1 /* $NetBSD: fpu_implode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */ 2 3 /* 4 * Copyright (c) 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This software was developed by the Computer Systems Engineering group 8 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 9 * contributed to Berkeley. 10 * 11 * All advertising materials mentioning features or use of this software 12 * must display the following acknowledgement: 13 * This product includes software developed by the University of 14 * California, Lawrence Berkeley Laboratory. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 * 40 * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 41 */ 42 43 /* 44 * FPU subroutines: `implode' internal format numbers into the machine's 45 * `packed binary' format. 46 */ 47 48 #include <sys/cdefs.h> 49 __KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.6 2005/12/11 12:18:42 christos Exp $"); 50 51 #include <sys/types.h> 52 #include <sys/systm.h> 53 54 #include <machine/ieee.h> 55 #include <powerpc/instr.h> 56 #include <machine/reg.h> 57 #include <machine/fpu.h> 58 59 #include <powerpc/fpu/fpu_arith.h> 60 #include <powerpc/fpu/fpu_emu.h> 61 #include <powerpc/fpu/fpu_extern.h> 62 63 static int round(struct fpemu *, struct fpn *); 64 static int toinf(struct fpemu *, int); 65 66 /* 67 * Round a number (algorithm from Motorola MC68882 manual, modified for 68 * our internal format). Set inexact exception if rounding is required. 69 * Return true iff we rounded up. 70 * 71 * After rounding, we discard the guard and round bits by shifting right 72 * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). 73 * This saves effort later. 74 * 75 * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's 76 * responsibility to fix this if necessary. 77 */ 78 static int 79 round(struct fpemu *fe, struct fpn *fp) 80 { 81 u_int m0, m1, m2, m3; 82 int gr, s; 83 FPU_DECL_CARRY; 84 85 m0 = fp->fp_mant[0]; 86 m1 = fp->fp_mant[1]; 87 m2 = fp->fp_mant[2]; 88 m3 = fp->fp_mant[3]; 89 gr = m3 & 3; 90 s = fp->fp_sticky; 91 92 /* mant >>= FP_NG */ 93 m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); 94 m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); 95 m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); 96 m0 >>= FP_NG; 97 98 if ((gr | s) == 0) /* result is exact: no rounding needed */ 99 goto rounddown; 100 101 fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */ 102 103 /* Go to rounddown to round down; break to round up. */ 104 switch ((fe->fe_fpscr) & FPSCR_RN) { 105 106 case FSR_RD_RN: 107 default: 108 /* 109 * Round only if guard is set (gr & 2). If guard is set, 110 * but round & sticky both clear, then we want to round 111 * but have a tie, so round to even, i.e., add 1 iff odd. 112 */ 113 if ((gr & 2) == 0) 114 goto rounddown; 115 if ((gr & 1) || fp->fp_sticky || (m3 & 1)) 116 break; 117 goto rounddown; 118 119 case FSR_RD_RZ: 120 /* Round towards zero, i.e., down. */ 121 goto rounddown; 122 123 case FSR_RD_RM: 124 /* Round towards -Inf: up if negative, down if positive. */ 125 if (fp->fp_sign) 126 break; 127 goto rounddown; 128 129 case FSR_RD_RP: 130 /* Round towards +Inf: up if positive, down otherwise. */ 131 if (!fp->fp_sign) 132 break; 133 goto rounddown; 134 } 135 136 /* Bump low bit of mantissa, with carry. */ 137 fe->fe_cx |= FPSCR_FR; 138 139 FPU_ADDS(m3, m3, 1); 140 FPU_ADDCS(m2, m2, 0); 141 FPU_ADDCS(m1, m1, 0); 142 FPU_ADDC(m0, m0, 0); 143 fp->fp_mant[0] = m0; 144 fp->fp_mant[1] = m1; 145 fp->fp_mant[2] = m2; 146 fp->fp_mant[3] = m3; 147 return (1); 148 149 rounddown: 150 fp->fp_mant[0] = m0; 151 fp->fp_mant[1] = m1; 152 fp->fp_mant[2] = m2; 153 fp->fp_mant[3] = m3; 154 return (0); 155 } 156 157 /* 158 * For overflow: return true if overflow is to go to +/-Inf, according 159 * to the sign of the overflowing result. If false, overflow is to go 160 * to the largest magnitude value instead. 161 */ 162 static int 163 toinf(struct fpemu *fe, int sign) 164 { 165 int inf; 166 167 /* look at rounding direction */ 168 switch ((fe->fe_fpscr) & FPSCR_RN) { 169 170 default: 171 case FSR_RD_RN: /* the nearest value is always Inf */ 172 inf = 1; 173 break; 174 175 case FSR_RD_RZ: /* toward 0 => never towards Inf */ 176 inf = 0; 177 break; 178 179 case FSR_RD_RP: /* toward +Inf iff positive */ 180 inf = sign == 0; 181 break; 182 183 case FSR_RD_RM: /* toward -Inf iff negative */ 184 inf = sign; 185 break; 186 } 187 if (inf) 188 fe->fe_cx |= FPSCR_OX; 189 return (inf); 190 } 191 192 /* 193 * fpn -> int (int value returned as return value). 194 * 195 * N.B.: this conversion always rounds towards zero (this is a peculiarity 196 * of the SPARC instruction set). 197 */ 198 u_int 199 fpu_ftoi(struct fpemu *fe, struct fpn *fp) 200 { 201 u_int i; 202 int sign, exp; 203 204 sign = fp->fp_sign; 205 switch (fp->fp_class) { 206 207 case FPC_ZERO: 208 return (0); 209 210 case FPC_NUM: 211 /* 212 * If exp >= 2^32, overflow. Otherwise shift value right 213 * into last mantissa word (this will not exceed 0xffffffff), 214 * shifting any guard and round bits out into the sticky 215 * bit. Then ``round'' towards zero, i.e., just set an 216 * inexact exception if sticky is set (see round()). 217 * If the result is > 0x80000000, or is positive and equals 218 * 0x80000000, overflow; otherwise the last fraction word 219 * is the result. 220 */ 221 if ((exp = fp->fp_exp) >= 32) 222 break; 223 /* NB: the following includes exp < 0 cases */ 224 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0) 225 fe->fe_cx |= FPSCR_UX; 226 i = fp->fp_mant[3]; 227 if (i >= ((u_int)0x80000000 + sign)) 228 break; 229 return (sign ? -i : i); 230 231 default: /* Inf, qNaN, sNaN */ 232 break; 233 } 234 /* overflow: replace any inexact exception with invalid */ 235 fe->fe_cx |= FPSCR_VXCVI; 236 return (0x7fffffff + sign); 237 } 238 239 /* 240 * fpn -> extended int (high bits of int value returned as return value). 241 * 242 * N.B.: this conversion always rounds towards zero (this is a peculiarity 243 * of the SPARC instruction set). 244 */ 245 u_int 246 fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res) 247 { 248 u_int64_t i; 249 int sign, exp; 250 251 sign = fp->fp_sign; 252 switch (fp->fp_class) { 253 254 case FPC_ZERO: 255 res[1] = 0; 256 return (0); 257 258 case FPC_NUM: 259 /* 260 * If exp >= 2^64, overflow. Otherwise shift value right 261 * into last mantissa word (this will not exceed 0xffffffffffffffff), 262 * shifting any guard and round bits out into the sticky 263 * bit. Then ``round'' towards zero, i.e., just set an 264 * inexact exception if sticky is set (see round()). 265 * If the result is > 0x8000000000000000, or is positive and equals 266 * 0x8000000000000000, overflow; otherwise the last fraction word 267 * is the result. 268 */ 269 if ((exp = fp->fp_exp) >= 64) 270 break; 271 /* NB: the following includes exp < 0 cases */ 272 if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0) 273 fe->fe_cx |= FPSCR_UX; 274 i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3]; 275 if (i >= ((u_int64_t)0x8000000000000000LL + sign)) 276 break; 277 return (sign ? -i : i); 278 279 default: /* Inf, qNaN, sNaN */ 280 break; 281 } 282 /* overflow: replace any inexact exception with invalid */ 283 fe->fe_cx |= FPSCR_VXCVI; 284 return (0x7fffffffffffffffLL + sign); 285 } 286 287 /* 288 * fpn -> single (32 bit single returned as return value). 289 * We assume <= 29 bits in a single-precision fraction (1.f part). 290 */ 291 u_int 292 fpu_ftos(struct fpemu *fe, struct fpn *fp) 293 { 294 u_int sign = fp->fp_sign << 31; 295 int exp; 296 297 #define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ 298 #define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ 299 300 /* Take care of non-numbers first. */ 301 if (ISNAN(fp)) { 302 /* 303 * Preserve upper bits of NaN, per SPARC V8 appendix N. 304 * Note that fp->fp_mant[0] has the quiet bit set, 305 * even if it is classified as a signalling NaN. 306 */ 307 (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); 308 exp = SNG_EXP_INFNAN; 309 goto done; 310 } 311 if (ISINF(fp)) 312 return (sign | SNG_EXP(SNG_EXP_INFNAN)); 313 if (ISZERO(fp)) 314 return (sign); 315 316 /* 317 * Normals (including subnormals). Drop all the fraction bits 318 * (including the explicit ``implied'' 1 bit) down into the 319 * single-precision range. If the number is subnormal, move 320 * the ``implied'' 1 into the explicit range as well, and shift 321 * right to introduce leading zeroes. Rounding then acts 322 * differently for normals and subnormals: the largest subnormal 323 * may round to the smallest normal (1.0 x 2^minexp), or may 324 * remain subnormal. In the latter case, signal an underflow 325 * if the result was inexact or if underflow traps are enabled. 326 * 327 * Rounding a normal, on the other hand, always produces another 328 * normal (although either way the result might be too big for 329 * single precision, and cause an overflow). If rounding a 330 * normal produces 2.0 in the fraction, we need not adjust that 331 * fraction at all, since both 1.0 and 2.0 are zero under the 332 * fraction mask. 333 * 334 * Note that the guard and round bits vanish from the number after 335 * rounding. 336 */ 337 if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ 338 /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ 339 (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); 340 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1)) 341 return (sign | SNG_EXP(1) | 0); 342 if ((fe->fe_cx & FPSCR_FI) || 343 (fe->fe_fpscr & FPSCR_UX)) 344 fe->fe_cx |= FPSCR_UX; 345 return (sign | SNG_EXP(0) | fp->fp_mant[3]); 346 } 347 /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ 348 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); 349 #ifdef DIAGNOSTIC 350 if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) 351 panic("fpu_ftos"); 352 #endif 353 if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2)) 354 exp++; 355 if (exp >= SNG_EXP_INFNAN) { 356 /* overflow to inf or to max single */ 357 if (toinf(fe, sign)) 358 return (sign | SNG_EXP(SNG_EXP_INFNAN)); 359 return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); 360 } 361 done: 362 /* phew, made it */ 363 return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); 364 } 365 366 /* 367 * fpn -> double (32 bit high-order result returned; 32-bit low order result 368 * left in res[1]). Assumes <= 61 bits in double precision fraction. 369 * 370 * This code mimics fpu_ftos; see it for comments. 371 */ 372 u_int 373 fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res) 374 { 375 u_int sign = fp->fp_sign << 31; 376 int exp; 377 378 #define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) 379 #define DBL_MASK (DBL_EXP(1) - 1) 380 381 if (ISNAN(fp)) { 382 (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); 383 exp = DBL_EXP_INFNAN; 384 goto done; 385 } 386 if (ISINF(fp)) { 387 sign |= DBL_EXP(DBL_EXP_INFNAN); 388 goto zero; 389 } 390 if (ISZERO(fp)) { 391 zero: res[1] = 0; 392 return (sign); 393 } 394 395 if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { 396 (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); 397 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) { 398 res[1] = 0; 399 return (sign | DBL_EXP(1) | 0); 400 } 401 if ((fe->fe_cx & FPSCR_FI) || 402 (fe->fe_fpscr & FPSCR_UX)) 403 fe->fe_cx |= FPSCR_UX; 404 exp = 0; 405 goto done; 406 } 407 (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); 408 if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2)) 409 exp++; 410 if (exp >= DBL_EXP_INFNAN) { 411 fe->fe_cx |= FPSCR_OX | FPSCR_UX; 412 if (toinf(fe, sign)) { 413 res[1] = 0; 414 return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0); 415 } 416 res[1] = ~0; 417 return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK); 418 } 419 done: 420 res[1] = fp->fp_mant[3]; 421 return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)); 422 } 423 424 /* 425 * Implode an fpn, writing the result into the given space. 426 */ 427 void 428 fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space) 429 { 430 431 switch (type) { 432 433 case FTYPE_LNG: 434 space[0] = fpu_ftox(fe, fp, space); 435 DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n", 436 space[0], space[1])); 437 break; 438 439 case FTYPE_INT: 440 space[0] = 0; 441 space[1] = fpu_ftoi(fe, fp); 442 DPRINTF(FPE_REG, ("fpu_implode: int %x\n", 443 space[1])); 444 break; 445 446 case FTYPE_SNG: 447 space[0] = fpu_ftos(fe, fp); 448 DPRINTF(FPE_REG, ("fpu_implode: single %x\n", 449 space[0])); 450 break; 451 452 case FTYPE_DBL: 453 space[0] = fpu_ftod(fe, fp, space); 454 DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n", 455 space[0], space[1])); 456 break; break; 457 458 default: 459 panic("fpu_implode: invalid type %d", type); 460 } 461 } 462