lwps(void)627 cpu_init_idle_lwps(void)
628 {
629 	struct cpu_info *ci;
630 	u_long i;
631 
632 	for (i = 0; i < maxcpus; i++) {
633 		ci = cpu_lookup(i);
634 		if (ci == NULL)
635 			continue;
636 		if (ci->ci_data.cpu_idlelwp == NULL)
637 			continue;
638 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
639 			continue;
640 		cpu_init_idle_lwp(ci);
641 	}
642 }
643 
644 static void
cpu_start_secondary(struct cpu_info * ci)645 cpu_start_secondary(struct cpu_info *ci)
646 {
647 	int i;
648 
649 	aprint_debug_dev(ci->ci_dev, "starting\n");
650 
651 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
652 
653 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
654 		return;
655 	}
656 
657 	/*
658 	 * wait for it to become ready
659 	 */
660 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
661 		delay(10);
662 	}
663 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
664 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
665 #if defined(MPDEBUG) && defined(DDB)
666 		printf("dropping into debugger; continue from here to resume boot\n");
667 		Debugger();
668 #endif
669 	}
670 
671 	CPU_START_CLEANUP(ci);
672 }
673 
674 void
cpu_boot_secondary(struct cpu_info * ci)675 cpu_boot_secondary(struct cpu_info *ci)
676 {
677 	int i;
678 	atomic_or_32(&ci->ci_flags, CPUF_GO);
679 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
680 		delay(10);
681 	}
682 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
683 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
684 #if defined(MPDEBUG) && defined(DDB)
685 		printf("dropping into debugger; continue from here to resume boot\n");
686 		Debugger();
687 #endif
688 	}
689 }
690 
691 /*
692  * APs end up here immediately after initialisation and VCPUOP_up in
693  * mp_cpu_start().
694  * At this point, we are running in the idle pcb/idle stack of the new
695  * CPU.  This function jumps to the idle loop and starts looking for
696  * work.
697  */
698 extern void x86_64_tls_switch(struct lwp *);
699 void
cpu_hatch(void * v)700 cpu_hatch(void *v)
701 {
702 	struct cpu_info *ci = (struct cpu_info *)v;
703 	struct pcb *pcb;
704 	int s, i;
705 
706 	/* Setup TLS and kernel GS/FS */
707 	cpu_init_msrs(ci, true);
708 	cpu_init_idt(ci);
709 	gdt_init_cpu(ci);
710 
711 	cpu_probe(ci);
712 
713 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
714 
715 	while ((ci->ci_flags & CPUF_GO) == 0) {
716 		/* Don't use delay, boot CPU may be patching the text. */
717 		for (i = 10000; i != 0; i--)
718 			x86_pause();
719 	}
720 
721 	/* Because the text may have been patched in x86_patch(). */
722 	x86_flush();
723 	tlbflushg();
724 
725 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
726 
727 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
728 	KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
729 	pcb = lwp_getpcb(curlwp);
730 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
731 
732 	xen_ipi_init();
733 
734 	xen_initclocks();
735 
736 #ifdef __x86_64__
737 	fpuinit(ci);
738 #endif
739 
740 	lldt(GSEL(GLDT_SEL, SEL_KPL));
741 
742 	cpu_init(ci);
743 	cpu_get_tsc_freq(ci);
744 
745 	s = splhigh();
746 	x86_enable_intr();
747 	splx(s);
748 
749 	aprint_debug_dev(ci->ci_dev, "running\n");
750 
751 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
752 	idle_loop(NULL);
753 	KASSERT(false);
754 }
755 
756 #if defined(DDB)
757 
758 #include <ddb/db_output.h>
759 #include <machine/db_machdep.h>
760 
761 /*
762  * Dump CPU information from ddb.
763  */
764 void
cpu_debug_dump(void)765 cpu_debug_dump(void)
766 {
767 	struct cpu_info *ci;
768 	CPU_INFO_ITERATOR cii;
769 
770 	db_printf("addr		dev	id	flags	ipis	curlwp\n");
771 	for (CPU_INFO_FOREACH(cii, ci)) {
772 		db_printf("%p	%s	%ld	%x	%x	%10p\n",
773 		    ci,
774 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
775 		    (long)ci->ci_vcpuid,
776 		    ci->ci_flags, ci->ci_ipis,
777 		    ci->ci_curlwp);
778 	}
779 }
780 #endif /* DDB */
781 
782 #endif /* MULTIPROCESSOR */
783 
784 extern void hypervisor_callback(void);
785 extern void failsafe_callback(void);
786 #ifdef __x86_64__
787 typedef void (vector)(void);
788 extern vector Xsyscall, Xsyscall32;
789 #endif
790 
791 /*
792  * Setup the "trampoline". On Xen, we setup nearly all cpu context
793  * outside a trampoline, so we prototype and call targetip like so:
794  * void targetip(struct cpu_info *);
795  */
796 
797 static void
gdt_prepframes(paddr_t * frames,vaddr_t base,uint32_t entries)798 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
799 {
800 	int i;
801 	for (i = 0; i < entries; i++) {
802 		frames[i] = ((paddr_t)xpmap_ptetomach(
803 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
804 
805 		/* Mark Read-only */
806 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
807 		    PTE_W);
808 	}
809 }
810 
811 #ifdef __x86_64__
812 extern char *ldtstore;
813 
814 static void
xen_init_amd64_vcpuctxt(struct cpu_info * ci,struct vcpu_guest_context * initctx,void targetrip (struct cpu_info *))815 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
816     void targetrip(struct cpu_info *))
817 {
818 	/* page frames to point at GDT */
819 	extern int gdt_size;
820 	paddr_t frames[16];
821 	psize_t gdt_ents;
822 
823 	struct lwp *l;
824 	struct pcb *pcb;
825 
826 	volatile struct vcpu_info *vci;
827 
828 	KASSERT(ci != NULL);
829 	KASSERT(ci != &cpu_info_primary);
830 	KASSERT(initctx != NULL);
831 	KASSERT(targetrip != NULL);
832 
833 	memset(initctx, 0, sizeof(*initctx));
834 
835 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
836 	KASSERT(gdt_ents <= 16);
837 
838 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
839 
840 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
841 
842 	l = ci->ci_data.cpu_idlelwp;
843 
844 	KASSERT(l != NULL);
845 	pcb = lwp_getpcb(l);
846 	KASSERT(pcb != NULL);
847 
848 	/* resume with interrupts off */
849 	vci = ci->ci_vcpu;
850 	vci->evtchn_upcall_mask = 1;
851 	__insn_barrier();
852 
853 	/* resume in kernel-mode */
854 	initctx->flags = VGCF_in_kernel | VGCF_online;
855 
856 	/* Stack and entry points:
857 	 * We arrange for the stack frame for cpu_hatch() to
858 	 * appear as a callee frame of lwp_trampoline(). Being a
859 	 * leaf frame prevents trampling on any of the MD stack setup
860 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
861 	 */
862 
863 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
864 	initctx->user_regs.rip = (vaddr_t) targetrip;
865 
866 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
867 
868 	initctx->user_regs.rflags = pcb->pcb_flags;
869 	initctx->user_regs.rsp = pcb->pcb_rsp;
870 
871 	/* Data segments */
872 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
873 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
874 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
875 
876 	/* GDT */
877 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
878 	initctx->gdt_ents = gdt_ents;
879 
880 	/* LDT */
881 	initctx->ldt_base = (unsigned long)ldtstore;
882 	initctx->ldt_ents = LDT_SIZE >> 3;
883 
884 	/* Kernel context state */
885 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
886 	initctx->kernel_sp = pcb->pcb_rsp0;
887 	initctx->ctrlreg[0] = pcb->pcb_cr0;
888 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
889 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
890 	/*
891 	 * Use pmap_kernel() L4 PD directly, until we setup the
892 	 * per-cpu L4 PD in pmap_cpu_init_late()
893 	 */
894 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
895 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
896 
897 	/* Xen callbacks */
898 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
899 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
900 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
901 
902 	return;
903 }
904 #else /* i386 */
905 extern union descriptor *ldtstore;
906 extern void Xsyscall(void);
907 
908 static void
xen_init_i386_vcpuctxt(struct cpu_info * ci,struct vcpu_guest_context * initctx,void targeteip (struct cpu_info *))909 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
910     void targeteip(struct cpu_info *))
911 {
912 	/* page frames to point at GDT */
913 	extern int gdt_size;
914 	paddr_t frames[16];
915 	psize_t gdt_ents;
916 
917 	struct lwp *l;
918 	struct pcb *pcb;
919 
920 	volatile struct vcpu_info *vci;
921 
922 	KASSERT(ci != NULL);
923 	KASSERT(ci != &cpu_info_primary);
924 	KASSERT(initctx != NULL);
925 	KASSERT(targeteip != NULL);
926 
927 	memset(initctx, 0, sizeof(*initctx));
928 
929 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
930 	KASSERT(gdt_ents <= 16);
931 
932 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
933 
934 	/*
935 	 * Initialise the vcpu context:
936 	 * We use this cpu's idle_loop() pcb context.
937 	 */
938 
939 	l = ci->ci_data.cpu_idlelwp;
940 
941 	KASSERT(l != NULL);
942 	pcb = lwp_getpcb(l);
943 	KASSERT(pcb != NULL);
944 
945 	/* resume with interrupts off */
946 	vci = ci->ci_vcpu;
947 	vci->evtchn_upcall_mask = 1;
948 	__insn_barrier();
949 
950 	/* resume in kernel-mode */
951 	initctx->flags = VGCF_in_kernel | VGCF_online;
952 
953 	/* Stack frame setup for cpu_hatch():
954 	 * We arrange for the stack frame for cpu_hatch() to
955 	 * appear as a callee frame of lwp_trampoline(). Being a
956 	 * leaf frame prevents trampling on any of the MD stack setup
957 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
958 	 */
959 
960 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
961 						      arg1 */
962 	{
963 		/* targeteip(ci); */
964 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
965 		arg[1] = (uint32_t)ci; /* arg1 */
966 	}
967 
968 	initctx->user_regs.eip = (vaddr_t)targeteip;
969 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
970 	initctx->user_regs.eflags |= pcb->pcb_iopl;
971 
972 	/* Data segments */
973 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
974 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
975 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
976 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
977 
978 	/* GDT */
979 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
980 	initctx->gdt_ents = gdt_ents;
981 
982 	/* LDT */
983 	initctx->ldt_base = (unsigned long)ldtstore;
984 	initctx->ldt_ents = NLDT;
985 
986 	/* Kernel context state */
987 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
988 	initctx->kernel_sp = pcb->pcb_esp0;
989 	initctx->ctrlreg[0] = pcb->pcb_cr0;
990 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
991 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
992 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
993 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
994 
995 	/* Xen callbacks */
996 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
997 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
998 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
999 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1000 
1001 	return;
1002 }
1003 #endif /* __x86_64__ */
1004 
1005 int
mp_cpu_start(struct cpu_info * ci,vaddr_t target)1006 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1007 {
1008 	int hyperror;
1009 	struct vcpu_guest_context *vcpuctx;
1010 
1011 	KASSERT(ci != NULL);
1012 	KASSERT(ci != &cpu_info_primary);
1013 	KASSERT(ci->ci_flags & CPUF_AP);
1014 
1015 	vcpuctx = kmem_alloc(sizeof(*vcpuctx), KM_SLEEP);
1016 
1017 #ifdef __x86_64__
1018 	xen_init_amd64_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
1019 #else
1020 	xen_init_i386_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
1021 #endif
1022 
1023 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
1024 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_vcpuid, vcpuctx))) {
1025 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1026 		goto out;
1027 	}
1028 
1029 	/* Start it up */
1030 
1031 	/* First bring it down */
1032 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_vcpuid, NULL))) {
1033 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1034 		goto out;
1035 	}
1036 
1037 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_vcpuid, NULL))) {
1038 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1039 		goto out;
1040 	}
1041 
1042 	if (!vcpu_is_up(ci)) {
1043 		aprint_error(": did not come up\n");
1044 		hyperror = -1;
1045 		goto out;
1046 	}
1047 
1048 out:
1049 	kmem_free(vcpuctx, sizeof(*vcpuctx));
1050 	return hyperror;
1051 }
1052 
1053 void
mp_cpu_start_cleanup(struct cpu_info * ci)1054 mp_cpu_start_cleanup(struct cpu_info *ci)
1055 {
1056 	if (vcpu_is_up(ci)) {
1057 		aprint_debug_dev(ci->ci_dev, "is started.\n");
1058 	} else {
1059 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
1060 	}
1061 }
1062 
1063 void
cpu_init_msrs(struct cpu_info * ci,bool full)1064 cpu_init_msrs(struct cpu_info *ci, bool full)
1065 {
1066 #ifdef __x86_64__
1067 	if (full) {
1068 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1069 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1070 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1071 	}
1072 #endif
1073 
1074 	if (cpu_feature[2] & CPUID_NOX)
1075 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1076 }
1077 
1078 void
cpu_offline_md(void)1079 cpu_offline_md(void)
1080 {
1081 	return;
1082 }
1083 
1084 void
cpu_get_tsc_freq(struct cpu_info * ci)1085 cpu_get_tsc_freq(struct cpu_info *ci)
1086 {
1087 	uint32_t vcpu_tversion;
1088 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1089 
1090 	vcpu_tversion = tinfo->version;
1091 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1092 
1093 	uint64_t freq = 1000000000ULL << 32;
1094 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1095 	if (tinfo->tsc_shift < 0)
1096 		freq = freq << -tinfo->tsc_shift;
1097 	else
1098 		freq = freq >> tinfo->tsc_shift;
1099 	ci->ci_data.cpu_cc_freq = freq;
1100 }
1101 
1102 /*
1103  * Loads pmap for the current CPU.
1104  */
1105 void
cpu_load_pmap(struct pmap * pmap,struct pmap * oldpmap)1106 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1107 {
1108 	struct cpu_info *ci = curcpu();
1109 	cpuid_t cid = cpu_index(ci);
1110 	int i;
1111 
1112 	KASSERT(kpreempt_disabled());
1113 	KASSERT(pmap != pmap_kernel());
1114 
1115 	mutex_enter(&ci->ci_kpm_mtx);
1116 	/* make new pmap visible to xen_kpm_sync() */
1117 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1118 
1119 #ifdef __x86_64__
1120 	pd_entry_t *new_pgd;
1121 	paddr_t l4_pd_ma;
1122 
1123 	l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1124 
1125 	/*
1126 	 * Map user space address in kernel space and load
1127 	 * user cr3
1128 	 */
1129 	new_pgd = pmap->pm_pdir;
1130 	KASSERT(pmap == ci->ci_pmap);
1131 
1132 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1133 	for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
1134 		KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1135 		if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1136 			xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
1137 			    new_pgd[i]);
1138 		}
1139 	}
1140 
1141 	xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1142 	ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1143 #else
1144 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1145 	/* don't update the kernel L3 slot */
1146 	for (i = 0; i < PDP_SIZE - 1; i++) {
1147 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1148 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
1149 	}
1150 #endif
1151 
1152 	tlbflush();
1153 
1154 	/* old pmap no longer visible to xen_kpm_sync() */
1155 	if (oldpmap != pmap_kernel()) {
1156 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1157 	}
1158 	mutex_exit(&ci->ci_kpm_mtx);
1159 }
1160 
1161 /*
1162  * pmap_cpu_init_late: perform late per-CPU initialization.
1163  *
1164  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1165  * have per-cpu PDIR tables, for two different reasons:
1166  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1167  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1168  *    this way).
1169  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1170  *    (see cpu_load_pmap()).
1171  *
1172  * What this means for us is that the PDIR of the pmap_kernel() is considered
1173  * to be a canonical "SHADOW" PDIR with the following properties:
1174  *  - its recursive mapping points to itself
1175  *  - per-cpu recursive mappings point to themselves on __x86_64__
1176  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
1177  *    the shadow
1178  */
1179 
1180 void
pmap_cpu_init_late(struct cpu_info * ci)1181 pmap_cpu_init_late(struct cpu_info *ci)
1182 {
1183 	int i;
1184 
1185 	/*
1186 	 * The BP has already its own PD page allocated during early
1187 	 * MD startup.
1188 	 */
1189 
1190 #ifdef __x86_64__
1191 	/* Setup per-cpu normal_pdes */
1192 	extern pd_entry_t * const normal_pdes[];
1193 	for (i = 0;i < PTP_LEVELS - 1;i++) {
1194 		ci->ci_normal_pdes[i] = normal_pdes[i];
1195 	}
1196 #endif
1197 
1198 	if (ci == &cpu_info_primary)
1199 		return;
1200 
1201 	KASSERT(ci != NULL);
1202 
1203 #if defined(i386)
1204 	cpu_alloc_l3_page(ci);
1205 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
1206 
1207 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1208 	for (i = 0; i < PDP_SIZE - 1; i++) {
1209 		ci->ci_pae_l3_pdir[i] =
1210 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
1211 	}
1212 #endif
1213 
1214 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1215 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1216 
1217 	if (ci->ci_kpm_pdir == NULL) {
1218 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1219 		    __func__, cpu_index(ci));
1220 	}
1221 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1222 	KASSERT(ci->ci_kpm_pdirpa != 0);
1223 
1224 #ifdef __x86_64__
1225 	extern pt_entry_t xpmap_pg_nx;
1226 
1227 	/* Copy over the pmap_kernel() shadow L4 entries */
1228 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1229 
1230 	/* Recursive kernel mapping */
1231 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1232 	    | PTE_P | xpmap_pg_nx;
1233 #else
1234 	/* Copy over the pmap_kernel() shadow L2 entries */
1235 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1236 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1237 #endif
1238 
1239 	/* Xen wants a RO pdir. */
1240 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1241 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1242 	pmap_update(pmap_kernel());
1243 
1244 #ifdef __x86_64__
1245 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1246 #else
1247 	/*
1248 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1249 	 * static, ie: loading a new pmap will not update this entry.
1250 	 */
1251 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
1252 
1253 	/* Xen wants a RO L3. */
1254 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1255 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1256 	pmap_update(pmap_kernel());
1257 
1258 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1259 #endif
1260 }
1261 
1262 /*
1263  * Notify all other cpus to halt.
1264  */
1265 
1266 void
cpu_broadcast_halt(void)1267 cpu_broadcast_halt(void)
1268 {
1269 	xen_broadcast_ipi(XEN_IPI_HALT);
1270 }
1271 
1272 /*
1273  * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
1274  */
1275 
1276 void
cpu_kick(struct cpu_info * ci)1277 cpu_kick(struct cpu_info *ci)
1278 {
1279 	(void)xen_send_ipi(ci, XEN_IPI_AST);
1280 }
1281