xref: /netbsd-src/sys/arch/m68k/fpsp/stanh.sa (revision 57fb77a14ebcd83f1fae16b59e7b83fd0f166e03)
1*	$NetBSD: stanh.sa,v 1.3 1994/10/26 07:50:12 cgd Exp $
2
3*	MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
4*	M68000 Hi-Performance Microprocessor Division
5*	M68040 Software Package
6*
7*	M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
8*	All rights reserved.
9*
10*	THE SOFTWARE is provided on an "AS IS" basis and without warranty.
11*	To the maximum extent permitted by applicable law,
12*	MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
13*	INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
14*	PARTICULAR PURPOSE and any warranty against infringement with
15*	regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
16*	and any accompanying written materials.
17*
18*	To the maximum extent permitted by applicable law,
19*	IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
20*	(INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
21*	PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
22*	OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
23*	SOFTWARE.  Motorola assumes no responsibility for the maintenance
24*	and support of the SOFTWARE.
25*
26*	You are hereby granted a copyright license to use, modify, and
27*	distribute the SOFTWARE so long as this entire notice is retained
28*	without alteration in any modified and/or redistributed versions,
29*	and that such modified versions are clearly identified as such.
30*	No licenses are granted by implication, estoppel or otherwise
31*	under any patents or trademarks of Motorola, Inc.
32
33*
34*	stanh.sa 3.1 12/10/90
35*
36*	The entry point sTanh computes the hyperbolic tangent of
37*	an input argument; sTanhd does the same except for denormalized
38*	input.
39*
40*	Input: Double-extended number X in location pointed to
41*		by address register a0.
42*
43*	Output: The value tanh(X) returned in floating-point register Fp0.
44*
45*	Accuracy and Monotonicity: The returned result is within 3 ulps in
46*		64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
47*		result is subsequently rounded to double precision. The
48*		result is provably monotonic in double precision.
49*
50*	Speed: The program stanh takes approximately 270 cycles.
51*
52*	Algorithm:
53*
54*	TANH
55*	1. If |X| >= (5/2) log2 or |X| <= 2**(-40), go to 3.
56*
57*	2. (2**(-40) < |X| < (5/2) log2) Calculate tanh(X) by
58*		sgn := sign(X), y := 2|X|, z := expm1(Y), and
59*		tanh(X) = sgn*( z/(2+z) ).
60*		Exit.
61*
62*	3. (|X| <= 2**(-40) or |X| >= (5/2) log2). If |X| < 1,
63*		go to 7.
64*
65*	4. (|X| >= (5/2) log2) If |X| >= 50 log2, go to 6.
66*
67*	5. ((5/2) log2 <= |X| < 50 log2) Calculate tanh(X) by
68*		sgn := sign(X), y := 2|X|, z := exp(Y),
69*		tanh(X) = sgn - [ sgn*2/(1+z) ].
70*		Exit.
71*
72*	6. (|X| >= 50 log2) Tanh(X) = +-1 (round to nearest). Thus, we
73*		calculate Tanh(X) by
74*		sgn := sign(X), Tiny := 2**(-126),
75*		tanh(X) := sgn - sgn*Tiny.
76*		Exit.
77*
78*	7. (|X| < 2**(-40)). Tanh(X) = X.	Exit.
79*
80
81STANH	IDNT	2,1 Motorola 040 Floating Point Software Package
82
83	section	8
84
85	include fpsp.h
86
87X	equ	FP_SCR5
88XDCARE	equ	X+2
89XFRAC	equ	X+4
90
91SGN	equ	L_SCR3
92
93V	equ	FP_SCR6
94
95BOUNDS1	DC.L $3FD78000,$3FFFDDCE ... 2^(-40), (5/2)LOG2
96
97	xref	t_frcinx
98	xref	t_extdnrm
99	xref	setox
100	xref	setoxm1
101
102	xdef	stanhd
103stanhd:
104*--TANH(X) = X FOR DENORMALIZED X
105
106	bra		t_extdnrm
107
108	xdef	stanh
109stanh:
110	FMOVE.X		(a0),FP0	...LOAD INPUT
111
112	FMOVE.X		FP0,X(a6)
113	move.l		(a0),d0
114	move.w		4(a0),d0
115	MOVE.L		D0,X(a6)
116	AND.L		#$7FFFFFFF,D0
117	CMP2.L		BOUNDS1(pc),D0	...2**(-40) < |X| < (5/2)LOG2 ?
118	BCS.B		TANHBORS
119
120*--THIS IS THE USUAL CASE
121*--Y = 2|X|, Z = EXPM1(Y), TANH(X) = SIGN(X) * Z / (Z+2).
122
123	MOVE.L		X(a6),D0
124	MOVE.L		D0,SGN(a6)
125	AND.L		#$7FFF0000,D0
126	ADD.L		#$00010000,D0	...EXPONENT OF 2|X|
127	MOVE.L		D0,X(a6)
128	AND.L		#$80000000,SGN(a6)
129	FMOVE.X		X(a6),FP0		...FP0 IS Y = 2|X|
130
131	move.l		d1,-(a7)
132	clr.l		d1
133	fmovem.x	fp0,(a0)
134	bsr		setoxm1	 	...FP0 IS Z = EXPM1(Y)
135	move.l		(a7)+,d1
136
137	FMOVE.X		FP0,FP1
138	FADD.S		#:40000000,FP1	...Z+2
139	MOVE.L		SGN(a6),D0
140	FMOVE.X		FP1,V(a6)
141	EOR.L		D0,V(a6)
142
143	FMOVE.L		d1,FPCR		;restore users exceptions
144	FDIV.X		V(a6),FP0
145	bra		t_frcinx
146
147TANHBORS:
148	CMP.L		#$3FFF8000,D0
149	BLT.W		TANHSM
150
151	CMP.L		#$40048AA1,D0
152	BGT.W		TANHHUGE
153
154*-- (5/2) LOG2 < |X| < 50 LOG2,
155*--TANH(X) = 1 - (2/[EXP(2X)+1]). LET Y = 2|X|, SGN = SIGN(X),
156*--TANH(X) = SGN -	SGN*2/[EXP(Y)+1].
157
158	MOVE.L		X(a6),D0
159	MOVE.L		D0,SGN(a6)
160	AND.L		#$7FFF0000,D0
161	ADD.L		#$00010000,D0	...EXPO OF 2|X|
162	MOVE.L		D0,X(a6)		...Y = 2|X|
163	AND.L		#$80000000,SGN(a6)
164	MOVE.L		SGN(a6),D0
165	FMOVE.X		X(a6),FP0		...Y = 2|X|
166
167	move.l		d1,-(a7)
168	clr.l		d1
169	fmovem.x	fp0,(a0)
170	bsr		setox		...FP0 IS EXP(Y)
171	move.l		(a7)+,d1
172	move.l		SGN(a6),d0
173	FADD.S		#:3F800000,FP0	...EXP(Y)+1
174
175	EOR.L		#$C0000000,D0	...-SIGN(X)*2
176	FMOVE.S		d0,FP1		...-SIGN(X)*2 IN SGL FMT
177	FDIV.X		FP0,FP1	 	...-SIGN(X)2 / [EXP(Y)+1 ]
178
179	MOVE.L		SGN(a6),D0
180	OR.L		#$3F800000,D0	...SGN
181	FMOVE.S		d0,FP0		...SGN IN SGL FMT
182
183	FMOVE.L		d1,FPCR		;restore users exceptions
184	FADD.X		fp1,FP0
185
186	bra		t_frcinx
187
188TANHSM:
189	CLR.W		XDCARE(a6)
190
191	FMOVE.L		d1,FPCR		;restore users exceptions
192	FMOVE.X		X(a6),FP0		;last inst - possible exception set
193
194	bra		t_frcinx
195
196TANHHUGE:
197*---RETURN SGN(X) - SGN(X)EPS
198	MOVE.L		X(a6),D0
199	AND.L		#$80000000,D0
200	OR.L		#$3F800000,D0
201	FMOVE.S		d0,FP0
202	AND.L		#$80000000,D0
203	EOR.L		#$80800000,D0	...-SIGN(X)*EPS
204
205	FMOVE.L		d1,FPCR		;restore users exceptions
206	FADD.S		d0,FP0
207
208	bra		t_frcinx
209
210	end
211